1
|
Wang H, Wang M, Li Y, Yang X, Xing X, Shi B. Chlorination enhances the phthalates release and increases the cytotoxicity and bacterial functions related to human disease of drinking water in plastic pipes. WATER RESEARCH 2025; 276:123218. [PMID: 39908590 DOI: 10.1016/j.watres.2025.123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/10/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
The interaction between water and pipe surfaces can deteriorate drinking water quality, thus threatening public health. However, uncertainties remain in the release mechanism of phthalates acid esters (PAEs) from plastic pipes and their effects on drinking water quality. Our study indicated that PAEs released from polyvinyl chloride (PVC) pipes was higher than polyethylene (PE) pipes. Chlorine disinfection increased the released PAEs concentration in effluents of PE-Cl2 and PVCCl2 pipes to 6.60∼7.87 μg/L and 7.45∼8.88 μg/L, respectively. PAEs release varied the CHO and tannins numbers in dissolved organic matter (DOM), increasing the cytotoxicity of water. Although chorine disinfection reduced the abundance of pathogenic bacteria, it upregulated the relative abundance of bacterial metabolic pathways related to human disease, such as drug resistance: antimicrobial and cancer: overview. In addition, various biofilm bacterial community compositions affected the interactions between bacteria and pipe surfaces, and the roughness of pipe surfaces increased after biofilm formation. The hydrophilicity of pipe surfaces also increased due to biofilm formation and chlorine disinfection. After five months of running, higher hydrophilicity of PVC pipe surface was observed than that of PE pipes, especially after chlorine disinfection, consequently enhancing PAEs release. In conclusion, chlorine disinfection accelerated PAEs release from plastic pipes by increasing the hydrophilicity of pipe surfaces, resulting in higher cytotoxicity and microbial risk of drinking water, especially in PVCCl2 pipes. This study revealed the influence of chlorine disinfection on PAEs release and its potential risk to public health, which provided insightful visions for the future drinking water security monitoring.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Min Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yukang Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xinyuan Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Lin W, Zhao K, Wu Q, Xu F, Cui L, Lin H, Ye C, Yu X. Biofilms on pipelines shape the microbiome and antibiotic resistome in drinking water. WATER RESEARCH 2025; 274:123136. [PMID: 39827519 DOI: 10.1016/j.watres.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Biofilms in the drinking water distribution system (DWDS) provide shelter for pathogens and antibiotic resistance genes (ARGs). However, how biofilms alter the microbiome and antibiotic resistome in tap water, as well as the precise quantitative evaluation of their health risks, remains unclear. Herein, biofilm reactors supplied with municipal drinking water were operated for 120 days. Metagenomic sequencing identified significant differences in microbial compositions among the biofilms, influent, and effluents. A total of 69-305 ARGs were detected in this DWDS, and ARG abundances increased in the biofilms (0.246-1.576 cpc) and effluents (0.309-0.503 cpc) compared to the influent (0.131 cpc). Metagenomic assembly pinpointed potential pathogenic ARG hosts such as Acinetobacter, Pseudomonas, and Escherichia. The co-occurrence of ARGs and mobile genetic elements indicated potential mobility, which was further supported by transformation assays demonstrating gene transfers at a frequency of 10-6. Furthermore, source tracking revealed that biofilms contributed high proportions (19 %-34 %) to the ARG profiles of effluents. The ARG risk scores increased from the influent (20.39) to the effluents (39.85-55.50), with highest level (55.50) in the cast iron effluent. Overall, this study provides novel insights into the impacts of biofilm growth on the microbiome and antibiotic resistome in tap water, along with their potential health risks in the DWDS.
Collapse
Affiliation(s)
- Wenfang Lin
- State Key Laboratory for Ecological Security of Regions and Cities, State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Keqian Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Qihui Wu
- State Key Laboratory for Ecological Security of Regions and Cities, State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Fei Xu
- State Key Laboratory for Ecological Security of Regions and Cities, State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- State Key Laboratory for Ecological Security of Regions and Cities, State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huirong Lin
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Hua P, Huang Q, Wang Z, Jiang S, Gao F, Zhang J, Ying GG. Impact of physicochemical and microbial drivers on the formation of disinfection by-products in drinking water distribution systems: A multivariate Bayesian network modeling approach. WATER RESEARCH 2025; 273:123001. [PMID: 39733531 DOI: 10.1016/j.watres.2024.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
The formation of disinfection byproducts (DBPs) in drinking water distribution systems (DWDS) is significantly affected by numerous factors, including physicochemical water properties, microbial community composition and structure, and the characteristics of organic DBP precursors. However, the codependence of various factors remains unclear, particularly the contribution of microbial-derived organics to DBP formation, which has been inadequately explored. Herein, we present a Bayesian network modeling framework incorporating a Bayesian-based microbial source tracking method and excitation-emission fluorescence spectroscopy-parallel factor analysis to capture the critical drivers influencing DBP formation and explore their interactions. The results showed that the planktonic and suspended particle-associated bacteria in tap water mainly originated from bacteria in the treated water. Protein- and tryptophan-like fluorescence components were identified, illustrating their contribution to DBP formation cannot be ignored. The microbial abundance of Actinobacteria, Bacilli, and Bacteroidia is significantly related to the formation of trihalomethanes, haloacetic acids, and N-nitrosamines. These findings highlight the necessity for prioritizing management policies to control biofilm formation and minimize DBP formation in DWDSs.
Collapse
Affiliation(s)
- Pei Hua
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Qiuyun Huang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhenyu Wang
- Department Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Strasse 4, 06120 Halle (Saale), Germany
| | - Shanshan Jiang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fangzhou Gao
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, 210098 Nanjing, China
| | - Guang-Guo Ying
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
4
|
Newcomer DA, Chopra I, Ali IKM, Roy S, Cope JR, Darnell JT. Microbial assessment and performance evaluation of eyewash stations in the laboratory setting. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2025; 22:322-335. [PMID: 39913908 DOI: 10.1080/15459624.2024.2443208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Eyewash stations are an essential component of laboratory safety programs, providing first aid in case of ocular exposure to hazardous materials. However, the presence of microbial contamination in these devices poses a potential risk of ocular infection to laboratory employees. This cross-sectional study aimed to evaluate the microbial quality and performance of 40 eyewash stations fixed in 10 buildings in a laboratory setting. Water quality parameters, including temperature, pH, turbidity, and the presence of Acanthamoeba spp., were measured at various time points (first draw, after 2 min of flushing, and 15 min flushing) from samples collected from each of the 40 eyewash stations. Performance and operational data were also measured according to the American National Standards Institute (ANSI)/International Safety Equipment Association (ISEA) Z358.1-2014 standard. Our results showed variable compliance with this standard across measures of physical condition, performance, access, and maintenance. Out of the 147 water samples collected (130 eyewash samples, 17 building reference samples), 28 samples were suspected to contain Acanthamoeba spp. or other free-living amoeba based on initial testing. Further analysis using polymerase chain reaction (PCR) confirmed the presence of Acanthamoeba spp. in 5 out of 28 samples. The results of this study provide insights into the potential risk of ocular infections associated with using eyewash stations and provide the basis for the recommendations on maintenance protocols to minimize the risk of microbial contamination.
Collapse
Affiliation(s)
- Derek A Newcomer
- Office of Research Services, Division of Occupational Health and Safety, National Institutes of Health, Bethesda, Maryland
| | | | - Ibne Karim M Ali
- National Center for Emerging and Zoonotic Diseases, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Shantanu Roy
- National Center for Emerging and Zoonotic Diseases, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jennifer R Cope
- National Center for Emerging and Zoonotic Diseases, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
5
|
Kaksonen AH, Wylie J, Morgan MJ, Walsh T, Tjandraatmadja G, Barry K, Gonzalez D, Goodman N, Vanderzalm J, Dillon P, Sidhu J, Puzon GJ. Impact of stormwater on biofilm density and microbial community composition in water distribution networks. WATER RESEARCH 2025; 272:122989. [PMID: 39708379 DOI: 10.1016/j.watres.2024.122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Harvesting of stormwater and injecting it into aquifers for storage and recovery during high water demand periods is a promising technology for augmenting conventional water reserves. However, little has been known on how stormwater impacts the biofouling of water distribution infrastructure. This study evaluated the effect on harvested and limestone aquifer treated stormwater on biofilm formation in a pilot distribution pipe network compared to an identical drinking water pipe rig. Coupons made of cement, copper and polyvinyl chloride (PVC) pipe materials were installed to each pipe rig and exposed to stormwater or drinking water. The total cell counts determined by flow cytometry on the pilot rig coupons were in the order of 105 to 107 cells/cm2 for both source waters and showed some variation over the duration of the study. The culturable cell counts were somewhat higher for stormwater exposed coupons than for coupons in mains water rig. The total number of thermotolerant coliforms was notably higher on coupons exposed to stormwater than on those exposed to mains water. Considerable differences were observed in the bacterial and eukaryotic communities on coupons made of various materials and exposed to mains water and stormwater using pyrosequencing. Moreover, seasonal variations were observed in community composition and diversity. A number of bacterial and eukaryotic families and genera harbouring potential human pathogens were detected in both mains water and stormwater systems, with larger numbers of genera observed in the latter indicating a potentially increased risk of exposure to pathogens with stormwater. The stormwater system also harboured sulfur reducers, and a greater diversity of iron oxidisers. A number of bacterial genera that contribute to nitrogen cycling were observed in both mains water and stormwater systems. A number of bacteria grazing eukaryotes were detected, indicating that the biofilm communities are quite dynamic and the abundance of bacteria is able to support higher level eukaryotes.
Collapse
Affiliation(s)
- Anna H Kaksonen
- CSIRO Environment, Centre for Environment and Life Sciences, Private Bag No 5, Wembley, Western Australia 6913, Australia
| | - Jason Wylie
- CSIRO Environment, Centre for Environment and Life Sciences, Private Bag No 5, Wembley, Western Australia 6913, Australia
| | - Matthew J Morgan
- CSIRO Environment, Black Mountain Laboratories, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Tom Walsh
- CSIRO Environment, Black Mountain Laboratories, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | | | - Karen Barry
- CSIRO Environment, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Dennis Gonzalez
- CSIRO Environment, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Nigel Goodman
- CSIRO Environment, CSIRO, Private Bag 10, Clayton South, Vic, 3169, Australia
| | | | - Peter Dillon
- CSIRO Environment, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Jatinder Sidhu
- CSIRO Environment, CSIRO, GPO Box 2583, Brisbane, Qld, 4001, Australia
| | - Geoffrey J Puzon
- CSIRO Environment, Centre for Environment and Life Sciences, Private Bag No 5, Wembley, Western Australia 6913, Australia.
| |
Collapse
|
6
|
Chen Y, Xing X, Hu C, Gao J, Cai W, Liu X, Lin Y, Zhuang S, Luo K, Zhu J. Synergistic effects of ozonation pretreatment and trace phosphate on water quality health risk and microbial stability in simulated drinking water distribution systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136913. [PMID: 39708596 DOI: 10.1016/j.jhazmat.2024.136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The proliferation and chlorine resistance of pathogenic bacteria in drinking water distribution systems (DWDSs) pose a serious threat to human health. In this study, the synergistic effects of ozonation pretreatment and trace phosphate on water quality health risk and microbial stability were investigated in the small-scale DWDSs simulated by biofilms annular reactors with cast iron coupons. The results indicated that ozonation of drinking water containing trace phosphate was equivalent to increasing microbial carbon and phosphorus sources, further leading to the rapid proliferation of opportunistic pathogens (OPs) in subsequent DWDSs. Under the influent condition of ozonation pretreatment and 0.6 mg/L phosphate, the gene copy numbers of living Legionella spp., Mycobacterium spp., and Acanthamoeba spp. reached up to 1.50 × 104, 1.21 × 104, and 2.29 × 104 gene copies/mL, respectively. The extracellular polymeric substances from suspended biofilms in DWDSs exhibited higher content, molecular weight, and flocculating efficiency, contributing to the improvement of microbial chlorine resistance. Meanwhile, more Fe3O4 appeared in the corrosion products, which enhanced the extracellular electron transfer via cytochrome c and weakened the electrostatic repulsion between corrosion products and microbes in DWDSs. Finally, more active OP growth and microbial metabolic activity occurred in DWDSs. This study revealed that ozonation pretreatment and trace phosphate, as a green technology and an inconspicuous nutrient, respectively, can trigger significant microbial health risks in subsequent DWDSs. Therefore, the phosphate in drinking water should be more strictly restricted when ozonation technology is used in waterworks, especially without a biofiltration treatment process.
Collapse
Affiliation(s)
- Youyi Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jingyu Gao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wu Cai
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xinkai Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yanliang Lin
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Sumin Zhuang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Kaiyin Luo
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiaqi Zhu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Sun H, Ju X, Wang H, Ma X, Shi B. Ammonia nitrogen affects bacterial virulence and conditional pathogenic bacterial growth by regulating biofilm microbial metabolism and EPS secretion in laboratory scale distribution systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178150. [PMID: 39705953 DOI: 10.1016/j.scitotenv.2024.178150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The control of conditional pathogenic bacteria and inhibition of their virulence factors (VFs) in drinking water distribution systems (DWDSs) is vital for drinking water safety. This study adopted two groups of DWDSs to investigate how ammonia nitrogen affects bacterial VFs and conditional pathogenic bacterial growth in biofilms. Our results indicated that Acidimicrobium (95,916.62 ± 119.24 TPM), Limnohabitans (30,338.81 ± 139.14 TPM), and Sediminibacterium (10,658.01 ± 48.94 TPM) were predominant in the biofilm bacterial community of DWDSs with NH3-N addition. Under these conditions, the abundances of various bacterial metabolites, such as L-glutamate (1.45-fold), 2-oxoglutarate (1.24-fold), pyruvate (2.10-fold), and adenosine monophosphate (AMP, 5.29-fold), were significantly upregulated, which suggested the upregulation of amino acid, carbohydrate, nucleotide, lipid, pyrimidine and purine metabolism. These metabolic pathways accelerated extracellular polymeric substance (EPS) secretion. The protein concentration in EPS also increased to 187.59 ± 0.58 μg/cm2. The increased EPS secretion promoted the amide I CO group of the EPS protein to interact with the surface of the DWDSs, thus enhancing the ability of bacteria (especially conditional pathogenic bacteria) to adhere to the pipe surface to form biofilms. Due to EPS protection, the abundance of the adherence subtype of VFs and the plate counts of Pseudomonas aeruginosa increased to 5912.8 ± 21.89 TPM and 655.78 ± 27.10 CFU/cm2, respectively. Therefore, NH3-N in DWDSs increased bacterial VFs levels and promoted the growth of some conditional pathogenic bacteria by regulating biofilm microbial metabolic pathways and EPS secretion, ultimately impacting the interaction between EPS and the pipe surface.
Collapse
Affiliation(s)
- Huifang Sun
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Xiurong Ju
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, Shanxi, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Hu Y, Li R, Bian K, Zhou Q, Pan Y, Ye L, Li A, Shi P. Biofilm formation dynamics in long-distance water conveyance pipelines: Impacts of nutrient levels and metal stress. WATER RESEARCH 2025; 268:122672. [PMID: 39461210 DOI: 10.1016/j.watres.2024.122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Biofilm formation in long-distance water conveyance pipelines poses significant risks to water quality, particularly under varying nutrient levels and heavy metal stress. However, the impacts of pipeline material on biofilm formation dynamics under different raw water conditions remain elusive. This study investigated the effects of nutrient availability and Fe-Mn stress on biofilm development, structural stability, bacterial community composition, and the occurrence of viable but non-culturable (VBNC) bacteria. Using reactors with different nutrient conditions, we observed that increased nutrient levels promote biofilm growth but lead to greater instability, heightening the risk of secondary contamination. Notably, nutrient escalation beyond a critical threshold had a diminishing impact on biofilm community composition. Additionally, Fe-Mn stress, while initially enhancing microbial adhesion and metabolic activity, ultimately inhibited biofilm formation over time and increases the prevalence of VBNC bacteria, particularly on stainless steel (SS) surfaces. Our findings also highlighted the importance of material selection for pipelines, with polyvinyl chloride (PVC) showing reduced biofilm formation compared to SS, making it a more suitable option for transporting raw water in environments with high metal content. Dispersal limitation determined the bacterial community assembly during the biofilm formation, accounting for 64.53-90.67 % of the variability in different scenarios. These insights offer valuable guidance for managing biofilm-related issues in water distribution systems, emphasizing the need for careful control of nutrient levels and material choice to ensure water safety over long distances.
Collapse
Affiliation(s)
- Yifan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ruiting Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Kaiqin Bian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Ke Y, Sun W, Xue Y, Yuan Z, Zhu Y, Chen X, Yan S, Li Y, Xie S. Pipe material and natural organic matter impact drinking water biofilm microbial community, pathogen profiles and antibiotic resistome deciphered by metagenomics assembly. ENVIRONMENTAL RESEARCH 2024; 262:119964. [PMID: 39260724 DOI: 10.1016/j.envres.2024.119964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Biofilms in drinking water distribution systems (DWDSs) are a determinant to drinking water biosafety. Yet, how and why pipe material and natural organic matter (NOM) affect biofilm microbial community, pathogen composition and antibiotic resistome remain unclear. We characterized the biofilms' activity, microbial community, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and pathogenic ARG hosts in Centers for Disease Control and Prevention (CDC) reactors with different NOM dosages and pipe materials based on metagenomics assembly. Biofilms in cast iron (CI) pipes exhibited higher activity than those in polyethylene (PE) pipes. NOM addition significantly decreased biofilm activity in CI pipes but increased it in PE pipes. Pipe material exerted more profound effects on microbial community structure than NOM. Azospira was significantly enriched in CI pipes and Sphingopyxis was selected in PE pipes, while pathogen (Ralstonia pickettii) increased considerably in NOM-added reactors. Microbial community network in CI pipes showed more edges (CI 13520, PE 7841) and positive correlation proportions (CI 72.35%, PE 61.69%) than those in PE pipes. Stochastic processes drove assembly of both microbial community and antibiotic resistome in DWDS biofilms based on neutral community model. Bacitracin, fosmidomycin and multidrug ARGs were predominant in both PE and CI pipes. Both pipe materials and NOM regulated the biofilm antibiotic resistome. Plasmid was the major MGE co-existing with ARGs, facilitating ARG horizontal transfer. Pathogens (Achromobacter xylosoxidans and Ralstonia pickettii) carried multiple ARGs (qacEdelta1, OXA-22 and aadA) and MGEs (integrase, plasmid and transposase), which deserved more attention. Microbial community contributed more to ARG change than MGEs. Structure equation model (SEM) demonstrated that turbidity and ammonia affected ARGs by directly mediating Shannon diversity and MGEs. These findings might provide a technical guidance for controlling pathogens and ARGs from the point of pipe material and NOM in drinking water.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing, 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Zhao HX, He H, Zeng C, Zhang TY, Hu CY, Pan R, Xu MY, Tang YL, Xu B. Overlooked Role of Fungi in Drinking Water Taste and Odor Issues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17817-17827. [PMID: 39235142 DOI: 10.1021/acs.est.4c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Taste and odor (T&O) are among the most frequently encountered aesthetic issues in drinking water. While fungi have been reported to produce offensive odors, their contribution to T&O in drinking water remains understudied and often overlooked. In this study, the profiles of fungal community and odorants produced by 10 native fungal isolates were investigated in 36 samples collected from two drinking water treatment plants and a premise plumbing system. A total of 17 odorants were identified with Penicillium, Aspergillus, Paecilomyces, and Alternaria genera exhibiting the highest odorant yields. Significant concentrations of musty/earthy compounds were produced by these fungal isolates, such as 2-methylisoborneol (2-MIB) (26-256 ng/L), geosmin (10-13 ng/L), and 2-isobutyl-3-methoxy-pyrazine (IBMP) (3-13 ng/L). The high odor activity value of the odorants primarily occurred within 4 d, while toxicity continued to increase during the 8 d incubation. UV treatment in premise plumbing significantly (p < 0.05) reduced the gene read counts of Ascomycota phylum, Aspergillus spp., Fusarium spp., Rhizopus spp., and Trichoderma spp., by 2.3-4.0 times. These findings underscore the previously underestimated role of fungi in contributing to T&O issues in drinking water and corresponding risks to consumers and indicate UV as a promising strategy for fungal control in drinking water.
Collapse
Affiliation(s)
- Heng-Xuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Huan He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Chao Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P.R. China
| | - Renjie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Meng-Yuan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| |
Collapse
|
11
|
Zhang Y, Li X, Ren A, Yao M, Chen C, Zhang H, van der Meer W, Liu G. Impacts of water treatments on bacterial communities of biofilm and loose deposits in drinking water distribution systems. ENVIRONMENT INTERNATIONAL 2024; 190:108893. [PMID: 39079336 DOI: 10.1016/j.envint.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
Treated drinking water is delivered to customers through drinking water distribution systems (DWDSs). Although studies have focused on exploring the microbial ecology of DWDSs, knowledge about the effects of different water treatments on the bacterial community of biofilm and loose deposits in DWDS is limited. This study assessed the effects of additional treatments on the bacterial communities developed in 10 months' old pilot DWDSs. The results showed a similar bacterial community in the pipe-wall biofilm, which was dominated by Novosphingobium spp. (20-82 %) and Sphingomonas spp. (11-53 %), regardless of the treatment applied. The bacterial communities that were retained in the distribution systems (including pipe-wall biofilm and loose deposits) were similar to the particle-associated bacteria (PAB) in the corresponding supply water. The additional treatments showed clear effects of the removal and/or introduction of particles. The genera Aeromonas spp., Clostridium spp., Legionella spp., and Pseudomonas spp., which contain opportunistic pathogenic species, were only detected among the PAB in ion exchange system. Our study demonstrated that the biofilm community is consistent across treatments, and the contribution from bacteria in loose deposits is important but can be controlled by removing particles. These findings offer more insight into the origin and development of microbial ecology in DWDSs and suggest paths for further research on the possibility of managing the microbial ecology in distribution systems.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Xiaoming Li
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Anran Ren
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Chen Chen
- Beijing Waterworks Group Co., Ltd., Beijing, China
| | - Haichen Zhang
- Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
| | - Walter van der Meer
- Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, the Netherlands
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands.
| |
Collapse
|
12
|
Clements E, Crank K, Nerenberg R, Atkinson A, Gerrity D, Hannoun D. Quantitative Microbial Risk Assessment Framework Incorporating Water Ages with Legionella pneumophila Growth Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6540-6551. [PMID: 38574283 PMCID: PMC11025131 DOI: 10.1021/acs.est.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Water age in drinking water systems is often used as a proxy for water quality but is rarely used as a direct input in assessing microbial risk. This study directly linked water ages in a premise plumbing system to concentrations of Legionella pneumophila via a growth model. In turn, the L. pneumophila concentrations were used for a quantitative microbial risk assessment to calculate the associated probabilities of infection (Pinf) and clinically severe illness (Pcsi) due to showering. Risk reductions achieved by purging devices, which reduce water age, were also quantified. The median annual Pinf exceeded the commonly used 1 in 10,000 (10-4) risk benchmark in all scenarios, but the median annual Pcsi was always 1-3 orders of magnitude below 10-4. The median annual Pcsi was lower in homes with two occupants (4.7 × 10-7) than with one occupant (7.5 × 10-7) due to more frequent use of water fixtures, which reduced water ages. The median annual Pcsi for homes with one occupant was reduced by 39-43% with scheduled purging 1-2 times per day. Smart purging devices, which purge only after a certain period of nonuse, maintained these lower annual Pcsi values while reducing additional water consumption by 45-62%.
Collapse
Affiliation(s)
- Emily Clements
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Katherine Crank
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Robert Nerenberg
- Department
of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre
Dame, Indiana 46556, United States
| | - Ariel Atkinson
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Daniel Gerrity
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Deena Hannoun
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| |
Collapse
|
13
|
Campostrini L, Proksch P, Jakwerth S, Farnleitner AH, Kirschner AKT. Introducing bacterial community turnover times to elucidate temporal and spatial hotspots of biological instability in a large Austrian drinking water distribution network. WATER RESEARCH 2024; 252:121188. [PMID: 38324987 DOI: 10.1016/j.watres.2024.121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Ensuring biological stability in drinking water distribution systems (DWDSs) is important to reduce the risk of aesthetic, operational and hygienic impairments of the distributed water. Drinking water after treatment often changes in quality during transport due to interactions with pipe-associated biofilms, temperature increases and disinfectant residual decay leading to potential biological instability. To comprehensively assess the potential for biological instability in a large chlorinated DWDS, a tool-box of bacterial biomass and activity parameters was applied, introducing bacterial community turnover times (BaCTT) as a direct, sensitive and easy-to-interpret quantitative parameter based on the combination of 3H-leucine incorporation with bacterial biomass. Using BaCTT, hotspots and periods of bacterial growth and potential biological instability could be identified in the DWDS that is fed by water with high bacterial growth potential. A de-coupling of biomass from activity parameters was observed, suggesting that bacterial biomass parameters depict seasonally fluctuating raw water quality rather than processes related to biological stability of the finished water in the DWDS. BaCTT, on the other hand, were significantly correlated to water age, disinfectant residual, temperature and a seasonal factor, indicating a higher potential of biological instability at more distant sampling sites and later in the year. As demonstrated, BaCTT is suggested as a novel, sensitive and very useful parameter for assessing the biological instability potential. However, additional studies in other DWDSs are needed to investigate the general applicability of BaCTT depending on water source, applied treatment processes, biofilm growth potential on different pipe materials, or size, age and complexity of the DWDS.
Collapse
Affiliation(s)
- Lena Campostrini
- Medical University of Vienna, Centre for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology - Water Microbiology, Kinderspitalgasse 15, Vienna A-1090, Austria; Interuniversity Cooperation Centre Water & Health, Austria
| | - Philipp Proksch
- University of Natural Resources and Life Sciences, Vienna, Institute of Sanitary Engineering and Water Pollution Control, Muthgasse 18, Vienna A-1190, Austria
| | - Stefan Jakwerth
- Medical University of Vienna, Centre for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology - Water Microbiology, Kinderspitalgasse 15, Vienna A-1090, Austria; Interuniversity Cooperation Centre Water & Health, Austria
| | - Andreas H Farnleitner
- Interuniversity Cooperation Centre Water & Health, Austria; Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Dr. Karl Dorrek-Straße 30, Krems A-3500, Austria; Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Gumpendorferstraße 1, Vienna A-1060, Austria
| | - Alexander K T Kirschner
- Medical University of Vienna, Centre for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology - Water Microbiology, Kinderspitalgasse 15, Vienna A-1090, Austria; Interuniversity Cooperation Centre Water & Health, Austria; Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Dr. Karl Dorrek-Straße 30, Krems A-3500, Austria.
| |
Collapse
|
14
|
Wang M, Sun H, Ma X, Wang H, Shi B. Metabolic response of bacterial community to sodium hypochlorite and ammonia nitrogen affected the antibiotic resistance genes in pipelines biofilm. WATER RESEARCH 2024; 252:121179. [PMID: 38324986 DOI: 10.1016/j.watres.2024.121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
The biofilm is important for the antibiotic resistance genes (ARGs) propagation in drinking water pipelines. This study investigated the influence of chlorine disinfection and ammonia nitrogen on the ARGs in pipelines biofilm using metagenomic and metabolomics analysis. Chlorine disinfection reduced the relative abundance of unclassified_c_Actinobacteria, Acidimicrobium, and Candidatus_Pelagibacter to 394-430 TPM, 114-123 TPM, and 49-54 TPM, respectively. Correspondingly, the ARGs Saur_rpoC_DAP, macB, and mfd was reduced to 8-12 TPM, 81-92 TPM and 30-35 TPM, respectively. The results of metabolomics suggested that chlorine disinfection suppressed the pathways of ABC transporters, fatty acid biosynthesis, biosynthesis of unsaturated fatty acids, and biosynthesis of amino acids. These pathways were related to the cell membrane integrality and extracellular polymeric substances (EPS) secretion. Chlorine disinfection induced the decrease of EPS-related genes, resulting in the lower relative abundance of bacterial community and their antibiotic resistance. However, added approximately 0.5 mg/L NH3-N induced up-regulation of these metabolic pathways. In addition, NH3-N addition increased the relative abundance of enzymes related to inorganic and organic nitrogen metabolic pathway significantly, such as ammonia monooxygenase, glutamine synthetase, and glutamate synthase. Due to the EPS protection and nitrogen metabolism, the relative abundance of the main bacterial genera and the related ARGs increased to the level equal to that in pipelines biofilm with no disinfection. Therefore, NH3-N reduced the ARGs removal efficiency of chlorine disinfection. It is necessary to take measures to improve the removal rate of NH3-N and ARGs for preventing their risks in drinking water.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huifang Sun
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Søborg DA, Højris B, Brinkmann K, Pedersen MR, Skovhus TL. Characterizing the development of biofilm in polyethylene pipes in the non-chlorinated Danish drinking-water distribution system. BIOFOULING 2024; 40:262-279. [PMID: 38695072 DOI: 10.1080/08927014.2024.2343839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/11/2024] [Indexed: 06/11/2024]
Abstract
In newly commissioned drinking-water polyethylene (PE) pipes, biofilm develops on the inner pipe surface. The microbial community composition from colonization to the establishment of mature biofilms is less known, including the effect on the distributed water quality. Biofilm development was followed through 1.5 years in PE-pipe side streams at two locations of a full-scale, non-chlorinated drinking-water distribution system (leaving a waterworks versus 5-6 km from a waterworks) along with inlet and outlet water quality. Mature biofilms were established after ∼8-9 months, dominated by Proteobacteria, Actinobacteria and Saccharibacteria (61-93% relative abundance), with a higher diversity (OTUs/Shannon Index/16S rRNA gene amplicon sequencing) in pipes in the far end of the distribution system. Comamonadaceae, and specifically Aquabacterium (>30% of reads), dominated young (∼1.5-month-old) biofilms. Young biofilms were linked to increased microbiological counts in drinking water (HPC/ATP/qPCR), while the establishment of mature biofilms led to a drop in HPC and benefited the water quality, highlighting the importance of optimizing commissioning procedures for rapidly achieving mature and stable biofilms.
Collapse
Affiliation(s)
- Ditte A Søborg
- Research Centre for Built Environment, Climate, Water Technology and Digitalization, VIA University College, Horsens, Denmark
| | - Bo Højris
- Water Application and Technology, GRUNDFOS Holding A/S, Bjerringbro, Denmark
| | | | | | - Torben L Skovhus
- Research Centre for Built Environment, Climate, Water Technology and Digitalization, VIA University College, Horsens, Denmark
| |
Collapse
|
16
|
Ren A, Yao M, Fang J, Dai Z, Li X, van der Meer W, Medema G, Rose JB, Liu G. Bacterial communities of planktonic bacteria and mature biofilm in service lines and premise plumbing of a Megacity: Composition, Diversity, and influencing factors. ENVIRONMENT INTERNATIONAL 2024; 185:108538. [PMID: 38422875 DOI: 10.1016/j.envint.2024.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Although simulated studies have provided valuable knowledge regarding the communities of planktonic bacteria and biofilms, the lack of systematic field studies have hampered the understanding of microbiology in real-world service lines and premise plumbing. In this study, the bacterial communities of water and biofilm were explored, with a special focus on the lifetime development of biofilm communities and their key influencing factors. The 16S rRNA gene sequencing results showed that both the planktonic bacteria and biofilm were dominated by Proteobacteria. Among the 15,084 observed amplicon sequence variants (ASVs), the 33 core ASVs covered 72.8 %, while the 12 shared core ASVs accounted for 62.2 % of the total sequences. Remarkably, it was found that the species richness and diversity of biofilm communities correlated with pipe age. The relative abundance of ASV2 (f_Sphingomonadaceae) was lower for pipe ages 40-50 years (7.9 %) than for pipe ages 10-20 years (59.3 %), while the relative abundance of ASV10 (f_Hyphomonadaceae) was higher for pipe ages 40-50 years (19.5 %) than its presence at pipe ages 20-30 years (1.9 %). The community of the premise plumbing biofilm had significantly higher species richness and diversity than that of the service line, while the steel-plastics composite pipe interior lined with polyethylene (S-PE) harbored significantly more diverse biofilm than the galvanized steel pipes (S-Zn). Interestingly, S-PE was enriched with ASV27 (g_Mycobacterium), while S-Zn pipes were enriched with ASV13 (g_Pseudomonas). Moreover, the network analysis showed that five rare ASVs, not core ASVs, were keystone members in biofilm communities, indicating the importance of rare members in the function and stability of biofilm communities. This manuscript provides novel insights into real-world service lines and premise plumbing microbiology, regarding lifetime dynamics (pipe age 10-50 years), and the influences of pipe types (premise plumbing vs. service line) and pipe materials (S-Zn vs. S-PE).
Collapse
Affiliation(s)
- Anran Ren
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China
| | - Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Fang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xiaoming Li
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Walter van der Meer
- Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands; Oasen Drinkwater, PO Box 122, 2800 AC, Gouda, The Netherlands
| | - Gertjan Medema
- Oasen Drinkwater, PO Box 122, 2800 AC, Gouda, The Netherlands; KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Kalu CM, Mudau KL, Masindi V, Ijoma GN, Tekere M. Occurrences and implications of pathogenic and antibiotic-resistant bacteria in different stages of drinking water treatment plants and distribution systems. Heliyon 2024; 10:e26380. [PMID: 38434035 PMCID: PMC10906316 DOI: 10.1016/j.heliyon.2024.e26380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Different stages of drinking water treatment plants (DWTPs) play specific roles in diverse contaminants' removal present in natural water sources. Although the stages are recorded to promote adequate treatment of water, the occurrence of pathogenic bacteria (PB) and antibiotic-resistant bacteria (ARB) in the treated water and the changes in their diversity and abundance as it passed down to the end users through the drinking water distribution systems (DWDSs), is a great concern, especially to human health. This could imply that the different stages and the distribution system provide a good microenvironment for their growth. Hence, it becomes pertinent to constantly monitor and document the diversity of PB and ARB present at each stage of the treatment and distribution system. This review aimed at documenting the occurrence of PB and ARB at different stages of treatment and distribution systems as well as the implication of their occurrence globally. An exhaustive literature search from Web of Science, Science-Direct database, Google Scholar, Academic Research Databases like the National Center for Biotechnology Information, Scopus, and SpringerLink was done. The obtained information showed that the different treatment stages and distribution systems influence the PB and ARB that proliferate. To minimize the human health risks associated with the occurrence of these PB, the present review, suggests the development of advanced technologies that can promote quick monitoring of PB/ARB at each treatment stage and distribution system as well as reduction of the cost of environomics analysis to promote better microbial analysis.
Collapse
Affiliation(s)
- Chimdi M. Kalu
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Khuthadzo L. Mudau
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Vhahangwele Masindi
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
- Magalies Water, Scientific Services, Research & Development Division, Brits, South Africa
| | - Grace N. Ijoma
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Memory Tekere
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| |
Collapse
|
18
|
Healy HG, Ehde A, Bartholow A, Kantor RS, Nelson KL. Responses of drinking water bulk and biofilm microbiota to elevated water age in bench-scale simulated distribution systems. NPJ Biofilms Microbiomes 2024; 10:7. [PMID: 38253591 PMCID: PMC10803812 DOI: 10.1038/s41522-023-00473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Reductions in nonresidential water demand during the COVID-19 pandemic highlighted the importance of understanding how water age impacts drinking water quality and microbiota in piped distribution systems. Using benchtop model distribution systems, we aimed to characterize the impacts of elevated water age on microbiota in bulk water and pipe wall biofilms. Five replicate constant-flow reactors were fed with municipal chloraminated tap water for 6 months prior to building closures and 7 months after. After building closures, chloramine levels entering the reactors dropped; in the reactor bulk water and biofilms the mean cell counts and ATP concentrations increased over an order of magnitude while the detection of opportunistic pathogens remained low. Water age, and the corresponding physicochemical changes, strongly influenced microbial abundance and community composition. Differential initial microbial colonization also had a lasting influence on microbial communities in each reactor (i.e., historical contingency).
Collapse
Affiliation(s)
- Hannah Greenwald Healy
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Aliya Ehde
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Alma Bartholow
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rose S Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA.
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
19
|
Abkar L, Moghaddam HS, Fowler SJ. Microbial ecology of drinking water from source to tap. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168077. [PMID: 37914126 DOI: 10.1016/j.scitotenv.2023.168077] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
As drinking water travels from its source, through various treatment processes, hundreds to thousands of kilometres of distribution network pipes, to the taps in private homes and public buildings, it is exposed to numerous environmental changes, as well as other microbes living in both water and on surfaces. This review aims to identify the key locations and factors that are associated with changes in the drinking water microbiome throughout conventional urban drinking water systems from the source to the tap water. Over the past 15 years, improvements in cultivation-independent methods have enabled studies that allow us to answer such questions. As a result, we are beginning to move towards predicting the impacts of disturbances and interventions resulting ultimately in management of drinking water systems and microbial communities rather than mere observation. Many challenges still exist to achieve effective management, particularly within the premise plumbing environment, which exhibits diverse and inconsistent conditions that may lead to alterations in the microbiota, potentially presenting public health risks. Finally, we recommend the establishment of global collaborative projects on the drinking water microbiome that will enhance our current knowledge and lead to tools for operators and researchers alike to improve global access to high-quality drinking water.
Collapse
Affiliation(s)
- Leili Abkar
- Civil Engineering Department, University of British Columbia, Canada.
| | | | - S Jane Fowler
- Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
20
|
Yang J, Hu Y, Zhang Y, Zhou S, Meng D, Xia S, Wang H. Deciphering the diversity and assemblage mechanisms of nontuberculous mycobacteria community in four drinking water distribution systems with different disinfectants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168176. [PMID: 37907107 DOI: 10.1016/j.scitotenv.2023.168176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Nontuberculous mycobacteria (NTM) represent an emerging health concern due to their escalating infections worldwide. Although drinking water distribution systems (DWDSs) have been considered as NTM reservoirs and a potential infection route, NTM community at the species level remain largely elusive in DWDSs. This study employed high-throughput sequencing coupled with qPCR to profile NTM community and estimate their abundances at the species level in water and biofilm samples in four DWDSs using three different disinfectants (i.e. free chlorine, chloramine and chlorine dioxide). Results demonstrated the dominance of Mycobacterium paragordonae and Mycobacterium mucogenicum in both biofilm and water across four DWDSs, whereas Mycobacterium abscessus and Mycobacterium chelonae, the two clinically significant species, exhibited low abundance but high prevalence. Comparable NTM community was observed in biofilm across these four DWDSs. Distinct separation of NTM community between SH-chloramine DWDSs water and other DWDSs highlighted the selective pressure of chloramine on NTM community. Furthermore, the research revealed that biofilm and water exhibited distinct NTM community structures, with biofilm harboring more diverse NTM community. Certain NTM species displayed a preference for biofilm, such as Mycobacterium gordonae, while others, like Mycobacterium mucogenicum, were more abundant in water samples (P < 0.05). In terms of NTM community assembly, stochastic processes dominated biofilm, while comparable role of stochastic and deterministic processes was observed in water. In conclusion, this study offers a pioneering and comprehensive insight into the dynamics and assembly mechanisms of NTM community within four DWDSs treated with three distinct disinfectants. These findings serve as a critical foundation for assessing NTM exposure risks and devising effective management strategies within DWDSs.
Collapse
Affiliation(s)
- Jinhao Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuxing Hu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yue Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuang Zhou
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Die Meng
- Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
21
|
Ren X, Zhang S, Wu M, Xiao B, Miao H, Chen H. Effect and influence mechanism of biofilm formation on the biological stability of reclaimed water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167735. [PMID: 37827320 DOI: 10.1016/j.scitotenv.2023.167735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Microorganisms and sediments in reclaimed water adhere to the inner walls of pipes or water tanks, forming biofilms that support the continuous growth of microorganisms. These biofilms provide a protective barrier, shielding bacteria from disinfectants. This study investigated the impact of biofilms on bacterial growth and reproduction in reclaimed water and the factors limiting bacterial growth in reclaimed graywater (GMR) and reclaimed mixed wastewater (MWR). The results revealed that biofilm biomass gradually increased and reached a maximum value on Days 20-25, and the biomass of organisms continued to decrease after 40 days. Biofilms serve as a source of bacteria, continuously releasing them into reclaimed water systems. The presence of biofilms reduced the biological stability of the reclaimed water, leading to water quality deterioration. The concentration of assimilable organic carbon in the reclaimed water showed a positive correlation with the heterotrophic bacterial count and Escherichia coli levels in both the reclaimed water and biofilms. The threshold value of chlorine for inhibiting biofilms in reclaimed water was no <2 mg/L. High concentrations of free chlorine delayed the growth of biofilms but did not reduce the final biomass generated by the biofilms. Carbon was the limiting factor for the biological stability of reclaimed water, while nitrogen, phosphorus, and inorganic salts were not limiting factors. Thus, minimizing the concentration of organic matter in reclaimed water can reduce the nutrient sources available for biofilm formation. This study provides support for advancements in the wastewater reuse industry.
Collapse
Affiliation(s)
- Xueli Ren
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Shudong Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Mengyi Wu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Beiqi Xiao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongbin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
22
|
Spencer-Williams I, Meyer M, DePas W, Elliott E, Haig SJ. Assessing the Impacts of Lead Corrosion Control on the Microbial Ecology and Abundance of Drinking-Water-Associated Pathogens in a Full-Scale Drinking Water Distribution System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20360-20369. [PMID: 37970641 DOI: 10.1021/acs.est.3c05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Increases in phosphate availability in drinking water distribution systems (DWDSs) from the use of phosphate-based corrosion control strategies may result in nutrient and microbial community composition shifts in the DWDS. This study assessed the year-long impacts of full-scale DWDS orthophosphate addition on both the microbial ecology and density of drinking-water-associated pathogens that infect the immunocompromised (DWPIs). Using 16S rRNA gene amplicon sequencing and droplet digital PCR, drinking water microbial community composition and DWPI density were examined. Microbial community composition analysis suggested significant compositional changes after the orthophosphate addition. Significant increases in total bacterial density were observed after orthophosphate addition, likely driven by a 2 log 10 increase in nontuberculous mycobacteria (NTM). Linear effect models confirmed the importance of phosphate addition with phosphorus concentration explaining 17% and 12% of the variance in NTM and L. pneumophila density, respectively. To elucidate the impact of phosphate on NTM aggregation, a comparison of planktonic and aggregate fractions of NTM cultures grown at varying phosphate concentrations was conducted. Aggregation assay results suggested that higher phosphate concentrations cause more disaggregation, and the interaction between phosphate and NTM is species specific. This work reveals new insight into the consequences of orthophosphate application on the DWDS microbiome and highlights the importance of proactively monitoring the DWDS for DWPIs.
Collapse
Affiliation(s)
- Isaiah Spencer-Williams
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mitchell Meyer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - William DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Emily Elliott
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
23
|
Zheng S, Lin T, Zhang X, Jiang F. Response mechanisms of pipe wall biofilms in water supply networks under different disinfection strategy pressures and the effect of mediating halogenated acetonitrile formation. CHEMOSPHERE 2023; 344:140382. [PMID: 37806328 DOI: 10.1016/j.chemosphere.2023.140382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/23/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Residual chlorine and biofilm coexistence is inevitable in drinking water transmission and distribution networks. Understanding the microbial response and its mediated effects on disinfection byproducts under different categories of residual chlorine stress is essential to ensure water safety. The aim of our study was to determine the response of pipe wall biofilms to residual chlorine pressure in chlorine and chloramine systems and to understand the microbially mediated effects on the formation and migration of haloacetonitriles (HANs), typical nitrogenous disinfection byproducts. According to the experimental results, the biofilm response changes under pressure, with significant differences noted in morphological characteristics, the extracellular polymeric substances (EPS) spatial structure, bacterial diversity, and functional abundance potential. Upon incubation with residual chlorine (1.0 ± 0.2 mg/L), the biofilm biomass per unit area, EPS, community abundance, and diversity increased in the chloramine group, and the percentage of viable bacteria increased, potentially indicating that the chloramine group provides a richer variety of organic matter precursors. Compared with the chloramine group, the chlorination group exhibited increased haloacetonitrile formation potential (HANFP), with Rhodococcus (43.2%) dominating the system, whereas the prediction abundance of metabolic functions was advantageous, especially with regard to amino acid metabolism, carbohydrate metabolism, and the biodegradation and metabolism of foreign chemicals. Under chlorine stress, pipe wall biofilms play a stronger role in mediating HAN production. It is inferred that chlorine may stimulates microbial interactions, and more metabolites (e.g., EPS) consume chlorine to protect microbial survival. EPS dominates in biofilms, in which proteins exhibit greater HANFP than polysaccharides.
Collapse
Affiliation(s)
- Songyuan Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Xue Zhang
- Suzhou Water Supply Company, Suzhou, 215002, China
| | - Fuchun Jiang
- Suzhou Water Supply Company, Suzhou, 215002, China
| |
Collapse
|
24
|
Clements E, Irwin C, Taflanidis A, Bibby K, Nerenberg R. Impact of fixture purging on water age and excess water usage, considering stochastic water demands. WATER RESEARCH 2023; 245:120643. [PMID: 37748346 DOI: 10.1016/j.watres.2023.120643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Higher water ages are linked with water quality decline as chlorine dissipates, temperatures become more favorable for microbial growth, and metals and organic matter leach from the pipes. Water fixtures with automated purging devices can limit water age in premise plumbing systems, but also increase water use. To develop purging strategies that lower age while also minimizing water use, the stochastic nature of water demands must be considered. In this research, a hydraulic plumbing network model, with stochastic demands at fixtures, was used to compare water age and water use for five purging conditions: purging at regular intervals, "smart" purging (considering the time of last use), purging with different volumes of water, purging at different fixtures, and the purging with different levels of home occupancy. Higher purging frequency and volume resulted in lower water ages, but higher water use. Purging greatly reduced the variability in water ages, avoiding extreme ages entirely. Water age was minimized by scheduling the purging around occupancy behavior, such as before the occupants wake up or return from work. Scheduled purging used more water than smart purging. Purging after 12 h of nonuse used only 55% of the additional water required for purging every 12 h. Purging after 24 h of nonuse at the kitchen tap and shower used only 38% of the additional water required for purging every 24 h, while maintaining lower water ages and removing the variability in water ages. While larger purging volumes had a greater impact on water age, there were diminishing returns. Purging has a larger impact on low-occupancy homes because fixtures have less frequent use. Overall, this research provides a methodology to compare purging strategies that minimize both water age and water use. While the numerical results presented here are only valid for the specific layout and usage habits, they provide insights and trends applicable to other cases.
Collapse
Affiliation(s)
- Emily Clements
- Department of Civil and Environmental Engineering and Earth Sciences 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Christopher Irwin
- Department of Civil and Environmental Engineering and Earth Sciences 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alexandros Taflanidis
- Department of Civil and Environmental Engineering and Earth Sciences 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
25
|
Pan R, Zhang TY, He H, Zheng ZX, Dong ZY, Zhao HX, Xu MY, Luo ZN, Hu CY, Tang YL, El-Din MG, Xu B. Mixed chlorine/chloramines in disinfected water and drinking water distribution systems (DWDSs): A critical review. WATER RESEARCH 2023; 247:120736. [PMID: 39491998 DOI: 10.1016/j.watres.2023.120736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/05/2024]
Abstract
Mixed chlorine/chloramines are commonly occurring in real drinking water distribution systems (DWDSs) but often overlooked. This review provides a comprehensive overview of the occurrences, characteristics, analysis methods, and control strategies of mixed chlorine/chloramines in DWDSs. The characteristics of mixed chlorine/chloramine species are summarized for treated water in drinking water treatment plants (DWTPs), secondary disinfection facilities, and DWDSs where different disinfectants could be blended. The key to differentiating and quantifying mixed chlorine/chloramine species is to separate organic chloramines (OCs) from di/tri-chloramines and overcome certain interferences. The complex interactions between water matrixes and chlorine/chloramine species could accelerate pipeline corrosions, enhance emerging disinfection by-products risks, lead to off-flavors in drinking water, and induce bio-instability issues (such as nitrification, microorganism regrowth, and promotion of horizontal gene-transfers). Three promising strategies for alleviating mixed chlorine/chloramine species are recommended, which include (i) removing precursors intensively and reconditioning the treated water, (ii) combining UV irradiation to eliminate undesired chlorine/chloramines species, and (iii) strengthening monitoring, operation, and maintenance management of DWDSs. Finally, the challenges for gaining insights into the mechanisms of mixed chlorine/chloramine species conversion are discussed and promising research directions are proposed.
Collapse
Affiliation(s)
- Renjie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huan He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Zheng-Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zheng-Yu Dong
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Heng-Xuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Meng-Yuan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhen-Ning Luo
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
26
|
Stefan DS, Bosomoiu M, Teodorescu G. The Behavior of Polymeric Pipes in Drinking Water Distribution System-Comparison with Other Pipe Materials. Polymers (Basel) 2023; 15:3872. [PMID: 37835921 PMCID: PMC10575437 DOI: 10.3390/polym15193872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The inner walls of the drinking water distribution system (DWDS) are expected to be clean to ensure a safe quality of drinking water. Complex physical, chemical, and biological processes take place when water comes into contact with the pipe surface. This paper describes the impact of leaching different compounds from the water supply pipes into drinking water and subsequent risks. Among these compounds, there are heavy metals. It is necessary to prevent these metals from getting into the DWDS. Those compounds are susceptible to impacting the quality of the water delivered to the population either by leaching dangerous chemicals into water or by enhancing the development of microorganism growth on the pipe surface. The corrosion process of different pipe materials, scale formation mechanisms, and the impact of bacteria formed in corrosion layers are discussed. Water treatment processes and the pipe materials also affect the water composition. Pipe materials act differently in the flowing and stagnation conditions. Moreover, they age differently (e.g., metal-based pipes are subjected to corrosion while polymer-based pipes have a decreased mechanical resistance) and are susceptible to enhanced bacterial film formation. Water distribution pipes are a dynamic environment, therefore, the models that are used must consider the changes that occur over time. Mathematical modeling of the leaching process is complex and includes the description of corrosion development over time, correlated with a model for the biofilm formation and the disinfectants-corrosion products and disinfectants-biofilm interactions. The models used for these processes range from simple longitudinal dispersion models to Monte Carlo simulations and 3D modeling. This review helps to clarify what are the possible sources of compounds responsible for drinking water quality degradation. Additionally, it gives guidance on the measures that are needed to maintain stable and safe drinking water quality.
Collapse
Affiliation(s)
- Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (G.T.)
| | - Magdalena Bosomoiu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (G.T.)
| | - Georgeta Teodorescu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (G.T.)
- Doctoral School, Specialization of Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
27
|
Wang L, Mai Y, Li S, Shu L, Fang J. Efficient inactivation of amoeba spores and their intraspore bacteria by solar/chlorine: Kinetics and mechanisms. WATER RESEARCH 2023; 242:120288. [PMID: 37419027 DOI: 10.1016/j.watres.2023.120288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Amoebae are widespread in water and serve as environment vectors for pathogens, which may threaten public health. This study evaluated the inactivation of amoeba spores and their intraspore bacteria by solar/chlorine. Dictyostelium discoideum and Burkholderia agricolaris B1qs70 were selected as model amoebae and intraspore bacteria, respectively. Compared to solar irradiation and chlorine, solar/chlorine enhanced the inactivation of amoeba spores and intraspore bacteria, with 5.1 and 5.2-log reduction at 20 min, respectively. The enhancement was similar in real drinking water by solar/chlorine under natural sunlight. However, the spore inactivation decreased to 2.97-log by 20 min solar/chlorine under oxygen-free condition, indicating that ozone played a crucial role in the spore inactivation, as also confirmed by the scavenging test using tert‑butanol to scavenge the ground-state atomic oxygen (O(3P)) as a ozone precursor. Moreover, solar/chlorine induced the shape destruction and structural collapse of amoeba spores by scanning electron microscopy. As for intraspore bacteria, their inactivation was likely ascribed to endogenous reactive oxygen species. As pH increased from 5.0 to 9.0, the inactivation of amoeba spores decreased, whereas that of intraspore bacteria was similar at pH 5.0 and 6.5 during solar/chlorine treatment. This study first reports the efficient inactivation of amoeba spores and their intraspore pathogenic bacteria by solar/chlorine in drinking water.
Collapse
Affiliation(s)
- Liping Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China
| | - Yingwen Mai
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China
| | - Shenzhou Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China
| | - Longfei Shu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China.
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 China.
| |
Collapse
|
28
|
Gholipour S, Shamsizadeh Z, Gwenzi W, Nikaeen M. The bacterial biofilm resistome in drinking water distribution systems: A systematic review. CHEMOSPHERE 2023; 329:138642. [PMID: 37059195 DOI: 10.1016/j.chemosphere.2023.138642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/04/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Antibiotic resistance in drinking water systems poses human health risks. Earlier studies, including reviews on antibiotic resistance in drinking water systems are limited to the occurrence, behaviour and fate in bulk raw water and drinking water treatment systems. By comparison, reviews on the bacterial biofilm resistome in drinking water distribution systems are still limited. Therefore, the present systematic review investigates the occurrence, behaviour and fate and, detection methods of bacterial biofilm resistome in the drinking water distribution systems. A total of 12 original articles drawn from 10 countries were retrieved and analyzed. Antibiotic resistant bacteria and antibiotic resistance genes detected in biofilms include those for sulfonamides, tetracycline, and beta-lactamase. The genera detected in biofilms include Staphylococcus, Enterococcus, Pseudomonas, Ralstonia, Mycobacteria, as well as Enterobacteriaceae family and other gram-negative bacteria. The presence of Enterococcus faecium, Staphylococcusaureus, Klebsiella pneumoniae, Acinetobacterbaumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE bacteria) among the detected bacteria points to potential human exposure and health risks especially for susceptible individuals via the consumption of drinking water. Besides, the effects of water quality parameter and residual chlorine, the physico-chemical factors controlling the emergence, persistence and fate of the biofilm resistome are still poorly understood. Culture-based methods, and molecular methods, and their advantages and limitations are discussed. The limited data on the bacterial biofilm resistome in drinking water distribution system points to the need for further research. To this end, future research directions are discussed including understanding the formation, behaviour, and fate of the resistome and the controlling factors.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, University of Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
29
|
Ke Y, Sun W, Jing Z, Zhao Z, Xie S. Seasonal variations of microbial community and antibiotic resistome in a suburb drinking water distribution system in a northern Chinese city. J Environ Sci (China) 2023; 127:714-725. [PMID: 36522100 DOI: 10.1016/j.jes.2022.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance genes (ARGs) are an emerging issue for drinking water safety. However, the seasonal variation of ARGs in drinking water distribution systems (DWDS) is still unclear. This work revealed the tempo-spatial changes of microbial community, ARGs, mobile genetic elements (MGEs) co-occurring with ARGs, ARG hosts in DWDS bulk water by means of metagenome assembly. The microbial community and antibiotic resistome varied with sampling season and site. Temperature, ammonia, chlorite and total plate count (TPC) drove the variations of microbial community structure. Moreover, environmental parameters (total organic carbon (TOC), chlorite, TPC and hardness) shifted antibiotic resistome. ARGs and MGEs co-occurring with ARGs showed higher relative abundance in summer and autumn, which might be attributed to detached pipe biofilm. In particular, ARG-bacitracin and plasmid were the predominant ARG and MGE, respectively. ARG hosts changed with season and site and were more diverse in summer and autumn. In winter and spring, Limnohabitans and Mycobacterium were the major ARG hosts as well as the dominant genera in microbial community. In addition, in summer and autumn, high relative abundance of Achromobacter and Stenotrophomonas were the hosts harboring many kinds of ARGs and MGEs at site in a residential zone (0.4 km from the water treatment plant). Compared with MGEs, microbial community had a greater contribution to the variation of antibiotic resistome. This work gives new insights into the dynamics of ARGs in full-scale DWDS and the underlying factors.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
30
|
Chen X, Xiao L, Niu J, Wang Y, Zhang X, Gong L, Yao F, Xu K. Early succession of biofilm bacterial communities in newly built drinking water pipelines via multi-area analysis. Appl Microbiol Biotechnol 2023; 107:3817-3828. [PMID: 37074383 DOI: 10.1007/s00253-023-12517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Biofilms inhabiting pipeline walls are critical to drinking water quality and safety. With massive pipeline replacement underway, however, biofilm formation process in newly built pipes and its effects on water quality are unclear. Moreover, differences and connections between biofilms in newly built and old pipes are unknown. In this study, early succession (≤ 120 days) of biofilm bacterial communities (abundance and diversity) in upper, middle and bottom areas of a newly built cement-lined ductile iron pipeline were evaluated using improved Propella™ biofilm reactor and multi-area analysis. A comparison with old pipelines (grey cast iron, 10 years) was performed. In the newly built pipeline, the abundance of biofilm bacteria did not change significantly between 40 and 80 days, but increased significantly between 80 and 120 days. The biofilm bacterial abundance (per unit area) in the bottom area was always higher than that in the upper and middle areas. Based on alpha diversity index and PCoA results, biofilm bacterial community richness, diversity and composition did not change significantly during the 120-day operation. Besides, biofilm shedding from the walls of newly built pipeline significantly increased bacterial abundance in the outlet water. Opportunistic pathogen-containing genera, such as Burkholderia, Acinetobacter and Legionella, were identified in both water and biofilm samples from newly built pipelines. The comparison between new and old pipelines suggested a higher bacterial abundance per unit area at the middle and bottom areas in old pipelines. Moreover, the bacterial community composition of biofilms in old pipelines was similar to that of newly built pipelines. These results contribute to accurate prediction and management of biofilm microbial communities in drinking water pipelines, ensuring the biosafety of drinking water. KEY POINTS: • Biofilm bacterial communities in different areas of pipe wall were revealed. • The abundance of biofilm bacteria increased significantly between 80 and 120 days. • Biofilm bacterial community compositions of newly built and old pipes were similar.
Collapse
Affiliation(s)
- Xiaochen Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, No.2 Wulongjiangbei Road, Fuzhou, 350108, China
| | - Liang Xiao
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, No.2 Wulongjiangbei Road, Fuzhou, 350108, China
| | - Jia Niu
- Center of Safe and Energy-Saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, No.33 Xuefunan Road, Fuzhou, 350118, China.
| | - Yue Wang
- Fuzhou Water Supply Co, Ltd., No.104 Dongjie, Fuzhou, 350001, China
- Fuzhou Water Quality Monitoring Co., Ltd, No.104 Dongjie, Fuzhou, 350001, China
| | - Xiaomin Zhang
- Fuzhou Water Supply Co, Ltd., No.104 Dongjie, Fuzhou, 350001, China
- Fuzhou Water Quality Monitoring Co., Ltd, No.104 Dongjie, Fuzhou, 350001, China
| | - Longcong Gong
- Fuzhou Water Supply Co, Ltd., No.104 Dongjie, Fuzhou, 350001, China
| | - Fengbing Yao
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, No.2 Wulongjiangbei Road, Fuzhou, 350108, China
| | - Kaiqin Xu
- College of Civil Engineering, Fuzhou University, No.2 Wulongjiangbei Road, Fuzhou, 350108, China
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, 305-8506, Japan
| |
Collapse
|
31
|
Wang X, Wang J, Liu SY, Guo JS, Fang F, Chen YP, Yan P. Mechanisms of survival mediated by the stringent response in Pseudomonas aeruginosa under environmental stress in drinking water systems: Nitrogen deficiency and bacterial competition. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130941. [PMID: 36758433 DOI: 10.1016/j.jhazmat.2023.130941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Pseudomonas aeruginosa causes public health problems in drinking water systems. This study investigated the potential role of the stringent response in regulating the adaptive physiological metabolic behaviors of P. aeruginosa to low nitrogen stress and bacterial competition in drinking water systems. The results indicated that guanosine tetraphosphate (ppGpp) concentrations in P. aeruginosa increased to 135.5 pmol/g SS under short-term nitrogen deficiency. Meanwhile, the expression levels of the ppGpp synthesis genes (ppx, relA) and degradation gene (spoT) were upregulated by 37.0% and downregulated by 26.8%, respectively, indicating that the stringent response was triggered. The triggered stringent response inhibited the growth of P. aeruginosa and enhanced the metabolic activity of P. aeruginosa to adapt to nutrient deprivation. The interspecific competition significantly affected the regulation of the stringent response in P. aeruginosa. During short-term nitrogen deficiency, the extracellular polymeric substances concentration of P. aeruginosa decreased significantly, leading to desorption and diffusion of attached bacteria and increased ecological risks. The regulatory effect of stringent response on P. aeruginosa gradually weakened under long-term nitrogen deficiency. However, the expression of pathogenic genes (nalD/PA3310) and flagellar assembly genes (fliC) in P. aeruginosa was upregulated by the stringent response, which increased the risk of disease.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jing Wang
- Chongqing Jianzhu College, Chongqing 400072, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, AL 36082, USA
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
32
|
Hilal MG, Han B, Yu Q, Feng T, Su W, Li X, Li H. Insight into the dynamics of drinking water resistome in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121185. [PMID: 36736566 DOI: 10.1016/j.envpol.2023.121185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance (AR) is a serious environmental hazard of the current age. Antibiotic resistance genes (ARGs) are the fundamental entities that spread AR in the environment. ARGs are likely to be transferred from the non-pathogenic to pathogenic microbes that might ultimately be responsible for the AR in humans and other organisms. Drinking water (DW) is the primary interaction route between ARGs and humans. Being the highest producer and consumer of antibiotics China poses a potential threat to developing superbugs and ARGs dissemination. Herein, we comprehensively seek to review the ARGs from dominant DW sources in China. Furthermore, the origin and influencing factors of the ARGs to the DW in China have been evaluated. Commonly used methods, both classical and modern, are being compiled. In addition, the risk posed and mitigation strategies of DW ARGs in China have been outlined. Overall, we believe this review would contribute to the assessment of ARGs in DW of China and their dissemination to humans and other animals and ultimately help the policymakers and scientists in the field to counteract this problem on an emergency basis.
Collapse
Affiliation(s)
- Mian Gul Hilal
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China; MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tianshu Feng
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
33
|
Yin H, Chen R, Wang H, Schwarz C, Hu H, Shi B, Wang Y. Co-occurrence of phthalate esters and perfluoroalkyl substances affected bacterial community and pathogenic bacteria growth in rural drinking water distribution systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158943. [PMID: 36155042 DOI: 10.1016/j.scitotenv.2022.158943] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The adverse health effects of phthalate esters (PAEs) and perfluoroalkyl substances (PFAS) in drinking water have attracted considerable attention. Our study investigated the effects of PAEs and PFAS on the bacterial community and the growth of potential human pathogenic bacteria in rural drinking water distribution systems. Our results showed that the total concentration of PAEs and PFAS ranged from 1.02 × 102 to 1.65 × 104 ng/L, from 4.40 to 1.84 × 102 ng/L in rural drinking water of China, respectively. PAEs concentration gradually increased and PFAS slowly decreased along the pipeline distribution, compared to concentrations in the effluents of rural drinking water treatment plants. The co-occurrence of higher concentrations of PAEs and PFAS changed the structure and function of the bacterial communities found within these environments. The bacterial community enhanced their ability to respond to fluctuating environmental conditions through up-regulation of functional genes related to extracellular signaling and interaction, as well as genes related to replication and repair. Under these conditions, co-occurrence of PAEs and PFAS promoted the growth of potential human pathogenic bacteria (HPB), therefore increasing the risk of the development of associated diseases among exposed persons. The main HPB observed in this study included Burkholderia mallei, Mycobacterium tuberculosis, Klebsiella pneumoniae, Acinetobacter calcoaceticus, Escherichia coli, and Pseudomonas aeruginosa. Contaminants including particles, microorganisms, PAEs and PFAS were found to be released from corrosion scales and deposits of pipes and taps, resulting in the increase of the cytotoxicity and microbial risk of rural tap water. These results are important to efforts to improve the safety of rural drinking water.
Collapse
Affiliation(s)
- Hong Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruya Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Haotian Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yili Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
34
|
Wei X, Huang Z, Jiang L, Li Y, Zhang X, Leng Y, Jiang C. Charting the landscape of the environmental exposome. IMETA 2022; 1:e50. [PMID: 38867899 PMCID: PMC10989948 DOI: 10.1002/imt2.50] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 06/14/2024]
Abstract
The exposome depicts the total exposures in the lifetime of an organism. Human exposome comprises exposures from environmental and humanistic sources. Biological, chemical, and physical environmental exposures pose potential health threats, especially to susceptible populations. Although still in its nascent stage, we are beginning to recognize the vast and dynamic nature of the exposome. In this review, we systematically summarize the biological and chemical environmental exposomes in three broad environmental matrices-air, soil, and water; each contains several distinct subcategories, along with a brief introduction to the physical exposome. Disease-related environmental exposures are highlighted, and humans are also a major source of disease-related biological exposures. We further discuss the interactions between biological, chemical, and physical exposomes. Finally, we propose a list of outstanding challenges under the exposome research framework that need to be addressed to move the field forward. Taken together, we present a detailed landscape of environmental exposome to prime researchers to join this exciting new field.
Collapse
Affiliation(s)
- Xin Wei
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Zinuo Huang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Liuyiqi Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yueer Li
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xinyue Zhang
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Yuxin Leng
- Department of Intensive Care UnitPeking University Third HospitalBeijingChina
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
35
|
Batista AMM, Siqueira JCD, Meynet P, Werner D, Garcia GPP, Davenport RJ, Pereira AD, Siniscalchi LAB, Araújo JCD, Mota Filho CR. Diversity and dynamics of bacterial communities in the drinking water distribution network of a mid-sized city in Brazil. JOURNAL OF WATER AND HEALTH 2022; 20:1733-1747. [PMID: 36573676 DOI: 10.2166/wh.2022.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study assessed the bacterial community composition of a drinking water system (DWS) serving a mid-sized city (120,000 inhabitants) in Brazil. Water samples, including raw and treated water, were collected at seven points throughout the DWS. DNA was extracted and analysed using high-throughput sequencing (Ion Torrent). Free chlorine and turbidity were measured in situ. Results showed that the highest relative abundance of 16S rRNA genes was from phyla Proteobacteria, followed by Bacteroidetes and Actinobacteria. The next most abundant phylum was Cyanobacteria, represented by Arthronema, Calothrix, and Synechococcus. An interesting observation was that the DNA-based analysis suggested a bacterial community change in the distribution network, with treated reservoir water being very different from the network samples. This suggests active microbiology within the distribution network and a tendency for bacterial diversity to decrease after chlorine disinfection but increase after pipeline distribution. In raw water, a predominance of Proteobacteria was observed with reduced Cyanobacteria, showing a negative correlation. In treated water, Proteobacteria were negatively correlated with Bacteroidetes. Finally, 16S rRNA genes from Firmicutes (especially Staphylococcus) had a high abundance in the chlorinated water, which may indicate the phylum's resistance to chlorine residuals. Opportunistic pathogens, e.g., Mycobacteria, Legionella, and Staphylococcus, were also observed.
Collapse
Affiliation(s)
- Ana Maria Moreira Batista
- Department of Natural Resources, Environmental Sciences and Technologies, State University of Minas Gerais (João Monlevade Unit), Brasília Avenue, 1304 - Bau, 35930-314 João Monlevade, Minas Gerais, Brazil; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-010 Belo Horizonte, Minas Gerais, Brazil E-mail:
| | - Juliano Curi de Siqueira
- Department of Environmental Engineering, Federal University of Lavras, Aquenta Sol, 37200-900, Lavras, Minas Gerais, Brazil
| | - Paola Meynet
- School of Civil Engineering and Geosciences, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - David Werner
- School of Civil Engineering and Geosciences, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Graziella Patricio Pereira Garcia
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-010 Belo Horizonte, Minas Gerais, Brazil E-mail:
| | - Russell J Davenport
- School of Civil Engineering and Geosciences, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Alyne Duarte Pereira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-010 Belo Horizonte, Minas Gerais, Brazil E-mail:
| | | | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-010 Belo Horizonte, Minas Gerais, Brazil E-mail:
| | - Cesar Rossas Mota Filho
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-010 Belo Horizonte, Minas Gerais, Brazil E-mail:
| |
Collapse
|
36
|
Ishtiaq M, Inam A, Tiwari S, Seol JB. Microstructural, mechanical, and electrochemical analysis of carbon doped AISI carbon steels. Appl Microsc 2022; 52:10. [PMID: 36264393 PMCID: PMC9583967 DOI: 10.1186/s42649-022-00079-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
The effect of carbon doping contents on the microstructure, hardness, and corrosion properties of heat-treated AISI steel grades of plain carbon steel was investigated in this study. Various microstructures including coarse ferrite-pearlite, fine ferrite-pearlite, martensite, and bainite were developed by different heat treatments i.e. annealing, normalizing, quenching, and austempering, respectively. The developed microstructures, micro-hardness, and corrosion properties were investigated by a light optical microscope, scanning electron microscope, electromechanical (Vickers Hardness tester), and electrochemical (Gamry Potentiostat) equipment, respectively. The highest corrosion rates were observed in bainitic microstructures (2.68-12.12 mpy), whereas the lowest were found in the fine ferritic-pearlitic microstructures (1.57-6.36 mpy). A direct correlation has been observed between carbon concentration and corrosion rate, i.e. carbon content resulted in an increase in corrosion rate (2.37 mpy for AISI 1020 to 9.67 mpy for AISI 1050 in annealed condition).
Collapse
Affiliation(s)
- Muhammad Ishtiaq
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
- Department of Materials Engineering and Convergence Technology, Center for K-metal, Gyeongsang National University (GNU), Jinju, 52828, South Korea
- Institute of Metallurgy and Materials Engineering, University of the Punjab, Lahore, Pakistan
| | - Aqil Inam
- Institute of Metallurgy and Materials Engineering, University of the Punjab, Lahore, Pakistan
| | - Saurabh Tiwari
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
- Department of Materials Engineering and Convergence Technology, Center for K-metal, Gyeongsang National University (GNU), Jinju, 52828, South Korea
| | - Jae Bok Seol
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea.
- Department of Materials Engineering and Convergence Technology, Center for K-metal, Gyeongsang National University (GNU), Jinju, 52828, South Korea.
| |
Collapse
|
37
|
Su Z, Liu T, Men Y, Li S, Graham N, Yu W. Understanding point-of-use tap water quality: From instrument measurement to intelligent analysis using sample filtration. WATER RESEARCH 2022; 225:119205. [PMID: 36215843 DOI: 10.1016/j.watres.2022.119205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
In most cases, point-of-use tap water quality is not routinely monitored due to widely-dispersed sampling sites and the costly tests. Although previous studies have revealed the variation of drinking water quality during distribution in municipal networks, the influence of aging pipes in buildings on quality is still unknown and this makes it difficult for water utilities to conduct regular maintenance. Herein, we have undertaken a survey of tap water samples across 8 districts in Beijing (China) to evaluate the potential effects of pipe age on point-of-use water quality, including turbidity, organic matter characteristics, and bacterial community. By grouping the collected samples according to the pipe age and source water respectively, the results suggested that bacterial diversity is significantly influenced by the pipe age. However, bacterial community structure is clearly influenced by the source water. Similarly, aging pipes in buildings are also responsible for the deterioration of the final water quality, and their effects have been closely linked to selected water quality parameters by evaluating the relevant factors. Moreover, the interrelationships between physico-chemical parameters and bacteria abundance were identified. For example, pH, Ca2+, Mg2+, Na+ and K+ showed a positive relationship with Bacillus abundance. In addition, an intelligent analysis method for understanding pipe age, organic matter concentration, and hardness (i.e., Ca2+ and Mg2+ concentration), based on image analysis of filtered membranes has been developed. The accuracy of prediction was encouraging, but can be improved with the collection of more data from tap water samples. We expect that this method can be exploited by the public to monitor their tap water and provide a feasible and cost-effective approach for water suppliers to locate aging/deteriorating pipes which need to be replaced or maintained.
Collapse
Affiliation(s)
- Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ting Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Shuo Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
38
|
Pilot investigation on biostability of drinking water distribution systems under water source switching. Appl Microbiol Biotechnol 2022; 106:5273-5286. [PMID: 35794486 DOI: 10.1007/s00253-022-12050-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 11/02/2022]
Abstract
Water quality deterioration of drinking water distribution systems (DWDSs) caused by water source switching has been reported previously. However, systematic investigation of the biostability of DWDS under water source switching is limited. Aged pipes, including three commonly used pipe materials dug out from a practical DWDS, were used to systematically investigate the biofilm stability mechanism of DWDS under water source switching to quality-improved water. An increase in adenosine triphosphate (ATP) concentration in the bulk water during the initial stage of the switching period was observed, indicating the risk of biofilm release through aged pipe surfaces after water source switching. Sloughing of biofilms might contribute to temporary instability. From day 35, the ATP concentration in the polyethylene (PE) and plastic stainless steel composite (PS) pipes were maintained at approximately 2.40 and 2.56 ng/L, respectively. In contrast, the ATP concentration in the ductile iron (DI) pipes was higher, at approximately 3.43 ng/L from day 42. The water quality variation could cause areas of the biofilm to slough and reduce the biomass of biofilm, causing partial alteration of the microbial community. 16S rRNA gene amplicon sequencing-based functional prediction revealed that the biofilm could increase the abundance of chlorine-resistant bacteria attributed to the increase in Pseudomonas and Methylobacterium after switching to quality-improved water. Moreover, the profiles of specific pathways linked to human diseases, antibiotic resistance, and antibiotic biosynthesis revealed that the safety of the biofilm could improve after switching to quality-improved water. KEY POINTS: • The PE and PS biofilm showed improved resistance to water quality perturbation. • Greater number of Methylobacterium was found in the biofilm after water source switching. • 3.16S gene-based metagenomics prediction revealed that the safety of the biofilm under water source switching.
Collapse
|
39
|
Bruno A, Agostinetto G, Fumagalli S, Ghisleni G, Sandionigi A. It’s a Long Way to the Tap: Microbiome and DNA-Based Omics at the Core of Drinking Water Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137940. [PMID: 35805598 PMCID: PMC9266242 DOI: 10.3390/ijerph19137940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Microbial communities interact with us and affect our health in ways that are only beginning to be understood. Microorganisms have been detected in every ecosystem on Earth, as well as in any built environment that has been investigated. Drinking water sources, drinking water treatment plants and distribution systems provide peculiar microbial ecological niches, dismantling the belief of the “biological simplicity” of drinking water. Nevertheless, drinking water microbiomes are understudied compared to other microbiomes. Recent DNA sequencing and meta-omics advancements allow a deeper understanding of drinking water microbiota. Thus, moving beyond the limits of day-to-day testing for specific pathogenic microbes, new approaches aim at predicting microbiome changes driven by disturbances at the macro-scale and overtime. This will foster an effective and proactive management of water sources, improving the drinking water supply system and the monitoring activities to lower public health risk. Here, we want to give a new angle on drinking water microbiome research. Starting from a selection of 231 scientific publications on this topic, we emphasize the value of biodiversity in drinking water ecosystems and how it can be related with industrialization. We then discuss how microbiome research can support sustainable drinking water management, encouraging collaborations across sectors and involving the society through responsible research and innovation.
Collapse
Affiliation(s)
- Antonia Bruno
- Biotechnology and Biosciences Department, University of Milano-Bicocca, 20126 Milan, Italy; (G.A.); (S.F.); (G.G.)
- Correspondence:
| | - Giulia Agostinetto
- Biotechnology and Biosciences Department, University of Milano-Bicocca, 20126 Milan, Italy; (G.A.); (S.F.); (G.G.)
| | - Sara Fumagalli
- Biotechnology and Biosciences Department, University of Milano-Bicocca, 20126 Milan, Italy; (G.A.); (S.F.); (G.G.)
| | - Giulia Ghisleni
- Biotechnology and Biosciences Department, University of Milano-Bicocca, 20126 Milan, Italy; (G.A.); (S.F.); (G.G.)
- Institut Jacques Monod, Université Paris Cité, CNRS, 75013 Paris, France
| | | |
Collapse
|
40
|
Thom C, Smith CJ, Moore G, Weir P, Ijaz UZ. Microbiomes in drinking water treatment and distribution: A meta-analysis from source to tap. WATER RESEARCH 2022; 212:118106. [PMID: 35091225 DOI: 10.1016/j.watres.2022.118106] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
A meta-analysis of existing and available Illumina 16S rRNA datasets from drinking water source, treatment and drinking water distribution systems (DWDS) were collated to compare changes in abundance and diversity throughout. Samples from bulk water and biofilm were used to assess principles governing microbial community assembly and the value of amplicon sequencing to water utilities. Individual phyla relationships were explored to identify competitive or synergistic factors governing DWDS microbiomes. The relative importance of stochasticity in the assembly of the DWDS microbiome was considered to identify the significance of source and treatment in determining communities in DWDS. Treatment of water significantly reduces overall species abundance and richness, with chlorination of water providing the most impact to individual taxa relationships. The assembly of microbial communities in the bulk water of the source, primary treatment process and DWDS is governed by more stochastic processes, as is the DWDS biofilm. DWDS biofilm is significantly different from bulk water in terms of local contribution to beta diversity, type and abundance of taxa present. Water immediately post chlorination has a more deterministic microbial assembly, highlighting the significance of this process in changing the microbiome, although elevated levels of stochasticity in DWDS samples suggest that this may not be the case at customer taps. 16S rRNA sequencing is becoming more routine, and may have several uses for water utilities, including: detection and risk assessment of potential pathogens such as those within the genera of Legionella and Mycobacterium; assessing the risk of nitrification in DWDS; providing improved indicators of process performance and monitoring for significant changes in the microbial community to detect contamination. Combining this with quantitative methods like flow cytometry will allow a greater depth of understanding of the DWDS microbiome.
Collapse
Affiliation(s)
- Claire Thom
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK; Scottish Water, 6 Castle Drive Dunfermline, KY11 8GG, UK.
| | - Cindy J Smith
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK
| | - Graeme Moore
- Scottish Water, 6 Castle Drive Dunfermline, KY11 8GG, UK
| | - Paul Weir
- Scottish Water, 6 Castle Drive Dunfermline, KY11 8GG, UK
| | - Umer Z Ijaz
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK
| |
Collapse
|
41
|
Nasser Fava NDM, Terin UC, Freitas BLS, Sabogal-Paz LP, Fernandez-Ibañez P, Anthony Byrne J. Household slow sand filters in continuous and intermittent flows and their efficiency in microorganism's removal from river water. ENVIRONMENTAL TECHNOLOGY 2022; 43:1583-1592. [PMID: 33092473 DOI: 10.1080/09593330.2020.1841834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate the efficiency of four household slow sand filter (HSSF) models for the removal of microorganisms from river water throughout the development of their biological layers (schmutzdecke). Two models were designed to be operated continuously (HSSF-CC and HSSF-CT) and two intermittently (HSSF-ID and HSSF-IF). Filters were fed daily with 48 L pre-treated river water (24 h sedimentation followed by filtration through a non-woven synthetic blanket). Water samples were quantified by coliform group bacteria and analysed by bright field microscopy to visualize the microorganisms. Total coliform reduction was between 1.42 ± 0.59 log and 2.96 ± 0.58 log, with continuous models showing a better performance (p-values < 0.004). Escherichia coli reduction varied from 1.49 ± 0.58 log to 2.09 ± 0.66 log and HSSF-IF, HSSF-CC and HSSF-CT presented a similar performance (p-values > 0.06), slightly better than the one presented by HSSF-ID (p-value=0.04). Microorganisms, such as algae, protozoa and helminths were detected by microscopy in raw water and pre-treated water. Algae were the most significant group in these samples, although they were not visualized by bright field microscopy in the filtered water. Results showed the potential of HSSF in microbiological risk reduction from river water, which increases the range of point-of-use water treatments in rural communities. However, additional studies of the HSSF biological layer must be performed.
Collapse
Affiliation(s)
- Natália de Melo Nasser Fava
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Ulisses Costa Terin
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Bárbara Luíza Souza Freitas
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Pilar Fernandez-Ibañez
- Nanotechnology and Integrated Bioengineering Centre, School of Engineering, Ulster University, Northern Ireland, UK
| | - John Anthony Byrne
- Nanotechnology and Integrated Bioengineering Centre, School of Engineering, Ulster University, Northern Ireland, UK
| |
Collapse
|
42
|
Zhang X, Lin T, Jiang F, Zhang X, Wang S, Zhang S. Impact of pipe material and chlorination on the biofilm structure and microbial communities. CHEMOSPHERE 2022; 289:133218. [PMID: 34890609 DOI: 10.1016/j.chemosphere.2021.133218] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Pipe material and residual chlorine are key factors for the drinking water distribution system, and understanding the biofilm ecosystem is vital for water quality safeguard. The aim of our study was to determine the influence of pipe materials (ductile iron, steel, polyethylene) and chlorination on the biofilm structure and microbial community, as shown by the physicochemical properties, extracellular polymeric substances (EPS) structural characteristics, bacterial community composition, and functional traits. EPS spatial properties were studied based on a semi-quantitative confocal laser scanning microscope (CLSM) description. Regarding the impact of chlorination, residule chlorine (1.0 ± 0.3 mg L-1 free chlorine) could inhibit the bacteria colonization, and initiate a potential response to external disinfectants revealed by the EPS spatial distribution changes and communities variation compared to unchlorinated system. Regarding the impact of pipe material, polyethylene (PE) biofilms displayed lower biomass, loose zoogloea structure, lower proteins and polysaccharides content, and poor microbial diversity in contrast to ductile iron and steel biofilms. Pipe material was the more possible driving factor of the biofilm community composition compared to the chlorination based on principal coordinates analysis (PCoA) and permutational multivariate analysis of variance (PERMANOVA). Actinobacteria was dominant in the PE biofilms (45.57%-83.32%), while Alphaproteobacteria (34.30%-73.22%) and Gammaproteobacteria (6.46%-36.82%) were the major classes in the steel and ductile iron biofilms. The genus Rhodococcus was predominant in the PE biofilms. Rhodococcus, Pseudomonas, and Sphingomonas seemed to have a better growth advantage in the chlorinated system and display a stronger disinfectant resistance. Functional sketch prediction indicated the potential impact of pipe material and chlorination on functional pathway abundnce, possible functional pathways associated with infectious disease included. This study provides insights into the impact of pipe material and chlorination on biofilm structure and microbial community and might help to develop monitoring or maintenance strategies to protect the biosafety of the drinking water.
Collapse
Affiliation(s)
- Xinyue Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Fuchun Jiang
- Suzhou Water Supply Company Limited, Suzhou, 215002, PR China
| | - Xue Zhang
- Suzhou Water Supply Company Limited, Suzhou, 215002, PR China
| | - Shiyu Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shisheng Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
43
|
The effect of disinfectants on the microbial community on environmental healthcare surfaces using next generation sequencing. Am J Infect Control 2022; 50:54-60. [PMID: 34481923 DOI: 10.1016/j.ajic.2021.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Healthcare-associated infections are a significant economic burden and cause of avoidable morbidity and mortality within healthcare systems. The contribution of environmental contamination to healthcare-associated infection transmission has been recognized, but the mechanisms by which transmission occurs are still being investigated. The objective of this study was to characterize the microbial communities of disinfected, non-critical healthcare surfaces using next generation sequencing technology. METHODS Composite environmental surface samples were from high-touch surfaces in rooms of patients isolated for infections with multidrug-resistant organisms during their hospitalization. Information on the disinfectant product used and cleaning type (routine or terminal) was collected. 16S rRNA gene amplicon sequencing and analysis were performed. Community analysis was conducted to determine the bacterial composition and compare the detection of target pathogens by culture from 94 Contact Precaution rooms. RESULTS Overall percent agreement between culture and sequence methods ranged from 52%-88%. A significant difference was observed in bacterial composition between rooms cleaned with bleach and those cleaned with a quaternary ammonium compound for composite 2 (overbed table, intravenous pole, and inner room door handle) (ANOSIM R = 0.66, P = .005) but not composite 1 (bed rails, television remote control unit, call buttons, and telephone). CONCLUSIONS Surfaces in bleach-cleaned rooms contained a higher proportion of gram-positive microbiota, whereas rooms cleaned with quaternary ammonium compound contained a higher proportion of gram-negative microbiota, suggesting disinfectant products may impact the healthcare environment microbiome.
Collapse
|
44
|
Lee D, Calendo G, Kopec K, Henry R, Coutts S, McCarthy D, Murphy HM. The Impact of Pipe Material on the Diversity of Microbial Communities in Drinking Water Distribution Systems. Front Microbiol 2021; 12:779016. [PMID: 34992587 PMCID: PMC8724538 DOI: 10.3389/fmicb.2021.779016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/01/2021] [Indexed: 01/04/2023] Open
Abstract
As many cities around the world face the prospect of replacing aging drinking water distribution systems (DWDS), water utilities must make careful decisions on new pipe material (e.g., cement-lined or PVC) for these systems. These decisions are informed by cost, physical integrity, and impact on microbiological and physicochemical water quality. Indeed, pipe material can impact the development of biofilm in DWDS that can harbor pathogens and impact drinking water quality. Annular reactors (ARs) with cast iron and cement coupons fed with chloraminated water from a municipal DWDS were used to investigate the impact of pipe material on biofilm development and composition over 16 months. The ARs were plumbed as closely as possible to the water main in the basement of an academic building to simulate distribution system conditions. Biofilm communities on coupons were characterized using 16S rRNA sequencing. In the cast iron reactors, β-proteobacteria, Actinobacteria, and α-proteobacteria were similarly relatively abundant (24.1, 22.5, and 22.4%, respectively) while in the cement reactors, α-proteobacteria and Actinobacteria were more relatively abundant (36.3 and 35.2%, respectively) compared to β-proteobacteria (12.8%). Mean alpha diversity (estimated with Shannon H and Faith's Phylogenetic Difference indices) was greater in cast iron reactors (Shannon: 5.00 ± 0.41; Faith's PD: 15.40 ± 2.88) than in cement reactors (Shannon: 4.16 ± 0.78; Faith's PD: 13.00 ± 2.01). PCoA of Bray-Curtis dissimilarities indicated that communities in cast iron ARs, cement ARs, bulk distribution system water, and distribution system pipe biofilm were distinct. The mean relative abundance of Mycobacterium spp. was greater in the cement reactors (34.8 ± 18.6%) than in the cast iron reactors (21.7 ± 11.9%). In contrast, the mean relative abundance of Legionella spp. trended higher in biofilm from cast iron reactors (0.5 ± 0.7%) than biofilm in cement reactors (0.01 ± 0.01%). These results suggest that pipe material is associated with differences in the diversity, bacterial composition, and opportunistic pathogen prevalence in biofilm of DWDS.
Collapse
Affiliation(s)
- Debbie Lee
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Gennaro Calendo
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Kristin Kopec
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Rebekah Henry
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Clayton, VIC, Australia
| | - Scott Coutts
- Micromon, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - David McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Clayton, VIC, Australia
| | - Heather M. Murphy
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
- Water, Health and Applied Microbiology Laboratory (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
45
|
Huang CK, Weerasekara A, Bond PL, Weynberg KD, Guo J. Characterizing the premise plumbing microbiome in both water and biofilms of a 50-year-old building. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149225. [PMID: 34340073 DOI: 10.1016/j.scitotenv.2021.149225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 05/22/2023]
Abstract
The premise plumbing portion of drinking water distribution systems (DWDS) has several characteristics that may favor microbial growth in the form of biofilms. These microbial communities are implicated as infectious sources for the spread of opportunistic waterborne pathogens by supporting their complex ecology and transmission through DWDS outlets to susceptible individuals. However, there is limited understanding of the drinking water biofilms in real premise plumbing networks due to challenges with accessibility. Using a combination of culture-dependent and culture-independent approaches, this study comprehensively characterized the premise plumbing microbiome of a 50-year-old university building, inclusive of water and biofilm samples. Microbial diversity in the water samples were more taxonomically diverse in comparison to the mature drinking water biofilms, which were dominated with biofilm-formers and opportunistic pathogens, such as Mycobacterium spp. A model opportunistic pathogen, Legionella spp., was only detectable in water samples using quantitative PCR but could not be detected in any of the drinking water biofilms using either qPCR or culture-dependent approaches, highlighting the limitations of detection methods in these environments. This study presents preliminary findings on the microbial dynamics and complexity in premise plumbing networks, which may support public health management and the development of strategies to eliminate microbial risks to human health.
Collapse
Affiliation(s)
- Casey K Huang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Anjani Weerasekara
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Philip L Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Karen D Weynberg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
46
|
Zhang C, Lu J. Legionella: A Promising Supplementary Indicator of Microbial Drinking Water Quality in Municipal Engineered Water Systems. FRONTIERS IN ENVIRONMENTAL SCIENCE 2021; 9:1-22. [PMID: 35004706 PMCID: PMC8740890 DOI: 10.3389/fenvs.2021.684319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Opportunistic pathogens (OPs) are natural inhabitants and the predominant disease causative biotic agents in municipal engineered water systems (EWSs). In EWSs, OPs occur at high frequencies and concentrations, cause drinking-water-related disease outbreaks, and are a major factor threatening public health. Therefore, the prevalence of OPs in EWSs represents microbial drinking water quality. Closely or routinely monitoring the dynamics of OPs in municipal EWSs is thus critical to ensuring drinking water quality and protecting public health. Monitoring the dynamics of conventional (fecal) indicators (e.g., total coliforms, fecal coliforms, and Escherichia coli) is the customary or even exclusive means of assessing microbial drinking water quality. However, those indicators infer only fecal contamination due to treatment (e.g., disinfection within water utilities) failure and EWS infrastructure issues (e.g., water main breaks and infiltration), whereas OPs are not contaminants in drinking water. In addition, those indicators appear in EWSs at low concentrations (often absent in well-maintained EWSs) and are uncorrelated with OPs. For instance, conventional indicators decay, while OPs regrow with increasing hydraulic residence time. As a result, conventional indicators are poor indicators of OPs (the major aspect of microbial drinking water quality) in EWSs. An additional or supplementary indicator that can well infer the prevalence of OPs in EWSs is highly needed. This systematic review argues that Legionella as a dominant OP-containing genus and natural inhabitant in EWSs is a promising candidate for such a supplementary indicator. Through comprehensively comparing the behavior (i.e., occurrence, growth and regrowth, spatiotemporal variations in concentrations, resistance to disinfectant residuals, and responses to physicochemical water quality parameters) of major OPs (e.g., Legionella especially L. pneumophila, Mycobacterium, and Pseudomonas especially P. aeruginosa), this review proves that Legionella is a promising supplementary indicator for the prevalence of OPs in EWSs while other OPs lack this indication feature. Legionella as a dominant natural inhabitant in EWSs occurs frequently, has a high concentration, and correlates with more microbial and physicochemical water quality parameters than other common OPs. Legionella and OPs in EWSs share multiple key features such as high disinfectant resistance, biofilm formation, proliferation within amoebae, and significant spatiotemporal variations in concentrations. Therefore, the presence and concentration of Legionella well indicate the presence and concentrations of OPs (especially L. pneumophila) and microbial drinking water quality in EWSs. In addition, Legionella concentration indicates the efficacies of disinfectant residuals in EWSs. Furthermore, with the development of modern Legionella quantification methods (especially quantitative polymerase chain reactions), monitoring Legionella in ESWs is becoming easier, more affordable, and less labor-intensive. Those features make Legionella a proper supplementary indicator for microbial drinking water quality (especially the prevalence of OPs) in EWSs. Water authorities may use Legionella and conventional indicators in combination to more comprehensively assess microbial drinking water quality in municipal EWSs. Future work should further explore the indication role of Legionella in EWSs and propose drinking water Legionella concentration limits that indicate serious public health effects and require enhanced treatment (e.g., booster disinfection).
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, OH, United States
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
47
|
Huo L, Zhao S, Shi B, Wang H, He S. Bacterial community change and antibiotic resistance promotion after exposure to sulfadiazine and the role of UV/H 2O 2-GAC treatment. CHEMOSPHERE 2021; 283:131214. [PMID: 34147982 DOI: 10.1016/j.chemosphere.2021.131214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Effects of sulfadiazine on bacterial community and antibiotic resistance genes (ARGs) in drinking water distribution systems (DWDSs) were investigated in this study. Three DWDSs, including sand filtered (SF) DWDSs, granular active carbon (GAC) filtration DWDSs, and UV/H2O2-GAC DWDSs, were used to deliver sand filtered water, GAC filtered water, and UV/H2O2-GAC treated water, respectively. UV/H2O2-GAC filtration can remove the dissolved organic matter effectively, which resulted in the lowest bacterial diversity, biomass and ARGs in effluents and biofilm of DWDSs. When sulfadiazine was added to the sand filtered water, the dehydrogenase concentration and bacterial activity of bacterial community increased in effluents and biofilm of different DWDSs, inducing more extracellular polymeric substances (EPS) production. The proteins increasement percentage was 26.9%, 11.7% and 19.1% in biofilm of three DWDSs, respectively. And the proteins increased to 830.30 ± 20.56 μg cm-2, 687.04 ± 18.65 μg cm-2 and 586.07 ± 16.24 μg cm-2, respectively. The increase of EPS promoted biofilm formation and increased the chlorine-resistance capability of bacteria. Therefore, the relative abundance of Clostridium_sensu_stricto_1 increased to 12.22%, 10.41% and 0.33% in biofilm of the three DWDSs, respectively. Candidatus_Odyssella also increased in the effluents and biofilm of the three DWDSs. These antibiotic resistance bacteria increase in DWDSs also induced the ARGs promotion, including sul1, sul2, sul3, mexA and class 1 integrons (int1). However, UV/H2O2-GAC filtration induced the lowest increase of dehydrogenase and EPS production through sulfadiazine removal efficiently, resulting in the least bacterial community change and ARGs promotion in UV/H2O2-GAC DWDSs.
Collapse
Affiliation(s)
- Lixin Huo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shehang Zhao
- Qingdao University of Technology, Qingdao, 266033, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shouyang He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
48
|
Procopio N, Lovisolo F, Sguazzi G, Ghignone S, Voyron S, Migliario M, Renò F, Sellitto F, D'Angiolella G, Tozzo P, Caenazzo L, Gino S. "Touch microbiome" as a potential tool for forensic investigation: A pilot study. J Forensic Leg Med 2021; 82:102223. [PMID: 34343925 DOI: 10.1016/j.jflm.2021.102223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Human skin hosts a variety of microbes that can be transferred to surfaces ("touch microbiome"). These microorganisms can be considered as forensic markers similarly to "touch DNA". With this pilot study, we wanted to evaluate the transferability and persistence of the "touch microbiome" on a surface after the deposition of a fingerprint and its exposure for 30 days at room temperature. Eleven volunteers were enrolled in the study. Skin microbiome samples were collected by swabbing the palm of their hands; additionally, donors were asked to touch a glass microscope slide to deposit their fingerprints, that were then swabbed. Both human and microbial DNA was isolated and quantified. Amelogenin locus and 16 human STRs were amplified, whereas the V4 region of 16 S rRNA gene was sequenced using Illumina MiSeq platform. STR profiles were successfully typed for 5 out of 22 "touch DNA" samples, while a microbiome profile was obtained for 20 out of 22 "touch microbiome" samples. Six skin core microbiome taxa were identified, as well as unique donor characterizing taxa. These unique taxa may have relevance for personal identification studies and may be useful to provide forensic intelligence information also when "touch DNA" fails. Additional future studies including greater datasets, additional time points and a greater number of surfaces may clarify the applicability of "touch microbiome" studies to real forensic contexts.
Collapse
Affiliation(s)
- Noemi Procopio
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK.
| | - Flavia Lovisolo
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Giulia Sguazzi
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Stefano Ghignone
- Istituto per La Protezione Sostenibile Delle Piante - SS Torino - Consiglio Nazionale Delle Ricerche, C/o Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy.
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy.
| | - Mario Migliario
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Filippo Renò
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Federica Sellitto
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK.
| | - Gabriella D'Angiolella
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Pamela Tozzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy.
| | - Luciana Caenazzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy.
| | - Sarah Gino
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
49
|
Chen GQ, Wu YH, Wang YH, Chen Z, Tong X, Bai Y, Luo LW, Xu C, Hu HY. Effects of microbial inactivation approaches on quantity and properties of extracellular polymeric substances in the process of wastewater treatment and reclamation: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125283. [PMID: 33582467 DOI: 10.1016/j.jhazmat.2021.125283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Microbial extracellular polymeric substances (EPS) have a profound role in various wastewater treatment and reclamation processes, in which a variety of technologies are used for disinfection and microbial growth inhibition. These treatment processes can induce significant changes in the quantity and properties of EPS, and altered EPS could further adversely affect the wastewater treatment and reclamation system, including membrane filtration, disinfection, and water distribution. To clarify the effects of microbial inactivation approaches on EPS, these effects were classified into four categories: (1) chemical reactions, (2) cell lysis, (3) changing EPS-producing metabolic processes, and (4) altering microbial community. Across these different effects, treatments with free chlorine, methylisothiazolone, TiO2, and UV irradiation typically enhance EPS production. Among the residual microorganisms in EPS matrices after various microbial inactivation treatments, one of the most prominent is Mycobacterium. With respect to EPS properties, proteins and humic acids in EPS are usually more susceptible to treatment processes than polysaccharides. The affected EPS properties include changes in molecular weight, hydrophobicity, and adhesion ability. All of these changes can undermine wastewater treatment and reclamation processes. Therefore, effects on EPS quantity and properties should be considered during the application of microbial inactivation and growth inhibition techniques.
Collapse
Affiliation(s)
- Gen-Qiang Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Yun-Hong Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Xing Tong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yuan Bai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Li-Wei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Chuang Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
50
|
Siedlecka A, Wolf-Baca M, Piekarska K. Microbial communities of biofilms developed in a chlorinated drinking water distribution system: A field study of antibiotic resistance and biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145113. [PMID: 33610999 DOI: 10.1016/j.scitotenv.2021.145113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance and biodiversity were investigated in microbial communities attached to inner surfaces of water supply fittings in a chlorinated drinking water distribution system (DWDS) supplied by two independent water treatment plants (WTPs) drawing the same source water. The investigation of the effect of the season, the applied water treatment technology, and type, material, and age of water supply fittings on both antibiotic resistance and biodiversity in biofilms involved collection of tubercles during summer and winter seasons throughout the DWDS. A total of 16 samples were collected (8 per season) from areas supplied by two independent WTPs. Culturable aerobic antibiotic resistant bacteria (ARB) proved more prevalent in summer. Various antibiotic resistance genes (ARGs) were detected, confirming the role of biofilms as ARGs reservoirs, but the abundances of quantified genes (sulI, ermB, qacEΔ1, intI1) were low (a range of <LOQ to 2313 gene copies/mg dry mass of tubercles) throughout the DWDS. In terms of microbial community composition, Proteobacteria were dominant in each sample (51.51-97.13%), and the most abundant genus was Desulfovibrio (0.01-66.69%) belonging to sulphate-reducing bacteria. Biodiversity of microbial communities was shaped by many coexisting factors, including season, water supply fitting material, and sampling site location. Spatial distribution analysis revealed that although only samples collected at the same sampling sites were similar to each other in terms of antibiotic resistance, some samples collected in the close proximity were similar in terms of biodiversity. This suggests that antibiotic resistance spreads only locally over small distances in drinking water biofilms. Although actual drinking water biofilms have been previously investigated in terms of microbial biodiversity, this is the first study that characterised both antibiotic resistance and biodiversity of microbial communities attached to inner surfaces of a real DWDS functioning for decades.
Collapse
Affiliation(s)
- Agata Siedlecka
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mirela Wolf-Baca
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Katarzyna Piekarska
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|