1
|
Dou Q, Canavan A, Fu Y, Xiang L, Wang Y, Wang X, Jiang X, Dirr C, Wang F, Elsner M. Nitrogen stable isotope analysis of sulfonamides by derivatization-gas chromatography-isotope ratio mass spectrometry. Anal Bioanal Chem 2024; 416:4237-4247. [PMID: 38849528 PMCID: PMC11525405 DOI: 10.1007/s00216-024-05361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
The continuous introduction of micropollutants into the environment through livestock farming, agricultural practices, and wastewater treatment is a major concern. Among these pollutants are synthetic sulfonamide antibiotics such as sulfamethoxazole, which are not always fully degraded and pose a risk of fostering antimicrobial resistance. It is challenging to assess the degradation of sulfonamides with conventional concentration measurements. This study introduces compound-specific isotope analysis of nitrogen isotope ratios at natural abundances by derivatization-gas chromatography hyphenated with isotope ratio mass spectrometry (derivatization-GC-IRMS) as a new and more precise method for tracing the origin and degradation of sulfonamides. Here, sulfamethoxazole was used as a model compound to develop and optimize the derivatization conditions using (trimethylsilyl)diazomethane as a derivatization reagent. With the optimized conditions, accurate and reproducible δ15N analysis of sulfamethoxazole by derivatization-GC-IRMS was achieved in two different laboratories with a limit for precise isotope analysis of 3 nmol N on column, corresponding to 0.253 µg non-derivatized SMX. Application of the method to four further sulfonamides, sulfadiazine, sulfadimethoxine, sulfadimidine, and sulfathiazole, shows the versatility of the developed method. Its benefit was demonstrated in a first application, highlighting the possibility of distinguishing sulfamethoxazole from different suppliers and pharmaceutical products.
Collapse
Affiliation(s)
- Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Aoife Canavan
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xi Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Christopher Dirr
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China.
- University of Chinese Academy of Science, Beijing, 100049, China.
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
| |
Collapse
|
2
|
Wang C, Fuller ME, Murillo-Gelvez J, Rezes RT, Hatzinger PB, Chiu PC, Heraty LJ, Sturchio NC. Carbon and Nitrogen Isotope Fractionations During Biotic and Abiotic Transformations of 2,4-Dinitroanisole (DNAN). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5996-6006. [PMID: 38504451 DOI: 10.1021/acs.est.3c10788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
2,4-Dinitroanisole (DNAN) is a main constituent in various new insensitive munition formulations. Although DNAN is susceptible to biotic and abiotic transformations, in many environmental instances, transformation mechanisms are difficult to resolve, distinguish, or apportion on the basis solely of analysis of concentrations. We used compound-specific isotope analysis (CSIA) to investigate the characteristic isotope fractionations of the biotic (by three microbial consortia and three pure cultures) and abiotic (by 9,10-anthrahydroquinone-2-sulfonic acid [AHQS]) transformations of DNAN. The correlations of isotope enrichment factors (ΛN/C) for biotic transformations had a range of values from 4.93 ± 0.53 to 12.19 ± 1.23, which is entirely distinct from ΛN/C values reported previously for alkaline hydrolysis, enzymatic hydrolysis, reduction by Fe2+-bearing minerals and iron-oxide-bound Fe2+, and UV-driven phototransformations. The ΛN/C value associated with the abiotic reduction by AHQS was 38.76 ± 2.23, within the range of previously reported values for DNAN reduction by Fe2+-bearing minerals and iron-oxide-bound Fe2+, albeit the mean ΛN/C was lower. These results enhance the database of isotope effects accompanying DNAN transformations under environmentally relevant conditions, allowing better evaluation of the extents of biotic and abiotic transformations of DNAN that occur in soils, groundwaters, surface waters, and the marine environment.
Collapse
Affiliation(s)
- Chunlei Wang
- Department of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Mark E Fuller
- Biotechnology Development & Applications Group, APTIM, Lawrenceville, New Jersey 08648, United States
| | - Jimmy Murillo-Gelvez
- Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Rachael T Rezes
- Biotechnology Development & Applications Group, APTIM, Lawrenceville, New Jersey 08648, United States
| | - Paul B Hatzinger
- Biotechnology Development & Applications Group, APTIM, Lawrenceville, New Jersey 08648, United States
| | - Pei C Chiu
- Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Linnea J Heraty
- Department of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Neil C Sturchio
- Department of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Blessing M, Baran N. A review on environmental isotope analysis of aquatic micropollutants: Recent advances, pitfalls and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Chen S, Ma L, Wang Y. Kinetic isotope effects of C and N indicate different transformation mechanisms between atzA- and trzN-harboring strains in dechlorination of atrazine. Biodegradation 2022; 33:207-221. [PMID: 35257297 DOI: 10.1007/s10532-022-09977-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
Abstract
Compound-specific stable isotope analysis provides an alternative method to insight into the biotransformation mechanisms of diffuse organic pollutants in the environment, e.g., the endocrine disruptor herbicide atrazine. Biotic hydrolysis process catalyzed by chlorohydrolase AtzA and TrzN plays an important role in the detoxification of atrazine, while the catalytic mechanism of AtzA is still speculative. To investigate the catalytic mechanism of AtzA and answer whether both enzymes catalyze hydrolytic dechlorination of atrazine by the same mechanism, in this study, apparent kinetic isotope effects (AKIE) for carbon and nitrogen were observed by three atzA-harboring bacterial isolates and their membrane-free extracts. The AKIEs obtained from atzA-harboring bacterial isolates (AKIEC = 1.021 ± 0.010, AKIEN = 0.992 ± 0.003) were statistically different from that of trzN-harboring strains (AKIEC = 1.040 ± 0.006, AKIEN = 0.983 ± 0.006), confirming the different activation mechanisms of atrazine preceding to nucleophilic aromatic substitution of Cl atom in actual enzymatic reaction catalyzed by AtzA and TrzN, despite the limitation of variable dual-element isotope plots. The lower degree of normal carbon and inverse nitrogen isotope fractionation observed from atzA-harboring strains, suggesting AtzA catalyzing hydrolytic dechlorination of atrazine by coordination of Cl and one aromatic N to the Fe2+ drawing electron density from carbon-chlorine bond that facilitating the nucleophilic attack, rather than in TrzN case that protonation of aromatic N increasing nucleophilic substitution of Cl atom. This study suggests considering the potential influences of phylogenetic diversity of bacterial isolates and evolution of enzymes on the applications of CSIA method in future study.
Collapse
Affiliation(s)
- Songsong Chen
- College of Architecture and Urban Planning, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Limin Ma
- College of Environmental Science and Engineering, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| | - Yuncai Wang
- College of Architecture and Urban Planning, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
5
|
Terhalle J, Nikutta SE, Krzeciesa DL, Lutze HV, Jochmann MA, Schmidt TC. Linking reaction rate constants and isotope fractionation of ozonation reactions using phenols as probes. WATER RESEARCH 2022; 210:117931. [PMID: 34996014 DOI: 10.1016/j.watres.2021.117931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Ozonation is nowadays a widely used method in drinking water treatment for disinfection and pollutant control. However, transformation products of ozonation can be more toxic than their parent compounds. Therefore, the knowledge of the reaction mechanisms and product formation is essential for a safe application. Different analytical methods such as high-resolution mass spectrometry (HRMS) and compound-specific isotope analysis (CSIA) can be applied to elucidate products and primary attack positions of oxidation agents such as ozone. During the investigation of the ozonation of phenolic compounds in water by CSIA, a reaction rate depending carbon isotope fractionation was observed. The fractionation strongly depends on the phenol speciation. With decreasing pH values and reaction rates <105 M-1 s-1, the isotope enrichment factor ε increases (ε is between -5.2 and -1.0‰). For faster reactions (>105 M-1 s-1), the carbon isotope enrichment was not significant anymore (ε is between -1.0 and 0‰). Based on these data a concept to correlate isotope enrichment factors with kinetic data for aromatic compounds is proposed. The additional investigation of aliphatic double and triple bonds did not fit this correlation suggesting different rate-limiting steps. However, double and triple bond showed a similar enrichment factor, which implies the same rate-limiting step in the reaction with ozone, the monodentate addition of ozone.
Collapse
Affiliation(s)
- Jens Terhalle
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany
| | - Simon E Nikutta
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany
| | - Dawid L Krzeciesa
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany
| | - Holger V Lutze
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany; Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, Mülheim an der Ruhr D-4547, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, Essen D-45141, Germany.
| | - Maik A Jochmann
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, Essen D-45141, Germany
| | - Torsten C Schmidt
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany; IWW Water Centre, Moritzstraße 26, Mülheim an der Ruhr D-4547, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, Essen D-45141, Germany.
| |
Collapse
|
6
|
John D, Rajalakshmi AS, Lopez RM, Achari VS. TiO2-reduced graphene oxide nanocomposites for the trace removal of diclofenac. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2662-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
7
|
Steinmetz Z, Kurtz MP, Zubrod JP, Meyer AH, Elsner M, Schaumann GE. Biodegradation and photooxidation of phenolic compounds in soil-A compound-specific stable isotope approach. CHEMOSPHERE 2019; 230:210-218. [PMID: 31103867 DOI: 10.1016/j.chemosphere.2019.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/24/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Phenolic compounds occur in a variety of plants and can be used as model compounds for investigating the fate of organic wastewater, lignin, or soil organic matter in the environment. The aim of this study was to better understand and differentiate mechanisms associated with photo- and biodegradation of tyrosol, vanillin, vanillic acid, and coumaric acid in soil. In a 29 d incubation experiment, soil spiked with these phenolic compounds was either subjected to UV irradiation under sterile conditions or to the native soil microbial community in the dark. Changes in the isotopic composition (δ13C) of phenolic compounds were determined by gas chromatography-isotope ratio mass spectrometry and complemented by concentration measurements. Phospholipid-derived fatty acid and ergosterol biomarkers together with soil water repellency measurements provided information on soil microbial and physical properties. Biodegradation followed pseudo-first-order dissipation kinetics, enriched remaining phenolic compounds in 13C, and was associated with increased fungal rather than bacterial biomarkers. Growing mycelia rendered the soil slightly water repellent. High sample variation limited the reliable estimation of apparent kinetic isotope effects (AKIEs) to tyrosol. The AKIE of tyrosol biodegradation was 1.007 ± 0.002. Photooxidation kinetics were of pseudo-zero- or first-order with an AKIE of 1.02 ± 0.01 for tyrosol, suggesting a hydroxyl-radical mediated degradation process. Further research needs to address δ13C variation among sample replicates potentially originating from heterogeneous reaction spaces in soil. Here, nuclear magnetic resonance or nanoscopic imaging could help to better understand the distribution of organic compounds and their transformation in the soil matrix.
Collapse
Affiliation(s)
- Zacharias Steinmetz
- iES Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Markus P Kurtz
- iES Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Jochen P Zubrod
- iES Landau, Institute for Environmental Sciences, Group of Ecotoxicology & Environment, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Armin H Meyer
- Helmholtz Zentrum Muenchen, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Martin Elsner
- Helmholtz Zentrum Muenchen, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Institute of Hydrochemistry, Chair for Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistraße 17, 81377, Munich, Germany
| | - Gabriele E Schaumann
- iES Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany.
| |
Collapse
|
8
|
Melsbach A, Ponsin V, Torrentó C, Lihl C, Hofstetter TB, Hunkeler D, Elsner M. 13C- and 15N-Isotope Analysis of Desphenylchloridazon by Liquid Chromatography-Isotope-Ratio Mass Spectrometry and Derivatization Gas Chromatography-Isotope-Ratio Mass Spectrometry. Anal Chem 2019; 91:3412-3420. [PMID: 30672693 DOI: 10.1021/acs.analchem.8b04906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The widespread application of herbicides impacts surface water and groundwater. Metabolites (e.g., desphenylchloridazon from chloridazon) may be persistent and even more polar than the parent herbicide, which increases the risk of groundwater contamination. When parent herbicides are still applied, metabolites are constantly formed and may also be degraded. Evaluating their degradation on the basis of concentration measurements is, therefore, difficult. This study presents compound-specific stable-isotope analysis (CSIA) of nitrogen- and carbon-isotope ratios at natural abundances as an alternative analytical approach to track the origin, formation, and degradation of desphenylchloridazon (DPC), the major degradation product of the herbicide chloridazon. Methods were developed and validated for carbon- and nitrogen-isotope analysis (δ13C and δ15N) of DPC by liquid chromatography-isotope-ratio mass spectrometry (LC-IRMS) and derivatization gas chromatography-IRMS (GC-IRMS), respectively. Injecting standards directly onto an Atlantis LC-column resulted in reproducible δ13C-isotope analysis (standard deviation <0.5‰) by LC-IRMS with a limit of precise analysis of 996 ng of DPC on-column. Accurate and reproducible δ15N analysis with a standard deviation of <0.4‰ was achieved by GC-IRMS after derivatization of >100 ng of DPC with 160-fold excess of (trimethylsilyl)diazomethane. Application of the method to environmental-seepage water indicated that newly formed DPC could be distinguished from "old" DPC by the different isotopic signatures of the two DPC sources.
Collapse
Affiliation(s)
- Aileen Melsbach
- Helmholtz Zentrum München , Institute of Groundwater Ecology , 85764 Neuherberg , Germany
| | - Violaine Ponsin
- Centre for Hydrogeology and Geothermics (CHYN) , University of Neuchâtel , 2000 Neuchâtel , Switzerland
| | - Clara Torrentó
- Centre for Hydrogeology and Geothermics (CHYN) , University of Neuchâtel , 2000 Neuchâtel , Switzerland
| | - Christina Lihl
- Helmholtz Zentrum München , Institute of Groundwater Ecology , 85764 Neuherberg , Germany
| | - Thomas B Hofstetter
- Swiss Federal Institute of Aquatic Science and Technology (Eawag) , 8600 Dübendorf , Switzerland
| | - Daniel Hunkeler
- Centre for Hydrogeology and Geothermics (CHYN) , University of Neuchâtel , 2000 Neuchâtel , Switzerland
| | - Martin Elsner
- Helmholtz Zentrum München , Institute of Groundwater Ecology , 85764 Neuherberg , Germany.,Chair of Analytical Chemistry and Water Chemistry , Technical University of Munich , 81377 Munich , Germany
| |
Collapse
|
9
|
Ehrl B, Gharasoo M, Elsner M. Isotope Fractionation Pinpoints Membrane Permeability as a Barrier to Atrazine Biodegradation in Gram-negative Polaromonas sp. Nea-C. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4137-4144. [PMID: 29495658 PMCID: PMC6331012 DOI: 10.1021/acs.est.7b06599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biodegradation of persistent pesticides like atrazine often stalls at low concentrations in the environment. While mass transfer does not limit atrazine degradation by the Gram-positive Arthrobacter aurescens TC1 at high concentrations (>1 mg/L), evidence of bioavailability limitations is emerging at trace concentrations (<0.1 mg/L). To assess the bioavailability constraints on biodegradation, the roles of cell wall physiology and transporters remain imperfectly understood. Here, compound-specific isotope analysis (CSIA) demonstrates that cell wall physiology (i.e., the difference between Gram-negative and Gram-positive bacteria) imposes mass transfer limitations in atrazine biodegradation even at high concentrations. Atrazine biodegradation by Gram-negative Polaromonas sp. Nea-C caused significantly less isotope fractionation (ε(C) = -3.5 ‰) than expected for hydrolysis by the enzyme TrzN (ε(C) = -5.0 ‰) and observed in Gram-positive Arthrobacter aurescens TC1 (ε(C) = -5.4 ‰). Isotope fractionation was recovered in cell-free extracts (ε(C) = -5.3 ‰) where no cell envelope restricted pollutant uptake. When active transport was inhibited with cyanide, atrazine degradation rates remained constant demonstrating that atrazine mass transfer across the cell envelope does not depend on active transport but is a consequence of passive cell wall permeation. Taken together, our results identify the cell envelope of the Gram-negative bacterium Polaromonas sp. Nea-C as a relevant barrier for atrazine biodegradation.
Collapse
Affiliation(s)
- Benno
N. Ehrl
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Mehdi Gharasoo
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Elsner
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 Munich, Germany
- E-mail: . Tel.: +49 89 2180-78232
| |
Collapse
|
10
|
Maier MP, Prasse C, Pati SG, Nitsche S, Li Z, Radke M, Meyer A, Hofstetter TB, Ternes TA, Elsner M. Exploring Trends of C and N Isotope Fractionation to Trace Transformation Reactions of Diclofenac in Natural and Engineered Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10933-10942. [PMID: 27635778 DOI: 10.1021/acs.est.6b02104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although diclofenac ranks among the most frequently detected pharmaceuticals in the urban water cycle, its environmental transformation reactions remain imperfectly understood. Biodegradation-induced changes in 15N/14N ratios (εN = -7.1‰ ± 0.4‰) have indicated that compound-specific isotope analysis (CSIA) may detect diclofenac degradation. This singular observation warrants exploration for further transformation reactions. The present study surveys carbon and nitrogen isotope fractionation in other environmental and engineered transformation reactions of diclofenac. While carbon isotope fractionation was generally small, observed nitrogen isotope fractionation in degradation by MnO2 (εN = -7.3‰ ± 0.3‰), photolysis (εN = +1.9‰ ± 0.1‰), and ozonation (εN = +1.5‰ ± 0.2‰) revealed distinct trends for different oxidative transformation reactions. The small, secondary isotope effect associated with ozonation suggests an attack of O3 in a molecular position distant from the N atom. Model reactants for outer-sphere single electron transfer generated large inverse nitrogen isotope fractionation (εN = +5.7‰ ± 0.3‰), ruling out this mechanism for biodegradation and transformation by MnO2. In a river model, isotope fractionation-derived degradation estimates agreed well with concentration mass balances, providing a proof-of-principle validation for assessing micropollutant degradation in river sediment. Our study highlights the prospect of combining CSIA with transformation product analysis for a better assessment of transformation reactions within the environmental life of diclofenac.
Collapse
Affiliation(s)
- Michael P Maier
- Helmholtz Zentrum Muenchen, German Research Center, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - Carsten Prasse
- German Federal Institute of Hydrology (BfG) , Am Mainzer Tor 1, 56068 Koblenz, Germany
- Department of Civil & Environmental Engineering, University of California , Berkeley, California, 94720 United States
| | - Sarah G Pati
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich , 8092 Zürich, Switzerland
| | - Sebastian Nitsche
- Helmholtz Zentrum Muenchen, German Research Center, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - Zhe Li
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , 10691 Stockholm, Sweden
| | - Michael Radke
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , 10691 Stockholm, Sweden
| | - Armin Meyer
- Helmholtz Zentrum Muenchen, German Research Center, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich , 8092 Zürich, Switzerland
| | - Thomas A Ternes
- German Federal Institute of Hydrology (BfG) , Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Martin Elsner
- Helmholtz Zentrum Muenchen, German Research Center, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| |
Collapse
|
11
|
Vogt C, Dorer C, Musat F, Richnow HH. Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons — from enzymes to the environment. Curr Opin Biotechnol 2016; 41:90-98. [DOI: 10.1016/j.copbio.2016.04.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
12
|
Dsikowitzky L, Sträter M, Ariyani F, Irianto HE, Schwarzbauer J. First comprehensive screening of lipophilic organic contaminants in surface waters of the megacity Jakarta, Indonesia. MARINE POLLUTION BULLETIN 2016; 110:654-664. [PMID: 26880129 DOI: 10.1016/j.marpolbul.2016.02.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/28/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
Jakarta is an Indonesian coastal megacity with over 10 million inhabitants. The rivers flowing through the city receive enormous amounts of untreated wastewaters and discharge their pollutant loads into Jakarta Bay. We utilized a screening approach to identify those site-specific compounds that represent the major contamination of the cities' water resources, and detected a total number of 71 organic contaminants in Jakarta river water samples. Especially contaminants originating from municipal wastewater discharges were detected in high concentrations, including flame retardants, personal care products and pharmaceutical drugs. A flame retardant, a synthetic fragrance and caffeine were used as marker compounds to trace the riverine transport of municipal wastewaters into Jakarta Bay. These markers are also appropriate to trace municipal wastewater discharges to other tropical coastal ecosystems. This application is in particular useful to evaluate wastewater inputs from land-based sources to habitats which are sensitive to changing water quality, like coral reefs.
Collapse
Affiliation(s)
- L Dsikowitzky
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstrasse 4-20, 52056 Aachen, Germany.
| | - M Sträter
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstrasse 4-20, 52056 Aachen, Germany
| | - F Ariyani
- Research and Development Center for Marine and Fisheries Product Processing and Biotechnology (BBP4KP), Ministry of Marine Affairs and Fisheries, Jl. K.S. Tubun, Petamburan VI, Jakarta Pusat 10260, Indonesia
| | - H E Irianto
- Research Center for Fisheries Management and Conservation, Ministry of Marine Affairs and Fisheries, Gedung Balitbang-2, Jl. Pasir Putih II, Ancol Timur, Jakarta 14430, Indonesia
| | - J Schwarzbauer
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstrasse 4-20, 52056 Aachen, Germany
| |
Collapse
|
13
|
Elsner M, Imfeld G. Compound-specific isotope analysis (CSIA) of micropollutants in the environment - current developments and future challenges. Curr Opin Biotechnol 2016; 41:60-72. [PMID: 27340797 DOI: 10.1016/j.copbio.2016.04.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
Over the last decade, the occurrence of micropollutants in the environment has become a worldwide issue of increasing concern. Compound-specific stable-isotope analysis (CSIA) of natural isotopic abundance may greatly enhance the evaluation of sources and transformation processes of micropollutants, such as pesticides, personal care products or pharmaceuticals. We summarize recent advances from laboratory studies, review current limitations and analytical challenges associated with low concentrations and high polarity of micropollutants, and delineate the potential of micropolluant CSIA for field applications. We highlight future challenges and prospects regarding source apportionment, identification of biotic and abiotic transformation reactions on a mechanistic level, as well as integrative evaluation of degradation hot spots on the catchment scale. Such advances may feed into a framework for risk assessment of micropollutants that includes CSIA.
Collapse
Affiliation(s)
- Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Gwenaël Imfeld
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), UMR 7517, Université de Strasbourg/EOST, CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France
| |
Collapse
|
14
|
Schürner HKV, Maier MP, Eckert D, Brejcha R, Neumann CC, Stumpp C, Cirpka OA, Elsner M. Compound-Specific Stable Isotope Fractionation of Pesticides and Pharmaceuticals in a Mesoscale Aquifer Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5729-39. [PMID: 27100740 DOI: 10.1021/acs.est.5b03828] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Compound-specific isotope analysis (CSIA) receives increasing interest for its ability to detect natural degradation of pesticides and pharmaceuticals. Despite recent laboratory studies, CSIA investigations of such micropollutants in the environment are still rare. To explore the certainty of information obtainable by CSIA in a near-environmental setting, a pulse of the pesticide bentazone, the pesticide metabolite 2,6-dichlorobenzamide (BAM), and the pharmaceuticals diclofenac and ibuprofen was released into a mesoscale aquifer with quasi-two-dimensional flow. Concentration breakthrough curves (BTC) of BAM and ibuprofen demonstrated neither degradation nor sorption. Bentazone was transformed but did not sorb significantly, whereas diclofenac showed both degradation and sorption. Carbon and nitrogen CSIA could be accomplished in similar concentrations as for "traditional" priority pollutants (low μg/L range), however, at the cost of uncertainties (0.4-0.5‰ (carbon), 1‰ (nitrogen)). Nonetheless, invariant carbon and nitrogen isotope values confirmed that BAM was neither degraded nor sorbed, while significant enrichment of (13)C and in particular (15)N corroborated transformation of diclofenac and bentazone. Retardation of diclofenac was reflected in additional (15)N sorption isotope effects, whereas isotope fractionation of transverse dispersion could not be identified. These results provide a benchmark on the performance of CSIA to monitor the reactivity of micropollutants in aquifers and may guide future efforts to accomplish CSIA at even lower concentrations (ng/L range).
Collapse
Affiliation(s)
- Heide K V Schürner
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Michael P Maier
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Dominik Eckert
- Center for Applied Geosciences, University of Tübingen , Hölderlinstraße 12, 72074 Tübingen, Germany
| | - Ramona Brejcha
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Claudia-Constanze Neumann
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Christine Stumpp
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Olaf A Cirpka
- Center for Applied Geosciences, University of Tübingen , Hölderlinstraße 12, 72074 Tübingen, Germany
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
15
|
Jin B, Rolle M. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:94-103. [PMID: 26708763 DOI: 10.1016/j.envpol.2015.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/16/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. To demonstrate specific features of the modeling approach, we simulated the degradation of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model accurately reproduces the multi-element isotope data observed in previous experimental studies. Furthermore, it precisely captures the dual element isotope trends characteristic of different reaction pathways as well as their range of variation consistent with observed bulk isotope fractionation. It was also possible to directly validate the model capability to predict the evolution of position-specific isotope ratios with available experimental data. Therefore, the approach is useful both for a mechanism-based evaluation of experimental results and as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available.
Collapse
Affiliation(s)
- Biao Jin
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej Building 113, DK-2800, Kgs. Lyngby, Denmark.
| | - Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej Building 113, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Affiliation(s)
- Susan D. Richardson
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Susana Y. Kimura
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
17
|
Ratti M, Canonica S, McNeill K, Bolotin J, Hofstetter TB. Isotope Fractionation Associated with the Indirect Photolysis of Substituted Anilines in Aqueous Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12766-12773. [PMID: 26418612 DOI: 10.1021/acs.est.5b03119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Organic micropollutants containing aniline substructures are susceptible to different light-induced transformation processes in aquatic environments and water treatment operations. Here, we investigated the magnitude and variability of C and N isotope fractionation during the indirect phototransformation of four para-substituted anilines in aerated aqueous solutions. The model photosensitizers, namely 9,10-anthraquinone-1,5-disulfonate and methylene blue, were used as surrogates for dissolved organic matter chromophores generating excited triplet states in sunlit surface waters. The transformation of aniline, 4-CH3-, 4-OCH3-, and 4-Cl-aniline by excited triplet states of the photosensitizers was associated with inverse and normal N isotope fractionation, whereas C isotope fractionation was negligible. The apparent 15N kinetic isotope effects (AKIE) were almost identical for both photosensitizers, increased from 0.9958±0.0013 for 4-OCH3-aniline to 1.0035±0.0006 for 4-Cl-aniline, and correlated well with the electron donating properties of the substituent. N isotope fractionation is pH-dependent in that H+ exchange reactions dominate below and N atom oxidation processes above the pKa value of the substituted aniline's conjugate acid. Correlations of C and N isotope fractionation for indirect phototransformation were different from those determined previously for the direct photolysis of chloroanilines and offer new opportunities to distinguish between abiotic degradation pathways.
Collapse
Affiliation(s)
- Marco Ratti
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich , CH-8092 Zürich, Switzerland
| | - Silvio Canonica
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich , CH-8092 Zürich, Switzerland
| | - Jakov Bolotin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich , CH-8092 Zürich, Switzerland
| |
Collapse
|
18
|
Huebner M, Weber E, Niessner R, Boujday S, Knopp D. Rapid analysis of diclofenac in freshwater and wastewater by a monoclonal antibody-based highly sensitive ELISA. Anal Bioanal Chem 2015; 407:8873-82. [PMID: 26439474 DOI: 10.1007/s00216-015-9048-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/01/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022]
Abstract
The non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF) is found worldwide in the aqueous environment. Therefore, it has raised increased public concern on potential long-term impact on human health and wildlife. The importance of DCF has been emphasized by the European Union recently by including this pharmaceutical in the first watch list of priority hazardous substances in order to gather Union-wide monitoring data. Rapid and cheap methods of analysis are therefore required for fresh and wastewater monitoring with high sample load. Here, for the first time, well-characterized monoclonal antibodies (mAbs) against DCF were generated and a highly sensitive ELISA developed. The best antibody (mAb 12G5) is highly affine (KD = 1.5 × 10(-10) M), stable to potential matrix interferences such as pH value (pH range 5.2-9.2), calcium ion concentration (up to 75 mg/L), and humic acid content (up to 20 mg/L). The limit of detection (LOD, S/N = 3) and IC50 of the ELISA calibration curve were 7.8 and 44 ng/L, respectively. The working range was defined between 11 and 180 ng/L. On average, about 10 % cross-reactivity (CR) was found for DCF metabolites 5-OH-DCF, 4'-OH-DCF, and DCF-acyl glucuronide, but other structurally related NSAIDs showed binding <1 % compared to the parent compound. While DCF concentrations at the low ppt range were measured in river and lake water, higher values of 2.9 and 2.1 μg/L were found in wastewater influents and effluents, respectively. These results could be confirmed by solid phase extraction combined with LC-MS.
Collapse
Affiliation(s)
- Maria Huebner
- Institute of Hydrochemistry and Chemical Balneology, Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, 81377, München, Germany
| | - Ekkehard Weber
- Institute of Physiological Chemistry, Medical Faculty, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chemical Balneology, Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, 81377, München, Germany
| | - Souhir Boujday
- Sorbonne Universités, UPMC UnivParis6, UMRCNRS7197 Laboratoire de Réactivité de Surface, 75005, Paris, France.,CNRS, UMR7197, Laboratoire de Réactivité de Surface, 75005, Paris, France
| | - Dietmar Knopp
- Institute of Hydrochemistry and Chemical Balneology, Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, 81377, München, Germany.
| |
Collapse
|
19
|
Birkigt J, Gilevska T, Ricken B, Richnow HH, Vione D, Corvini PFX, Nijenhuis I, Cichocka D. Carbon Stable Isotope Fractionation of Sulfamethoxazole during Biodegradation by Microbacterium sp. Strain BR1 and upon Direct Photolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6029-6036. [PMID: 25906077 DOI: 10.1021/acs.est.5b00367] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Carbon isotope fractionation of sulfamethoxazole (SMX) during biodegradation by Microbacterium sp. strain BR1 (ipso-hydroxylation) and upon direct photolysis was investigated. Carbon isotope signatures (δ(13)C) of SMX were measured by LC-IRMS (liquid chromatography coupled to isotope ratio mass spectrometry). A new LC-IRMS method for the SMX metabolite, 3-amino-5-methylisoxazole (3A5MI), was established. Carbon isotope enrichment factors for SMX (ε(C)) were -0.6 ± 0.1‰ for biodegradation and -2.0 ± 0.1‰ and -3.0 ± 0.2‰ for direct photolysis, at pH 7.4 and pH 5, respectively. The corresponding apparent kinetic isotope effects (AKIE) for ipso-hydroxylation were 1.006 ± 0.001; these fall in the same range as AKIE in previously studied hydroxylation reactions. The differences in SMX and 3A5MI fractionation upon biotic and abiotic degradation suggest that compound specific stable isotope analysis (CSIA) is a suitable method to distinguish SMX reaction pathways. In addition, the study revealed that the extent of isotope fractionation during SMX photolytic cleavage is pH-dependent.
Collapse
Affiliation(s)
- Jan Birkigt
- †Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Saxony, Germany
| | - Tetyana Gilevska
- †Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Saxony, Germany
| | - Benjamin Ricken
- ‡Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Basel-Landschaft, Switzerland
| | - Hans-Hermann Richnow
- †Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Saxony, Germany
| | - Davide Vione
- §Department of Chemistry, University of Torino, 10125 Torino, Torino, Italy
| | - Philippe F-X Corvini
- ‡Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Basel-Landschaft, Switzerland
| | - Ivonne Nijenhuis
- †Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Saxony, Germany
| | - Danuta Cichocka
- ‡Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Basel-Landschaft, Switzerland
| |
Collapse
|
20
|
Li Z, Sobek A, Radke M. Flume experiments to investigate the environmental fate of pharmaceuticals and their transformation products in streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6009-17. [PMID: 25901906 DOI: 10.1021/acs.est.5b00273] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The hyporheic zone—the transition region beneath and alongside the stream bed—is a central compartment for attenuation of organic micropollutants in rivers. It provides abundant sorption sites and excellent conditions for biotransformation. We used a bench-scale flume to study the fate of 19 parent pharmaceuticals (PPs) and the formation of 11 characteristic transformation products (TPs) under boundary conditions similar to those in hyporheic zones. The persistence of PPs ranged from readily degradable with a dissipation half-life (DT50) as short as 1.8 days (acetaminophen, ibuprofen) to not degradable (chlorthalidone, fluconazole). The temporal and spatial patterns of PP and TP concentrations in pore water were heterogeneous, reflecting the complex hydraulic and biogeochemical conditions in hyporheic zones. Four TPs (carbamazepine-10,11-epoxide, metoprolol acid, 1-naphthol, and saluamine) were exclusively formed in the sediment compartment and released to surface water, highlighting their potential to be used as indicators for characterizing hyporheic transformation of micropollutants in streams. The accumulation of certain TPs over the experimental period illustrates that we might face a peak of secondary contamination by TPs far from the point of release of the original contaminants into a stream. Such TPs should be considered as priority candidates for a higher-tier environmental risk assessment.
Collapse
Affiliation(s)
- Zhe Li
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden
| | - Anna Sobek
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden
| | - Michael Radke
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
21
|
Ratti M, Canonica S, McNeill K, Erickson PR, Bolotin J, Hofstetter TB. Isotope fractionation associated with the direct photolysis of 4-chloroaniline. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4263-4273. [PMID: 25719866 DOI: 10.1021/es505784a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Compound-specific isotope analysis is a useful approach to track transformations of many organic soil and water pollutants. Applications of CSIA to characterize photochemical processes, however, have hardly been explored. In this work, we systematically studied C and N isotope fractionation associated with the direct photolysis of 4-Cl-aniline used as a model compound for organic micropollutants that are known to degrade via photochemical processes. Laboratory experiments were carried out at an irradiation wavelength of 254 nm over the pH range 2.0 to 9.0 as well as in the presence of Cs(+) as a quencher of excited singlet 4-Cl-aniline at pH 7.0 and 9.0. We observed considerable variation of C and N isotope enrichment factors, ϵC and ϵN, between -1.2 ± 0.2‰ to -2.7 ± 0.2‰ for C and -0.6 ± 0.2‰ to -9.1 ± 1.6‰ for N, respectively, which could not be explained by the speciation of 4-Cl-aniline alone. In the presence of 1 M Cs(+), we found a marked increase of apparent (13)C-kinetic isotope effects ((13)C-AKIE) and decrease of 4-Cl-aniline fluorescence lifetimes. Our data suggest that variations of C and N isotope fractionation originate from heterolytic dechlorination of excited triplet and singlet states of 4-Cl-aniline. Linear correlations of (13)C-AKIE vs (15)N-AKIE were distinctly different for these two reaction pathways and may be explored further for the identification of photolytic aromatic dechlorination reactions.
Collapse
Affiliation(s)
- Marco Ratti
- †Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- ‡Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, CH-8092 Zürich, Switzerland
| | - Silvio Canonica
- †Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Kristopher McNeill
- ‡Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, CH-8092 Zürich, Switzerland
| | - Paul R Erickson
- ‡Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, CH-8092 Zürich, Switzerland
| | - Jakov Bolotin
- †Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Thomas B Hofstetter
- †Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- ‡Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
22
|
Spahr S, Bolotin J, Schleucher J, Ehlers I, von Gunten U, Hofstetter TB. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotope Analysis of N-Nitrosodimethylamine in Aqueous Solutions. Anal Chem 2015; 87:2916-24. [DOI: 10.1021/ac5044169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephanie Spahr
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- School
of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jakov Bolotin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Jürgen Schleucher
- Umeå University, Department of Medical Biochemistry
and Biophysics, S-90187 Umeå, Sweden
| | - Ina Ehlers
- Umeå University, Department of Medical Biochemistry
and Biophysics, S-90187 Umeå, Sweden
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- School
of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Thomas B. Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|