1
|
Meng Z, Wilsey MK, Müller AM. Complete Aqueous Defluorination of GenX (Hexafluoropropylene Oxide Dimer Acid Anion) by Pulsed Electrolysis with Polarity Reversal. CHEMSUSCHEM 2025; 18:e202402093. [PMID: 39752578 DOI: 10.1002/cssc.202402093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are extremely stable chemicals that are essential for modern life and decarbonization technologies. Yet PFAS are persistent pollutants that are harmful to human health. Hexafluoropropylene oxide dimer acid (GenX), a replacement for the PFAS chemical perfluorooctanoic acid, continues to pollute waterways. In this study, we report the complete defluorination of GenX through electrocatalysis in aqueous LiOH electrolytes, utilizing high surface area anodes consisting of pulsed laser in liquid synthesized [NiFe]-(OH)₂ nanocatalysts on hydrophilic carbon fiber paper. Additional experiments with industrial nickel-iron alloy demonstrated exceptional stability for >100 hours. Including a brief interval of reversed polarity in pulsed electrolysis and optimizing the pulse train sequence enabled the complete defluorination of GenX. Our facile approach employs only nonprecious materials, does not require bisulfate or other auxiliary chemical agents that are consumed, and thus provides a promising strategy for alleviating the environmental impact of PFAS pollutants.
Collapse
Affiliation(s)
- Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, NY, 14627, United States
| | - Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, NY, 14627, United States
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, NY, 14627, United States
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627, United States
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, United States
| |
Collapse
|
2
|
Mbanugo V, Ojo BS, Lin TC, Huang YW, Locmelis M, Han D. Per- and Polyfluoroalkyl Substance (PFAS) Degradation in Water and Soil Using Cold Atmospheric Plasma (CAP): A Review. ACS PHYSICAL CHEMISTRY AU 2025; 5:117-133. [PMID: 40160949 PMCID: PMC11950857 DOI: 10.1021/acsphyschemau.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 04/02/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent organic chemicals found in numerous industrial applications and everyday products. The excessive amounts of PFASs in water and soil, together with their link to severe health issues, have prompted substantial public concerns, making their removal from the environment a necessity. Existing degradation techniques are frequently lacking due to their low efficiency, cost-effectiveness, and potential for secondary contamination. Cold Atmospheric Plasma (CAP) technology has emerged as a promising alternative, utilizing energized reactive species to break down PFASs under ambient conditions. Therefore, this review examines the efficacy and effectiveness of CAP in degrading PFASs by reviewing various CAP setups and examining the key factors involved. This review also aims to further the development of CAP as a viable solution for PFAS degradation by addressing outstanding challenges and future directions in soil and water treatment.
Collapse
Affiliation(s)
- Victor
Somtochukwu Mbanugo
- Department
of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 194 Toomey Hall 400 W. 13th St., Rolla, Missouri 65409, United States
| | - Boluwatife Stephen Ojo
- Department
of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 194 Toomey Hall 400 W. 13th St., Rolla, Missouri 65409, United States
| | - Ta Chun Lin
- Department
of Biological Sciences, Missouri University
of Science and Technology, 105 Schrenk Hall 400W. 11th St., Rolla, Missouri 65409, United States
| | - Yue-Wern Huang
- Department
of Biological Sciences, Missouri University
of Science and Technology, 105 Schrenk Hall 400W. 11th St., Rolla, Missouri 65409, United States
| | - Marek Locmelis
- Department
of Earth & Planetary Sciences and Bureau of Economic Geology,
Jackson School of Geosciences, University
of Texas at Austin, 23
San Jacinto Blvd, Austin, Texas 78712, United States
| | - Daoru Han
- Department
of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 194 Toomey Hall 400 W. 13th St., Rolla, Missouri 65409, United States
| |
Collapse
|
3
|
Liu X, Shu Y, Pan Y, Zeng G, Zhang M, Zhu C, Xu Y, Wan A, Wang M, Han Q, Liu B, Wang Z. Electrochemical destruction of PFAS at low oxidation potential enabled by CeO 2 electrodes utilizing adsorption and activation strategies. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137043. [PMID: 39754874 DOI: 10.1016/j.jhazmat.2024.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO2) electrodes enhanced with oxygen vacancy (Ov) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.37 V vs. SHE). Demonstrating high removal and defluorination efficiencies of perfluorooctanoic acid (PFOA) at 94.0 % and 73.0 %, respectively, our approach also proves effective in the environmental matrix. It minimizes the impacts of co-existing natural organic matter and chloride ions, crucial benefits of operating at lower oxidation potentials. The role of Ov in CeO2 is validated by both experimental results and density functional theory modeling, demonstrating that these sites can activate the C-F bond and substantially reduce the energy barriers for defluorination. Consequently, our CeO2-based method not only achieves defluorination efficiencies comparable to more energy-intensive techniques but does so while requiring less than 0.62 kWh/m3 per order. This positions our approach as a promising, cost-effective alternative for the remediation of PFAS-contaminated waters, emphasizing its relevance and effectiveness in environmental remediation scenarios.
Collapse
Affiliation(s)
- Xun Liu
- School of Environment, Harbin Institute of Technology, Harbin 150086, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yu Pan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Guoshen Zeng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chaoqun Zhu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Youmei Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Aling Wan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mengxia Wang
- School of Environment, Harbin Institute of Technology, Harbin 150086, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
4
|
Liang Y, Wang A, Liang S, Sun K, Xie R, Zheng C, Zhang S, Tang C, Cheng D, Wang J, Huang Q, Lin H. Durable Ti 4O 7 Heterojunction Composite Membrane Encapsulating N-Doped Graphene Nanosheets for Efficient Electro-Oxidation of GenX and Other PFAS in Fluorochemical Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4745-4755. [PMID: 40008448 DOI: 10.1021/acs.est.4c09423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Rational interfacial engineering design of an electrocatalyst, such as a heterojunction structure, can effectively enhance its catalytic activity. This study aims to address a critical challenge associated with the use of carbon material@Ti4O7 heterojunction composite electrodes for wastewater treatment─electrode stability over long-term operation. Herein, we report a highly stabilized interfacial engineering strategy, i.e., the use of conductive inorganic CeO2 as a "cement" to firmly encapsulate N-doped graphene oxide nanosheets (N-GS) on the Ti4O7 surface. The defect-rich N-GS encapsulated on the Ti4O7 surface significantly enhances interfacial charge transfer. This enhancement results in the N-GS/CeO2@Ti4O7 heterojunction composite electrode exhibiting excellent efficiency in the electro-oxidation of hexafluoropropylene oxide dimer acid (HFPO-DA or GenX). Furthermore, a flow-through N-GS/CeO2@Ti4O7 reactive electrochemical membrane system effectively mineralizes other 35 PFASs in a real fluorochemical wastewater sample, achieving a high defluorination rate of 70-90% and exhibiting better performance in PFAS destruction and energy efficiency compared to the UV/KI-SO32- process. Results of this study enhance our understanding of the electrochemical oxidation of PFAS and offer valuable insight into the design of stabilized Ti4O7 heterojunction composites. These findings are instrumental in advancing the development of effective treatments for PFAS-contaminated environments.
Collapse
Affiliation(s)
- Yiyang Liang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Anqi Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Shangtao Liang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Ruzhen Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Chuanen Zheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Sihan Zhang
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Caiming Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jinxia Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
5
|
Ji Y, Niu J, Shang E, Tang X, Hu S, Shen G, Tao Y. Surface fluorination mediated electro-oxidative degradation of HFPO-DA on boron-doped diamond electrode. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125298. [PMID: 39537081 DOI: 10.1016/j.envpol.2024.125298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Heptafluoropropylene oxide dimer acid (HFPO-DA), as an alternative to perfluorooctanoic acid (PFOA), has been shown to pose similar environmental and health risks as other perfluorinated compounds. The electrochemical-based advanced oxidation processes are promising techniques for the treatment of perfluorinated compounds, and the boron-doped diamond (BDD) anode could degrade HFPO-DA under mild conditions. However, the roles of radicals in the degradation and how to overcome the steric hindrance of the -CF3 branch on the carboxyl group were not yet clear. In this study, we investigated the degradation mechanism of HFPO-DA on the BDD anode. Instead of other non-active anodes (PbO2 and SnO2 electrodes), HFPO-DA can be degradable on the BDD electrode with a rate constant logarithmic correlation to the applied current density. The hydroxyl radical (•OH) was one of the key factors in the degradation of HFPO-DA, accounting for almost 89% of the significant effect, and the direct electron transfer was the rate-limiting step in the degradation reaction. Physicochemical characterization including field emission scanning electron microscope (FE-SEM), X-ray photo-electron spectroscopy (XPS), water contact angle, and electrochemical property indicated that the BDD electrode was fluorinated after electrolysis, the electrode surface became more hydrophobic due to the bonding of -CxFy, leading to a decrease in the electrochemically active area. Moreover, degradation products (pentafluoropropionic acid, trifluoroacetic acid, and fluorine ion) were detected and the mass balance of carbon and fluorine was calculated during the degradation. Therefore, a degradation mechanism for HFPO-DA was proposed, which involved direct electron transfer, decarboxylation, radical reaction, decarboxylation, and decarboxylation. The de-CF3 step initiated the fluorination of the BDD electrode, which was initiated by the defluorination process. This study contributes to the understanding of the electro-oxidative degradation of perfluoroalkyl ether carboxylic acids and provides guidance for the application of electrochemical advanced oxidation processes.
Collapse
Affiliation(s)
- Yangyuan Ji
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, College of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Enxiang Shang
- College of Science and Technology, Hebei Agricultural University, Huanghua, 061100, PR China
| | - Xiaojia Tang
- College of Environmental, Dalian Maritime University, Dalian, 116026, PR China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Genxiang Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Yuan Tao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, College of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China.
| |
Collapse
|
6
|
Asadi Zeidabadi F, Banayan Esfahani E, Moreira R, McBeath ST, Foster J, Mohseni M. Structural dependence of PFAS oxidation in a boron doped diamond-electrochemical system. ENVIRONMENTAL RESEARCH 2024; 246:118103. [PMID: 38181849 DOI: 10.1016/j.envres.2024.118103] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Driven by long-term persistence and adverse health impacts of legacy perfluorooctanoic acid (PFOA), production has shifted towards shorter chain analogs (C4, perfluorobutanoic acid (PFBA)) or fluorinated alternatives such as hexafluoropropylene oxide dimer acid (HFPO-DA, known as GenX) and 6:2 fluorotelomer carboxylic acid (6:2 FTCA). Yet, a thorough understanding of treatment processes for these alternatives is limited. Herein, we conducted a comprehensive study using an electrochemical approach with a boron doped diamond anode in Na2SO4 electrolyte for the remediation of PFOA common alternatives, i.e., PFBA, GenX, and 6:2 FTCA. The degradability, fluorine recovery, transformation pathway, and contributions from electro-synthesized radicals were investigated. The results indicated the significance of chain length and structure, with shorter chains being harder to break down (PFBA (65.6 ± 5.0%) < GenX (84.9 ± 3.3%) < PFOA (97.9 ± 0.1%) < 6:2 FTCA (99.4 ± 0.0%) within 120 min of electrolysis). The same by-products were observed during the oxidation of both low and high concentrations of parent PFAS (2 and 20 mg L-1), indicating that the fundamental mechanism of PFAS degradation remained consistent. Nevertheless, the ratio of these by-products to the parent PFAS concentration varied which primarily arises from the more rapid PFAS decomposition at lower dosages. For all experiments, the main mechanism of PFAS oxidation was initiated by direct electron transfer at the anode surface. Sulfate radical (SO4•-) also contributed to the oxidation of all PFAS, while hydroxyl radical (•OH) only played a role in the decomposition of 6:2 FTCA. Total fluorine recovery of PFBA, GenX, and 6:2 FTCA were 96.5%, 94.0%, and 76.4% within 240 min. The more complex transformation pathway of 6:2 FTCA could explain its lower fluorine recovery. Detailed decomposition pathways for each PFAS were also proposed through identifying the generated intermediates and fluorine recovery. The proposed pathways were also assessed using 19F Nuclear Magnetic Resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Fatemeh Asadi Zeidabadi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Raphaell Moreira
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Sean T McBeath
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, 01002, United States
| | - Johan Foster
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada.
| |
Collapse
|
7
|
Zhang Y, Guan Z, Liao X, Huang Y, Huang Z, Mo Z, Yin B, Zhou X, Dai W, Liang J, Sun S. Defluorination of perfluorooctanoic acid and perfluorooctane sulfonic acid by heterogeneous catalytic system of Fe-Al 2O 3/O 3: Synergistic oxidation effects and defluorination mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169675. [PMID: 38211856 DOI: 10.1016/j.scitotenv.2023.169675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Abstract
In this study, catalytic ozonation by Fe-Al2O3 was used to investigate the defluorination of PFOA and PFOS, assessing the effects of different experimental conditions on the defluorination efficiency of the system. The oxidation mechanism of the Fe-Al2O3/O3 system and the specific degradation and defluorination mechanisms for PFOA and PFOS were determined. Results showed that compared to the single O3 system, the defluorination rates of PFOA and PFOS increased by 2.32- and 5.92-fold using the Fe-Al2O3/O3 system under optimal experimental conditions. Mechanistic analysis indicated that in Fe-Al2O3, the variable valence iron (Fe) and functional groups containing C and O served as important reaction sites during the catalytic process. The co-existence of 1O2, OH, O2- and high-valence Fe(IV) constituted a synergistic oxidation system consisting of free radicals and non-radicals, promoting the degradation and defluorination of PFOA and PFOS. DFT theoretical calculations and the analysis of intermediate degradation products suggested that the degradation pathways of PFOA and PFOS involved Kolbe decarboxylation, desulfonation, alcoholization and intramolecular cyclization reactions. The degradation and defluorination pathways of PFOA and PFOS consisted of the stepwise removal of -CF2-, with PFOS exhibiting a higher defluorination rate than PFOA due to its susceptibility to electrophilic attack. This study provides a theoretical basis for the development of heterogeneous catalytic ozonation systems for PFOA and PFOS treatment.
Collapse
Affiliation(s)
- Yumin Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhijie Guan
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenhua Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihua Mo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Baixuan Yin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingfan Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wencan Dai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jialin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
8
|
Li C, Shen C, Gao B, Liang W, Zhu Y, Shi W, Ai S, Xu H, Wu J, Sun Y. Degradation and mechanism of PFOA by peroxymonosulfate activated by nitrogen-doped carbon foam-anchored nZVI in aqueous solutions. CHEMOSPHERE 2024; 351:141209. [PMID: 38224751 DOI: 10.1016/j.chemosphere.2024.141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Perfluorooctanoic acid (PFOA) is an emerging pollutant that is non-biodegradable and presents severe environmental and human health risks. In this study, we present an effective and mild approach for PFOA degradation that involves the use of nitrogen-doped carbon foam anchored with nanoscale zero-valent iron (nZVI@NCF) to activate low concentration peroxymonosulfate (PMS) for the treatment. The nZVI@NCF/PMS system efficiently removed 84.4% of PFOA (2.4 μM). The active sites of nZVI@NCF including Fe0 (110) and graphitic nitrogen played crucial roles in the degradation. Electrochemical analyses and density functional theory calculations revealed that nZVI@NCF acted as an electronic donor, transferring electrons to both PMS and PFOA during the reaction. By further analyzing the electron paramagnetic resonance and byproducts, it was determined that electron transfer and singlet oxygen were responsible for PFOA degradation. Three degradation pathways involving decarboxylation and surface reduction of PFOA in the nZVI@NCF/PMS system were determined. Finding from this study indicate that nZVI@NCF/PMS systems are effective in degrading PFOA and thus present a promising persulfate-advanced oxidation process technology for PFAS treatment.
Collapse
Affiliation(s)
- Changyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
| | - Cong Shen
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wenxu Liang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yifan Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Weijie Shi
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hongxia Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Jichun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Trzcinski AP, Harada K. Combined adsorption and electrochemical oxidation of perfluorooctanoic acid (PFOA) using graphite intercalated compound. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19946-19960. [PMID: 38367112 PMCID: PMC10927886 DOI: 10.1007/s11356-024-32449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a bioaccumulative synthetic chemical containing strong C-F bonds and is one of the most common per- and polyfluoroalkyl substances (PFAS) detected in the environment. Graphite intercalated compound (GIC) flakes were used to adsorb and degrade PFOA through electrochemical oxidation. The adsorption followed the Langmuir model with a loading capacity of 2.6 µg PFOA g-1 GIC and a second-order kinetics (3.354 g µg-1 min-1). 99.4% of PFOA was removed by the process with a half-life of 15 min. When PFOA molecules broke down, they released various by-products, such as short-chain perfluoro carboxylic acids like PFHpA, PFHxA, and PFBA. This breakdown indicates the cleavage of the perfluorocarbon chain and the release of CF2 units, suggesting a transformation or degradation of the original compound into these smaller acids. Shorter-chain perfluorinated compounds had slower degradation rates compared to longer-chain ones. Combining these two methods (adsorption and in situ electrochemical oxidation) was found to be advantageous because adsorption can initially concentrate the PFOA molecules, making it easier for the electrochemical process to target and degrade them. The electrochemical process can potentially break down or transform the PFAS compounds into less harmful substances through oxidation or other reactions.
Collapse
Affiliation(s)
- Antoine P Trzcinski
- School of Agriculture and Environmental Science, University of Southern Queensland, West Street, Queensland, 4350, Australia.
| | - Kouji Harada
- Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
10
|
Yadav M, Osonga FJ, Sadik OA. Unveiling nano-empowered catalytic mechanisms for PFAS sensing, removal and destruction in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169279. [PMID: 38123092 DOI: 10.1016/j.scitotenv.2023.169279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are organofluorine compounds used to manufacture various industrial and consumer goods. Due to their excellent physical and thermal stability ascribed to the strong CF bond, these are ubiquitously present globally and difficult to remediate. Extensive toxicological and epidemiological studies have confirmed these substances to cause adverse health effects. With the increasing literature on the environmental impact of PFAS, the regulations and research have also expanded. Researchers worldwide are working on the detection and remediation of PFAS. Many methods have been developed for their sensing, removal, and destruction. Amongst these methods, nanotechnology has emerged as a sustainable and affordable solution due to its tunable surface properties, high sorption capacities, and excellent reactivities. This review comprehensively discusses the recently developed nanoengineered materials used for detecting, sequestering, and destroying PFAS from aqueous matrices. Innovative designs of nanocomposites and their efficiency for the sensing, removal, and degradation of these persistent pollutants are reviewed, and key insights are analyzed. The mechanistic details and evidence available to support the cleavage of the CF bond during the treatment of PFAS in water are critically examined. Moreover, it highlights the challenges during PFAS quantification and analysis, including the analysis of intermediates in transitioning nanotechnologies from the laboratory to the field.
Collapse
Affiliation(s)
- Manavi Yadav
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America
| | - Francis J Osonga
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America.
| |
Collapse
|
11
|
Vatankhah H, Anderson RH, Ghosh R, Willey J, Leeson A. A review of innovative approaches for onsite management of PFAS-impacted investigation derived waste. WATER RESEARCH 2023; 247:120769. [PMID: 37931356 DOI: 10.1016/j.watres.2023.120769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
The historic use of aqueous film-forming foam (AFFF) has led to widespread detection of per- and polyfluoroalkyl substance (PFAS) in groundwater, soils, sediments, drinking water, wastewater, and receiving aquatic systems throughout the United States (U.S.). Prior to any remediation activities, in order to identify the PFAS-impacted source zones and select the optimum management approach, extensive site investigations need to be conducted. These site investigations have resulted in the generation of considerable amount of investigation-derived waste (IDW) which predominantly consists of well purging water and drill fluid, equipment washing residue, soil, drill cuttings, and residues from the destruction of asphalt and concrete surfaces. IDW is often impacted by varying levels of PFAS which poses a substantial challenge concerning disposal to prevent potential mobilization of PFAS, logistical complexities, and increasing requirement for storage as a result of accumulation of the associated wastes. The distinct features of IDW involve the intermittent generation of waste, substantial volume of waste produced, and the critical demand for onsite management. This article critically focuses on innovative technologies and approaches employed for onsite treatment and management of PFAS-impacted IDW. The overall objective of this study centers on developing and deploying end-of-life treatment technology systems capable of facilitating unrestricted disposal, discharge, and/or IDW reuse on-site, thereby reducing spatial footprints and mobilization time.
Collapse
Affiliation(s)
- Hooman Vatankhah
- Strategic Environmental Research and Development Program and the Environmental Security Technology Certification Program, Arlington, VA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| | | | | | | | - Andrea Leeson
- Strategic Environmental Research and Development Program and the Environmental Security Technology Certification Program, Arlington, VA, USA
| |
Collapse
|
12
|
Ji Y, Choi YJ, Fang Y, Pham HS, Nou AT, Lee LS, Niu J, Warsinger DM. Electric Field-Assisted Nanofiltration for PFOA Removal with Exceptional Flux, Selectivity, and Destruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18519-18528. [PMID: 36657468 DOI: 10.1021/acs.est.2c04874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose significant environmental and human health risks and thus require solutions for their removal and destruction. However, PFAS cannot be destroyed by widely used removal processes like nanofiltration (NF). A few scarcely implemented advanced oxidation processes can degrade PFAS. In this study, we apply an electric field to a membrane system by placing a nanofiltration membrane between reactive electrodes in a crossflow configuration. The performance of perfluorooctanoic acid (PFOA) rejection, water flux, and energy consumption were evaluated. The reactive and robust SnO2-Sb porous anode was created via a sintering and sol-gel process. The characterization and analysis techniques included field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), ion chromatography, mass spectroscopy, porosimeter, and pH meter. The PFOA rejection increased from 45% (0 V) to 97% (30 V) when the electric field and filtration were in the same direction, while rejection capabilities worsened in opposite directions. With saline solutions (1 mM Na2SO4) present, the induced electro-oxidation process could effectively mineralize PFOA, although this led to unstable removal and water fluxes. The design achieved an exceptional performance in the nonsaline feed of 97% PFOA rejection and water flux of 68.4 L/m2 hr while requiring only 7.31 × 10-5 kWh/m3/order of electrical energy. The approach's success is attributed to the proximity of the electrodes and membrane, which causes a stronger electric field, weakened concentration polarization, and reduced mass transfer distances of PFOA near the membrane. The proposed electric field-assisted nanofiltration design provides a practical membrane separation method for PFAS removal from water.
Collapse
Affiliation(s)
- Yangyuan Ji
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Youn Jeong Choi
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuhang Fang
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hoang Son Pham
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alliyan Tan Nou
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Environmental & Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - David M Warsinger
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Zheng J, Zhang S. Subnanoscale spatially confined heterogeneous Fenton reaction enables mineralization of perfluorooctanoic acid. WATER RESEARCH 2023; 246:120696. [PMID: 37806126 DOI: 10.1016/j.watres.2023.120696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Superoxide radical (•O2-) is capable of degrading perfluorinated compounds that are persistent in nature and cannot be removed by biological or advanced oxidation treatments, but the inherent drawback is the negligible reactivity of •O2-in aqueous phases due to the hydration effect. Here, we explored an innovative way to make use of •O2- by modulating a partial hydration state through spatial confinement control. We demonstrated this idea by conducting heterogeneous Fenton reaction with layered iron oxychloride (FeOCl) catalyst, wherein •O2-radicals produced and confined within the catalyst structure (interlayer spacing of 7.92 Å) showed defluorination effect dealing with perfluorooctanoic acid (PFOA) as model compound. The defluorination combined with advanced oxidation achieved mineralization. Mechanism study revealed that the confinement frustrated the hydration shell of •O2-with coordination number reduced from 3.3 (for bulk phase) to 1.89, and thereby changed its orbital electron properties and enhanced the nucleophilic ability. We further demonstrated a compact FeOCl membrane reactor with highly efficient degradation of PFOA (kobs up to 1.2 min-1) and cost-effective mineralization (2 × 10-6 $ per mgC), operated under ultrafiltration reaction mode. Our findings highlight the great interest of developing spatial confinement technology to modulate •O2--based reactions, as well as the feasibility of combining confinement catalyst structures with heterogeneous Fenton reaction to achieve the mineralization treatment goal.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384 PR China
| | - Shuo Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tongyan Road 38, Tianjin, 300350 PR China.
| |
Collapse
|
14
|
Wilsey MK, Taseska T, Meng Z, Yu W, Müller AM. Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants. Chem Commun (Camb) 2023; 59:11895-11922. [PMID: 37740361 DOI: 10.1039/d3cc03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Halogenated organic compounds are widespread, and decades of heavy use have resulted in global bioaccumulation and contamination of the environment, including water sources. Here, we introduce the most common halogenated organic water pollutants, their classification by type of halogen (fluorine, chlorine, or bromine), important policies and regulations, main applications, and environmental and human health risks. Remediation techniques are outlined with particular emphasis on carbon-halogen bond strengths. Aqueous advanced redox processes are discussed, highlighting mechanistic details, including electrochemical oxidations and reductions of the water-oxygen system, and thermodynamic potentials, protonation states, and lifetimes of radicals and reactive oxygen species in aqueous electrolytes at different pH conditions. The state of the art of aqueous advanced redox processes for brominated, chlorinated, and fluorinated organic compounds is presented, along with reported mechanisms for aqueous destruction of select PFAS (per- and polyfluoroalkyl substances). Future research directions for aqueous electrocatalytic destruction of organohalogens are identified, emphasizing the crucial need for developing a quantitative mechanistic understanding of degradation pathways, the improvement of analytical detection methods for organohalogens and transient species during advanced redox processes, and the development of new catalysts and processes that are globally scalable.
Collapse
Affiliation(s)
- Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Teona Taseska
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
15
|
Zhang C, Xu Y, Liu W, Zhou H, Zhang N, Fang Z, Gao J, Sun X, Feng D, Sun X. New insights into the degradation mechanism and risk assessment of HFPO-DA by advanced oxidation processes based on activated persulfate in aqueous solutions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115298. [PMID: 37499385 DOI: 10.1016/j.ecoenv.2023.115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA) is widely used as a substitute for perfluorooctanoic acid (PFOA). HFPO-DA exhibits high water solubility and low adsorption potential, conferring significant fluidity in aquatic environments. Given that the toxicity of HFPO-DA is similar to PFOA, it is necessary to control its content in aquatic environments. Electrochemical and thermally-activated persulfates have been successfully used to degrade HFPO-DA, but UV-activated persulfates cannot degrade the compound. Given that research on degradation mechanisms is still incomplete and lacks kinetic research, the mechanism and kinetic calculations of oxidative degradation were studied in detail using DFT calculations. And the toxicity of HFPO-DA degradation intermediates and products was evaluated to reveal the feasibility of using advanced oxidation process (AOP) technology based on persulfate to degrade HFPO-DA in wastewater. The results showed that the committed step of HFPO-DA degradation was initiated by the electron transfer reaction of SO4•- radicals. This reaction is not spontaneous at room temperature and requires sufficient electrical or thermal energy to be absorbed from the external environment. The perfluoroalcohol produced during this reaction can subsequently undergo four possible reactions: H atom abstraction from alcohol groups by an OH radical; H atom abstraction by SO4•-; direct HF removal; and HF removal with water as the catalyst. The final degradation products of HFPO-DA mainly include CO2, CF3CF2COOH, CF3COOH, FCOOH and HF, which has been identified through previous experimental analysis. Ecotoxicity assessment indicates that degradation does not produce highly toxic intermediates, and that the final products are non-toxic, supporting the feasibility of persulfate-based AOP technologies.
Collapse
Affiliation(s)
- Chenxi Zhang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Youxin Xu
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wenyan Liu
- School of agriculture, Ludong University, Yantai 264025, China
| | - Huaiyu Zhou
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Ningning Zhang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Zhihao Fang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Junping Gao
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Xiaoan Sun
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Di Feng
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China.
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
16
|
Duinslaeger N, Doni A, Radjenovic J. Impact of supporting electrolyte on electrochemical performance of borophene-functionalized graphene sponge anode and degradation of per- and polyfluoroalkyl substances (PFAS). WATER RESEARCH 2023; 242:120232. [PMID: 37352674 DOI: 10.1016/j.watres.2023.120232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Graphene sponge anode functionalized with two-dimensional (2D) boron, i.e., borophene, was applied for electrochemical oxidation of C4-C8 per- and polyfluoroalkyl substances (PFASs). Borophene-doped graphene sponge outperformed boron-doped graphene sponge anode in terms of PFASs removal efficiencies and their electrochemical degradation; whereas at the boron-doped graphene sponge anode up to 35% of the removed PFASs was recovered after the current was switched off, the switch to a 2D boron enabled further degradation of the electrosorbed PFASs. Borophene-doped graphene sponge anode achieved 32-77% removal of C4-C8 PFASs in one-pass flow-through mode from a 10 mM phosphate buffer at 230 A m-2 of anodic current density. Higher molarity phosphate buffer (100 mM) resulted in lower PFASs removal efficiencies (11-60%) due to the higher resistance of the graphene sponge electrode in the presence of phosphate ions, as demonstrated by the electrochemical impedance spectroscopy (EIS) analyses. Electro-oxidation of PFASs was more efficient in landfill leachate despite its high organic loading, with up to 95% and 75% removal obtained for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), versus 77% and 57% removal in the 10 mM phosphate buffer, respectively. Defluorination efficiencies as determined relative to the electrooxidized fraction of PFASs indicated up to 69% and 82% of defluorination of PFOS and PFOA in 10 mM phosphate buffer, which was decreased to 16 and 29% defluorination, respectively, for higher buffer molarity (100 mM) due to the worsened electrochemical performance of the sponge. In landfill leachate, relative defluorination efficiencies of PFOS and PFOA were 33% and 45%, respectively, indicating the inhibiting effect of complex organic and inorganic matrix of landfill leachate on the C-F bond breakage. This study demonstrates that electrochemical degradation of PFASs is possible to achieve in complex and brackish streams using a low-cost graphene sponge anode, without forming toxic chlorinated byproducts even in the presence of >7 g L-1 of chloride.
Collapse
Affiliation(s)
- Nick Duinslaeger
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, Girona 17003, Spain; University of Girona, Plaça de Sant Domènec, 3, 17004 Girona, Spain
| | - Ariadni Doni
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, Girona 17003, Spain; Aristotle University of Thessaloniki, Thessaloniki 541, 24, Greece
| | - Jelena Radjenovic
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, Girona 17003, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
17
|
Liu Y, Lu MY, Bao J, Shao LX, Yu WJ, Hu XM, Zhao X. Periodically reversing electrocoagulation technique for efficient removal of short-chain perfluoroalkyl substances from contaminated groundwater around a fluorochemical facility. CHEMOSPHERE 2023:138953. [PMID: 37196788 DOI: 10.1016/j.chemosphere.2023.138953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Widespread distributions of short-chain perfluoroalkyl substances (PFASs) has been recognized as a crucial environmental issue. However, multiple treatment techniques were ineffective due to their high polarity and mobility, contributing to a never-ending existence in the aquatic environment ubiquitously. The present study revealed potential technique of periodically reversing electrocoagulation (PREC) to perform efficient removal of short-chain PFASs including experimental factors (in the conditions of 9 V for voltage, 600 r/min of stirring speed, 10 s of reversing period, and 2 g/L of NaCl electrolyte), orthogonal experiments, actual application, and removal mechanism. Accordingly, based upon the orthogonal experiments, the removal efficiencies of perfluorobutane sulfonate (PFBS) in simulated solution could achieve 81.0% with the optimal parameters of Fe-Fe electrode materials, addition of 665 μL H2O2 per 10 min, and pH at 3.0. The PREC was further applied for treating the actual groundwater around a fluorochemical facility, consequently the removal efficiencies for typical short-chain perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), PFBS, and perfluoropentane sulfonate (PFPeS) were 62.5%, 89.0%, 96.4%, 90.0%, and 97.5%, respectively. The other long-chain PFASs contaminants had superior removal with the removal efficiencies up to 97%-100%. In addition, a comprehensive removal mechanism related to electric attraction adsorption for short-chain PFASs could be verified through the morphological analysis of ultimate flocs composition. The oxidation degradation was further revealed as the other removal mechanism by suspect and nontarget screening of intermediates formed in simulated solution, as well as density functional theory (DFT) calculation theory. Moreover, the degradation pathways about one CF2O molecule or CO2 eliminated with one C atom removed in PFBS by ·OH generated from the PREC oxidation process were further proposed. As a result, the PREC would be a promising technique for the efficient removal of short-chain PFASs from severely contaminated water bodies.
Collapse
Affiliation(s)
- Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Meng-Yuan Lu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Li-Xin Shao
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Wen-Jing Yu
- School of Water Resources & Environment, China University of Geosciences, Beijing, 100083, China
| | - Xiao-Min Hu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xin Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
18
|
Trzcinski AP, Harada K. Adsorption of PFOS onto graphite intercalated compound and analysis of degradation by-products during electro-chemical oxidation. CHEMOSPHERE 2023; 323:138268. [PMID: 36870616 DOI: 10.1016/j.chemosphere.2023.138268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a highly recalcitrant perfluoro chemical belonging to the family of per- and polyfluoroalkyl substances (PFAS). Its adsorption and degradation was demonstrated in a novel PFAS remediation process involving the adsorption onto graphite intercalated compounds (GIC) and the electrochemical oxidation. The Langmuir type of adsorption was characterized by a loading capacity of 53.9 μg PFOS g-1 GIC and a second order kinetics (0.021 g μg-1 min-1). Up to 99% of PFOS was degraded in the process with a half-life of 15 min. The breakdown by-products included short chain perfluoroalkane sulfonates such as Perfluoroheptanesulfonate (PFHpS), Perfluorohexanesulfonate (PFHxS), Perfluoropentanesulfonate (PFPeS) and Perfluorobutanesulfonate (PFBS), but also short chain perfluoro carboxylic acids such as perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) indicating different degradation pathways. These by-products could also be broken down but the shorter the chain the slower the degradation rate. This novel combined adsorption and electrochemical process offers an alternative treatment for PFAS contaminated waters.
Collapse
Affiliation(s)
- Antoine P Trzcinski
- School of Agriculture and Environmental Science, University of Southern Queensland, West Street, 4350, Queensland, Australia.
| | - Kouji Harada
- Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
19
|
Mirabediny M, Sun J, Yu TT, Åkermark B, Das B, Kumar N. Effective PFAS degradation by electrochemical oxidation methods-recent progress and requirement. CHEMOSPHERE 2023; 321:138109. [PMID: 36787844 DOI: 10.1016/j.chemosphere.2023.138109] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The presence of per- and poly-fluoroalkyl substances (PFASs) in water is of global concern due to their high stability and toxicity even at very low concentrations. There are several technologies for the remediation of PFASs, but most of them are inadequate either due to limited effectiveness, high cost, or production of a large amount of sludge. Electrochemical oxidation (EO) technology shows great potential for large-scale application in the degradation of PFASs due to its simple procedure, low loading of chemicals, and least amount of waste. Here, we have reviewed the recent progress in EO methods for PFAS degradation, focusing on the last 10 years, to explore an efficient, cost-effective, and environmentally benign remediation technology. The effects of important parameters (e.g., anode material, current density, solution pH, electrolyte, plate distance, and electrical connector type) are summarized and evaluated. Also, the energy consumption, the consequence of different PFASs functional groups, and water matrices are discussed to provide an insight that is pivotal for developing new EO materials and technologies. The proposed degradation pathways of shorter-chain PFAS by-products during EO of PFAS are also discussed.
Collapse
Affiliation(s)
- Maryam Mirabediny
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Jun Sun
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Tsz Tin Yu
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia.
| |
Collapse
|
20
|
Fang Y, Meng P, Schaefer C, Knappe DRU. Removal and destruction of perfluoroalkyl ether carboxylic acids (PFECAs) in an anion exchange resin and electrochemical oxidation treatment train. WATER RESEARCH 2023; 230:119522. [PMID: 36577256 DOI: 10.1016/j.watres.2022.119522] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/18/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Perfluoroalkyl ether carboxylic acids (PFECAs) are a group of emerging recalcitrant contaminants that are being developed to replace legacy per- and polyfluoroalkyl substances (PFAS) in industrial applications and that are generated as by-products in fluoropolymer manufacturing. Here, we report on the removal and destruction of four structurally different PFECAs using an integrated anion exchange resin (AER) and electrochemical oxidation (ECO) treatment train. Results from this work illustrated that (1) flow-through columns packed with PFAS-selective AERs are highly effective for the removal of PFECAs and (2) PFECA affinity is strongly correlated with their hydrophobic features. Regeneration of the spent resin columns revealed that high percentage (e.g., 80%) of organic cosolvent is necessary for achieving 60-100% PFECA release, and regeneration efficiency was higher for a macroporous resin than a gel-type resin. Treatment of spent regenerants showed (1) >99.99% methanol removal was achieved by distillation, (2) >99.999% conversion of the four studied PFECAs was achieved during the ECO treatment of the still bottoms after 24 hours with an energy per order of magnitude of PFECA removal (EE/O) <1.03 kWh/m3 of total groundwater treated, and (3) >85% of the organic fluorine was recovered as inorganic fluoride. Trifluoroacetic acid (TFA), perfluoropropionic acid (PFPrA), and perfluoro-2-methoxyacetic acid (PFMOAA) were confirmed via high-resolution mass spectrometry as transformation products (TPs) in the treated still bottoms, and two distinctive degradation schemes and four reaction pathways are proposed for the four PFECAs. Lastly, dissolved organic matter (DOM) inhibited uptake, regeneration, and oxidation of PFECAs throughout the treatment train, suggesting pretreatment steps targeting DOM removal can enhance the system's treatment efficiency. Results from this work provide guidelines for developing effective separation-concentration-destruction treatment trains and meaningful insights for achieving PFECA destruction in impacted aquatic systems.
Collapse
Affiliation(s)
- Yida Fang
- CDM Smith, 14432 SE Eastgate Way, #100, Bellevue, Washington 98007, United States.
| | - Pingping Meng
- North Carolina State University, 915 Partners Way, Raleigh, North Carolina 27695, United States
| | - Charles Schaefer
- CDM Smith, 110 Fieldcrest Avenue, #8, Edison, New Jersey 08837, United States
| | - Detlef R U Knappe
- North Carolina State University, 915 Partners Way, Raleigh, North Carolina 27695, United States
| |
Collapse
|
21
|
Li Z, Luo ZM, Huang Y, Wang JW, Ouyang G. Recent trends in degradation strategies of PFOA/PFOS substitutes. CHEMOSPHERE 2023; 315:137653. [PMID: 36581124 DOI: 10.1016/j.chemosphere.2022.137653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The global elimination and restriction of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), respectively, have urged manufacturers to shift production to their substitutes which still pose threat to the environment with their bioaccumulation, toxicity and migration issues. In this context, efficient technologies and systematic mechanistic studies on the degradation of PFOA/PFOS substitutes are highly desirable. In this review, we summarize the progress in degrading PFOA/PFOS substitutes, including four kinds of mainstream methods. The pros and cons of the present technologies are analyzed, which renders the discussion of future prospects on rational optimizations. Additional discussion is made on the differences in the degradation of various kinds of substitutes, which is compared to the PFOA/PFOS and derives designing principles for more degradable F-containing compounds.
Collapse
Affiliation(s)
- Zizi Li
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhi-Mei Luo
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanjun Huang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jia-Wei Wang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
22
|
Sun Z, Ni Y, Wu Y, Yue W, Zhang G, Bai J. Electrocatalytic degradation of methyl orange and 4-nitrophenol on a Ti/TiO 2-NTA/La-PbO 2 electrode: electrode characterization and operating parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6262-6274. [PMID: 35994150 DOI: 10.1007/s11356-022-22610-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The anode material plays a crucial role in the process of electrochemical oxidation. Herein, a TiO2 nanotube arrays (TiO2-NTA) intermediate layer and La-PbO2 catalytic layer were synthesized on a Ti surface by the electrochemical anodic oxidation and electrochemical deposition technology, respectively. The prepared Ti/TiO2-NTA/La-PbO2 electrode was used as an electrocatalytic oxidation anode for pollutant degradation. Scanning electron microscopy (SEM) analysis showed that the TiO2-NTA layer possessed a highly ordered and well-aligned nanotube array morphology, and the La-PbO2 layer with angular cone cluster was uniform and tightly bonded. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the intermediate layer primarily consisted of the anatase crystal structure of TiO2 and the catalyst layer was made of La-PbO2. Electrochemical analysis revealed that Ti/TiO2-NTA/La-PbO2 electrode exhibited higher oxidation peak current, electrochemical active surface area, and oxygen evolution potential (OEP, 1.64 V). Using methyl orange and 4-nitrophenol as model pollutants, electrocatalytic properties of the prepared Ti/TiO2-NTA/La-PbO2 electrode were systematically investigated under different conditions, and the electrochemical degradation fitted well with the pseudo-first-order kinetics model. Efficient anodic oxidation of model pollutants was mainly attributed to the indirect oxidation mediated by hydroxyl radicals (•OH). The total organic carbon (TOC) removal efficiency of methyl orange and 4-nitrophenol was 70.2 and 72.8%, and low energy consumption (2.50 and 1.89 kWh g-1) was achieved after 240 min of electrolysis under the conditions of initial concentration of model pollutant, electrode spacing, and electrolyte concentration were 50 mg L-1, 2 cm, and 0.1 mol L-1, respectively. This work provided a new strategy to develop the high-efficiency electrode for refractory pollutants degradation.
Collapse
Affiliation(s)
- Zepeng Sun
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Yue Ni
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yuandong Wu
- Shenzhen Institute, Peking University, Shenzhen, 518057, China
| | - Wenqing Yue
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Ge Zhang
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jianmei Bai
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
23
|
Contrastive study on organic contaminated soils remediated using dielectric barrier discharge (DBD) plasma. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Chen Z, Wang X, Feng H, Chen S, Niu J, Di G, Kujawski D, Crittenden JC. Electrochemical Advanced Oxidation of Perfluorooctanoic Acid: Mechanisms and Process Optimization with Kinetic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14409-14417. [PMID: 36173643 DOI: 10.1021/acs.est.2c02906] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) are promising technologies for perfluorooctanoic acid (PFOA) degradation, but the mechanisms and preferred pathways for PFOA mineralization remain unknown. Herein, we proposed a plausible primary pathway for electrochemical PFOA mineralization using density functional theory (DFT) simulations and experiments. We neglected the unique effects of the anode surface and treated anodes as electron sinks only to acquire a general pathway. This was the essential first step toward fully revealing the primary pathway applicable to all anodes. Systematically exploring the roles of valence band holes (h+), hydroxyl radicals (HO•), and H2O, we found that h+, whose contribution was previously underestimated, dominated PFOA mineralization. Notably, the primary pathway did not generate short-chain perfluoroalkyl carboxylic acids (PFCAs), which were previously thought to be the main degradation intermediates, but generated other polyfluorinated alkyl substances (PFASs) that were rapidly degraded upon formation. Also, we developed a simplified kinetic model, which considered all of the main processes (mass transfer with electromigration included, surface adsorption/desorption, and oxidation on the anode surface), to simulate PFOA degradation in EAOPs. Our model can predict PFOA concentration profiles under various current densities, initial PFOA concentrations, and flow velocities.
Collapse
Affiliation(s)
- Zefang Chen
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30308, United States
| | - Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Hualiang Feng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Guanglan Di
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, P. R. China
| | - David Kujawski
- Refinery Water Engineering & Associates, Hydrocarbon Processing Water & Waste Technology, Inc., 15634 Wallisville Road, Houston, Texas 77042, United States
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30308, United States
| |
Collapse
|
25
|
Li H, Liu G, Zhou B, Deng Z, Wang Y, Ma L, Yu Z, Zhou K, Wei Q. Periodic porous 3D boron-doped diamond electrode for enhanced perfluorooctanoic acid degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Üner NB, Baldaguez Medina P, Dinari JL, Su X, Sankaran RM. Rate, Efficiency, and Mechanisms of Electrochemical Perfluorooctanoic Acid Degradation with Boron-Doped Diamond and Plasma Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8975-8986. [PMID: 35838411 DOI: 10.1021/acs.langmuir.2c01227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The removal of per- or polyfluorinated alkyl substances (PFAS) has received increasing attention because of their extreme stability, our increasing awareness of their toxicity at even low levels, and scientific challenges for traditional treatment methods such as separation by activated carbon or destruction by advanced oxidation processes. Here, we performed a direct and systematic comparison of two electrified approaches that have recently shown promise for effective degradation of PFAS: plasma and conventional electrochemical degradation. We tailored a reactor configuration where one of the electrodes could be a plasma or a boron-doped diamond (BDD) electrode and operated both electrodes galvanostatically by continuous direct current. We show that while both methods achieved near-complete degradation of PFAS, the plasma was only effective as the cathode, whereas the BDD was only effective as the anode. Compared to the BDD, plasma required more than an order of magnitude higher voltage but lower current to achieve similar degradation efficiency with more rapid degradation kinetics. All these factors considered, it was noted that plasma or BDD degradation resulted in similar energy efficiencies. The BDD electrode exhibited zero-order kinetics, and thus, PFAS degradation using the conventional electrochemical method was kinetically controlled. On the contrary, analysis using a film model indicated that the plasma degradation kinetics of PFAS using plasma were mass-transfer-controlled because of the fast reaction kinetics. With the help of a simple quantitative model that incorporates mass transport, interfacial reaction, and surface accumulation, we propose that the degradation reaction kinetically follows an Eley-Rideal-type mechanism for the plasma electrode, and an intrinsic rate constant of 2.89 × 108 m4 mol-1 s-1 was obtained accordingly. The investigation shows that to realize the true kinetic potential of plasma degradation for water treatment, mass transfer to the interface must be enhanced.
Collapse
Affiliation(s)
- Necip B Üner
- Department of Nuclear, Plasma and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana 61801, Illinois, United States
- Chemical Engineering Department, Middle East Technical University, Ankara 06800, Turkey
| | - Paola Baldaguez Medina
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana 61801, Illinois, United States
| | - Jasmine L Dinari
- Department of Nuclear, Plasma and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana 61801, Illinois, United States
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana 61801, Illinois, United States
| | - R Mohan Sankaran
- Department of Nuclear, Plasma and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana 61801, Illinois, United States
| |
Collapse
|
27
|
Veciana M, Bräunig J, Farhat A, Pype ML, Freguia S, Carvalho G, Keller J, Ledezma P. Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128886. [PMID: 35436757 DOI: 10.1016/j.jhazmat.2022.128886] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Electrochemical oxidation (EO) is emerging as one of the most promising methods for the degradation of recalcitrant per- and poly-fluoroalkyl substances (PFASs) in water and wastewater, as these compounds cannot be effectively treated with conventional bio- or chemical approaches. This review examines the state of the art of EO for PFASs destruction, and comprehensively compares operating parameters and treatment performance indicators for both synthetic and real contaminated water and wastewater media. The evaluation shows the need to use environmentally-relevant media to properly quantify the effectiveness/efficiency of EO for PFASs treatment. Additionally, there is currently a lack of quantification of sorption losses, resulting in a likely over-estimation of process' efficiencies. Furthermore, the majority of experimental results to date indicate that short-chain PFASs are the most challenging and need to be prioritized as environmental regulations become more stringent. Finally, and with a perspective towards practical implementation, several operational strategies are proposed, including processes combining up-concentration followed by EO destruction.
Collapse
Affiliation(s)
- Mersabel Veciana
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane QLD 4102, Australia
| | - Ali Farhat
- GHD Pty Ltd, Brisbane QLD 4000, Australia
| | - Marie-Laure Pype
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia
| | - Gilda Carvalho
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Jürg Keller
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Pablo Ledezma
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
28
|
Chen F, He A, Wang Y, Yu W, Chen H, Geng F, Li Z, Zhou Z, Liang Y, Fu J, Zhao L, Wang Y. Efficient photodegradation of PFOA using spherical BiOBr modified TiO 2 via hole-remained oxidation mechanism. CHEMOSPHERE 2022; 298:134176. [PMID: 35278457 DOI: 10.1016/j.chemosphere.2022.134176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Photo-induced holes (h+) oxidation is an efficient approach for perfluorooctanoic acid (PFOA; C7F15COOH) removal. To maintain a high amount of h+ on the surface of photocatalysts participating in the PFOA photodegradation could be a critical issue. Herein, a highly efficient spherical BiOBr-modified nano-TiO2 (P25) was synthesised and used for PFOA photodegradation through direct oxidation with h+. A high number of h+ could be generated and remain on the surface of P25/BiOBr due to the appropriate position of the conduction band (CB) and valence band (VB) levels between P25 and BiOBr. Meanwhile, PFOA molecules were coordinated to the P25/BiOBr's surface via unidentate binding, being directly activated and oxidised by h+, resulting in a decomposition yield of 99.5% (100 mg/L) under simulated solar light irradiation within 100 min, at the initial pH condition (3.5). A stepwise photodegradation pathway was proposed due to the significant intermediates detected as the short-chain perfluorinated carboxylic acids (C2-C7). Reactive oxygen species (ROS) generation, scavenging and trapping analysis indicated that the direct oxidation on h+ followed PFOA degradation. In a real aqueous environment of Tangxun lake (adjusted pH 3.5), stable common anions and natural organic matter (NOM) would restrain the PFOA photodegradation. However, adding 10 mg/L of NO3- or HA could reduce the inhibition effect of PFOA photodegradation. These findings gave an alternative strategy to drive an h+ directly oxidation to treat PFOA contaminated water bodies.
Collapse
Affiliation(s)
- Fengjie Chen
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Precision Blasting, Jianghan University, Wuhan, 430056, China; Hubei Key Laboratory of Industrial Fume & Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yarui Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanchao Yu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoze Chen
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanglan Geng
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhunjie Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan, 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, China.
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, China
| |
Collapse
|
29
|
Liu G, Feng C, Shao P. Degradation of Perfluorooctanoic Acid with Hydrated Electron by a Heterogeneous Catalytic System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6223-6231. [PMID: 34941262 DOI: 10.1021/acs.est.1c06793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrated electron (eaq-)-induced reduction protocols have bright prospects for the decomposition of recalcitrant organic pollutants. However, traditional eaq- production involves homogeneous sulfite photolysis, which has a pH-dependent reaction activity and might have potential secondary pollution risks. In this study, a heterogeneous UV/diamond catalytic system was proposed to decompose of a typical persistent organic pollutant, perfluorooctanoic acid (PFOA). In contrast to the rate constant of the advanced reduction process (ARP) of a UV/SO32-, the kobs of PFOA decomposition in the UV/diamond system showed only minor pH dependence, ranging from 0.01823 ± 0.0014 min-1 to 0.02208 ± 0.0013 min-1 (pH 2 to pH 11). As suggested by the electron affinity (EA) and electron configuration of the diamond catalyst, the diamond catalyst yields facile energetic photogenerated electron emission into water without a high energy barrier after photoexcitation, thus inducing eaq- production. The impact of radical scavengers, electron spin resonance (ESR), and transient absorption (TA) measurements verified the formation of eaq- in the UV/diamond system. The investigation of diamond for ejection of energetic photoelectrons into a water matrix represents a new paradigm for ARPs and would facilitate future applications of heterogeneous catalytic processes for efficient recalcitrant pollutant removal by eaq-.
Collapse
Affiliation(s)
- Guoshuai Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cuijie Feng
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle and National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
30
|
Wang J, Lin Z, He X, Song M, Westerhoff P, Doudrick K, Hanigan D. Critical Review of Thermal Decomposition of Per- and Polyfluoroalkyl Substances: Mechanisms and Implications for Thermal Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5355-5370. [PMID: 35446563 DOI: 10.1021/acs.est.2c02251] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are fluorinated organic chemicals that are concerning due to their environmental persistence and adverse human and ecological effects. Remediation of environmental PFAS contamination and their presence in consumer products have led to the production of solid and liquid waste streams containing high concentrations of PFASs, which require efficient and cost-effective treatment solutions. PFASs are challenging to defluorinate by conventional and advanced destructive treatment processes, and physical separation processes produce waste streams (e.g., membrane concentrate, spent activated carbon) requiring further post-treatment. Incineration and other thermal treatment processes are widely available, but their use in managing PFAS-containing wastes remains poorly understood. Under specific operating conditions, thermal treatment is expected to mineralize PFASs, but the degradation mechanisms and pathways are unknown. In this review, we critically evaluate the thermal decomposition mechanisms, pathways, and byproducts of PFASs that are crucial to the design and operation of thermal treatment processes. We highlight the analytical capabilities and challenges and identify research gaps which limit the current understanding of safely applying thermal treatment to destroy PFASs as a viable end-of-life treatment process.
Collapse
Affiliation(s)
- Junli Wang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Zunhui Lin
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Xuexiang He
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Mingrui Song
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| |
Collapse
|
31
|
Duinslaeger N, Radjenovic J. Electrochemical degradation of per- and polyfluoroalkyl substances (PFAS) using low-cost graphene sponge electrodes. WATER RESEARCH 2022; 213:118148. [PMID: 35151089 DOI: 10.1016/j.watres.2022.118148] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Boron-doped, graphene sponge anode was synthesized and applied for the electrochemical oxidation of C4-C8 per- and polyfluoroalkyl substances (PFASs). Removal efficiencies, obtained in low conductivity electrolyte (1 mS cm-1) and one-pass flow-through mode, were in the range 16.7-67% at 230 A m-2 of anodic current density, and with the energy consumption of 10.1 ± 0.7 kWh m-3. Their removal was attributed to electrosorption (7.4-35%), and electrooxidation (9.3-32%). Defluorination efficiencies of C4-C8 perfluoroalkyl sulfonates and acids were 8-24% due to a fraction of PFAS being electrosorbed only at the anode surface. Yet, the recovery of fluoride was 74-87% relative to the electrooxidized fraction, suggesting that once the degradation of the PFAS is initiated, the C-F bond cleavage is very efficient. The nearly stoichiometric sulfate recoveries obtained for perfluoroalkyl sulfonates (91%-98%) relative to the electrooxidized fraction demonstrated an efficient cleavage of the sulfonate head-group. Adsorbable organic fluoride (AOF) analysis showed that the remaining partially defluorinated byproducts are electrosorbed at the graphene sponge anode during current application and are released into the solution after the current is switched off. This proof-of-concept study demonstrated that the developed graphene sponge anode is capable of C-F bond cleavage and defluorination of PFAS. Given that the graphene sponge anode is electrochemically inert towards chloride and does not form any chlorate and perchlorate even in brackish solutions, the developed material may unlock the electrochemical degradation of PFAS complex wastewaters and brines.
Collapse
Affiliation(s)
- Nick Duinslaeger
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Jelena Radjenovic
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
32
|
Zhou J, Wang T, Cheng C, Pan F, Zhu Y, Ma H, Niu J. Ultralong-lifetime Ti/RuO 2-IrO 2@Pt anodes with a strong metal-support interaction for efficient electrochemical mineralization of perfluorooctanoic acid. NANOSCALE 2022; 14:3579-3588. [PMID: 35179172 DOI: 10.1039/d1nr08098a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic oxidation is regarded as an effective technique for decomposing refractory organic compounds like perfluorooctanoic acid (PFOA). However, achieving highly efficient and long-life electrodes is still a great challenge. Herein, Ti/RuO2-IrO2@Pt anodes consisting of Pt4+ and Pt0 species were fabricated by combining modified microemulsion technology with a calcination process, in which Pt nanoparticles were highly dispersed and encapsulated in Ru-Ir composite oxides to form a strong metal-support interaction (SMSI) structure. The as-constructed SMSI layer on the Ti/RuO2-IrO2@Pt anode resulted in the improvement of the charge transfer capability and also increased the degradation (99.30%) and mineralization (91.32%) of PFOA during the electrochemical oxidation process. Notably, the service lifetime of Ti/RuO2-IrO2@Pt anodes was remarkably improved from 24 to 42.3 h compared to commercial Ti/RuO2-IrO2 anodes. Moreover, the possible degradation mechanism of PFOA was also speculated through the detection of short-chain perfluorocarboxylic acids and reactive radicals. These results not only revealed that the concept and methodology of SMSI could be an effective way for constructing highly efficient and stable electrocatalysts but also greatly advanced fundamental understanding.
Collapse
Affiliation(s)
- Jianjun Zhou
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Tian Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Cheng Cheng
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Fan Pan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Junfeng Niu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
33
|
Birch QT, Birch ME, Nadagouda MN, Dionysiou DD. Nano-enhanced treatment of per-fluorinated and poly-fluorinated alkyl substances (PFAS). Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Field demonstration of coupling ion-exchange resin with electrochemical oxidation for enhanced treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Gao Z, Zhou J, Xue M, Liu S, Guo J, Zhang Y, Cao C, Wang T, Zhu L. Theoretical and experimental insights into the mechanisms of C6/C6 PFPiA degradation by dielectric barrier discharge plasma. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127522. [PMID: 34879517 DOI: 10.1016/j.jhazmat.2021.127522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
As an emerging alternative legacy perfluoroalkyl substance, C6/C6 PFPiA (perfluoroalkyl phosphinic acids) has been detected in aquatic environments and causes potential risks to human health. The degradation mechanisms of C6/C6 PFPiA in a dielectric barrier discharge (DBD) plasma system were explored using validated experimental data and density functional theory (DFT) calculations. Approximately 94.5% of C6/C6 PFPiA was degraded by plasma treatment within 15 min at 18 kV. A relatively higher discharge voltage and alkaline conditions favored its degradation. C6/C6 PFPiA degradation was attributed to attacks of •OH, •O2-, and 1O2. Besides PFHxPA and C2 -C6 shorter-chain perfluorocarboxylic acids, several other major intermediates including C4/C6 PFPiA, C4/C4 PFPiA, and C3/C3 PFPiA were identified. According to DFT calculations, the potential energy surface was proposed for possible reactions during C6/C6 PFPiA degradation in the discharge plasma system. Integrating the identified intermediates and DFT results, C6/C6 PFPiA degradation was deduced to occur by stepwise losing CF2, free radical polymerization, and C-C bond cleavage. Furthermore, the DBD plasma treatment process decreased the toxicity of C6/C6 PFPiA to some extent. This study provides a comprehensive understanding of C6/C6 PFPiA degradation by plasma advanced oxidation.
Collapse
Affiliation(s)
- Zhuo Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Mingming Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Siqian Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jia Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chunshuai Cao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
36
|
A Review of Treatment Techniques for Short-Chain Perfluoroalkyl Substances. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, an increasing amount of short-chain perfluoroalkyl substance (PFAS) alternatives has been used in industrial and commercial products. However, short-chain PFASs remain persistent, potentially toxic, and extremely mobile, posing potential threats to human health because of their widespread pollution and accumulation in the water cycle. This study systematically summarized the removal effect, operation conditions, treating time, and removal mechanism of various low carbon treatment techniques for short-chain PFASs, involving adsorption, advanced oxidation, and other practices. By the comparison of applicability, pros, and cons, as well as bottlenecks and development trends, the most widely used and effective method was adsorption, which could eliminate short-chain PFASs with a broad range of concentrations and meet the low-carbon policy, although the adsorbent regeneration was undesirable. In addition, advanced oxidation techniques could degrade short-chain PFASs with low energy consumption but unsatisfied mineralization rates. Therefore, combined with the actual situation, it is urgent to enhance and upgrade the water treatment techniques to improve the treatment efficiency of short-chain PFASs, for providing a scientific basis for the effective treatment of PFASs pollution in water bodies globally.
Collapse
|
37
|
Yuan Y, Feng L, He X, Liu X, Xie N, Ai Z, Zhang L, Gong J. Efficient removal of PFOA with an In 2O 3/persulfate system under solar light via the combined process of surface radicals and photogenerated holes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127176. [PMID: 34555762 DOI: 10.1016/j.jhazmat.2021.127176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The environmental persistence, high toxicity and wide spread presence of perfluorooctanoic acid (PFOA) in aquatic environment urgently necessitate the development of advanced technologies to eliminate PFOA. Here, the simultaneous application of a heterogeneous In2O3 photocatalyst and homogeneous persulfate oxidation (In2O3/PS) was demonstrated for PFOA degradation under solar light irradiation. The synergistic effect of direct hole oxidation and in-situ generated radicals, especially surface radicals, was found to contribute significantly to PFOA defluorination. Fourier infrared transform (FTIR) spectroscopy, Raman, electrochemical scanning microscope (SECM) tests and density functional theory (DFT) calculation showed that the pre-adsorption of PFOA and PS onto In2O3 surface were dramatically critical steps, which could efficiently facilitate the direct hole oxidation of PFOA, and boost PS activation to yield high surface-confined radicals, thus prompting PFOA degradation. Response surface methodology (RSM) was applied to regulate the operation parameters for PFOA defluorination. Outstanding PFOA decomposition (98.6%) and near-stoichiometric equivalents of fluorides release were achieved within illumination 10 h. An underlying mechanism for PFOA destruction was proposed via a stepwise losing CF2 unit. The In2O3/PS remediation system under solar light provides an economical, sustainable and environmentally friendly approach for complete mineralization of PFOA, displaying a promising potential for treatment of PFOA-containing water.
Collapse
Affiliation(s)
- Yijin Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhen Feng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xianqin He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiufan Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Ning Xie
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
38
|
Suresh Babu D, Mol JMC, Buijnsters JG. Experimental insights into anodic oxidation of hexafluoropropylene oxide dimer acid (GenX) on boron-doped diamond anodes. CHEMOSPHERE 2022; 288:132417. [PMID: 34606896 DOI: 10.1016/j.chemosphere.2021.132417] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
GenX is the trade name of the ammonium salt of hexafluoropropylene oxide dimer acid (HFPO-DA) and is used as a replacement for the banned perfluorooctanoic acid (PFOA). However, recent studies have found GenX to be more toxic than PFOA. This work deals with the electrochemical degradation of HFPO-DA using boron-doped diamond anodes. For the first time, an experimental study was conducted to investigate the influence of sulfate concentration and other operating parameters on HFPO-DA degradation. Results demonstrated that sulfate radicals were ineffective in HFPO-DA degradation due to steric hindrance by -CF3 branch. Direct electron transfer was found as the rate-determining step. By comparing degradation of HFPO-DA with that of PFOA, it was observed that the steric hindrance by -CF3 branch in HFPO-DA decreased the rate of electron transfer from the carboxyl head group even though its defluorination rate was faster. Conclusively, a degradation pathway is proposed in which HFPO-DA mineralizes to CO2 and F- via formation of three intermediates.
Collapse
Affiliation(s)
- Diwakar Suresh Babu
- Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Johannes M C Mol
- Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Josephus G Buijnsters
- Department of Precision and Microsystems Engineering, Research Group of Micro and Nano Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| |
Collapse
|
39
|
Yang M, Zhang X, Yang Y, Liu Q, Nghiem LD, Guo W, Ngo HH. Effective destruction of perfluorooctanoic acid by zero-valent iron laden biochar obtained from carbothermal reduction: Experimental and simulation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150326. [PMID: 34543795 DOI: 10.1016/j.scitotenv.2021.150326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the degradation of perfluorooctanoic acid (PFOA) on zerovalent iron-laden biochar (BC-ZVI) prepared by carbothermal reduction. Results show that over 99% PFOA can be removed by BC-ZVI in hydrothermal conditions under 240 °C within 6 h. The maximum defluorination rate of 63.2% was achieved after 192 h, and this outcome was significantly better than biochar (BC) and zero-valent iron (ZVI) alone. The short-chain perfluorinated compounds (PFCs) and perfluoroheptanal were detected in the liquid phase after degradation, suggesting that the degradation of PFOAs by BC-ZVI followed the Kobel decarboxylation process. XRD and SEM-EDS analyses strongly suggested that carbothermal reduction could avoid the agglomeration of ZVI loaded onto biochar, which helped make the PFOA degradation more efficient. The frontier molecular orbital theory calculated by density functional theory revealed there were two possibilities for ZVI loading on BC (edged or internal loading), while the edge loaded ZVI had a greater tendency to provide electrons for the defluorination of PFOA than internally loaded ZVI.
Collapse
Affiliation(s)
- Min Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaolei Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yicheng Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| |
Collapse
|
40
|
Zhu D, Sun Z, Zhang H, Zhang A, Zhang Y, Miruka AC, Zhu L, Li R, Guo Y, Liu Y. Reactive Nitrogen Species Generated by Gas-Liquid Dielectric Barrier Discharge for Efficient Degradation of Perfluorooctanoic Acid from Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:349-360. [PMID: 34936333 DOI: 10.1021/acs.est.1c06342] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) poses a serious threat to the ecological environment and biological health because of its ubiquitous distribution, extreme persistence, and high toxicity. In this study, we designed a novel gas-liquid dielectric barrier discharge (GLDBD) reactor which could efficiently destruct PFOA. PFOA removal efficiencies can be obtained in various water matrices, which were higher than 98.0% within 50 min, with energy yields higher than 114.5 mg·kWh-1. It was confirmed that the reactive species including e-, ONOOH, •NO2, and hydroxyl radicals (•OH) were responsible for PFOA removal. Especially, this study first revealed the crucial role of reactive nitrogen species (RNS) for PFOA degradation in the plasma system. Due to the generation of a large amount of RNS, the designed GLDBD reactor proved to be less sensitive to various water matrices, which meant a broader promising practical application. Moreover, influential factors including high concentration of various ions and humic acid (HA), were investigated. The possible PFOA degradation pathways were proposed based on liquid chromatograph-mass spectrometer (LC-MS) results and density functional theory (DFT) calculation, which further confirmed the feasibility of PFOA removal with RNS. This research, therefore, provides an effective and versatile alternative for PFOA removal from various water matrices.
Collapse
Affiliation(s)
- Dahai Zhu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhuyu Sun
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Han Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yinyin Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Andere Clement Miruka
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Luxiang Zhu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Rui Li
- Center for Air and Aquatic Resources Engineering & Science, Clarkson University, Potsdam, New York 13699, United States
| | - Ying Guo
- Department of Applied Physics, College of Science, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
41
|
Hou J, Li G, Liu M, Chen L, Yao Y, Fallgren PH, Jin S. Electrochemical destruction and mobilization of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in saturated soil. CHEMOSPHERE 2022; 287:132205. [PMID: 34563764 DOI: 10.1016/j.chemosphere.2021.132205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have attracted attention due to their widespread distribution, recalcitrance, and substantial toxicity. In this work, high concentrations of PFOA and PFOS were degraded and mobilized through electrochemical treatments in a simulated source zone of saturated soil. Under a low constant voltage and direct current of 24 V and 467-690 mA, approximately 51.7% and 33% of PFOA and PFOS were degraded, respectively. Additionally, a total defluorination mass balance of 44.7% and 23% were detected for PFOA and PFOS, respectively, which indicates that the removal of PFOA and PFOS occurs through its destruction. Substantial electromigration causes the destruction and mobilization of solid PFOA and PFOS to shift into the water phase. Although electrochemical oxidation of PFAS (per- and polyfluoroalkyl substances) were previously reported and studied, this study is one of the few that focus on simultaneous desorption, mobilization, and destruction of PFAS in saturated soil containing a low-intensity electrical field.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, PR China; Department of Civil Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Guoao Li
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 10083, PR China
| | - Mingrui Liu
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, PR China; Department of Civil Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Liang Chen
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, PR China; Department of Civil Engineering, Tianjin University, Tianjin, 300072, PR China.
| | - Ye Yao
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, PR China; Department of Civil Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Paul H Fallgren
- Advanced Environmental Technologies LLC, Fort Collins, CO, 80525, USA
| | - Song Jin
- Advanced Environmental Technologies LLC, Fort Collins, CO, 80525, USA; Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
42
|
Ding X, Song X, Chen X, Ding D, Xu C, Chen H. Degradation and mechanism of hexafluoropropylene oxide dimer acid by thermally activated persulfate in aqueous solutions. CHEMOSPHERE 2022; 286:131720. [PMID: 34364226 DOI: 10.1016/j.chemosphere.2021.131720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA), an alternative of perfluorooctanoic acid (PFOA), has been detected frequently in environmental media worldwide. It has been reported that HFPO-DA is equal to or more toxic than PFOA, as well as more recalcitrant to degradation. In this study, the efficient degradation of HFPO-DA was achieved by the thermally activated persulfate (TAP) system, but the influence of co-contaminants in the field can be significant. The degradation pathways of HFPO-DA were proposed through an integrated approach of experiment and density functional theory (DFT) calculations. CF3CF2COO- and CF3COO-, were the stable intermediates identified by ultra-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS). Electron transfer, decarboxylation, H abstraction, HF elimination using H2O as a catalyst and hydrolysis occurred in different steps of HFPO-DA degradation process, with -COO- as the initial oxidative site attacked by SO4-. In addition, the acute toxicity assessment for HFPO-DA degradation in the TAP system performed by Escherichia coli suggested that HFPO-DA was degraded to a level having no adverse effect on the growth of E. coli, and no more toxic intermediates were formed. Overall, this work provides insights for the degradation of HFPO-DA contamination by the TAP system.
Collapse
Affiliation(s)
- Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xing Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Chang Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
43
|
Zhang Y, Liu J, Ghoshal S, Moores A. Density Functional Theory Calculations Decipher Complex Reaction Pathways of 6:2 Fluorotelomer Sulfonate to Perfluoroalkyl Carboxylates Initiated by Hydroxyl Radical. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16655-16664. [PMID: 34882405 DOI: 10.1021/acs.est.1c05549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
6:2 Fluorotelomer sulfonate (6:2 FTSA) is a ubiquitous environmental contaminant belonging to the family of per- and polyfluoroalkyl substances. Previous studies showed that hydroxyl radical (•OH) efficiently transforms 6:2 FTSA into perfluoroalkyl carboxylates (PFCAs) of different chain lengths (C2-C7), yet the reaction mechanisms were not elucidated. This study used density functional theory (DFT) calculations to map the entire reaction path of 6:2 FTSA initiated by •OH and experimentally verified the theoretical results. Optimal reaction pathways were obtained by comparing the rate constants calculated from the transition-state theory. We found that 6:2 FTSA was first transformed to C7 PFCA and C6F13•; C6F13• was then further reacted to C2-C6 PFCAs. The parallel addition of •OH and O2 to CnF2n+1• was essential to producing C2-C6 PFCAs. The critical step is the generation of alkoxyl radicals, which withdraw electrons from the adjacent C-C groups to result in chain cleavage. The validity of the calculated optimal reaction pathways was further confirmed by the consistency with our experimental data in the aspects of O2 involvement, identified intermediates, and the final PFCA profile. This study provides valuable insight into the transformation of polyfluoroalkyl substances containing aliphatic carbons in •OH-based oxidation processes.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Audrey Moores
- Center for Green Chemistry and Catalysis, Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| |
Collapse
|
44
|
Pilli S, Pandey AK, Pandey V, Pandey K, Muddam T, Thirunagari BK, Thota ST, Varjani S, Tyagi RD. Detection and removal of poly and perfluoroalkyl polluting substances for sustainable environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113336. [PMID: 34325368 DOI: 10.1016/j.jenvman.2021.113336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
PFAs (poly and perfluoroalkyl compounds) are hazardous and bioaccumulative chemicals that do not readily biodegrade or neutralize under normal environmental conditions. They have various industrial, commercial, domestic and defence applications. According to the Organization for Economic Co-operation and Development, there are around 4700 PFAs registered to date. They are present in every stream of life, and they are often emerging and are even difficult to be detected by the standard chemical methods. This review aims to focus on the sources of various PFAs and the toxicities they impose on the environment and especially on humankind. Drinking water, food packaging, industrial areas and commercial household products are the primary PFAs sources. Some of the well-known treatment methods for remediation of PFAs presented in the literature are activated carbon, filtration, reverse osmosis, nano filtration, oxidation processes etc. The crucial stage of handling the PFAs occurs in determining and analysing the type of PFA and its remedy. This paper provides a state-of-the-art review of determination & tools, and techniques for remediation of PFAs in the environment. Improving new treatment methodologies that are economical and sustainable are essential for excluding the PFAs from the environment.
Collapse
Affiliation(s)
- Sridhar Pilli
- Department of Civil Engineering, National Institute of Technology Warangal, Fathimanagar, Telangana, 506004, India.
| | - Ashutosh Kumar Pandey
- Centre for Energy and Environmental Sustainability-India, Lucknow, 226 029, Uttar Pradesh, India
| | - Vivek Pandey
- Department of Geography, Allahabad Degree College (A.D.C.), Allahabad University, Prayagraj, 211003, Uttar Pradesh, India
| | - Kritika Pandey
- Department of Biotechnology, Dr. Ambedkar Institute of Technology for Handicapped, Kanpur, 208024, Uttar Pradesh, India
| | - Tulasiram Muddam
- Department of Civil Engineering, National Institute of Technology Warangal, Fathimanagar, Telangana, 506004, India
| | - Baby Keerthi Thirunagari
- Department of Civil Engineering, National Institute of Technology Warangal, Fathimanagar, Telangana, 506004, India
| | - Sai Teja Thota
- Department of Civil Engineering, National Institute of Technology Warangal, Fathimanagar, Telangana, 506004, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India.
| | - Rajeshwar Dayal Tyagi
- Chief Scientific Officer, BOSK Bioproducts, 399 Rue Jacquard, Suite 100, Quebec, Canada
| |
Collapse
|
45
|
Chen Z, Teng Y, Mi N, Jin X, Yang D, Wang C, Wu B, Ren H, Zeng G, Gu C. Highly Efficient Hydrated Electron Utilization and Reductive Destruction of Perfluoroalkyl Substances Induced by Intermolecular Interaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3996-4006. [PMID: 33635627 DOI: 10.1021/acs.est.0c07927] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl substances (PFASs) are highly toxic synthetic chemicals, which are considered the most persistent organic contaminants in the environment. Previous studies have demonstrated that hydrated electron based techniques could completely destruct these compounds. However, in the reactions, alkaline and anaerobic conditions are generally required or surfactants are involved. Herein, we developed a simple binary composite, only including PFAS and hydrated electron source chemical. The system exhibited high efficiency for the utilization of hydrated electrons to decompose PFASs. By comparing the degradation processes of perfluorooctanoic acid (PFOA) in the presence of seven indole derivatives with different chemical properties, we could conclude that the reaction efficiency was dependent on not only the yield of hydrated electrons but also the interaction between PFOA and indole derivative. Among these derivatives, indole showed the highest degradation performance due to its relatively high ability to generate hydrated electrons, and more importantly, indole could form a hydrogen bonding with PFOA to accelerate the electron transfer. Moreover, the novel composite demonstrated high reaction efficiency even with coexisting humic substance and in a wide pH range (4-10). This study would deepen our understanding of the design of hydrated electron based techniques to treat PFAS-containing wastewater.
Collapse
Affiliation(s)
- Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Teng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Na Mi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, P. R. China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Deshuai Yang
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Guixiang Zeng
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
46
|
Wang K, Huang D, Wang W, Li Y, Xu L, Li J, Zhu Y, Niu J. Enhanced decomposition of long-chain perfluorocarboxylic acids (C9-C10) by electrochemical activation of peroxymonosulfate in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143666. [PMID: 33257073 DOI: 10.1016/j.scitotenv.2020.143666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
The decomposition of long-chain perfluorocarboxylic acids (PFCAs), including perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), were investigated by electrochemical activation of peroxymonosulfate (PMS) on porous Ti/SnO2-Sb membrane anode. The results indicated that PMS activation could efficiently promote PFNA/PFDA decomposition, with pseudo-first-order rate constants about 3.12/2.06 times as compared with that of direct electro-oxidations. The energy consumptions of PFNA and PFDA decomposition were 36.31 and 37.46 kWh·m-3·order-1, respectively. The quantitative detection results of •OH with electron paramagnetic resonance (EPR) demonstrated that PMS activation promoted •OH formation. The inhibited performance in radical scavengers indicated both •OH and SO4•- might be mainly involved in PFNA decomposition, while SO4•- might be mainly involved in PFDA decomposition during PMS activation process. The mineralization mechanism for long-chain PFCAs decomposition which was mainly by repeating CF2-unzipping cycle via radical reaction based on the intermediates verification and mass balance of C and F, was proposed. These results suggested that electrochemical activation of PMS on porous Ti/SnO2-Sb membrane anode exhibited high efficiency in mineralizing PFNA and PFDA under mild conditions. This work might provide an efficient way for persistent organic pollutants, including, but not limited to long-chain PFCAs elimination from wastewater.
Collapse
Affiliation(s)
- Kaixuan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Dahong Huang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China
| | - Weilai Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Lei Xu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China
| | - Jiayin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China.
| |
Collapse
|
47
|
Dani U, Minocheherhomji F, Bahadur A, Kuperkar K. Profound implication of histological alterations, haematological responses and biocidal assessment of cationic amphiphiles unified with their molecular architecture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12847-12857. [PMID: 33089463 DOI: 10.1007/s11356-020-11010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The interfacial properties depicting the micellization behaviour of the cationic amphiphiles (surfactants) belonging to the class of quaternary ammonium salts varying in degree of hydrophobicity were evaluated using tensiometry, conductivity and fluorescence spectrophotometric methods at 303.15 K. The impact of the amphiphilic nature of these amphiphiles as a function of their concentration is accounted against the selective microbial strains using the well-diffusion approach. Also, its influence on the histological (shrinkage/curling of lamellae, necrosis, haemorrhage, hyperplasia of villi in gills and intestine) alterations and haematological (blood parameters) changes in fingerling of Cirrhinus mrigala (C. mrigala) offers an insight into the stern damages reported as aquatic toxicity. The lesions exhibited moderate to severe alterations that are further correlated with the semi-quantitative mean alteration value (MAV). The in vitro and in vivo findings are explained significantly in terms of amphiphilic hydrophobicity which followed the order: C16TAB > C12TAB. All the observed outcomes are rationalized by the structural assessment of the selected amphiphiles as specified by the computational simulation approach using density functional theory (DFT) with B3LYP method and 3-21G basis source set. This work also portrays the biodegradability of these cationic amphiphiles and their fate on the environment. Graphical abstract Molecular architecture of cationic amphiphiles integrated with their in vitro and in vivo rejoinders.
Collapse
Affiliation(s)
- Unnati Dani
- Department of Chemistry, Bhagwan Mahavir College of Science and Technology, Surat, Gujarat, 395007, India
| | - Farida Minocheherhomji
- Department of Microbiology, B. P. Baria Science Institute, Navsari, Gujarat, 396445, India
| | - Anita Bahadur
- Department of Chemistry, Bhagwan Mahavir College of Science and Technology, Surat, Gujarat, 395007, India
| | - Ketan Kuperkar
- Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, Gujarat, 395007, India.
| |
Collapse
|
48
|
Zhou Y, Xu M, Huang D, Xu L, Yu M, Zhu Y, Niu J. Modulating hierarchically microporous biochar via molten alkali treatment for efficient adsorption removal of perfluorinated carboxylic acids from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143719. [PMID: 33221019 DOI: 10.1016/j.scitotenv.2020.143719] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
This work presented a three-dimensional (3D) hierarchically microporous biochar (HMB) via molten alkali treatment that achieved efficient adsorption of perfluorinated carboxylic acids (PFCAs), which was a significant environment concern due to the global distribution and potential health risks. The systematic optimization of fabrication process rendered the HMB large surface area and uniform microporous structure, leading to a high adsorption capacity and adsorption rate of 1269 mg/g and 197 mg/(g·min), respectively, when perfluorooctanoic acid (PFOA) was as a representative. The adsorption mechanisms were explored via controlling the interaction between PFCAs and the HMB900-2.4. Specifically, hydrophobic effect was verified by the enhanced adsorption performance with the increase of the PFCAs homologues hydrophobicity. The observed highly pH-dependent adsorption capacity additionally suggested the dominant contribution of electrostatic interaction. For long-chain PFCAs (CnF2n+1COOH, n > 5), the HMB900-2.4 presented a high removal efficiency (> 90%) within 30 min. Even for short-chain PFCAs (CnF2n+1COOH, n = 4-5), the removal efficiency reached to over 60%. The synthesized HMB900-2.4 exhibited high stability during recycling experiments and superior performance over commercial adsorbents, suggested a promise of utilizing it to remove PFCAs from wastewater.
Collapse
Affiliation(s)
- Yufei Zhou
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Manman Xu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Dahong Huang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lei Xu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Mingchuan Yu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
49
|
Mineralization of perfluorooctanoic acid by combined aerated electrocoagulation and Modified peroxi-coagulation methods. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Radjenovic J, Duinslaeger N, Avval SS, Chaplin BP. Facing the Challenge of Poly- and Perfluoroalkyl Substances in Water: Is Electrochemical Oxidation the Answer? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14815-14829. [PMID: 33191730 DOI: 10.1021/acs.est.0c06212] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrochemical treatment systems have the unique ability to completely mineralize poly- and perfluoroalkyl substances (PFASs) through potential-driven electron transfer reactions. In this review, we discuss the state-of-the-art on electrooxidation of PFASs in water, aiming at elucidating the impact of different operational and design parameters, as well as reported mechanisms of PFAS degradation at the anode surface. We have identified several shortcomings of the existing studies that are largely limited to small-scale laboratory batch systems and unrealistic synthetic solutions, which makes extrapolation of the obtained data to real-world applications difficult. PFASs are surfactant molecules, which display significant concentration-dependence on adsorption, electrosorption, and dissociation. Electrooxidation experiments conducted with high initial PFAS concentration and/or in high conductivity supporting electrolytes likely overestimate process performance. In addition, the formation of organohalogen byproducts, chlorate and perchlorate, was seldom considered. Nevertheless, the first step toward advancing from laboratory-scale to industrial-scale applications is recognizing both the strengths and limitations of electrochemical water treatment systems. More comprehensive and rigorous evaluation of novel electrode materials, application of scalable proof-of-concept studies, and acknowledgment of all treatment outputs (not just the positive ones) are imperative. The presence of PFASs in drinking water and in the environment is an urgent global public health issue. Developments made in material science and application of novel three-dimensional, porous electrode materials and nanostructured coatings are forging a path toward more sustainable water treatment technologies and potential chemical-free treatment of PFAS-contaminated water.
Collapse
Affiliation(s)
- Jelena Radjenovic
- Catalan Institute for Water Research (ICRA), c/Emili Grahit 101, 17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Nick Duinslaeger
- Catalan Institute for Water Research (ICRA), c/Emili Grahit 101, 17003 Girona, Spain
- University of Girona, 17004 Girona, Spain
| | - Shirin Saffar Avval
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|