1
|
Dos Santos Silva JC, Potgieter-Vermaak S, Medeiros SHW, da Silva LV, Ferreira DV, Godoi AFL, Yamamoto CI, Godoi RHM. A fingerprint of source-specific health risk of PM 2.5-bound components over a coastal industrial city. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136369. [PMID: 39522203 DOI: 10.1016/j.jhazmat.2024.136369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The influence of specific local land-use activities (continuously redistributing elements across environments) and environmental conditions (altering the chemical composition of airborne particulate matter) on the intrinsic health risk of PM2.5 exposure is sparsely reported. To fill this gap, we employed a novel integrated approach to address the influence of short-term changes in source-specific PM2.5 composition on the exposure-response risk, while controlling for weather conditions. We combine receptor-based source apportionment with conditional logistic regression in a space-time-stratified case-crossover design. This approach is different from previous studies as it: i) controls the impact of spatiotemporal variations in air pollution and human mobility using multilocation-specific fixed and disjointed space-time strata ii) addresses the spatial heterogeneity of personal exposure separating its variable effect from other predictors by allowing different baseline hazards for each space-time stratum; iii) aligns case/control periods with strong/regular episodes of source-specific PM-multipollutant fingerprint contributions rather than health outcomes. This enabled comprehensive examination of the association between source-specific PM2.5-bound species and cardiorespiratory disease hospitalizations. The epidemiological findings were that primary anthropogenic emissions [industrial (ORs 2.5 - 4.8)] were associated with higher 1-day moving average PM-induced risks. Natural-related sources [fresh / aged sea salt aerosol, dust, soil resuspension] and secondary sulfate formation were consistently associated with higher health risks (ORs 1.0 - 1.54) after 1 to 5-days since exposure. The results emphasize the importance of source-specific air quality management in complex areas and our research provides an adaptable universal tool to support targeted place-based policy interventions to mitigate air pollution impacts on health.
Collapse
Affiliation(s)
| | - Sanja Potgieter-Vermaak
- Ecology & Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom; Molecular Science Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Sandra Helena Westrupp Medeiros
- Department of Environmental and Sanitary Engineering, University of the Region of Joinville, Joinville, Santa Catarina, Brazil
| | - Luiz Vitor da Silva
- Department of Environmental and Sanitary Engineering, University of the Region of Joinville, Joinville, Santa Catarina, Brazil
| | - Danielli Ventura Ferreira
- Department of Environmental and Sanitary Engineering, University of the Region of Joinville, Joinville, Santa Catarina, Brazil
| | | | - Carlos Itsuo Yamamoto
- Department of Chemical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ricardo Henrique Moreton Godoi
- Postgraduate Program in Water Resources and Environmental Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil; Department of Environmental Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil; Department of Chemical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Fazakas E, Neamtiu IA, Gurzau ES. Health effects of air pollutant mixtures (volatile organic compounds, particulate matter, sulfur and nitrogen oxides) - a review of the literature. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:459-478. [PMID: 36932657 DOI: 10.1515/reveh-2022-0252] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The health risks associated with individual air pollutant exposures have been studied and documented, but in real-life, the population is exposed to a multitude of different substances, designated as mixtures. A body of literature on air pollutants indicated that the next step in air pollution research is investigating pollutant mixtures and their potential impacts on health, as a risk assessment of individual air pollutants may actually underestimate the overall risks. This review aims to synthesize the health effects related to air pollutant mixtures containing selected pollutants such as: volatile organic compounds, particulate matter, sulfur and nitrogen oxides. For this review, the PubMed database was used to search for articles published within the last decade, and we included studies assessing the associations between air pollutant mixtures and health effects. The literature search was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A number of 110 studies were included in the review from which data on pollutant mixtures, health effects, methods used, and primary results were extracted. Our review emphasized that there are a relatively small number of studies addressing the health effects of air pollutants as mixtures and there is a gap in knowledge regarding the health effects associated with these mixtures. Studying the health effects of air pollutant mixtures is challenging due to the complexity of components that mixtures may contain, and the possible interactions these different components may have.
Collapse
Affiliation(s)
- Emese Fazakas
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Iulia A Neamtiu
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Eugen S Gurzau
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Research Center for functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Zhao T, Hopke PK, Utell MJ, Croft DP, Thurston SW, Lin S, Ling FS, Chen Y, Yount CS, Rich DQ. A case-crossover study of ST-elevation myocardial infarction and organic carbon and source-specific PM 2.5 concentrations in Monroe County, New York. Front Public Health 2024; 12:1369698. [PMID: 39148650 PMCID: PMC11324441 DOI: 10.3389/fpubh.2024.1369698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Background Previous work reported increased rates of cardiovascular hospitalizations associated with increased source-specific PM2.5 concentrations in New York State, despite decreased PM2.5 concentrations. We also found increased rates of ST elevation myocardial infarction (STEMI) associated with short-term increases in concentrations of ultrafine particles and other traffic-related pollutants in the 2014-2016 period, but not during 2017-2019 in Rochester. Changes in PM2.5 composition and sources resulting from air quality policies (e.g., Tier 3 light-duty vehicles) may explain the differences. Thus, this study aimed to estimate whether rates of STEMI were associated with organic carbon and source-specific PM2.5 concentrations. Methods Using STEMI patients treated at the University of Rochester Medical Center, compositional and source-apportioned PM2.5 concentrations measured in Rochester, a time-stratified case-crossover design, and conditional logistic regression models, we estimated the rate of STEMI associated with increases in mean primary organic carbon (POC), secondary organic carbon (SOC), and source-specific PM2.5 concentrations on lag days 0, 0-3, and 0-6 during 2014-2019. Results The associations of an increased rate of STEMI with interquartile range (IQR) increases in spark-ignition emissions (GAS) and diesel (DIE) concentrations in the previous few days were not found from 2014 to 2019. However, IQR increases in GAS concentrations were associated with an increased rate of STEMI on the same day in the 2014-2016 period (Rate ratio [RR] = 1.69; 95% CI = 0.98, 2.94; 1.73 μg/m3). In addition, each IQR increase in mean SOC concentration in the previous 6 days was associated with an increased rate of STEMI, despite imprecision (RR = 1.14; 95% CI = 0.89, 1.45; 0.42 μg/m3). Conclusion Increased SOC concentrations may be associated with increased rates of STEMI, while there seems to be a declining trend in adverse effects of GAS on triggering of STEMI. These changes could be attributed to changes in PM2.5 composition and sources following the Tier 3 vehicle introduction.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
- Center for Air and Aquatic Resources Engineering and Sciences, Clarkson University, Potsdam, NY, United States
| | - Mark J Utell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel P Croft
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Shao Lin
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, Rensselaer, NY, United States
| | - Frederick S Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Catherine S Yount
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
4
|
Shiraiwa M, Fang T, Wei J, Lakey P, Hwang B, Edwards KC, Kapur S, Mena J, Huang YK, Digman MA, Weichenthal SA, Nizkorodov S, Kleinman MT. Chemical and Cellular Formation of Reactive Oxygen Species from Secondary Organic Aerosols in Epithelial Lining Fluid. Res Rep Health Eff Inst 2023:1-56. [PMID: 38420854 PMCID: PMC10957138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Oxidative stress mediated by reactive oxygen species (ROS) is a key process for adverse aerosol health effects. Secondary organic aerosols (SOA) account for a major fraction of particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5). PM2.5 inhalation and deposition into the respiratory tract causes the formation of ROS by chemical reactions and phagocytosis of macrophages in the epithelial lining fluid (ELF), but their relative contributions are not well quantified and their link to oxidative stress remains uncertain. The specific aims of this project were (1) elucidating the chemical mechanism and quantifying the formation kinetics of ROS in the ELF by SOA; (2) quantifying the relative importance of ROS formation by chemical reactions and macrophages in the ELF. METHODS SOA particles were generated using reaction chambers from oxidation of various precursors including isoprene, terpenes, and aromatic compounds with or without nitrogen oxides (NOx). We collected size-segregated PM at two highway sites in Anaheim, CA, and Long Beach, CA, and at an urban site in Irvine, CA, during two wildfire events. The collected particles were extracted into water or surrogate ELF that contained lung antioxidants. ROS generation was quantified using electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping technique. PM oxidative potential (OP) was also quantified using the dithiothreitol assay. In addition, kinetic modeling was applied for analysis and interpretation of experimental data. Finally, we quantified cellular superoxide release by RAW264.7 macrophage cells upon exposure to quinones and isoprene SOA using a chemiluminescence assay as calibrated with an EPR spin-probing technique. We also applied cellular imaging techniques to study the cellular mechanism of superoxide release and oxidative damage on cell membranes. RESULTS Superoxide radicals (·O2-) were formed from aqueous reactions of biogenic SOA generated by hydroxy radical (·OH) photooxidation of isoprene, β-pinene, α-terpineol, and d-limonene. The temporal evolution of ·OH and ·O2- formation was elucidated by kinetic modeling with a cascade of aqueous reactions, including the decomposition of organic hydroperoxides (ROOH), ·OH oxidation of primary or secondary alcohols, and unimolecular decomposition of α-hydroxyperoxyl radicals. Relative yields of various types of ROS reflected the relative abundance of ROOH and alcohols contained in SOA, which generated under high NOx conditions, exhibited lower ROS yields. ROS formation by SOA was also affected by pH. Isoprene SOA had higher ·OH and organic radical yields at neutral than at acidic pH. At low pH ·O2- was the dominant species generated by all types of SOA. At neutral pH, α-terpineol SOA exhibited a substantial yield of carbon-centered organic radicals (R·), while no radical formation was observed by aromatic SOA. Organic radicals in the ELF were formed by mixtures of Fe2+ and SOA generated from photooxidation of isoprene, α-terpineol, and toluene. The molar yields of organic radicals by SOA were 5-10 times higher in ELF than in water. Fe2+ enhanced organic radical yields by a factor of 20-80. Ascorbate mediated redox cycling of iron ions and sustained organic peroxide decomposition, as supported by kinetic modeling reproducing time- and concentration-dependence of organic radical formation, as well as by additional experiments observing the formation of Fe2+ and ascorbate radicals in mixtures of ascorbate and Fe3+. ·OH and superoxide were found to be efficiently scavenged by antioxidants. Wildfire PM mainly generated ·OH and R· with minor contributions from superoxide and oxygen-centered organic radicals (RO·). PM OP was high in wildfire PM, exhibiting very weak correlation with radical forms of ROS. These results were in stark contrast with PM collected at highway and urban sites, which generated much higher amounts of radicals dominated by ·OH radicals that correlated well with OP. By combining field measurements of size-segregated chemical composition, a human respiratory tract model, and kinetic modeling, we quantified production rates and concentrations of different types of ROS in different regions of the ELF by considering particle-size-dependent respiratory deposition. While hydrogen peroxide (H2O2) and ·O2- production were governed by Fe and Cu ions, ·OH radicals were mainly generated by organic compounds and Fenton-like reactions of metal ions. We obtained mixed results for correlations between PM OP and ROS formation, providing rationale and limitations of the use of oxidative potential as an indicator for PM toxicity in epidemiological and toxicological studies. Quinones and isoprene SOA activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in macrophages, releasing massive amounts of superoxide via respiratory burst and overwhelming the superoxide formation by aqueous chemical reactions in the ELF. The threshold dose for macrophage activation was much smaller for quinones compared with isoprene SOA. The released ROS caused lipid peroxidation to increase cell membrane fluidity, inducing oxidative damage and stress. Further increases of doses led to the activation of antioxidant response elements, reducing the net cellular superoxide production. At very high doses and long exposure times, chemical production became comparably important or dominant if the escalation of oxidative stress led to cell death. CONCLUSIONS The mechanistic understandings and quantitative information on ROS generation by SOA particles provided a basis for further elucidation of adverse aerosol health effects and oxidative stress by PM2.5. For a comprehensive assessment of PM toxicity and health effects via oxidative stress, it is important to consider both chemical reactions and cellular processes for the formation of ROS in the ELF. Chemical composition of PM strongly influences ROS formation; further investigations are required to study ROS formation from various PM sources. Such research will provide critical information to environmental agencies and policymakers for the development of air quality policy and regulation.
Collapse
Affiliation(s)
- M Shiraiwa
- Department of Chemistry, University of California, Irvine, CA, USA
| | - T Fang
- Department of Chemistry, University of California, Irvine, CA, USA
| | - J Wei
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Psj Lakey
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Bch Hwang
- Department of Chemistry, University of California, Irvine, CA, USA
| | - K C Edwards
- Department of Chemistry, University of California, Irvine, CA, USA
| | - S Kapur
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Jem Mena
- Division of Occupational and Environmental Medicine, University of California, Irvine, CA, USA
| | - Y-K Huang
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - M A Digman
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - S A Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - S Nizkorodov
- Department of Chemistry, University of California, Irvine, CA, USA
| | - M T Kleinman
- Division of Occupational and Environmental Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Mo S, Hu J, Yu C, Bao J, Shi Z, Zhou P, Yang Z, Luo S, Yin Z, Zhang Y. Short-term effects of fine particulate matter constituents on myocardial infarction death. J Environ Sci (China) 2023; 133:60-69. [PMID: 37451789 DOI: 10.1016/j.jes.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 07/18/2023]
Abstract
Existing evidence suggested that short-term exposure to fine particulate matter (PM2.5) may increase the risk of death from myocardial infarction (MI), while PM2.5 constituents responsible for this association has not been determined. We collected 12,927 MI deaths from 32 counties in southern China during 2011-2013. County-level exposures of ambient PM2.5 and its 5 constituents (i.e., elemental carbon (EC), organic carbon (OC), sulfate (SO42-), ammonium (NH4+), and nitrate (NO3-)) were aggregated from gridded datasets predicted by Community Multiscale Air Quality Modeling System. We employed a space-time-stratified case-crossover design and conditional logistic regression models to quantify the association of MI mortality with short-term exposure to PM2.5 and its constituents across various lag days. Over the study period, the daily mean PM2.5 mass concentration was 77.8 (standard deviation (SD) = 72.7) µg/m3. We estimated an odds ratio of 1.038 (95% confidence interval (CI): 1.003-1.074), 1.038 (1.013-1.063) and 1.057 (1.023-1.097) for MI mortality associated with per interquartile range (IQR) increase in the 3-day moving-average exposure to PM2.5 (IQR = 76.3 µg/m3), EC (4.1 µg/m3) and OC (9.1 µg/m3), respectively. We did not identify significant association between MI death and exposure to water-soluble ions (SO42-, NH4+ and NO3-). Likelihood ratio tests supported no evident violations of linear assumptions for constituents-MI associations. Subgroup analyses showed stronger associations between MI death and EC/OC exposure in the elderly, males and cold months. Short-term exposure to PM2.5 constituents, particularly those carbonaceous aerosols, was associated with increased risks of MI mortality.
Collapse
Affiliation(s)
- Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Junzhe Bao
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihao Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Siqi Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhouxin Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
6
|
Wang Y, Qiu X, Wei Y, Schwartz JD. Long-Term Exposure to Ambient PM 2.5 and Hospitalizations for Myocardial Infarction Among US Residents: A Difference-in-Differences Analysis. J Am Heart Assoc 2023; 12:e029428. [PMID: 37702054 PMCID: PMC10547266 DOI: 10.1161/jaha.123.029428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023]
Abstract
Background Air pollution has been recognized as an untraditional risk factor for myocardial infarction (MI). However, the MI risk attributable to long-term exposure to fine particulate matter ≤2.5 μm in aerodynamic diameter (PM2.5) is unclear, especially in younger populations, and few studies have represented the general population or had power to examine comorbidities. Methods and Results We applied the difference-in-differences approach to estimate the relationship between annual PM2.5 exposure and hospitalizations for MI among US residents and further identified potential susceptible subpopulations. All hospital admissions for MI in 10 US states over the period 2002 to 2016 were obtained from the Healthcare Cost and Utilization Project State Inpatient Database. In total, 1 914 684 MI hospital admissions from 8106 zip codes were included in this study. We observed a 1.35% (95% CI, 1.11-1.59) increase in MI hospitalization rate for 1-μg/m3 increase in annual PM2.5 exposure. The estimate was robust to adjustment for surface pressure, relative humidity, and copollutants. In the population exposed to ≤12 μg/m3, there was a larger increment of 2.17% (95% CI, 1.79-2.56) in hospitalization rate associated with 1-μg/m3 increase in PM2.5. Young people (0-34 years of age) and elderly people (≥75 years of age) were the 2 most susceptible age groups. Residents living in more densely populated or poorer areas and individuals with comorbidities were observed to be at a greater risk. Conclusions This study indicates long-term residential exposure to PM2.5 could increase risk of MI among the general US population, people with comorbidities, and poorer individuals. The association persists below current standards.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMA
| | - Xinye Qiu
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMA
| | - Yaguang Wei
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMA
| | - Joel D. Schwartz
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMA
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMA
| |
Collapse
|
7
|
Walsh A, Russell AG, Weaver AM, Moyer J, Wyatt L, Ward-Caviness CK. Associations between source-apportioned PM 2.5 and 30-day readmissions in heart failure patients. ENVIRONMENTAL RESEARCH 2023; 228:115839. [PMID: 37024035 PMCID: PMC10273144 DOI: 10.1016/j.envres.2023.115839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Air pollution exposure is a significant risk factor for morbidity and mortality, especially for those with pre-existing chronic disease. Previous studies highlighted the risks that long-term particulate matter exposure has for readmissions. However, few studies have evaluated source and component specific associations particularly among vulnerable patient populations. OBJECTIVES Use electronic health records from 5556 heart failure (HF) patients diagnosed between July 5, 2004 and December 31, 2010 that were part of the EPA CARES resource in conjunction with modeled source-specific fine particulate matter (PM2.5) to estimate the association between exposure to source and component apportioned PM2.5 at the time of HF diagnosis and 30-day readmissions. METHODS We used zero-inflated mixed effects Poisson models with a random intercept for zip code to model associations while adjusting for age at diagnosis, year of diagnosis, race, sex, smoking status, and neighborhood socioeconomic status. We undertook several sensitivity analyses to explore the impact of geocoding precision and other factors on associations and expressed associations per interquartile range increase in exposures. RESULTS We observed associations between 30-day readmissions and an interquartile range increase in gasoline- (16.9% increase; 95% confidence interval = 4.8%, 30.4%) and diesel-derived PM2.5 (9.9% increase; 95% confidence interval = 1.7%, 18.7%), and the secondary organic carbon component of PM2.5 (SOC; 20.4% increase; 95% confidence interval = 8.3%, 33.9%). Associations were stable in sensitivity analyses, and most consistently observed among Black study participants, those in lower income areas, and those diagnosed with HF at an earlier age. Concentration-response curves indicated a linear association for diesel and SOC. While there was some non-linearity in the gasoline concentration-response curve, only the linear component was associated with 30-day readmissions. DISCUSSION There appear to be source specific associations between PM2.5 and 30-day readmissions particularly for traffic-related sources, potentially indicating unique toxicity of some sources for readmission risks that should be further explored.
Collapse
Affiliation(s)
- Aleah Walsh
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA; Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anne M Weaver
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Joshua Moyer
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Lauren Wyatt
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Zhou L, Tao Y, Li H, Niu Y, Li L, Kan H, Xie J, Chen R. Acute effects of fine particulate matter constituents on cardiopulmonary function in a panel of COPD patients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144753. [PMID: 33515878 DOI: 10.1016/j.scitotenv.2020.144753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure to fine particulate matter (PM2.5) has been linked with adverse cardiorespiratory health conditions. However, evidence for PM2.5 constituents is still scarce, especially among patients with chronic obstructive pulmonary disease (COPD). OBJECTIVE To investigate the associations of short-term exposure to different chemical constituents of PM2.5 with measures of cardiac and lung function in COPD patients. METHODS We conducted a retrospective panel study among 100 COPD patients who received repeated measures of left ventricular ejection fraction (LVEF), forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and peak expiratory flow (PEF) in Shanghai, China from August 2014 to September 2019. Daily PM2.5 and PM2.5 constituents were obtained from fixed-site monitoring station. Linear mixed-effects models were used to estimate the associations of PM2.5. RESULTS We found water-soluble ions of PM2.5, mainly NO3-, SO42-, and NH4+ were robustly associated with reduced LVEF, and the reductions in LVEF associated with an IQR increase of them ranged from 1.8% to 2.0% (lag 1 d). Metal constituents such as Cu and As were associated with FEV1, FVC and PEF. The corresponding reductions in lung function parameters for an IQR increase of them ranged from 1.4% to 2.3% (lag 0 or 1 d). These associations remained relatively robust after adjusting for total PM2.5 mass and gaseous pollutants. CONCLUSIONS Our results suggest that water-soluble ions and several metal/metalloid elements might be important constituents in PM2.5 that were associated with reduced cardiorespiratory function among COPD patients.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yingmin Tao
- Division of General Practice, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China.
| | - Huichu Li
- Department of Environmental Health, Harvard T.H.Chan School of Public Health, Boston, MA, USA.
| | - Yue Niu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Liang Li
- Division of General Practice, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Juan Xie
- Division of General Practice, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China.
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Altuwayjiri A, Taghvaee S, Mousavi A, Sowlat MH, Hassanvand MS, Kashani H, Faridi S, Yunesian M, Naddafi K, Sioutas C. Association of systemic inflammation and coagulation biomarkers with source-specific PM 2.5 mass concentrations among young and elderly subjects in central Tehran. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:191-208. [PMID: 32758070 DOI: 10.1080/10962247.2020.1806140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 05/20/2023]
Abstract
In this study, we investigated the association between short-term exposure to different sources of fine particulate matter (PM2.5) and biomarkers of coagulation and inflammation in two different panels of elderly and healthy young individuals in central Tehran. Five biomarkers, including white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF) were analyzed in the blood samples drawn every 8 weeks from the subjects between May 2012 and May 2013. The studied populations consisted of 44 elderly individuals at a retirement home as well as 40 young adults residing at a school dormitory. Positive Matrix Factorization (PMF)-resolved source-specific PM2.5 mass concentrations and biomarker levels were used as the input to the linear mixed-effects regression model to evaluate the impact of exposure to previously identified PM sources at retirement home and school dormitory in two time lag configurations: lag 1-3 (1-3 days before the blood sampling), and lag 4-6 (4-6 days before the blood sampling). Our analysis of the elderly revealed positive associations of all biomarkers (except hsCRP) with particles of secondary origin in both time lags, further corroborating the toxicity of secondary aerosols formed by photochemical processing in central Tehran. Moreover, industrial emissions, and road dust particles were positively associated with WBC, sTNF-RII, and IL-6 among seniors, while vehicular emissions exhibited positive associations with all biomarkers in either first- or second-time lag. In contrast, most of the PM2.5 sources showed insignificant associations with biomarkers of inflammation in the panel of healthy young subjects. Therefore, findings from this study indicated that various PM2.5 sources increase the levels of inflammation and coagulation biomarkers, although the strength and significance of these associations vary depending on the type of PM sources, demographic characteristics, and differ across the different time lags. Implications: Tehran, the capital of Iran with a population of more than 9 million people, has been facing serious air pollution challenges as a result of extensive vehicular, and industrial activities in the previous years. Among various air pollutants in Tehran, fine particulate matters (PM2.5, particles with aerodynamic diameters < 2.5 µm) are known as one of the most important critical pollutants, causing several adverse health impacts including lung cancer, respiratory, cardiovascular, and cardiopulmonary diseases. Therefore, a number of studies in the area have tried to investigate the adverse health impacts of exposure to PM2.5. However, no studies have ever been conducted in Tehran to examine the association between specific PM2.5 sources and biomarkers of coagulation and systemic inflammation as indicators of cardiovascular disorders. Indeed, this is the first study in the area investigating the association of source-specific PM2.5 with biomarkers of inflammation including white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF). Our results have important implications for policy makers in identifying the most toxic sources of PM2.5, and in turn designing schemes for mitigating adverse health impacts of air pollution in Tehran.
Collapse
Affiliation(s)
- Abdulmalik Altuwayjiri
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Sina Taghvaee
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Amirhosein Mousavi
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Mohammad H Sowlat
- Advanced Monitoring Technologies, Science and Technology Advancement Division, South Coast Air Quality Management District , Diamond Bar, CA, USA
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
| | - Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Masud Yunesian
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| |
Collapse
|
10
|
Validating and Comparing Highly Resolved Commercial "Off the Shelf" PM Monitoring Sensors with Satellite Based Hybrid Models, for Improved Environmental Exposure Assessment. SENSORS 2020; 21:s21010063. [PMID: 33374352 PMCID: PMC7796136 DOI: 10.3390/s21010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022]
Abstract
Particulate matter is a common health hazard, and under certain conditions, an ecological threat. While many studies were conducted in regard to air pollution and potential effects, this paper serves as a pilot scale investigation into the spatial and temporal variability of particulate matter (PM) pollution in arid urban environments in general, and Beer-Sheva, Israel as a case study. We explore the use of commercially off the shelf (COTS) sensors, which provide an economical solution for spatio-temporal measurements. We started with a comparison process against an A-grade meteorological station, where it was shown that under specific climatic conditions, a number of COTS sensors were able to produce robust agreement (mean R2=0.93, average SD=17.5). The second stage examined the COTS sensors that were proven accurate in a mobile measurement campaign. Finally, data collected was compared to a validated satellite prediction model. We present how these tests and COTS sensor-kits could then be used to further explain the continuity and dispersion of particulate matter in similar areas.
Collapse
|
11
|
Copula Modelling on the Dynamic Dependence Structure of Multiple Air Pollutant Variables. MATHEMATICS 2020. [DOI: 10.3390/math8111910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A correlation analysis of pollutant variables provides comprehensive information on dependency behaviour and is thus useful in relating the risk and consequences of pollution events. However, common correlation measurements fail to capture the various properties of air pollution data, such as their non-normal distribution, heavy tails, and dynamic changes over time. Hence, they cannot generate highly accurate information. To overcome this issue, this study proposes a combination of the Generalized Autoregressive Conditional Heteroskedasticity model, Generalized Pareto distribution, and stochastic copulas as a tool to investigate the dependence structure between the PM10 variable and other pollutant variables, including CO, NO2, O3, and SO2. Results indicate that the dynamic dependence structure between PM10 and other pollutant variables can be described with a ranking of PM10–CO > PM10–SO2 > PM10–NO2 > PM10–O3 for the overall time paths (δ) and the upper tail (τU) or lower tail (τL) dependency measures. This study reveals an evident correlation among pollutant variables that changes over time; such correlation reflects dynamic dependency.
Collapse
|
12
|
Accumulated ambient air pollution and colon cancer incidence in Thailand. Sci Rep 2020; 10:17765. [PMID: 33082474 PMCID: PMC7575563 DOI: 10.1038/s41598-020-74669-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022] Open
Abstract
This research examined the relationship between colon cancer risks and pollution in various areas of Thailand, using satellites to gather quantities of aerosols in the atmosphere. Bayesian hierarchical spatio-temporal model and the Poisson log-linear model were used to examine the incidence rates of colon cancer standardized by national references; from the database of the National Health Security Office, Ministry of Public Health of Thailand and NASA's database from aerosol diagnostics model. Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) was used to explore disease-gender-specific spatio-temporal patterns of colon cancer incidences and accumulated air pollution-related cancers in Thailand between 2010 and 2016. A total of 59,605 patients were selected for the study. Due to concerns regarding statistical reliability between aerosol diagnostics model and colon cancer incidences, the posterior probabilities of risk appeared the most in dust PM2.5. It could be interpreted as relative risk in every increase of 10 μg/m3 in black carbon, organic carbon, and dust-PM2.5 levels were associated respectively with an increase of 4%, 4%, and 15% in the risks of colon cancer. A significant increase in the incidence of colon cancer with accumulated ambient air quality raised concerns regarding the prevention of air pollution. This study utilized data based on the incidences of colon cancer; the country's database and linked cancer data to pollution. According to the database from NASA's technology, this research has never been conducted in Thailand.
Collapse
|
13
|
Performance and Stability of Wet-Milled CoAl2O4, Ni/CoAl2O4, and Pt,Ni/CoAl2O4 for Soot Combustion. Catalysts 2020. [DOI: 10.3390/catal10040406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Low-energy wet milling was employed to activate commercial CoAl2O4 spinel and disperse mono- and multimetallic nanoparticles on its surface. This method yielded efficient Pt,Ni catalysts for soot oxidation in simulated diesel exhaust conditions. The characterization and activity results indicated that although Ni/CoAl2O4 was highly active, the presence of Pt was required to obtain a stable Ni(0.25 wt. %),Pt(0.75 wt. %)/CoAl2O4 catalyst under the operating conditions of diesel particulate filters, and that hot spots formation must be controlled to avoid the deactivation of the cobalt aluminate. Our work provides important insight for new design strategies to develop high-efficiency low-cost catalysts. Platinum-containing multimetallic nanostructures could efficiently reduce the amount of the costly, but to date non-replaceable, Pt noble metal for a large number of industrially important catalytic processes.
Collapse
|
14
|
Wang C, Hao L, Liu C, Chen R, Wang W, Chen Y, Yang Y, Meng X, Fu Q, Ying Z, Kan H. Associations between fine particulate matter constituents and daily cardiovascular mortality in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110154. [PMID: 31954217 DOI: 10.1016/j.ecoenv.2019.110154] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 05/10/2023]
Abstract
Limited evidence is available for the associations between fine particulate matter (PM2.5) constituents and daily cardiovascular disease (CVD) mortality in China. In present study, a time-series analysis was conducted to evaluate the associations of PM2.5 constituents (two carbonaceous fractions, eight water-soluble inorganic ions and fifteen elements) with daily CVD mortality in Pudong New Area of Shanghai, China, from 2014 to 2016. Results showed that the effect estimates for the associations of PM2.5 and its constituents with CVD mortality were generally strongest when using the exposures of the previous two day concentrations. The associations of organic carbon, sulfate, ammonia, potassium, copper, arsenic, and lead with daily CVD mortality were robust to the adjustment of PM2.5 total mass, their collinearity with PM2.5 total mass, and criteria gaseous air pollutants. An interquartile range increase in the previous two day concentrations of PM2.5, organic carbon, sulfate, ammonia, potassium, copper, arsenic, and lead were associated with significant increments of 2.21% (95% confidence interval [95%CI]: 0.54%, 3.88%), 2.83% (95% CIs: 1.16%, 4.50%), 1.90% (95% CIs: 0.35%, 3.45%), 2.29% (95% CIs: 0.80%, 3.77%), 0.94% (95% CIs: 0.13%, 1.75%), 1.53% (95% CIs: 0.37%, 2.69%), 2.08% (95% CIs: 0.49%, 3.68%) and 1.98% (95% CIs: 0.49%, 3.47%) in daily CVD mortality, respectively, in single-pollutant models. In conclusion, this study suggested that organic carbon, sulfate, ammonia, potassium, copper, arsenic, and lead might be mainly responsible for the associations between short-term PM2.5 exposures and increased CVD mortality in Shanghai, China.
Collapse
Affiliation(s)
- Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Lipeng Hao
- Shanghai Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Yichen Chen
- Shanghai Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Yining Yang
- Beijing No.171 High School, Beijing, 100013, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China.
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, 20 Penn St. HSFII S005, Baltimore, MD, 21201, USA
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
15
|
Paine R. Could the Air You Breathe Increase Your Risk of Developing Acute Respiratory Distress Syndrome? Am J Respir Crit Care Med 2019; 199:5-7. [PMID: 30133313 DOI: 10.1164/rccm.201808-1513ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Robert Paine
- 1 Department of Internal Medicine University of Utah School of Medicine Salt Lake City, Utah
| |
Collapse
|
16
|
Wang M, Hopke PK, Masiol M, Thurston SW, Cameron S, Ling F, van Wijngaarden E, Croft D, Squizzato S, Thevenet-Morrison K, Chalupa D, Rich DQ. Changes in triggering of ST-elevation myocardial infarction by particulate air pollution in Monroe County, New York over time: a case-crossover study. Environ Health 2019; 18:82. [PMID: 31492149 PMCID: PMC6728968 DOI: 10.1186/s12940-019-0521-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 08/23/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Previous studies have reported that fine particle (PM2.5) concentrations triggered ST elevation myocardial infarctions (STEMI). In Rochester, NY, multiple air quality policies and economic changes/influences from 2008 to 2013 led to decreased concentrations of PM2.5 and its major constituents (SO42-, NO3-, elemental and primary organic carbon). This study examined whether the rate of STEMI associated with increased ambient gaseous and PM component concentrations was different AFTER these air quality policies and economic changes (2014-2016), compared to DURING (2008-2013) and BEFORE these polices and changes (2005-2007). METHODS Using 921 STEMIs treated at the University of Rochester Medical Center (2005-2016) and a case-crossover design, we examined whether the rate of STEMI associated with increased PM2.5, ultrafine particles (UFP, < 100 nm), accumulation mode particles (AMP, 100-500 nm), black carbon, SO2, CO, and O3 concentrations in the previous 1-72 h was modified by the time period related to these pollutant source changes (BEFORE, DURING, AFTER). RESULTS Each interquartile range (3702 particles/cm3) increase in UFP concentration in the previous 1 h was associated with a 12% (95% CI = 3%, 22%) increase in the rate of STEMI. The effect size was larger in the AFTER period (26%) than the DURING (5%) or BEFORE periods (9%). There were similar patterns for black carbon and SO2. CONCLUSIONS An increased rate of STEMI associated with UFP and other pollutant concentrations was higher in the AFTER period compared to the BEFORE and DURING periods. This may be due to changes in PM composition (e.g. higher secondary organic carbon and particle bound reactive oxygen species) following these air quality policies and economic changes.
Collapse
Affiliation(s)
- Meng Wang
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
| | - Philip K. Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY USA
| | - Mauro Masiol
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY USA
| | - Sally W. Thurston
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY USA
| | - Scott Cameron
- Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Frederick Ling
- Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Edwin van Wijngaarden
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Daniel Croft
- Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Stefania Squizzato
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY USA
| | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - David Q. Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, 265 Crittenden Boulevard, CU 420644, Rochester, NY 14642 USA
| |
Collapse
|
17
|
Taghvaee S, Mousavi A, Sowlat MH, Sioutas C. Development of a novel aerosol generation system for conducting inhalation exposures to ambient particulate matter (PM). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:1035-1045. [PMID: 30893735 PMCID: PMC6430148 DOI: 10.1016/j.scitotenv.2019.02.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/26/2019] [Accepted: 02/13/2019] [Indexed: 05/25/2023]
Abstract
In this study, we developed a novel method for generating aerosols that are representative of real-world ambient particulate matter (PM) in terms of both physical and chemical characteristics, with the ultimate objective of using them for inhalation exposure studies. The protocol included collection of ambient PM on filters using a high-volume sampler, which were then extracted with ultrapure Milli-Q water using vortexing and sonication. As an alternative approach for collection, ambient particles were directly captured into aqueous slurry samples using the versatile aerosol concentration enrichment system (VACES)/aerosol-into-liquid collector tandem technology. The aqueous samples from both collection protocols were then re-aerosolized using commercially available nebulizers. The physical characteristics (i.e., particle size distribution) of the generated aerosols were examined by the means of a scanning mobility particle sizer (SMPS) connected to a condensation particle counter (CPC) at different compressed air pressures of the nebulizer, and dilution air flow rates. In addition, the collected PM samples (both ambient and re-aerosolized) were chemically analyzed for water-soluble organic carbon (WSOC), elemental and organic carbon (EC/OC), inorganic ions, polycyclic aromatic hydrocarbons (PAHs), and metals and trace elements. Using the aqueous filter extracts, we were able to effectively recover the water-soluble components of ambient PM (e.g., water-soluble organic matter, and water-soluble inorganic ions); however, this method was deficient in recovering some of the important insoluble components such as EC, PAHs, and many of the redox-active trace elements and metals. In contrast, using the VACES/aerosol-into-liquid collector tandem technology for collecting ambient PM directly into water slurry, we were able to preserve the water-soluble and water-insoluble components very effectively. These results illustrate the superiority of the VACES/aerosol-into liquid collector tandem technology to be used in conjunction with the re-aerosolization setup to create aerosols that fully represent ambient PM, making it an attractive choice for application in inhalation exposure studies.
Collapse
Affiliation(s)
- Sina Taghvaee
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Mohammad H Sowlat
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Rich DQ, Zhang W, Lin S, Squizzato S, Thurston SW, van Wijngaarden E, Croft D, Masiol M, Hopke PK. Triggering of cardiovascular hospital admissions by source specific fine particle concentrations in urban centers of New York State. ENVIRONMENT INTERNATIONAL 2019; 126:387-394. [PMID: 30826617 PMCID: PMC6441620 DOI: 10.1016/j.envint.2019.02.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Previous work reported increased rates of acute cardiovascular hospitalizations associated with increased PM2.5 concentrations in the previous few days across urban centers in New York State from 2005 to 2016. These relative rates were higher after air quality policies and economic changes resulted in decreased PM2.5 concentrations and changes in PM composition (e.g. increased secondary organic carbon), compared to before and during these changes. Changes in PM composition and sources may explain this difference. OBJECTIVES To estimate the rate of acute cardiovascular hospitalizations associated with increases in source specific PM2.5 concentrations. METHODS Using source apportioned PM2.5 concentrations at the same NYS urban sites, a time-stratified case-crossover design, and conditional logistic regression models adjusting for ambient temperature and relative humidity, we estimated the rate of these acute cardiovascular hospitalizations associated with increases in mean source specific PM2.5 concentrations in the previous 1, 4, and 7 days. RESULTS Interquartile range (IQR) increases in spark-ignition emissions (GAS) concentrations were associated with increased excess rates of cardiac arrhythmia hospitalizations (2.3%; 95% CI = 0.4%, 4.2%; IQR = 2.56 μg/m3) and ischemic stroke hospitalizations (3.7%; 95% CI = 1.1%, 6.4%; 2. 73 μg/m3) over the next day. IQR increases in diesel (DIE) concentrations were associated with increased rates of congestive heart failure hospitalizations (0.7%; 95% CI = 0.2% 1.3%; 0.51 μg/m3) and ischemic heart disease hospitalizations (0.8%; 95% CI = 0.3%, 1.3%; 0.60 μg/m3) over the next day, as hypothesized. However, secondary sulfate PM2.5 (SS) was not. Increased acute cardiovascular hospitalization rates were also associated with IQR increases in concentrations of road dust (RD), residual oil (RO), and secondary nitrate (SN) over the previous 1, 4, and 7 days, but not other sources. CONCLUSIONS These findings suggest a role of several sources of PM2.5 in New York State (i.e. traffic emissions, non-traffic emissions such as brake and tire wear, residual oil, and nitrate that may also reflect traffic emissions) in the triggering of acute cardiovascular events.
Collapse
Affiliation(s)
- David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box EHSC, Rochester, NY 14642, USA; Department of Medicine, Pulmonary and Critical Care, University of Rochester Medical Center, 601 Elmwood Avenue, Box 692, Rochester, NY 14642, USA.
| | - Wangjian Zhang
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, One University Place, Rensselaer, NY 12144, USA
| | - Shao Lin
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, One University Place, Rensselaer, NY 12144, USA
| | - Stefania Squizzato
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard, Rochester, NY 14642, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Boulevard, CU 420630, Rochester, NY 14642, USA
| | - Edwin van Wijngaarden
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box EHSC, Rochester, NY 14642, USA; Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 651, Rochester, NY 14642, USA
| | - Daniel Croft
- Department of Medicine, Pulmonary and Critical Care, University of Rochester Medical Center, 601 Elmwood Avenue, Box 692, Rochester, NY 14642, USA
| | - Mauro Masiol
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard, Rochester, NY 14642, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard, Rochester, NY 14642, USA; Center for Air Resources Engineering and Science, Clarkson University, Box 5708, Potsdam, NY 13699, USA
| |
Collapse
|
19
|
Zhang W, Lin S, Hopke PK, Thurston SW, van Wijngaarden E, Croft D, Squizzato S, Masiol M, Rich DQ. Triggering of cardiovascular hospital admissions by fine particle concentrations in New York state: Before, during, and after implementation of multiple environmental policies and a recession. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1404-1416. [PMID: 30142556 DOI: 10.1016/j.envpol.2018.08.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Previous studies reported triggering of acute cardiovascular events by short-term increasedPM2.5 concentrations. From 2007 to 2013, national and New York state air quality policies and economic influences resulted in reduced concentrations of PM2.5 and other pollutants across the state. We estimated the rate of cardiovascular hospital admissions associated with increased PM2.5 concentrations in the previous 1-7 days, and evaluated whether they differed before (2005-2007), during (2008-2013), and after these concentration changes (2014-2016). METHODS Using the Statewide Planning and Research Cooperative System (SPARCS) database, we retained all hospital admissions with a primary diagnosis of nine cardiovascular disease (CVD) subtypes, for residents living within 15 miles of PM2.5 monitoring sites in Buffalo, Rochester, Albany, Queens, Bronx, and Manhattan from 2005 to 2016 (N = 1,922,918). We used a case-crossover design and conditional logistic regression to estimate the admission rate for total CVD, and nine specific subtypes, associated with increased PM2.5 concentrations. RESULTS Interquartile range (IQR) increases in PM2.5 on the same and previous 6 days were associated with 0.6%-1.2% increases in CVD admission rate (2005-2016). There were similar patterns for cardiac arrhythmia, ischemic stroke, congestive heart failure, ischemic heart disease (IHD), and myocardial infarction (MI). Ambient PM2.5 concentrations and annual total CVD admission rates decreased across the period. However, the excess rate of IHD admissions associated with each IQR increase in PM2.5 in previous 2 days was larger in the after period (2.8%; 95%CI = 1.5%-4.0%) than in the during (0.6%; 95%CI = 0.0%-1.2%) or before periods (0.8%; 95%CI = 0.2%-1.3%), with similar patterns for total CVD and MI, but not other subtypes. CONCLUSIONS While pollutant concentrations and CVD admission rates decreased after emission changes, the same PM2.5 mass was associated with a higher rate of ischemic heart disease events. Future work should confirm these findings in another population, and investigate whether specific PM components and/or sources trigger IHD events.
Collapse
Affiliation(s)
- Wangjian Zhang
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Shao Lin
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Edwin van Wijngaarden
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Daniel Croft
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Stefania Squizzato
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Mauro Masiol
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
20
|
Akbarzadeh MA, Khaheshi I, Sharifi A, Yousefi N, Naderian M, Namazi MH, Safi M, Vakili H, Saadat H, Alipour Parsa S, Nickdoost N. The association between exposure to air pollutants including PM 10, PM 2.5, ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide concentration and the relative risk of developing STEMI: A case-crossover design. ENVIRONMENTAL RESEARCH 2018; 161:299-303. [PMID: 29178978 DOI: 10.1016/j.envres.2017.11.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/18/2017] [Accepted: 11/15/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Unfavorable associations between air pollution and myocardial infarction are broadly investigated in recent studies and some of them revealed considerable associations; however, controversies exists between these investigations with regard to culprit components of air pollution and significance of correlation between myocardial infarction risk and air pollution. METHODS The association between exposure to PM10, PM2.5, ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide concentration of background air that residents of Tehran, the capital city of Iran, which is ranked as the most air polluted city of Iran and the relative risk of developing ST-elevation myocardial infarction (STEMI) were investigated by a case-crossover design. Our study included 208 patients admitted with a diagnosis of STEMI and undergone primary percutaneous intervention. Air pollutant concentration was averaged in 24-h windows preceding the time of onset of myocardial infarction for the case period. Besides, the mean level of each element of air pollution of the corresponding time in one week, two weeks and three weeks before onset of myocardial infarction, was averaged separately for each day as one control periods. Thus, 624 control periods were included in our investigation such that. Each patient is matched and compared with him/herself. RESULTS The mean level of PM10 in case periods (61.47µg/m3) was significantly higher than its level in control periods (57.86µg/m3) (P-value = 0.019, 95% CI: 1.002-1.018, RR = 1.010). Also, the mean level of PM2.5 in case periods (95.40µg/m3) was significantly higher than that in control days (90.88µg/m3) (P-value = 0.044, 95% CI: 1.001-1.011, RR = 1.006). The level of other components including NO2, SO2, CO and O3 showed no significant differences between case and control periods. A 10µg/m3 increase in PM10 and PM2.5 would result in 10.10% and 10.06% increase in STEMI event, respectively. Furthermore, the results of sub-group analysis showed that older patients (equal or more than 60 year-old), diabetic patients, non-hypertensive ones and patients with more than one diseased vessel may be more vulnerable to the harmful effect of particular matters including PM10 and PM2.5 on development of STEMI. CONCLUSION Air pollution is a worldwide pandemic with great potential to cause terrible events especially cardiovascular ones. PM2.5 and PM10 are amongst ambient air pollutant with a high risk of developing STEMI. Thus, more restrictive legislations should be applied to define a safe level of indoor and outdoor air pollutant production.
Collapse
Affiliation(s)
- Mohammad Ali Akbarzadeh
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Modarres Hospital, Kaj square, Sa'adat Abad Ave, Tehran 1998734383, Iran
| | - Isa Khaheshi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Modarres Hospital, Kaj square, Sa'adat Abad Ave, Tehran 1998734383, Iran.
| | - Amirsina Sharifi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Yousefi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Modarres Hospital, Kaj square, Sa'adat Abad Ave, Tehran 1998734383, Iran
| | - Mohammadreza Naderian
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Cardiac Outcome Research and Education (CORE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hasan Namazi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Modarres Hospital, Kaj square, Sa'adat Abad Ave, Tehran 1998734383, Iran
| | - Morteza Safi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Modarres Hospital, Kaj square, Sa'adat Abad Ave, Tehran 1998734383, Iran
| | - Hossein Vakili
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Modarres Hospital, Kaj square, Sa'adat Abad Ave, Tehran 1998734383, Iran
| | - Habibollah Saadat
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Modarres Hospital, Kaj square, Sa'adat Abad Ave, Tehran 1998734383, Iran
| | - Saeed Alipour Parsa
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Modarres Hospital, Kaj square, Sa'adat Abad Ave, Tehran 1998734383, Iran
| | - Negin Nickdoost
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Modarres Hospital, Kaj square, Sa'adat Abad Ave, Tehran 1998734383, Iran
| |
Collapse
|
21
|
The Interaction Effects of Meteorological Factors and Air Pollution on the Development of Acute Coronary Syndrome. Sci Rep 2017; 7:44004. [PMID: 28276507 PMCID: PMC5343658 DOI: 10.1038/srep44004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/02/2017] [Indexed: 11/08/2022] Open
Abstract
This study investigated the interaction effects of meteorological factors and air pollutants on the onset of acute coronary syndrome (ACS). Data of ACS patients were obtained from the Taiwan ACS Full Spectrum Registry and comprised 3164 patients with a definite onset date during the period October 2008 and January 2010 at 39 hospitals. Meteorological conditions and air pollutant concentrations at the 39 locations during the 488-day period were obtained. Time-lag Poisson and logistic regression were used to explore their association with ACS incidence. One-day lag atmospheric pressure (AP), humidity, particulate matter (PM2.5, and PM10), and carbon monoxide (CO) all had significant interaction effects with temperature on ACS occurrence. Days on which high temperatures (>26 °C) and low AP (<1009 hPa) occurred the previous day were associated with a greater likelihood of increased incidence of developing ACS. Typhoon Morakot was an example of high temperature with extremely low AP associated with higher ACS incidence than the daily average. Combinations of high concentrations of PM or CO with low temperatures (<21 °C) and high humidity levels with low temperatures were also associated with increased incidence of ACS. Atmospheric pollution and weather factors have synergistic effects on the incidence of ACS.
Collapse
|
22
|
Rich DQ. Accountability studies of air pollution and health effects: lessons learned and recommendations for future natural experiment opportunities. ENVIRONMENT INTERNATIONAL 2017; 100:62-78. [PMID: 28089581 PMCID: PMC5291758 DOI: 10.1016/j.envint.2016.12.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 05/26/2023]
Abstract
To address limitations of observational epidemiology studies of air pollution and health effects, including residual confounding by temporal and spatial factors, several studies have taken advantage of 'natural experiments', where an environmental policy or air quality intervention has resulted in reductions in ambient air pollution concentrations. Researchers have examined whether the population impacted by these air quality improvements, also experienced improvements in various health indices (e.g. reduced morbidity/mortality). In this paper, I review key accountability studies done previously and new studies done over the past several years in Beijing, Atlanta, London, Ireland, and other locations, describing study design and analysis strengths and limitations of each. As new 'natural experiment' opportunities arise, several lessons learned from these studies should be applied when planning a new accountability study. Comparison of health outcomes during the intervention to both before and after the intervention in the population of interest, as well as use of a control population to assess whether any temporal changes in the population of interest were also seen in populations not impacted by air quality improvements, should aid in minimizing residual confounding by these long term time trends. Use of either detailed health records for a population, or prospectively collected data on relevant mechanistic biomarkers coupled with such morbidity/mortality data may provide a more thorough assessment of if the intervention beneficially impacted the health of the community, and if so by what mechanism(s). Further, prospective measurement of a large suite of air pollutants may allow a more thorough understanding of what pollutant source(s) is/are responsible for any health benefit observed. The importance of using multiple statistical analysis methods in each paper and the difference in how the timing of the air pollution/outcome association may impact which of these design features is most important is also discussed. Based on these and other lessons learned, researchers may provide a more epidemiologically rigorous evaluation of cause-specific health impacts of an air quality intervention or action.
Collapse
Affiliation(s)
- David Q Rich
- Departments of Public Health Sciences and Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, United States.
| |
Collapse
|
23
|
Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci Rep 2016; 6:32916. [PMID: 27605301 PMCID: PMC5015057 DOI: 10.1038/srep32916] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022] Open
Abstract
Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.
Collapse
|
24
|
Hao H, Chang HH, Holmes HA, Mulholland JA, Klein M, Darrow LA, Strickland MJ. Air Pollution and Preterm Birth in the U.S. State of Georgia (2002-2006): Associations with Concentrations of 11 Ambient Air Pollutants Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary Monitor Measurements. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:875-80. [PMID: 26485731 PMCID: PMC4892915 DOI: 10.1289/ehp.1409651] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 10/08/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Previous epidemiologic studies suggest associations between preterm birth and ambient air pollution. OBJECTIVE We investigated associations between 11 ambient air pollutants, estimated by combining Community Multiscale Air Quality model (CMAQ) simulations with measurements from stationary monitors, and risk of preterm birth (< 37 weeks of gestation) in the U.S. state of Georgia. METHODS Birth records for singleton births ≥ 27 weeks of gestation with complete covariate information and estimated dates of conception between 1 January 2002 and 28 February 2006 were obtained from the Office of Health Indicators for Planning, Georgia Department of Public Health (n = 511,658 births). Daily pollutant concentrations at 12-km resolution were estimated for 11 ambient air pollutants. We used logistic regression with county-level fixed effects to estimate associations between preterm birth and average pollutant concentrations during the first and second trimester. Discrete-time survival models were used to estimate third-trimester and total pregnancy associations. Effect modification was investigated by maternal education, race, census tract poverty level, and county-level urbanicity. RESULTS Trimester-specific and total pregnancy associations (p < 0.05) were observed for several pollutants. All the traffic-related pollutants (carbon monoxide, nitrogen dioxide, PM2.5 elemental carbon) were associated with preterm birth [e.g., odds ratios for interquartile range increases in carbon monoxide during the first, second, and third trimesters and total pregnancy were 1.005 (95% CI: 1.001, 1.009), 1.007 (95% CI: 1.002, 1.011), 1.010 (95% CI: 1.006, 1.014), and 1.011 (95% CI: 1.006, 1.017)]. Associations tended to be higher for mothers with low educational attainment and African American mothers. CONCLUSION Several ambient air pollutants were associated with preterm birth; associations were observed in all exposure windows. CITATION Hao H, Chang HH, Holmes HA, Mulholland JA, Klein M, Darrow LA, Strickland MJ. 2016. Air pollution and preterm birth in the U.S. state of Georgia (2002-2006): associations with concentrations of 11 ambient air pollutants estimated by combining Community Multiscale Air Quality Model (CMAQ) simulations with stationary monitor measurements. Environ Health Perspect 124:875-880; http://dx.doi.org/10.1289/ehp.1409651.
Collapse
Affiliation(s)
- Hua Hao
- Department of Environmental Health, and
| | - Howard H. Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - James A. Mulholland
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Lyndsey A. Darrow
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Matthew J. Strickland
- Department of Environmental Health, and
- Address correspondence to M.J. Strickland, Department of Environmental Health, Emory University, 1518 Clifton Rd. NE, Mailstop 1518-002-2BB, Atlanta, GA 30322 USA. Telephone: (404) 712-8912. E-mail:
| |
Collapse
|
25
|
Krall JR, Chang HH, Sarnat SE, Peng RD, Waller LA. Current Methods and Challenges for Epidemiological Studies of the Associations Between Chemical Constituents of Particulate Matter and Health. Curr Environ Health Rep 2016; 2:388-98. [PMID: 26386975 DOI: 10.1007/s40572-015-0071-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiological studies have been critical for estimating associations between exposure to ambient particulate matter (PM) air pollution and adverse health outcomes. Because total PM mass is a temporally and spatially varying mixture of constituents with different physical and chemical properties, recent epidemiological studies have focused on PM constituents. Most studies have estimated associations between PM constituents and health using the same statistical methods as in studies of PM mass. However, these approaches may not be sufficient to address challenges specific to studies of PM constituents, namely assigning exposure, disentangling health effects, and handling measurement error. We reviewed large, population-based epidemiological studies of PM constituents and health and describe the statistical methods typically applied to address these challenges. Development of statistical methods that simultaneously address multiple challenges, for example, both disentangling health effects and handling measurement error, could improve estimation of associations between PM constituents and adverse health outcomes.
Collapse
Affiliation(s)
- Jenna R Krall
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA.
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA.
| | - Stefanie Ebelt Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA.
| | - Roger D Peng
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Lance A Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
26
|
Weichenthal S, Lavigne E, Villeneuve PJ, Reeves F. Airborne Pollen Concentrations and Emergency Room Visits for Myocardial Infarction: A Multicity Case-Crossover Study in Ontario, Canada. Am J Epidemiol 2016; 183:613-21. [PMID: 26934896 DOI: 10.1093/aje/kwv252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022] Open
Abstract
Few studies have examined the acute cardiovascular effects of airborne allergens. We conducted a case-crossover study to evaluate the relationship between airborne allergen concentrations and emergency room visits for myocardial infarction (MI) in Ontario, Canada. In total, 17,960 cases of MI were identified between the months of April and October during the years 2004-2011. Daily mean aeroallergen concentrations (pollen and mold spores) were assigned to case and control periods using central-site monitors in each city along with daily measurements of meteorological data and air pollution (nitrogen dioxide and ozone). Odds ratios and their 95% confidence intervals were estimated using conditional logistic regression models adjusting for time-varying covariates. Risk of MI was 5.5% higher (95% confidence interval (CI): 3.4, 7.6) on days in the highest tertile of total pollen concentrations compared with days in the lowest tertile, and a significant concentration-response trend was observed (P < 0.001). Higher MI risk was limited to same-day pollen concentrations, with the largest risks being observed during May (odds ratio = 1.16, 95% CI: 1.00, 1.35) and June (odds ratio = 1.10, 95% CI: 1.00, 1.22), when tree and grass pollen are most common. Mold spore concentrations were not associated with MI. Our findings suggest that airborne pollen might represent a previously unidentified environmental risk factor for myocardial infarction.
Collapse
|
27
|
Shirmohammadi F, Hasheminassab S, Saffari A, Schauer JJ, Delfino RJ, Sioutas C. Fine and ultrafine particulate organic carbon in the Los Angeles basin: Trends in sources and composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1083-1096. [PMID: 26473710 PMCID: PMC4656077 DOI: 10.1016/j.scitotenv.2015.09.133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/09/2015] [Accepted: 09/25/2015] [Indexed: 04/15/2023]
Abstract
In this study, PM2.5 and PM0.18 (particles with dp<2.5 μm and dp<0.18 μm, respectively) were collected during 2012-2013 in Central Los Angeles (LA) and 2013-2014 in Anaheim. Samples were chemically analyzed for carbonaceous species (elemental and organic carbons) and individual organic compounds. Concentrations of organic compounds were reported and compared with many previous studies in Central LA to quantify the impact of emissions control measurements that have been implemented for vehicular emissions over the past decades in this area. Moreover, a novel hybrid approach of molecular marker-based chemical mass balance (MM-CMB) analysis was conducted, in which a combination of source profiles that were previously obtained from a Positive Matrix Factorization (PMF) model in Central LA, were combined with some traditional source profiles. The model estimated the relative contributions from mobile sources (including gasoline, diesel, and smoking vehicles), wood smoke, primary biogenic sources (including emissions from vegetative detritus, food cooking, and re-suspended soil dust), and anthropogenic secondary organic carbon (SOC). Mobile sources contributed to 0.65 ± 0.25 μg/m(3) and 0.32 ± 0.25 μg/m(3) of PM2.5 OC in Central LA and Anaheim, respectively. Primary biogenic and anthropogenic SOC sources were major contributors to OC concentrations in both size fractions and sites. Un-apportioned OC ("other OC") accounted for an average 8.0 and 26% of PM2.5 OC concentration in Central LA and Anaheim, respectively. A comparison with previous studies in Central LA revealed considerable reduction of EC and OC, along with tracers of mobile sources (e.g. PAHs, hopanes and steranes) as a result of implemented regulations on vehicular emissions. Given the significant reduction of the impacts of mobile sources in the past decade in the LA Basin, the impact of SOC and primary biogenic emissions have a larger relative impact and the new hybrid model allows the impact of these sources to be better quantified.
Collapse
Affiliation(s)
- Farimah Shirmohammadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Sina Hasheminassab
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Arian Saffari
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - James J Schauer
- University of Wisconsin-Madison, Environmental Chemistry and Technology Program, Madison, WI, USA
| | - Ralph J Delfino
- University of California, Irvine, Department of Epidemiology, School of Medicine, Irvine, CA, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Wang X, Kindzierski W, Kaul P. Comparison of transient associations of air pollution and AMI hospitalisation in two cities of Alberta, Canada, using a case-crossover design. BMJ Open 2015; 5:e009169. [PMID: 26553835 PMCID: PMC4654281 DOI: 10.1136/bmjopen-2015-009169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To investigate reproducibility of outcomes for short-term associations between ambient air pollutants and acute myocardial infarction (AMI) hospitalisation in 2 urban populations. DESIGN Using a time-stratified design, we conducted independent case-crossover studies of AMI hospitalisation events over the period 1999-2010 in the geographically close and demographically similar cities of Calgary and Edmonton, Alberta, Canada. Patients with his/her first AMI hospitalisation event were linked with air pollution data from the National Ambient Pollution Surveillance database and meteorological data from the National Climatic Data Center database. Patients were further divided into subgroups to examine adjusted pollution effects. Effects of pollution levels with 0-3-day lag were modelled using conditional logistic regression and adjusted for daily average ambient temperature, dew point temperature and wind speed. SETTING Population-based studies in Calgary/Edmonton. PARTICIPANTS 12,066/10,562 first-time AMI hospitalisations in Calgary/Edmonton. MAIN OUTCOME MEASURES Association (adjusted OR) between daily ambient air pollution levels and hospitalisation for AMI. RESULTS Among 600 potential air pollution effect variables investigated for the Calgary (Edmonton) population, only 1.17% (0.67%) was statistically significant by using the traditional 5% criterion. None of the effect variables were reproduced in the 2 cities, despite their geographic closeness (within 300 km of each other), and demographic and air pollution similarities. CONCLUSIONS Comparison of independent investigations of the effect of air pollution on risk of AMI hospitalisation in Calgary and Edmonton, Alberta, indicated that none of the air pollutants investigated-CO, NO, NO2, O3 and particulate matter (PM2.5)-showed consistent positive associations with increased risk of AMI hospitalisation.
Collapse
Affiliation(s)
- Xiaoming Wang
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Warren Kindzierski
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Padma Kaul
- Department of Medicine, Canadian Vigour Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Hopke PK, Kane C, Utell MJ, Chalupa DC, Kumar P, Ling F, Gardner B, Rich DQ. Triggering of myocardial infarction by increased ambient fine particle concentration: Effect modification by source direction. ENVIRONMENTAL RESEARCH 2015; 142:374-379. [PMID: 26209764 PMCID: PMC4609260 DOI: 10.1016/j.envres.2015.06.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/25/2015] [Accepted: 06/27/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND Previously, we reported a 18% increased odds of ST-elevation myocardial infarction (STEMI) associated with each 7.1 µg/m(3) increase in PM2.5 concentration in the hour prior to MI onset. We found no association with non-ST elevation myocardial infarction (NSTEMI). We examined if this association was modified by PM2.5 source direction. METHODS We used the NOAA HYbrid Single-Particle Lagrangian Trajectory (HYSPLIT) model to calculate each hourly air mass location for the 24 hours before each case or control time period in our previous PM2.5/STEMI case-crossover analysis. Using these data on patients with STEMI (n=338), hourly PM2.5 concentrations, and case-crossover methods, we evaluated whether our PM2.5/STEMI association was modified by whether the air mass passed through each of the 8 cardinal wind direction sectors in the previous 24h. RESULTS When the air mass passed through the West-Southwest direction (WSW) any time in the past 24h, the odds of STEMI associated with each 7.1µg/m(3) increase in PM2.5 concentration in the previous hour (OR=1.27; 95% CI=1.08, 1.22) was statistically significantly (p=0.01) greater than the relative odds of STEMI associated with increased PM2.5 concentration when the wind arrived from any other direction (OR=0.99; 95% CI=0.80, 1.22). We found no other effect modification by any other source direction. Further, relative odds estimates were largest when the time spent in the WSW was 8-16 h, compared to ≤7 h or 17-24 h, suggesting that particles arising from sources in this direction were more potent in triggering STEMIs. CONCLUSIONS Since relative odds estimates were higher when the air mass passed through the WSW octant in the past 24h, there may be specific components of the ambient aerosol that are more potent in triggering STEMIs. This direction is associated with substantial emissions from coal-fired power plants and other industrial sources of the Ohio River Valley, many of which are undergoing modifications to reduce their emissions.
Collapse
Affiliation(s)
- Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA.
| | - Cathleen Kane
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mark J Utell
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - David C Chalupa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Pramod Kumar
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Frederick Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - David Q Rich
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
30
|
Wang X, Kindzierski W, Kaul P. Air Pollution and Acute Myocardial Infarction Hospital Admission in Alberta, Canada: A Three-Step Procedure Case-Crossover Study. PLoS One 2015; 10:e0132769. [PMID: 26167938 PMCID: PMC4500548 DOI: 10.1371/journal.pone.0132769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/18/2015] [Indexed: 01/26/2023] Open
Abstract
Adverse associations between air pollution and myocardial infarction (MI) are widely reported in medical literature. However, inconsistency and sensitivity of the findings are still big concerns. An exploratory investigation was undertaken to examine associations between air pollutants and risk of acute MI (AMI) hospitalization in Alberta, Canada. A time stratified case-crossover design was used to assess the transient effect of five air pollutants (carbon monoxide (CO), nitrogen dioxide (NO2), nitric oxide (NO), ozone (O3) and particulate matter with an aerodynamic diameter ≤2.5 (PM2.5)) on the risk of AMI hospitalization over the period 1999–2009. Subgroups were predefined to see if any susceptible group of individuals existed. A three-step procedure, including univariate analysis, multivariate analysis, and bootstrap model averaging, was used. The multivariate analysis was used in an effort to address adjustment uncertainty; whereas the bootstrap technique was used as a way to account for regression model uncertainty. There were 25,894 AMI hospital admissions during the 11-year period. Estimating health effects that are properly adjusted for all possible confounding factors and accounting for model uncertainty are important for making interpretations of air pollution–health effect associations. The most robust findings included: (1) only 1-day lag NO2 concentrations (6-, 12- or 24-hour average), but not those of CO, NO, O3 or PM2.5, were associated with an elevated risk of AMI hospitalization; (2) evidence was suggested for an effect of elevated risk of hospitalization for NSTEMI (Non-ST Segment Elevation Myocardial Infarction), but not for STEMI (ST segment elevation myocardial infarction); and (3) susceptible subgroups included elders (age ≥65) and elders with hypertension. As this was only an exploratory study there is a need to replicate these findings with other methodologies and datasets.
Collapse
Affiliation(s)
- Xiaoming Wang
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Warren Kindzierski
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| | - Padma Kaul
- Canadian Vigour Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Jones RR, Hogrefe C, Fitzgerald EF, Hwang SA, Özkaynak H, Garcia VC, Lin S. Respiratory hospitalizations in association with fine PM and its components in New York State. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2015; 65:559-569. [PMID: 25947314 DOI: 10.1080/10962247.2014.1001500] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED Despite observed geographic and temporal variation in particulate matter (PM)-related health morbidities, only a small number of epidemiologic studies have evaluated the relation between PM2.5 chemical constituents and respiratory disease. Most assessments are limited by inadequate spatial and temporal resolution of ambient PM measurements and/or by their approaches to examine the role of specific PM components on health outcomes. In a case-crossover analysis using daily average ambient PM2.5 total mass and species estimates derived from the Community Multiscale Air Quality (CMAQ) model and available observations, we examined the association between the chemical components of PM (including elemental and organic carbon, sulfate, nitrate, ammonium, and other remaining) and respiratory hospitalizations in New York State. We evaluated relationships between levels (low, medium, high) of PM constituent mass fractions, and assessed modification of the PM2.5-hospitalization association via models stratified by mass fractions of both primary and secondary PM components. In our results, average daily PM2.5 concentrations in New York State were generally lower than the 24-hr average National Ambient Air Quality Standard (NAAQS). Year-round analyses showed statistically significant positive associations between respiratory hospitalizations and PM2.5 total mass, sulfate, nitrate, and ammonium concentrations at multiple exposure lags (0.5-2.0% per interquartile range [IQR] increase). Primarily in the summer months, the greatest associations with respiratory hospitalizations were observed per IQR increase in the secondary species sulfate and ammonium concentrations at lags of 1-4 days (1.0-2.0%). Although there were subtle differences in associations observed between mass fraction tertiles, there was no strong evidence to support modification of the PM2.5-respiratory disease association by a particular constituent. We conclude that ambient concentrations of PM2.5 and secondary aerosols including sulfate, ammonium, and nitrate were positively associated with respiratory hospitalizations, although patterns varied by season. Exposure to specific fine PM constituents is a plausible risk factor for respiratory hospitalization in New York State. IMPLICATIONS The association between ambient concentrations of PM2.5 components has been evaluated in only a small number of epidemiologic studies with refined spatial and temporal scale data. In New York State, fine PM and several of its constituents, including sulfate, ammonium, and nitrate, were positively associated with respiratory hospitalizations. Results suggest that PM species relationships and their influence on respiratory endpoints are complex and season dependent. Additional work is needed to better understand the relative toxicity of PM species, and to further explore the role of co-pollutant relationships and exposure prediction error on observed PM-respiratory disease associations.
Collapse
Affiliation(s)
- Rena R Jones
- a New York State Department of Health , Center for Environmental Health , Albany , NY , USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Upadhyay S, Stoeger T, George L, Schladweiler MC, Kodavanti U, Ganguly K, Schulz H. Ultrafine carbon particle mediated cardiovascular impairment of aged spontaneously hypertensive rats. Part Fibre Toxicol 2014; 11:36. [PMID: 25442699 PMCID: PMC4410795 DOI: 10.1186/s12989-014-0036-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023] Open
Abstract
Background Studies provide compelling evidences for particulate matter (PM) associated cardiovascular health effects. Elderly individuals, particularly those with preexisting conditions like hypertension are regarded to be vulnerable. Experimental data are warranted to reveal the molecular pathomechanism of PM related cardiovascular impairments among aged/predisposed individuals. Thus we investigated the cardiovascular effects of ultrafine carbon particles (UfCP) on aged (12–13 months) spontaneously hypertensive rats (SHRs) and compared the findings with our pervious study on adult SHRs (6–7 months) to identify age related predisposition events in cardiovascular compromised elderly individuals. Methods Aged SHRs were inhalation exposed to UfCP for 24 h (~180 μg/m3) followed by radio-telemetric assessment for blood pressure (BP) and heart rate (HR). Bronchoalveolar lavage (BAL) fluid cell differentials, interleukin 6 (IL-6) and other proinflammatory cytokines; serum C-reactive protein (CRP) and haptoglobin (HPT); and plasma fibrinogen were measured. Transcript levels of hemeoxygenase 1 (HO-1), endothelin 1 (ET1), endothelin receptors A, B (ETA, ETB), tissue factor (TF), and plasminogen activator inhibitor-1 (PAI-1) were measured in the lung and heart to assess oxidative stress, endothelial dysfunction and coagulation cascade. Result UfCP exposed aged SHRs exhibited increased BP (4.4%) and HR (6.3%) on 1st recovery day paralleled by a 58% increase of neutrophils and 25% increase of IL-6 in the BAL fluid. Simultaneously higher CRP, HPT and fibrinogen levels in exposed SHRs indicate systemic inflammation. HO-1, ET1, ET-A, ET-B, TF and PAI-1 were induced by 1.5-2.0 folds in lungs of aged SHRs on 1st recovery day. However, in UfCP exposed adult SHRs these markers were up-regulated (2.5-6 fold) on 3rd recovery day in lung without detectable pulmonary/systemic inflammation. Conclusions The UfCP induced pulmonary and systemic inflammation in aged SHRs is associated with oxidative stress, endothelial dysfunction and disturbed coagulatory hemostasis. UfCP exposure increased BP and HR in aged SHRs rats which was associated with lung inflammation, and increased expression of inflammatory, vasoconstriction and coagulation markers as well as systemic changes in biomarkers of thrombosis in aged SHRs. Our study provides further evidence for potential molecular mechanisms explaining the increased risk of particle mediated cardiac health effects in cardiovascular compromised elderly individuals.
Collapse
Affiliation(s)
- Swapna Upadhyay
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. .,Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, India.
| | - Tobias Stoeger
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany.
| | - Leema George
- SRM Research Institute, SRM University, Chennai, 603203, India.
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, NC, 27711, USA.
| | - Urmila Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, NC, 27711, USA.
| | - Koustav Ganguly
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. .,SRM Research Institute, SRM University, Chennai, 603203, India.
| | - Holger Schulz
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. .,Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg/München, Germany.
| |
Collapse
|
33
|
Qiao L, Cai J, Wang H, Wang W, Zhou M, Lou S, Chen R, Dai H, Chen C, Kan H. PM2.5 constituents and hospital emergency-room visits in Shanghai, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10406-14. [PMID: 25119795 DOI: 10.1021/es501305k] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Although ambient PM2.5 has been linked to adverse health effects, the chemical constituents that cause harm are largely unclear. Few prior studies in a developing country have reported the health impacts of PM2.5 constituents. In this study, we examined the short-term association between PM2.5 constituents and emergency room visits in Shanghai, China. We measured daily concentrations of PM2.5, organic carbon (OC), elemental carbon (EC), and eight water-soluble ions between January 1, 2011 and December 31, 2012. We analyzed the data using overdispersed generalized linear Poisson models. During our study period, the mean daily average concentration of PM2.5 in Shanghai was 55 μg/m(3). Major contributors to PM2.5 mass included OC, EC, sulfate, nitrate, and ammonium. For a 1-day lag, an interquartile range increment in PM2.5 mass (36.47 μg/m(3)) corresponded to 0.57% [95% confidence interval (CI): 0.13%, 1.01%] increase of emergency room visits. In all the three models used, we found significant positive associations of emergency room visits with OC and EC. Our findings suggest that PM2.5 constituents from the combustion of fossil fuel (e.g., OC and EC) may have an appreciable influence on the health impact attributable to PM2.5.
Collapse
Affiliation(s)
- Liping Qiao
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences , Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|