1
|
Yu Y, Li J, Zhou J, Cao Y, Guo Q, Liu Y, Yang Y, Jiang J. Nucleophilic hydrolysis of dichloroacetonitrile and trichloroacetonitrile disinfection byproducts by peroxymonosulfate: Kinetics and mechanisms. CHEMOSPHERE 2024; 363:142875. [PMID: 39019182 DOI: 10.1016/j.chemosphere.2024.142875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
In this work, it was found that peroxymonosulfate (PMS) could appreciably accelerate the transformation rates of dichloroacetonitrile (DCAN) and trichloracetonitrile (TCAN) in aqueous solutions, especially under alkaline pHs. The impact of reactive oxygen species scavengers (methyl alcohol for sulfate radical, tert-butyl alcohol for hydroxyl radical, and azide for singlet oxygen) and water matrices (chloride (Cl-), bicarbonate (HCO3-), and natural organic matter (NOM)) on DCAN and TCAN transformation by PMS is evaluated, revealing negligible effects. A nucleophilic hydrolysis pathway, as opposed to an oxidation process, was proposed for the transformation of DCAN and TCAN by PMS, supported by the hydrolyzable characteristics of these compounds and validated through density functional theory calculations. Kinetic analysis indicated that the transformation of DCAN and TCAN by PMS adhered to a second-order kinetic law, with higher reaction rates observed at elevated pH levels within the range of 7.0-10.0. Kinetic modeling incorporating the hydrolytic contributions of water, hydroxyl ion, and protonated and deprotonated PMS (i.e., HSO5- and SO52-) effectively fitted the experimental data. Species-specific second-order rate constants reveal that SO52- exhibited significantly higher reactivity towards DCAN ((1.69 ± 0.22) × 104 M-1h-1) and TCAN ((6.06 ± 0.18) × 104 M-1h-1) compared to HSO5- ((2.14 ± 0.12) × 102 M-1h-1) for DCAN; and (1.378 ± 0.11) × 103 M-1h-1 for TCAN). Comparative analysis of DCAN and TCAN transformation efficiencies by four different oxidants indicated that PMS rivaled chlorine but falls short of hydrogen peroxide, with peroxydisulfate displaying negligible reactivity. Overall, this study uncovers the nucleophilic hydrolysis characteristics of PMS, supplementing its recognized role as an oxidant precursor or mild oxidant, and underscores its significant implications for environmental remediation.
Collapse
Affiliation(s)
- Yangyi Yu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China.
| | - Junhui Zhou
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China
| | - Ying Cao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongze Liu
- Beijing Key Lab for Sources Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yi Yang
- University of Science and Technology of China, Anhui 230026, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Li J, Chen J, Li J. The ideal model for determination the formation potential of priority DBPs during chlorination of free amino acids. CHEMOSPHERE 2024; 359:142306. [PMID: 38734255 DOI: 10.1016/j.chemosphere.2024.142306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Amino acids (AAs) account for about 15-35% of dissolved organic nitrogen (DON), and are known as the important precursors of nitrogenous disinfection by-products (N-DBPs). Determining the formation potential (FP) of AAs to DBPs is used to reveal the key precursors of DBPs for further control, while the ideal method for N-DBPs FP of AAs during chlorination is not revealed. In this study, the ideal FP test models for five classes of priority DBPs during chlorination of four representative AAs (accounted for about 35% of total AAs) were analyzed. For haloaldehydes (HALs), haloketones (HKs), haloacetonitriles (HANs), haloacetamides (HAMs), and halonitromethanes (HNMs), their FPs during chlorination of four AAs were 0.1-13.0, 0.01-1.1, 0.1-104, not detectable (nd)-173, and nd-0.4 μg/mg, respectively. The FPs of priority DBPs had significant deviations between different FP test models and different tested AAs. For HALs, the model, whose chlorine dosage was determined by 15 × molar concentration of AAs [Cl (mM) = 15 × M](named: model II), was the ideal model. For HKs, model II was also the ideal FP test model for AAs with ≤3 carbons, while for AAs with 4 carbons, the model, whose chlorine dosage was determined by keeping the residual chlorine at 1 ± 0.2 mg/L after 24 h of reaction (named: model 4), was the ideal model. For HANs and HNMs, model 4 was the ideal FP test model for most of the studied AAs. The performance of HAMs during chlorination of amino acids was totally different from other P-DBPs, and model 3 was recommended to be the ideal model, in which chlorine dosage was determined by 3 × mass concentration of AAs [Cl (mg/L) = X × DOC]. This study is a reference that helps researchers select an ideal model for N-DBPs FP study of AAs.
Collapse
Affiliation(s)
- Junling Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jingsi Chen
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Wang Q, Chen M, Min Y, Shi P. Aging of polystyrene microplastics by UV/Sodium percarbonate oxidation: Organic release, mechanism, and disinfection by-product formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132934. [PMID: 37976854 DOI: 10.1016/j.jhazmat.2023.132934] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The occurrence and transformation of microplastics (MPs) in environment has attracted considerable attention. However, the release characteristics of MP-derived dissolved organic matter (MP-DOM) under oxidation conditions and the effect of DOM on subsequent chlorination disinfection by-product (DBP) still lacks relevant information. This study focused on the conversion of polystyrene microplastics (PSMPs) in the advanced oxidation of ultraviolet-activated sodium percarbonate (UV/SPC-AOP) and the release characteristics of MP-DOM. The DBP formation potential of MP-DOM was also investigated. As a result, UV/SPC significantly enhanced the aging and fragmentation of PSMPs. Under UV irradiation, the fluorescence peak intensity and position of humus-like and protein-like components of MP-DOM were correlated with SPC concentration. The aging MP suspension was analyzed by gas chromatography-mass spectrometry (GC-MS), and various alkyl-cleavage and oxidation products were identified. Quenching experiments and electron paramagnetic resonance (EPR) detection confirmed that carbonate and hydroxyl radicals jointly dominated the conversion of PSMPs. The formation of DBP was related to the components of MP-DOM. Overall, these results help to understand the aging behavior of MPs in AOP. Moreover, MP-DOM released by MPs after AOP oxidation may be a precursor of DBPs, which deserved more attention.
Collapse
Affiliation(s)
- Qiaoyan Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Muxin Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China.
| |
Collapse
|
4
|
Lei X, Lei Y, Fu Q, Fu H, Guan J, Yang X. One-electron oxidant-induced transformation of dissolved organic matter: Optical and antioxidation properties and molecules. WATER RESEARCH 2024; 249:121011. [PMID: 38101043 DOI: 10.1016/j.watres.2023.121011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Dissolved organic matter (DOM) is a major sink of radicals in advanced oxidation processes (AOPs) and the radical-induced DOM transformation influences the subsequent water treatment processes or receiving waters. In this study, we quantified and compared DOM transformation by tracking the changes of dissolved organic carbon (DOC), UVA254, and electron donating capacity (EDC) as functions of four one-electron oxidants (SO4•-, Cl2•-, Br2•-, and CO3•-) exposures as well as the changes of functional groups and molecule distribution. SO4•- had the highest DOC reduction while Cl2•- had the highest EDC reduction, which could be due to their preferential reaction pathways of decarboxylation and converting phenols to quinones, respectively. Br2•- and CO3•- induced less changes in DOC, UVA254, and EDC than SO4•- and Cl2•-. Additionally, DOM enriched with high aromatic contents tended to have higher DOC, UVA254, and EDC reductions. Decreases in hydroxyl and carboxyl groups and increases in carbonyl groups were observed in these four types of radicals treated DOM using Fourier transform infrared spectroscopy. High resolution mass spectrometry using FTICR-MS showed that one-electron oxidants preferred to attack unsaturated carbon skeletons and transformed into molecules featuring high saturation and low aromaticity. Moreover, SO4•- was inclined to decrease oxidation state of carbon and O/C of DOM due to its strong decarboxylation capacity. This study highlights the distinct DOM transformation by four one-electron oxidants and provides comprehensive insights into the reactions of one-electron oxidants with DOM.
Collapse
Affiliation(s)
- Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, PR China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China
| | - Qinglong Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Hengyi Fu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jingmeng Guan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
5
|
Dong L, Yao Z, Sun S, Wang M, Jia R. Effect of UV/peroxymonosulfate pretreatment on disinfection byproduct (DBP) formation during post-chlorination of humic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:422-432. [PMID: 38015407 DOI: 10.1007/s11356-023-30908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
UV/peroxymonosulfate (UV/PMS) is a promising advanced oxidation technology in water treatment. This study aimed to investigate the impact of UV/PMS on humic acid (HA) and the influence of PMS dosage, pretreatment time, pH pretreatment, nitrate, nitrite, ammonium, and bicarbonate influencing factors on disinfection byproduct (DBP) formation during post-chlorination. With increased PMS dosage or pretreatment time, the UV/PMS treatment significantly reduced ultraviolet absorbance and increased mineralization. It altered the fractional constituent as humic substances were gradually transformed into building blocks and low-molecular-weight acids. However, most DBP formation increased initially and then decreased after subsequent chlorination. Rising nitrate or nitrite concentrations markedly promoted halonitromethane (HNM) formation. The presence of ammonia had a more significant impact on dichloroacetonitrile (DCAN) formation. Bicarbonate in UV/PMS pretreatment increased carbonated disinfection byproduct (C-DBP) formation, whereas it had a negligible impact on nitrogenous disinfection byproduct (N-DBP) formation. The present study revealed the impact of a series of influencing factors on DBP formation in UV/PMS reaction systems, providing comprehensive insights on applying UV/PMS in actual practice.
Collapse
Affiliation(s)
- Lulu Dong
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Zhenxing Yao
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China
| | - Shaohua Sun
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China
| | - Mingquan Wang
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China
| | - Ruibao Jia
- Shandong Province City Water Supply and Drainage Water Quality Monitoring Center, Jinan, 250101, China.
| |
Collapse
|
6
|
Wu XN, Yuan CJ, Huo ZY, Wang TT, Chen Y, Liu M, Wang WL, Du Y, Wu QY. Reduction of byproduct formation and cytotoxicity to mammalian cells during post-chlorination by the combined pretreatment of ferrate(VI) and biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131935. [PMID: 37385095 DOI: 10.1016/j.jhazmat.2023.131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/28/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Ferrate [Fe(VI)] can efficiently degrade various pollutants in wastewater. Biochar application can reduce resource use and waste emission. This study investigated the performance of Fe(VI)/biochar pretreatment to reduce disinfection byproducts (DBPs) and cytotoxicity to mammalian cells of wastewater during post-chlorination. Fe(VI)/biochar was more effective at inhibiting the cytotoxicity formation than Fe(VI) alone, reducing the cytotoxicity from 12.7 to 7.6 mg-phenol/L. The concentrations of total organic chlorine and total organic bromine decreased from 277 to 130 μg/L and from 51 to 39 μg/L, compared to the samples without pretreatment. Orbitrap ultra-high resolution mass spectrometry revealed that the number of molecules of DBPs decreased substantially from 517 to 229 by Fe(VI)/biochar, with the greatest reduction for phenols and highly unsaturated aliphatic compounds. In combination with the substantial reduction of 1Cl-DBPs and 2Cl-DBPs, 1Br-DBPs and 2Br-DBPs were also reduced. Fluorescence excitation-emission matrix coupled with parallel factor analysis suggested that fulvic acid-like substances and aromatic amino acid was obviously reduce likely due to the enhanced oxidation of Fe(IV)/Fe(V) produced by Fe(VI)/biochar and adsorption of biochar. Furthermore, the DBPs generated by electrophilic addition and electrophilic substitution of precursors were reduced. This study shows that Fe(VI)/biochar pretreatment can effectively reduce cytotoxicity formation during post-chlorination by transforming DBPs and their precursors.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Chang-Jie Yuan
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
7
|
Chen Z, Liao X, Yang Y, Han L, He Z, Dong Y, Yeo KFH, Sun X, Xue T, Xie Y, Wang W. Analysis of rainwater storage and use recommendations: From the perspective of DBPs generation and their risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130833. [PMID: 36716556 DOI: 10.1016/j.jhazmat.2023.130833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
As a vital freshwater resource, rainwater is usually stored in water cellars in arid regions to solve the daily drinking water problems of the population. However, the status of disinfection by-products (DBPs) generation in cellar water under intermittent disinfection conditions is unclear. Therefore, we investigated the formation and distribution characteristics of DBPs in cellar water under intermittent disinfection conditions for the first time. The results demonstrated that six categories of DBPs were selected for detection after chlorination, including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs), haloacetonitriles (HANs), halonitromethanes (HNMs), and nitrosamines (NAs), among which HAAs, HKs, and HANs were the major DBPs. Only bromoacetic acid (MBAA), dichloroacetic acid (DCAA), and trichloroacetic acid (TCAA) showed an increasing trend of accumulation as the number of disinfections increased. Meanwhile, the precursor composition was gradually transformed from humic substances to amino acids, and both organic substances were the main precursors of HAAs. The health risk assessment showed that the main carcinogenic and non-carcinogenic risks of cellar water were contributed by NAs and HAAs, respectively, and children are more susceptible to the risks than adults. The best time to drink cellar water is after approximately 12 days of storage, when the total carcinogenic risk is the minimum.
Collapse
Affiliation(s)
- Zhiwen Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Xiaobin Liao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Ye Yang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Liu Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Zixiang He
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yingying Dong
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Kanfolo Franck Herve Yeo
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Xubo Sun
- Shanxi Provincial Land Engineering Construction Group, Xi'an, Shaanxi 710075, China
| | - Tongxuan Xue
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Yuefeng Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| | - Wendong Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
8
|
Xu J, Guo Y, Yang Q, Bai X, Lu R, Liu M, Kuang Z, Zhang L, Li J. Enhanced cyanogen chloride formation after UV/PS and UV/H 2O 2 pre-oxidation and chlorination in natural river water. J Environ Sci (China) 2023; 126:48-57. [PMID: 36503774 DOI: 10.1016/j.jes.2022.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 06/17/2023]
Abstract
Ultraviolet/persulfate (UV/PS) and Ultraviolet/hydrogen peroxide (UV/H2O2) have attracted much attention in recent years as advanced oxidation processes for water treatment. However, it is not all clear how these two methods affect the formation of cyanogen chloride (CNCl) in the subsequent water chlorination process. In this study, it was found that both UV/H2O2 and UV/PS pre-oxidation promoted the formation of CNCl in six actual water samples collected from urban rivers. Glycine, uric acid, arginine and histidine were investigated as the model compounds to explore the effects of different methods on the production of CNCl. The results showed that compared with chlorination alone, pre-oxidation by UV/H2O2 and UV/PS can reduce the production of CNCl for glycine and uric acid by up to 95% during post-chlorination process. However, they can greatly promote the formation of CNCl for arginine and histidine by up to 120-fold. In a more detailed investigation, pre-oxidation of histidine formed highly reactive intermediates to chlorine, leading to increased CNCl formation and chlorine consumption. The results showed that the precursors of CNCl was altered after pre-oxidation, and need to be re-evaluated.
Collapse
Affiliation(s)
- Jie Xu
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| | - Yang Guo
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| | - Qian Yang
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| | - Xueling Bai
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| | - Runhua Lu
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| | - Menghui Liu
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| | - Zichen Kuang
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| | - Luo Zhang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou 450052, China
| | - Jing Li
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Yao P, You A. Predicting combined antibacterial activity of sulfapyridine and its transformation products during sulfapyridine degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114656. [PMID: 36796210 DOI: 10.1016/j.ecoenv.2023.114656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics have strong antibacterial activity, even trace antibiotics can greatly inhibit the pollutant degradation efficiency. In order to effectively improve the pollutant degradation efficiency, it was hence of great significance to explore sulfapyridine (SPY) degradation and the mechanism of antibacterial activity. This study selected SPY as the research object, of which the trend of SPY concentration through hydrogen peroxide (H2O2), potassium peroxydisulfate (PDS) and sodium percarbonate (SPC) and resultant antibacterial activity at pre-oxidation was examined. The combined antibacterial activity (CAA) of SPY and its transformation products (TPs) was further analyzed. The SPY degradation efficiency reached more than 90 %. However, the degradation efficiency of antibacterial activity was between 40-60 %, and the mixture's antibacterial activity was difficult to be removed. The antibacterial activity of TP3, TP6 and TP7 was higher than that of SPY. TP1, and TP8 and TP10 were more prone to synergistic reaction with other TPs. The antibacterial activity of binary mixture gradually changed from synergism to antagonism as binary mixture concentration increased. The results provided a theoretical basis for the efficient degradation of antibacterial activity of the SPY mixture solution.
Collapse
Affiliation(s)
- Pengcheng Yao
- Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Zhejiang 311100, China
| | - Aiju You
- Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Zhejiang 311100, China.
| |
Collapse
|
10
|
Li J, Zhang Z, Xiang Y, Jiang J, Yin R. Role of UV-based advanced oxidation processes on NOM alteration and DBP formation in drinking water treatment: A state-of-the-art review. CHEMOSPHERE 2023; 311:136870. [PMID: 36252895 DOI: 10.1016/j.chemosphere.2022.136870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Oxidative treatment of drinking water has been practiced for more than a century. UV-based advanced oxidation processes (UV-AOPs) have emerged as promising oxidative treatment technologies to eliminate recalcitrant chemicals and biological contaminants in drinking water. UV-AOPs inevitably alter the properties of natural organic matter (NOM) and affect the disinfection byproduct (DBP) formation in the post-disinfection. This paper provides a state-of-the-art review on the effects of UV-AOPs on the changes of NOM properties and the consequent impacts on DBP formation in the post-chlorination process. A tutorial review to the connotations of NOM properties (e.g., bulk properties, fractional constituents, and molecular structures) and the associated state-of-the-art analytical methods are firstly presented. The impacts of different radical-based AOPs on the changes of NOM properties together with the underlying NOM-radical reaction mechanisms are discussed. The impacts of alteration of NOM properties on DBP formation in the post-chlorination process are then reviewed. The current knowledge gaps and future research needs are finally presented, with emphases on the needs to strengthen the comparability of research data in literature, the accuracy in quantifying the reactive moieties of NOM, and the awareness of unknown DBPs in oxidative water treatment processes. The review and discussion improve the fundamental understanding of NOM-radical and NOM-chlorine chemistry. They also provide useful implications on the engineering design and operation of next-generation drinking water treatment plants.
Collapse
Affiliation(s)
- Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China.
| | - Zhong Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China.
| |
Collapse
|
11
|
Dong ZY, Lin YL, Zhang TY, Hu CY, Pan Y, Pan R, Tang YL, Xu B, Gao NY. Enhanced coagulation and oxidation by the Mn(VII)-Fe(III)/peroxymonosulfate process: Performance and mechanisms. WATER RESEARCH 2022; 226:119200. [PMID: 36257154 DOI: 10.1016/j.watres.2022.119200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
To improve the performance of the conventional coagulation process, a permanganate (Mn(VII)) pre-oxidation combined with Fe(III)/peroxymonosulfate (PMS) coagulation process (Mn(VII)-Fe(III)/PMS) that can significantly improve the removal of dissolved organic carbon (DOC), turbidity, and micropollutants is proposed in this study. Compared with conventional Fe(III) coagulation, the Mn(VII)-Fe(III)/PMS process can also significantly enhance the removal of iohexol and sulfamethoxazole in raw water. During this process, the primary reduction product, Mn(IV), after Mn(VII) pre-oxidation was adsorbed on the floc surfaces and involved in the Fe(III)/PMS process. The natural organic matter (NOM) in raw water mediated the redox cycle of iron. The synergistic effect of NOM, Fe, and Mn facilitated the redox cycle of Mn(III)/Mn(IV) and Fe(III)/Fe(II) to promote the activation of PMS. The sulfate radical (SO4•-) played an important role in the degradation of micropollutants. The formation potential of the detected volatile disinfection by-product (DBP) during the subsequent chlorination was reduced by 21.9% after the Mn(VII)-Fe(III)/PMS process. This study demonstrated the promising application of the Mn(VII)-Fe(III)/PMS process for coagulation and micropollutant control and illustrated the reaction mechanism. This study provides guidance for improving conventional drinking water treatment processes.
Collapse
Affiliation(s)
- Zheng-Yu Dong
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan, ROC
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Renjie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
12
|
Du Z, Ding S, Xiao R, Fang C, Song W, Jia R, Chu W. Does Snowfall Introduce Disinfection By-product Precursors to Surface Water? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14487-14497. [PMID: 36196960 DOI: 10.1021/acs.est.2c04408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Snow with large specific surface area and strong adsorption capacity can effectively adsorb atmospheric pollutants, which could/might lead to the increase of disinfection by-product (DBP) precursors in surface water. In this study, the contents and characteristics of dissolved organic matter (DOM) in meltwater were investigated, and DBP formation and the DBP-associated cytotoxicity index during chlorination of meltwater was first explored. Overall, meltwater exhibited high nitrogen contents. Meltwater-derived DOM was mainly composed of organics with low molecular weights, low aromaticity, and high unsaturated degrees. DBP formation potentials and cytotoxicity indexes in chlorinated meltwater were positively correlated with air quality index and were significantly impacted by snowfall stages. The trihalomethane and haloacetic acid yields from meltwater were relatively low, while yields of highly cytotoxic DBPs, especially halonitromethanes (6.3-10.8 μg-HNMs/mg-DOC), were significantly higher than those of surface water (1.7 μg-HNMs/mg-DOC). Notably, unsaturated nonaromatic organic nitrates in meltwater were important precursors of halonitromethanes. The actual monitoring results showed that snowfall significant increased the haloacetaldehydes and nitrogenous DBP formation levels of surface water. Considering increased DBP formation and DBP-associated toxicity, it was demonstrated that DOM derived from snowfall in atmosphere-polluted areas could deteriorate surface water quality and pose potential risks to drinking water.
Collapse
Affiliation(s)
- Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| | - Wuchang Song
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, China
- Shandong Province Water Supply and Drainage Monitoring Centre, Jinan250101, China
| | - Ruibao Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, China
- Shandong Province Water Supply and Drainage Monitoring Centre, Jinan250101, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai200092, China
| |
Collapse
|
13
|
Photoelectrocatalytic hydrogen peroxide production based on transition-metal-oxide semiconductors. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64028-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Jiang Q, Wang Y, Tian L, Liu Y, Liu J, He G, Li J. Pilot-scale and mechanistic study of the degradation of typical odors and organic compounds in drinking water by a combined UV/H 2O 2-BAC process. CHEMOSPHERE 2022; 292:133419. [PMID: 34982966 DOI: 10.1016/j.chemosphere.2021.133419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Odor problems are challenging issues in water treatment. Advanced oxidation has a significant degradation effect on these odors; however, some issues, such as oxidant residues and disinfection byproducts, exist in the use of advanced oxidation in actual water treatment. Because of the above issues, a combined advanced oxidation process has emerged-the UV/H2O2 -biological activated carbon (BAC) process can play a strong oxidizing role in advanced oxidation and uses the physical adsorption and biological effects of activated carbon. However, there have been few studies on the odor degradation mechanism and characteristics of activated carbon biofilms in actual water treatment. This paper systematically studied the organic and odor substances removal effects and mechanism of a pilot combined UV/H2O2-BAC process. The results showed that UV/H2O2-BAC technology had a good removal effect on odor substances under long-term stable operation. The concentrations of geosmin (GSM) and 2-methylisoborneol (2-MIB) after systemic treatment were below 5 ng/L. The removal rates of DOC, UV254 and H2O2 by the combined process were 53.60%, 73.08% and 60.20%, respectively. The results of full-scan determination of GSM and 2-MIB degradation by gas chromatography-mass spectrometry (GC-MS) were consistent with those of front-track analysis. The diversity, richness and evenness of microorganisms in the lower activated carbon layer were higher than those in the middle and upper activated carbon layers. The greater the difference in the carbon layer height was, the greater the difference in the biological community structure.
Collapse
Affiliation(s)
- Qingyue Jiang
- College of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101, Jinan, People's Republic of China.
| | - Yonglei Wang
- College of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101, Jinan, People's Republic of China.
| | - Liping Tian
- Weifang Municipal Public Utility Service Center, 261041, Weifang, People's Republic of China.
| | - Yulei Liu
- Jinan Municipal Engineering Design & Research Institute (Group) Co., Ltd., 250003, Jinan, People's Republic of China.
| | - Jianguang Liu
- College of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101, Jinan, People's Republic of China.
| | - Guilin He
- College of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101, Jinan, People's Republic of China.
| | - Jingjing Li
- College of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101, Jinan, People's Republic of China.
| |
Collapse
|
15
|
Wu Y, Sheng D, Wu Y, Sun J, Bu L, Zhu S, Zhou S. Molecular insights into formation of nitrogenous disinfection byproducts from algal organic matter in UV-LEDs/chlorine process based on FT-ICR analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152457. [PMID: 34952064 DOI: 10.1016/j.scitotenv.2021.152457] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Eutrophication is a globally concerned issue, which brings algal cells and algal organic matter (AOM) into drinking water treatment plants. AOM is an important branch of nitrogenous disinfection byproduct (N-DBP) precursors. The variation of AOM composition in UV-LEDs/chlorine process, and its relationship with N-DBP formation still remain much uncertainty. Herein, we used fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to investigate AOM transformation in UV-LEDs/chlorine process, with UV285 and UV365 as light source, and screen for typical precursors of N-DBPs. We found that more nitrogen-containing compounds were generated after UV-LEDs/chlorine process, leading to the larger formation of N-DBPs in postchlorination. Compounds such as lignin, proteins, and amino sugars tends to be oxidized by reactive species in UV-LEDs/chlorine process. Further, compounds with higher O/C and higher weighted average double bond equivalence (DBEw) are easier to form N-DBPs, including dichloroacetonitrile and trichloronitromethane. Also, influence factors including pH, UV fluence, post-chlorination time and bromide concentration on N-DBP formation were evaluated. The results show that N-DBP formation generally followed the order of UV285/chlorine-postchlorination, UV365/chlorine-postchlorination, and direct chlorination. Our study provides comprehensive information on N-DBP formation from AOM in UV-LEDs/chlorine-postchlorination from molecular levels.
Collapse
Affiliation(s)
- Yuwei Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Da Sheng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Julong Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
16
|
Luo Y, Liu C, Zhao M. CoFe-LDO nanoparticles as a novel catalyst of peroxymonosulfate (PMS) for histidine removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16517-16528. [PMID: 34648151 DOI: 10.1007/s11356-021-16853-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Dissolved organic nitrogen (DON) has been a research subject due to its potential to form nitrogenous disinfection byproducts (N-DBPs) in drinking water treatment. In our study, CoFe layered double oxide (CoFe-LDO) was selected as an effective catalyst for the removal of histidine by activation of peroxymonosulfate (PMS). The results investigated that the removal of DON and histidine within 1 h in the CoFe-LDO/PMS system were up to 61% and 72%, respectively. The influences of CoFe-LDO dosage, PMS dosage, and pH value for DON removal were also elucidated. The optimum pH was 8, and the optimal dosage of CoFe-LDO and PMS were 0.04 g/L and 0.5 mmol/L. It was found that SO4•- and •OH induced by the transformation of Co2+-Co3+ and Fe2+-Fe3+ on the catalyst surface were responsible for the degradation by ESR detection, in which SO4•- played a more important role. The degradation pathway of histidine indicated that it was partly oxidized to NH4+-N in the 60 min and no evident generation of N2 during the whole process. Furthermore, degradation products of histidine have also been revealed by the analysis of HPLC-MS. In addition, the generation potentials of two typical N-DBPs were also clarified. The formation potential of dichloroacetonitrile (DCAN) decreased, while that of dichloroacetamide (DCAcAm) increased firstly before declining.
Collapse
Affiliation(s)
- Yuye Luo
- College of Environment, Hohai University, 210098, Nanjing, China
| | - Cheng Liu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- College of Environment, Hohai University, 210098, Nanjing, China.
| | - Meiqi Zhao
- College of Environment, Hohai University, 210098, Nanjing, China
| |
Collapse
|
17
|
Du Z, Jia R, Song W, Wang Y, Zhang M, Pan Z, Sun S. The characteristic of N-nitrosodimethylamine precursor release from algal organic matter and degradation performance of UV/H 2O 2/O 3 technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148739. [PMID: 34328925 DOI: 10.1016/j.scitotenv.2021.148739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Seasonal cyanobacterial blooms in eutrophic water releases algal organic matter (AOM), which contains large amount of dissolved organic nitrogen (DON) and is difficult to be removed effectively by conventional treatment processes (e.g., coagulation and sand filtration) because of its high hydrophilicity. Moreover, N-nitrosodimethylamine (NDMA) can be generated by the reaction of AOM with disinfectants in the subsequent disinfection process. In this study, the formation of NDMA from different AOM components was explored and the control of algal-derived NDMA precursors by UV/H2O2/O3 was evaluated. The results showed that the hydrophilic and polar components of AOM with the low molecular weight had higher NDMA yields. UV-based advanced oxidation process (AOPs) is effective in degrading NDMA precursors, while the removal rate can be affected greatly by UV doses. The removal rate of NDMA precursors by UV/H2O2/O3 is higher than by UV/H2O2 or UV/O3 which can reach 95% at the UV dose of 400 mJ/cm2. An alkaline environment reduces the oxidation efficiency of UV/H2O2/O3 technology, while an acidic environment is conducive to its function. Inorganic anions such as HCO3-, SO42-, Cl- and NO3- are potential to compete with target algal-derived NDMA precursors for the oxidants reaction and inhibit the degradation/removal of these precursors. The degradation of algal-derived NDMA precursors by UV/H2O2/O3 is mainly accomplished by the oxidation of DON with secondary amide groups, and the main degradation mechanism by UV/H2O2/O3 was through the initial decomposition of macromolecular organic compounds such as biopolymers and humic substances and the further degradation of resulting small molecular components.
Collapse
Affiliation(s)
- Zhenqi Du
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101 Jinan, China; Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China
| | - Ruibao Jia
- Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China.
| | - Wuchang Song
- Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China
| | - Yonglei Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101 Jinan, China; Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China.
| | - Mengyu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101 Jinan, China; Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China
| | - Zhangbin Pan
- Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China; College of Chemical Engineering, China University of Petroleum (East China), 266580 Qingdao, China
| | - Shaohua Sun
- Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China
| |
Collapse
|
18
|
Ye T, Zhang TY, Tian FX, Xu B. The fate and transformation of iodine species in UV irradiation and UV-based advanced oxidation processes. WATER RESEARCH 2021; 206:117755. [PMID: 34695669 DOI: 10.1016/j.watres.2021.117755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Iodinated disinfection byproducts (I-DBPs) formed in water treatment are of emerging concern due to their high toxicity and the tase-and-odor problems associated with iodinated trihalomethanes (I-THMs). Iodoacetic acid and dichloroiodomethane are currently regulated in Shenzhen, China and the Ministry of Health of the People's Republic of China has also been considering regulating I-DBPs. Iodide (I-), organoiodine compounds (e.g., iodinated X-ray contrast media [ICM]), and iodate (IO3-) are the three common iodine sources in aquatic environment that lead to I-DBP formation. While UV irradiation effectively inactivate a wide range of microorganisms in water, it induces the transformation of these iodine sources, enabling the formation of I-DBPs. This review focuses on the fate and transformation of these iodine sources in UV-based water treatment (i.e., UV irradiation and UV-based advanced oxidation processes [UV-AOPs]) and the formation of I-DBPs in post-disinfection. I- released in UV-based treatments of ICM and can be oxidized in subsequent disinfection to hypoiodous acid (HOI), which reacts with natural organic matter (NOM) to produce I-DBPs. Both UV and UV-AOPs are not able to fully mineralize ICM and completely oxidize the released I- to (except UV/O3). Results reveal that UV and UV-AOPs are adequate for I-DBP degradation but require high UV doses. While the ideal I-DBP mitigation strategy awaits to be developed, understanding their sources and formation pathways aids in informed selections of water treatment processes, empowers water suppliers to meet drinking water standards, and minimizes consumers' exposure to I-DBPs.
Collapse
Affiliation(s)
- Tao Ye
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fu-Xiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
19
|
Shahi NK, Maeng M, Choi I, Dockko S. Degradation effect of ultraviolet-induced advanced oxidation of chlorine, chlorine dioxide, and hydrogen peroxide and its impact on coagulation of extracellular organic matter produced by Microcystis aeruginosa. CHEMOSPHERE 2021; 281:130765. [PMID: 34010716 DOI: 10.1016/j.chemosphere.2021.130765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Implementation of an ultraviolet (UV)-induced advanced oxidation process (AOP) before coagulation was found to enhance the removal of algae cells. However, the effect of UV-induced AOPs on extracellular cellular organic matter (EOM) and on its coagulation and removal was neglected. This study investigated the impact of UV-induced AOPs (UV/Cl2, UV/ClO2, and UV/H2O2) on EOM from Microcystis aeruginosa, and its coagulation and removal by a conventional gravity system (CGS), dissolved air flotation, and a low-energy flash-pressurized flotation (FPF) process. The changes in EOM characteristics before and after the UV-induced AOPs were based on UV absorbance (UV254) and liquid chromatography with organic carbon detection analysis. The reduction in UV254 increased with an increasing dose of oxidant and UV irradiation. The reduction in UV254 for UV/Cl2, UV/ClO2 and UV/H2O2 was 59.5%, 26.5%, and 17.5% respectively, for 0.71 mM equimolar concentration of oxidant and 1920 mJ/cm2 UV irradiation, as evident from a pseudo-first order kinetics study. Similarly, degradation of the high molecular weight to low molecular weight (LMW) fraction was pronounced for UV/Cl2. The coagulation efficiency decreased after UV-induced AOP in the following order: UV/H2O2 > UV/ClO2 > UV/Cl2. By contrast, the low-energy FPF process showed a higher removal of LMW fractions than CGS. Thus, low-energy FPF could be an alternative technology for the UV-induced AOP treatment system.
Collapse
Affiliation(s)
- Nirmal Kumar Shahi
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Minsoo Maeng
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ilhwan Choi
- Water Analysis and Research Center, Water Research Corporation, Daejeon, Republic of Korea
| | - Seok Dockko
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
20
|
Ruan X, Xiang Y, Shang C, Cheng S, Liu J, Hao Z, Yang X. Molecular characterization of transformation and halogenation of natural organic matter during the UV/chlorine AOP using FT-ICR mass spectrometry. J Environ Sci (China) 2021; 102:24-36. [PMID: 33637249 DOI: 10.1016/j.jes.2020.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/18/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
UV/chlorine process, as an emerging advanced oxidation process (AOP), was effective for removing micro-pollutants via various reactive radicals, but it also led to the changes of natural organic matter (NOM) and formation of disinfection byproducts (DBPs). By using negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS), the transformation of Suwannee River NOM (SRNOM) and the formation of chlorinated DBPs (Cl-DBPs) in the UV/chlorine AOP and subsequent post-chlorination were tracked and compared with dark chlorination. In comparison to dark chlorination, the involvement of ClO•, Cl•, and HO• in the UV/chlorine AOP promoted the transformation of NOM by removing the compounds owning higher aromaticity (AImod) value and DBE (double-bond equivalence)/C ratio and causing the decrease in the proportion of aromatic compounds. Meanwhile, more compounds which contained only C, H, O, N atoms (CHON) were observed after the UV/chlorine AOP compared with dark chlorination via photolysis of organic chloramines or radical reactions. A total of 833 compounds contained C, H, O, Cl atoms (CHOCl) were observed after the UV/chlorine AOP, higher than 789 CHOCl compounds in dark chlorination, and one-chlorine-containing components were the dominant species. The different products from chlorine substitution reactions (SR) and addition reactions (AR) suggested that SR often occurred in the precursors owning higher H/C ratio and AR often occurred in the precursors owning higher aromaticity. Post-chlorination further caused the cleavages of NOM structures into small molecular weight compounds, removed CHON compounds and enhanced the formation of Cl-DBPs. The results provide information about NOM transformation and Cl-DBPs formation at molecular levels in the UV/chlorine AOP.
Collapse
Affiliation(s)
- Xiaoxue Ruan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
21
|
Chen T, Yu Z, Xu T, Xiao R, Chu W, Yin D. Formation and degradation mechanisms of CX 3R-type oxidation by-products during cobalt catalyzed peroxymonosulfate oxidation: The roles of Co 3+ and SO 4·. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124243. [PMID: 33109408 DOI: 10.1016/j.jhazmat.2020.124243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Sulfate radical (SO4·-)-based advanced oxidation processes (AOPs) attract increasing attention in the control of micropollutants. However, SO4·- can react with other chemicals present in water and result in undesired oxidation by-products (OBPs) generation. The formation and degradation mechanisms of CX3R-type OBPs during cobalt catalyzed peroxymonosulfate (Co2+/PMS) oxidation were investigated. In the formation of CX3R-type OBPs, both Co3+ and SO4·- could convert chloride to free chlorine that then reacted with natural organic matter, leading to the formation of CX3R-type OBPs. The concentrations of trichloromethane, chloral hydrate, dichloroacetonitrile, dichloroacetamide and trichloroacetamide after 15 min reaction were 9.8, 3.9, 1.2, 5.9 and 22.3 nM, respectively. Compared to SO4·-, Co3+ played a more significant role in the CX3R-type OBP formation and calculated toxicity values of CX3R-type OBPs. CX3R-type OBPs could not only be formed but also be degraded at the same time during Co2+/PMS oxidation. As for the degradation of CX3R-type OBPs, both Co3+ and SO4·- could transform CX3R-type OBPs to chloride. Compared to Co3+, SO4·- played a more important role in the degradation of CX3R-type OBPs and the conversion from chloride to final by-product chlorate. The adverse effects that results from Co3+ need more attention in SO4·--based AOPs application.
Collapse
Affiliation(s)
- Tiantian Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ting Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
22
|
Xiang Y, Gonsior M, Schmitt-Kopplin P, Shang C. Influence of the UV/H 2O 2 Advanced Oxidation Process on Dissolved Organic Matter and the Connection between Elemental Composition and Disinfection Byproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14964-14973. [PMID: 33179505 DOI: 10.1021/acs.est.0c03220] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The UV/H2O2 process is a promising advanced oxidation process (AOP) for micropollutant abatement in drinking water treatment and water reuse plants. However, during micropollutant degradation by the AOP, dissolved organic matter (DOM) and the disinfection byproduct (DBP) formation potential may also be altered. This study investigated the influence of the UV/H2O2 AOP on the elemental composition and DBP formation potential of two DOM isolates by using ultrahigh-resolution mass spectrometry (UHRMS). After the AOP, 629 new chemical formulas with an increased degree of oxidation and decreased aromaticity were obtained. Such alterations led to the formation of 226 unknown DBPs with decreased aromaticity indices (AImod) in the subsequent 3-day chlorination. Links between the unknown DBPs and the corresponding precursors in DOM were visualized by network computational analysis. The analysis gave three zones in the van Krevelen diagram based on the possibility of the C7-22HnOm formulas located in each zone to link to the corresponding DBPs. A further investigation with two model compounds reconfirmed the hydroxylation and ring cleavage of DOM by HO· attack during the AOP and the influence on DBP formation. These results obtained from UHRMS build the connection between the elemental composition of DOM and the formation potential of DBPs.
Collapse
Affiliation(s)
- Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong SAR
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, United States
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum Muenchen, Research Unit Analytical BioGeoChemistry, Neuherberg 85764, Germany
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 80333, Germany
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong SAR
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong SAR
| |
Collapse
|
23
|
Chen H, Lin T, Zhang S, Chen W, Xu H, Tao H. Covalent organic frameworks as an efficient adsorbent for controlling the formation of disinfection by-products (DBPs) in chlorinated drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141138. [PMID: 32795759 DOI: 10.1016/j.scitotenv.2020.141138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
2,5-Dimethyl-p-phenylenediamine-1,3,5-triformylphloroglucinol covalent organic frameworks (PATP COF) were prepared and used as novel adsorbent for controlling the formation potential (FP) and reducing the toxic potential of both carbonaceous disinfection by-products (C-DBPs) and nitrogenous DBPs (N-DBPs) during their subsequent chlorination. During the PATP COF adsorption pretreatment process, the FP of C-DBPs, N-DBPs and total organic halogen (TOX) were reduced by 86.5, 75.4 and 81.1%, respectively. These removal efficiencies were significantly higher when compared with those obtained using a traditional activated carbon (AC) adsorption pretreatment process (42.7, 19.4 and 28.7%, respectively). By comprehensive toxicity calculations, a significant reduction in both the acute and chronic toxic potential of C-DBPs and N-DBPs were observed during the PATP COF adsorption process (with reduction rates of ~85 and ~ 75% observed for the C-DBPs and N-DBPs, respectively), which were comparable to the removal efficiencies observed for C-DBPs FP and N-DBPs FP by weight, suggesting the simultaneous and effective control of DBPs FP and their toxic potential. Cycling tests and stability trial also showed the excellent reusability, wide pH adaptability, and high stability of PATP COF, demonstrating its great potential application to the treatment of drinking water.
Collapse
Affiliation(s)
- Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Shisheng Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
24
|
Liu Y, Zhu K, Zhu H, Zhao M, Huang L, Dong B, Liu Q. Photooxidation of atrazine and its influence on disinfection byproducts formation during post-chlorination: effect of solution pH and mechanism. Sci Rep 2020; 10:20355. [PMID: 33230215 PMCID: PMC7684306 DOI: 10.1038/s41598-020-77006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
Partial photooxidation of micropollutants may lead to various degradation intermediates, obviously affecting disinfection byproducts (DBPs) formation during the post-chlorination process. The photooxidation of atrazine (ATZ) in aqueous solutions with low-pressure mercury UV lamps in UV, UV/H2O2 and UV/TiO2 treatment system and the formation of chlorinated disinfection byproducts (DBPs) during subsequent chlorination processes including dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), 1,1,1-trichloro-2-propanone (TCP), trichloromethane (TCM) and chloropicrin (CHP) were investigated in this study. The effect of solution pH on the oxidation pathway of ATZ in three UV photooxidation treatment process and the impact of photooxidation on the DBPs formations were assessed. Based on UPLC-ESI-MS/MS analyses, identification of main oxidation intermediates was performed and the plausible degradation pathways of ATZ in photooxidation system were proposed, indicating that photooxidation of ATZ in UV/H2O2 and UV/TiO2 process system was significantly pH-dependent processes. Dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), 1,1,1-trichloro-2-propanone (TCP), trichloromethane (TCM) and chloropicrin (CHP) were detected in photooxidized ATZ solutions. Compared to the other three DBPs, TCM and TCP were the main DBPs formed. The DBPs formations were greatly promoted in oxidized ATZ solutions. Solution pH and UV irradiation time exhibited obvious impact on the DBPs formation on the basis of DBP species. The variation tendency of DBPs observed relates to the combustion of ATZ in photooxidation system and the production oxidation intermediates.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Kai Zhu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276000, China.
| | - Huayu Zhu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Min Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276000, China
| | - Lihua Huang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276000, China
| | - Bin Dong
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276000, China
| | - Qianjin Liu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276000, China.
| |
Collapse
|
25
|
Wang G, Shi W, Ma D, Gao B. Impacts of permanganate/bisulfite pre-oxidation on DBP formation during the post chlorine disinfection of ciprofloxacin-contaminated waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138755. [PMID: 32402911 DOI: 10.1016/j.scitotenv.2020.138755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Bisulfite-activated permanganate (PM/BS) oxidation process can oxidize ciprofloxacin in complex water matrices rapidly. However, effects of PM/BS pre-oxidation on the formation of disinfection byproducts (DBPs) during post-chlorination of ciprofloxacin-contaminated waters need to be addressed. This study investigated the formation of trihalomethanes (THMs), haloacetonitriles (HANs), haloketones and trichloronitromethane during chlorination of ciprofloxacin-contaminated humic acid (HA), bovine serum albumin (BSA) and alginate solutions, and revealed the effects of PM/BS pre-oxidation on ciprofloxacin degradation and DBP formation during post-chlorination, considering the presence of Br-. Only THMs and HANs were quantifiable. THMs were the most abundant. Ciprofloxacin-contaminated HA exhibited the highest formation potential of DBPs and integrated toxic risk value (ITRV). In the absence of Br-, PM/BS pre-oxidation reduced or hardly affected the toxicity risks derived from DBPs formed from the post-chlorination. However, the presence of Br- greatly reduced the degradation of ciprofloxacin (30-50%) in various waters. In the ciprofloxacin-contaminated waters containing Br-, the total ITRVs of DBPs formed from post-chlorination increased by 60%-800% with PM/BS pre-oxidation, attributing to the enhanced formation of DBPs especially bromochloroacetonitrile and dibromoacetonitrile. Overall, PM/BS is a potential pre-oxidation technology for the treatment of ciprofloxacin-contaminated waters without bromide.
Collapse
Affiliation(s)
- Guiqiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Weiye Shi
- No.1 Institute of Geology and Mineral Resources of Shandong Province, Ji'nan 250014, China
| | - Defang Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
26
|
Bulman DM, Remucal CK. Role of Reactive Halogen Species in Disinfection Byproduct Formation during Chlorine Photolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9629-9639. [PMID: 32598837 DOI: 10.1021/acs.est.0c02039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The multiple reactive oxidants produced during chlorine photolysis effectively degrade organic contaminants during water treatment, but their role in disinfection byproduct (DBP) formation is unclear. The impact of chlorine photolysis on dissolved organic matter (DOM) composition and DBP formation is investigated using lake water collected after coagulation, flocculation, and filtration at pH 6.5 and pH 8.5 with irradiation at three wavelengths (254, 311, and 365 nm). The steady-state concentrations of hydroxyl radical and chlorine radical decrease by 38-100% in drinking water compared to ultrapure water, which is primarily attributed to radical scavenging by natural water constituents. Chlorine photolysis transforms DOM through multiple mechanisms to produce DOM that is more aliphatic in nature and contains novel high molecular weight chlorinated DBPs that are detected via high-resolution mass spectrometry. Quenching experiments demonstrate that reactive chlorine species are partially responsible for the formation of halogenated DOM, haloacetic acids, and haloacetonitriles, whereas trihalomethane formation decreases during chlorine photolysis. Furthermore, DOM transformation primarily due to direct photolysis alters DOM such that it is more reactive with chlorine, which also contributes to enhanced formation of novel DBPs during chlorine photolysis.
Collapse
Affiliation(s)
- Devon Manley Bulman
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Zhou R, Xu Z, Zhu J, Liu W, Meng Y, Zhu P, Zhou W, Huang C, Ding X. Determination of 10 Haloacetamides in drinking water by gas chromatography with automated solid phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1150:122191. [PMID: 32485650 DOI: 10.1016/j.jchromb.2020.122191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/29/2020] [Accepted: 05/23/2020] [Indexed: 11/17/2022]
Abstract
Drinking water disinfection may result in the formation of different classes of toxic disinfection by-products (DBPs). Haloacetamides (HAcAms) are an emerging class of nitrogenous DBPs (N-DBPs), which are generally more prevalent at lower concentrations in disinfected water than carbonaceous DBPs. Herein a fast, convenient, and effective method of analyzing 10 HAcAms in drinking water samples was demonstrated. This method was developed using gas chromatography /electron capture detection (GC/ECD) supplemented with automated solid phase extraction (auto-SPE). The variables for automated SPE procedures were further optimized, including the selection of SPE sorbents, types and volumes of extraction solvents, SPE washing solvents and wash times. Under optimized conditions, the instrumental linearity range was 0.5-150 μg L-1 with correlation coefficients>0.9975. The limits of detection and quantification of this method were 0.002-0.003 μg L-1 and 0.005-0.010 μg L-1, respectively. The recovery values ranged from 72.4% to 108.5%, and the relative standard deviations ranged from 3.3% to 9.1%. Therefore, the auto-SPE-GC-ECD method showed acceptable linearity and repeatability and was subsequently validated and applied to analyze 10 HAcAms in drinking water.
Collapse
Affiliation(s)
- Run Zhou
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Zhifei Xu
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Jingying Zhu
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Wenwei Liu
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Yuanhua Meng
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China; Public Health Research Center at Jiangnan University, Wuxi 214122, China
| | - Pengfei Zhu
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Weijie Zhou
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Chunhua Huang
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Xinliang Ding
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China.
| |
Collapse
|
28
|
Cai L, Li L, Yu S. Formation of odorous aldehydes, nitriles and N-chloroaldimines from combined leucine in short oligopeptides during chlorination. WATER RESEARCH 2020; 177:115803. [PMID: 32302809 DOI: 10.1016/j.watres.2020.115803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have focused on investigating the formation of odorous by-products during the chlorination of free amino acids (AAs). However, studies on the formation of odorous by-products during the chlorination of combined AAs, which are much more abundant in natural waters than free AAs, are very limited. In this study, the generation of odorous aldehyde, nitrile and N-chloroaldimine from short oligopeptides containing combined Leucine (Leu) (a typical precursor of odorous by-products), including glycylleucine (Gly-Leu), leucylglycine (Leu-Gly), and trileucine (Leu-Leu-Leu), was investigated. The reaction mechanisms were then proposed based on Acquity UPLC-qTOF mass spectrometer measurement and kinetic studies modelled with Kintecus. The results indicated that a series of sequential reactions, including substitution, dehydrohalogenation, β-elimination, hydrolysis and decarboxylation reactions, occurred during the chlorination of short oligopeptides. The chlorination of Gly-Leu and Leu-Leu-Leu formed free Leu, which continued to react with chlorine, producing isovaleraldehyde, isovaleronitrile and N-chloroisovaleraldimine. Compared with Gly-Leu, Leu-Leu-Leu produced less free Leu, and therefore, a smaller amount of Leu-derived odorous by-products was generated. Leu-Gly produced free Gly, which was not a precursor of odorous by-products. Thus, neither isovaleraldehyde nor N-chloroisovaleraldimine was formed. Notably, isovaleronitriles can be formed directly from a β-elimination reaction during chlorination of Leu-Gly and Leu-Leu-Leu, and thus high yields of isovaleronitriles were observed after chlorination. The yields of odorous by-products during chlorination of short oligopeptides increased with increasing Cl/N ratios (the molar ratio of chlorine to nitrogen in the AAs) and reached their maximum at Cl/N = 2.4, except the yield of isovaleraldehyde formed from Gly-Leu reached its maximum at Cl/N = 1.6. UV and UV/H2O2 pre-treatments decreased odorous by-product formation during subsequent chlorination through non-peptide bond breaking of short oligopeptides. This study facilitates the identification of the causes of off-flavour problems in drinking water and the development of ways to control these problems.
Collapse
Affiliation(s)
- Luyang Cai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Shuili Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
29
|
Kiattisaksiri P, Khan E, Punyapalakul P, Musikavong C, Tsang DCW, Ratpukdi T. Vacuum ultraviolet irradiation for mitigating dissolved organic nitrogen and formation of haloacetonitriles. ENVIRONMENTAL RESEARCH 2020; 185:109454. [PMID: 32278158 DOI: 10.1016/j.envres.2020.109454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The main objective of this work was to investigate the feasibility of using vacuum ultraviolet (VUV, 185 + 254 nm) and ultraviolet (UV, 254 nm) for the reduction of dissolved organic nitrogen (DON) and haloacetonitrile formation potential (HANFP) of surface water and treated effluent wastewater samples. The results showed that the reduction of dissolved organic carbon (DOC), DON, hydrophobicity (HPO), absorbance at 254 nm (UV254), and fluorescence excitation-emission matrix (FEEM) of both water samples by VUV was higher compared to using UV. The addition of H2O2 remarkably improved the performances of VUV and UV. VUV/H2O2 exhibited the highest removal efficiency for DOC and DON. Even though HANFP increased at the early stage, its concentration decreased (19-72%) at the end of treatment (60 min). Decreases in DON (30-41%) and DOC (51-57%) led to HANFP reduction (53-72%). Moreover, FEEM revealed that substantial reduction in soluble microbial product-like compounds (nitrogen-rich organic) had a strong correlation with HANFP reduction, implying that this group of compounds act as a main precursor of HANs. The VUV/H2O2 system significantly reduced HANFP more than UV/H2O2 and therefore is suitable for controlling HAN precursors and HAN formation in drinking water and reclaimed wastewater.
Collapse
Affiliation(s)
- Pradabduang Kiattisaksiri
- Faculty of Public Health, Thammasat University (Lampang Center), Lampang, 52190, Thailand; International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154-4015, United States
| | - Patiparn Punyapalakul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Thunyalux Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering, and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
30
|
Lin Q, Dong F, Miao Y, Li C, Fei W. Removal of disinfection by-products and their precursors during drinking water treatment processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:698-705. [PMID: 31643120 DOI: 10.1002/wer.1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
In this study, we investigated the control efficiency of a wide variety of disinfection by-products (DBPs) (including trihalomethanes [THMs], haloacetic acids [HAAs], haloacetonitiles [HANs], haloketones [HKs], haloaldehydes [Has], and trihalonitromethanes [THNMs]) with different drinking water treatment processes including pre-ozonation, coagulation-sedimentation, sand filtration, and ozone combined with biological activated carbon (O3 -BAC) advanced treatment processes. The assessment of the treatment efficiency regarding the removal of organic matter was measured by the excitation emission matrix (EEM) spectra. There was a superior efficiency in reducing the formation of DBPs and their precursors by different drinking water treatment processes. Though some DBPs such as THMs could be promoted by ozonation, these by-products from ozonation could be degraded by the following BAC filtration process. In addition, the organic matter from the aromaticity, fulvic acid-like, protein, and soluble microbial by-products-like regions could be further degraded by the O3 -BAC treatment. PRACTITIONER POINTS: A wide variety of DBPs in different drinking water treatment processes was investigated. The treatment efficiency regarding the removal of organic matter was measured. Some DBPs such as THMs and HAAs could be increased by ozonation. The removal percentage of nitrogen precursors and organic carbon would be increased by BAC filtration.
Collapse
Affiliation(s)
- Qiufeng Lin
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
| | - Feilong Dong
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
| | - Yunxia Miao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Weicheng Fei
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Shen X, Xiao F, Zhao H, Chen Y, Fang C, Xiao R, Chu W, Zhao G. In Situ-Formed PdFe Nanoalloy and Carbon Defects in Cathode for Synergic Reduction-Oxidation of Chlorinated Pollutants in Electro-Fenton Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4564-4572. [PMID: 31977202 DOI: 10.1021/acs.est.9b05896] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Complete dechlorination and mineralization of chlorophenols via the reduction-oxidation-mediated electro-Fenton process with a composite bulk cathode is first proposed. The in situ formation of a PdFe nanoalloy and carbon defects as key active sites is mutually induced during the formation of a carbon aerogel-based electrode. Specifically, the PdFe nanoalloy promotes the generation of [H]ads as reduction sites and improves the electron transfer via an electrical circuit, while the carbon defects selectively favor the 2e- oxygen reduction pathway. Notably, this work implies a novel electrocatalytic model for the formation of ·OH via (2 + 1)e- oxygen reduction by a consecutive reaction with carbon defects and a PdFe nanoalloy. Complete total organic carbon removal and dechlorination of 3-chlorophenol were performed after 6 h. The kinetic rate constant for removing haloacetamides (HAMs) in drinking water was 0.21-0.41 h-1, and the degradation efficiency was self-enhanced after electrolysis for 2 h because of the increased concentration of [H+]. The specific energy consumption was ∼0.55 W·h·g-1 at 100% removal of some HAMs, corresponding to a power consumption of 0.6-1.1 kW·h for complete dehalogenation per ton of drinking water in waterworks. Moreover, the PdFe alloy/CA exhibited extreme mechanical and electrochemical stability with limited iron (∼0.07 ppm) and palladium (0.02 ppm) leaching during the actual application.
Collapse
Affiliation(s)
- Xuqian Shen
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Fan Xiao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Hongying Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Ying Chen
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| |
Collapse
|
32
|
Wang Y, Couet M, Gutierrez L, Allard S, Croué JP. Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation. WATER RESEARCH 2020; 172:115463. [PMID: 31962269 DOI: 10.1016/j.watres.2019.115463] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 05/28/2023]
Abstract
The presence of Dissolved Organic Matter (DOM) can exert a strong influence on the effectiveness of the UV/chlorine process. This study examined the impact of five DOM isolates with different characteristics on the degradation kinetics of model contaminant primidone (PM) during UV/chlorine treatment. The formation of Disinfection By-Products (DBPs) from DOM after 15-min UV/chlorine treatment followed by 24 h chlorination was investigated and compared with chlorination alone. The use of chemical probes and radical scavengers revealed that •OH and ClO• were the main radical species responsible for the loss of PM at acidic and alkaline conditions, respectively. All tested DOM isolates significantly inhibited the decay of PM. A strong negative correlation (>0.93) was observed between the decay rate constants of PM and SUVA of DOM isolates, except for EfOM isolate, which induced the strongest inhibitory effect due to its higher abundance in sulfur-containing functional groups (i.e., sink of •OH/Cl• radicals). Compared with chlorination, the formation of Adsorbable Organic Chlorine (AOCl) and Trichloromethane (TCM) during the UV/Chlorine process was enhanced and hindered for low SUVA isolates and high SUVA DOM, respectively. However, Dichloroacetonitrile (DCAN) formation was generally lower for all isolates except for Ribou Reservoir DOM at pH 8.4 because of its high reactive nitrogenous DBP precursors at caustic conditions. However, when normalized to the chlorine consumed, the UV/Chlorine process always led to a lower DBPs formation compared with chlorination alone.
Collapse
Affiliation(s)
- Yuru Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China; Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia
| | - Marie Couet
- Institut de Chimie des Milieux et des Matériaux, IC2MP UMR 7285 CNRS, Université de Poitiers, France; Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia
| | - Leonardo Gutierrez
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia; Facultad Del Mar y Medio Ambiente, Universidad Del Pacifico, Ecuador
| | - Sébastien Allard
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux, IC2MP UMR 7285 CNRS, Université de Poitiers, France; Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia.
| |
Collapse
|
33
|
He J, Wang F, Zhao T, Liu S, Chu W. Characterization of dissolved organic matter derived from atmospheric dry deposition and its DBP formation. WATER RESEARCH 2020; 171:115368. [PMID: 31841956 DOI: 10.1016/j.watres.2019.115368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Disinfection by-products (DBPs) precursors can be regarded mainly from the drinking water sources and the water treatment processes. A recent study showed that dissolved organic matter (DOM) in atmosphere is an important precursor source of DBPs through atmospheric wet deposition. However, little information is available on the characteristics of DOM derived from dry deposition particulate matter (PM) and the impact of dry deposition on CX3R-type DBP formation. This study determined whether dry deposition directly contributed the production of DBPs during chlor (am)ination and investigated the mechanism behind the contribution based on the combination of the resin and membrane for fractionating DOM fractions. The results showed that the hydrophilic fraction (HPI) contributed the most DOM and low molecular weight DOM (<10 kDa) was the main component of HPI. In addition, aromatic proteins and soluble microbial products-like compounds were the dominant fluorescent species in DOM derived from PM, and <10 kDa transphilic was the most abundant. The concentrations of C-DBPs and N-DBPs in disinfected PM solution were trihalomethanes (THMs) > haloacetic acids (HAAs) > haloaldehydes and haloacetamides > haloacetonitriles > halonitromethanes for both chlorination and chloramination. The main contributors of calculated toxicity are transphilic and hydrophobic in chlorination and chloramination respectively. Dry deposition PM was deduced to contribute DOM and DBP formation after chlorination in surface water, especially THMs and HAAs. These results presented herein provide key information for controlling DBPs from the perspectives of atmospheric dry deposition, especially in the case of heavy air pollution.
Collapse
Affiliation(s)
- Jijie He
- State Key Laboratory of Pollution Control and Resources Reuse, National Centre for International Research of Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Shaogang Liu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, Guangxi, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, National Centre for International Research of Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
34
|
Liu Z, Lin YL, Chu WH, Xu B, Zhang TY, Hu CY, Cao TC, Gao NY, Dong CD. Comparison of different disinfection processes for controlling disinfection by-product formation in rainwater. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121618. [PMID: 31791866 DOI: 10.1016/j.jhazmat.2019.121618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
With increasing shortage of clean water, rainwater has been considered as a precious alternative drinking water source. The processes applied to rainwater treatment are responsible for the safety of drinking water. Therefore, we systematically compared different disinfection processes to evaluate the control of disinfection by-product (DBP) formation and integrated cyto- and genotoxicity of the treated rainwater for the first time. The evaluated disinfection processes included chlorination and chloramination, pre-oxidation by potassium permanganate (KMnO4) and potassium ferrate (K2FeO4), ultraviolet/hydrogen peroxide (UV/H2O2), and ultraviolet/persulfate (UV/PS) processes. The results revealed that chloramination was effective for controlling the formation of carbonaceous DBPs (C-DBPs), but not nitrogenous DBPs (N-DBPs). Compared to KMnO4 pre-oxidation, better reduction of almost all DBPs was observed during K2FeO4 pre-oxidation. According to the calculation of cytotoxicity index (CTI) and genotoxicity index (GTI), cyto- and genotoxicity of the samples decreased obviously at the dosage of ≥ 2.0 mg/L KMnO4 and K2FeO4. The control of the cyto- and genotoxicity of the formed DBPs from the two UV-related AOPs was more effective at the dosage of ≥ 1.0 mM PS and ≥ 5.0 mM H2O2. Moreover, UV/PS was much more powerful to alter the structure of DBP precursors in rainwater.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan, ROC
| | - Wen-Hai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Tong-Cheng Cao
- School of Chemical Science and Engineering, Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 200092, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, ROC
| |
Collapse
|
35
|
Gao YQ, Zhang J, Li C, Tian FX, Gao NY. Comparative evaluation of metoprolol degradation by UV/chlorine and UV/H 2O 2 processes. CHEMOSPHERE 2020; 243:125325. [PMID: 31733542 DOI: 10.1016/j.chemosphere.2019.125325] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The degradation of metoprolol (MTP), a β-blocker commonly used for cardiovascular diseases, by UV/chlorine and UV/H2O2 processes was comparatively evaluated. MTP direct photolysis at 254 nm could be neglected, but remarkable MTP degradation was observed in both the UV/chlorine and UV/H2O2 systems. Compared with UV/H2O2, UV/chlorine has a more pronounced MTP degradation efficiency. In addition to primary radicals (OH and Cl), secondary radicals (ClO and Cl2-) played a pivotal role in degrading MTP by UV/chlorine process. The relative contributions of hydroxyl radicals (OH) and reactive chlorine species (RCS) in the UV/chlorine system varied at different solution pH values (i.e., the contribution of RCS increased from 57.7% to 75.1% as the pH increased from 6 to 8). The degradation rate rose as the oxidant dosage increased in the UV/chlorine and UV/H2O2 processes. The presence of Cl- slightly affected MTP degradation in both processes, while the existence of HCO3- and HA inhibited MTP degradation to different extents in both processes. In terms of the overall cost of electrical energy, UV/chlorine is more cost efficient than UV/H2O2. The degradation products during the two processes were identified and compared, and the degradation pathways were proposed accordingly. Compared with the direct chlorination of MTP, pre-oxidation with UV/chlorine and UV/H2O2 significantly enhanced the formation of commonly known DBPs. Therefore, when using UV/chlorine and UV/H2O2 in real waters to remove organic pollutants, the possible risk of enhanced DBP formation resulting from the degradation of certain pollutants during post-chlorination should be carefully considered.
Collapse
Affiliation(s)
- Yu-Qiong Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Jia Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Fu-Xiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
36
|
Zhiyong Y, Ruiying Q, Runbo Y, Zhiyin W, Huanrong L. Photodegradation comparison for methyl orange by TiO 2, H 2O 2 and KIO 4. ENVIRONMENTAL TECHNOLOGY 2020; 41:547-555. [PMID: 30059265 DOI: 10.1080/09593330.2018.1505962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
The photodegradation of methyl orange in water by the catalyst TiO2 or the oxidants (H2O2, KIO4) or their combination (TiO2 + H2O2, TiO2 + KIO4) under UV light illumination is studied. During the above process, as far as the photodiscoloration degree of methyl orange is concerned, the effect sequence is KIO4 + TiO2 >> KIO4 > TiO2 + H2O2 > TiO2 > H2O2; as far as the photomineralization degree of methyl orange is concerned, the effect sequence is TiO2 ≈ TiO2 + H2O2 > H2O2 > KIO4 + TiO2 >> KIO4; as for the catalysis of TiO2, h+ plays more important role than HO·, the inorganic ions ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]) are generated, especially for the amount of [Formula: see text]. Active HO· is generated, we can measure HO· by terephthalic acid (TA) indirectly: TA reacts with HO· to form highly fluorescent product, namely 2-hydroxyterephthalic acid (TAOH).
Collapse
Affiliation(s)
- Yu Zhiyong
- Department of Chemistry, Renmin University of China, Beijing, People's Republic of China
| | - Qiu Ruiying
- Department of Chemistry, Renmin University of China, Beijing, People's Republic of China
| | - Yang Runbo
- Department of Chemistry, Renmin University of China, Beijing, People's Republic of China
| | - Wang Zhiyin
- Shaanxi Key Laboratory of Catalysis; School of Chemical & Environmental Sciences, Shaanxi University of Technology, Hanzhong, Shaanxi, People's Republic of China
| | - Li Huanrong
- Department of Chemistry, Renmin University of China, Beijing, People's Republic of China
| |
Collapse
|
37
|
Bu L, Sun J, Wu Y, Zhang W, Duan X, Zhou S, Dionysiou DD, Crittenden JC. Non-negligible risk of chloropicrin formation during chlorination with the UV/persulfate pretreatment process in the presence of low concentrations of nitrite. WATER RESEARCH 2020; 168:115194. [PMID: 31655436 DOI: 10.1016/j.watres.2019.115194] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
The UV/persulfate (PS) process is a promising water treatment technology, and it can not only effectively degrade contaminants of emerging concern, but also control formation of disinfection byproducts (DBPs). In this study, we investigated the potential and mechanisms of chloropicrin (i.e. trichloronitromethane, TCNM) formation during chlorination that followed UV/PS pretreatment in the presence of low concentrations of nitrite. We found that when nitrite was present in the UV/PS system, unexpected high concentrations of TCNM were formed. The formation potential of TCNM was impacted by operational conditions and water matrix components: (1) high pH enhanced TCNM formation; (2) high UV fluence inhibited TCNM formation; and (3) organic compounds containing phenolic groups enhanced TCNM formation. We discovered that electrophilic substitutions by reactive nitrogen species were favored for phenolic groups, and thus more nitrite-N was transformed to organic nitrogen. We also found that more TCNM was generated from natural organic matter than algal organic matter during chlorination following pretreatment using UV/PS. Accordingly, more attention needs to be paid to TCNM formation, if nitrite is present and the water is pretreated using UV/PS (when applied at upstream of chlorination). For example, we found that if monochloramine was used as a disinfectant downstream of the UV/PS process, the formation of TCNM was reduced.
Collapse
Affiliation(s)
- Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Julong Sun
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Weiqiu Zhang
- School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Xiaodi Duan
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - John C Crittenden
- School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
38
|
Tak S, Vellanki BP. Applicability of advanced oxidation processes in removing anthropogenically influenced chlorination disinfection byproduct precursors in a developing country. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109768. [PMID: 31606645 DOI: 10.1016/j.ecoenv.2019.109768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The studies on occurrence of contaminants of emerging concern in drinking water treatment plants or even wastewater treatment plants in developing country like India, are very limited. Trihalomethanes (THMs) is one such contaminant of concern in drinking water treatment sector. THMs are the major disinfection byproducts (DBPs) formed during the widely used chlorination process. Their identification and removal is of utmost importance in developed as well as developing nations. This study is first of its kind to assess the removal of mixture of urban run-off driven organic matter, agricultural run-off driven organic matter, untreated sewage effluent driven organic matter and little natural organic matter (NOM) (altogether NefOM) (major DBP precursors) using advanced oxidation processes (AOPs) in the Indian region. Since, NOM vary geographically, this study will add up to applicability of generally utilized AOPs for removal of site explicit (Indian) NefOM. Trihalomethanes at a conventional water treatment plant at Mathura and a moving bed biofilm based non-conventional water treatment plant at Agra were monitored over a year, demonstrating the inability of the water treatment plants to limit formation of DBPs from Yamuna inlet water at any time of the year. Various AOPs (UV-H2O2, O3-H2O2, O3) and UV (ultraviolet) photolysis were assessed for their ability to decrease the trihalomethane forming potential (THMFP) by degrading the contaminants in the waters of Yamuna. Kinetic studies were conducted to evaluate the selected AOPs based on their ability to mineralize dissolved organic carbon (DOC), and decrease UV254 at various pH, UV intensities, and ozone and hydrogen peroxide concentrations. UV-L/H2O2 at an intensity of 47 mJ/cm2/min, pH = 7, and at hydrogen peroxide concentration of 0.5 mM provided an optimum reduction of DOC (64%) and UV254 (87%). Fractionation studies indicated that treatment by UV-L/H2O2 leads to the most significant decrease in the hydrophobic fraction of the water, while further study indicated that UV-L/H2O2 also showed maximum attenuation of THMFP.
Collapse
Affiliation(s)
- Surbhi Tak
- Environmental Engineering Laboratory, Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
| | - Bhanu Prakash Vellanki
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
39
|
Ding S, Wang F, Chu W, Fang C, Pan Y, Lu S, Gao N. Using UV/H 2O 2 pre-oxidation combined with an optimised disinfection scenario to control CX 3R-type disinfection by-product formation. WATER RESEARCH 2019; 167:115096. [PMID: 31577966 DOI: 10.1016/j.watres.2019.115096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/22/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
The effects of UV/H2O2 pre-oxidation or disinfection methods on the formation of partial disinfection by-products (DBPs) have been studied previously. This study assessed the effect of UV/H2O2 pre-oxidation combined with optimisation of the disinfection method on the formation of six classes of CX3R-type DBPs, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetaldehydes (HALs), haloacetonitriles (HANs), halonitromethanes (HNMs), and haloacetamides (HAMs). Experimental results showed that a simulated distribution system (SDS) in-situ chloramination or pre-chlorination followed by chloramination effectively decreased total CX3R-type DBP formation by 51.1-63.5% compared to SDS chlorination, but little reduction in DBP-associated toxicity was observed. The dominant contributors to the calculated toxicity were HANs and HALs. UV/H2O2 pre-oxidation was able to destroy the aromatic and dissolved organic nitrogen components of natural organic matter. As a consequence, THM, HAA, and HAL formations increased by 49.5-55.0%, 47.8-61.9%, and 42.0-67.1%, respectively, whereas HAN, HNM, and HAM formations significantly decreased by 52.1-83.6%, 42.9-87.3%, and 74.1-100.0%. UV/H2O2 pre-oxidation increased total CX3R-type DBP formation, during SDS chlorination, whereas SDS in-situ chloramination or pre-chlorination followed by chloramination of UV/H2O2-treated water produced lower total CX3R-type DBPs than water without UV/H2O2 pre-oxidation. Nevertheless, the DBP-associated toxicity of water with UV/H2O2 pre-oxidation was substantially lower than the toxicity for water without UV/H2O2 pre-oxidation, decreased by 24.1-82.7%. HALs followed by HANs contribute to major toxic potencies in UV/H2O2 treated water. The best DBP concentration and DBP-associated toxicity abatement results were achieved for water treated by UV/H2O2 coupled with in-situ chloramination treatment.
Collapse
Affiliation(s)
- Shunke Ding
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu province, China
| | - Shan Lu
- China Institute of Building Standard Design & Research co., LTD, Beijing, 100048, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
40
|
Zhang Y, Xiao Y, Zhang Y, Lim TT. UV direct photolysis of halogenated disinfection byproducts: Experimental study and QSAR modeling. CHEMOSPHERE 2019; 235:719-725. [PMID: 31279122 DOI: 10.1016/j.chemosphere.2019.06.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
UV direct photolysis has been used as a promising process to remove halogenated disinfection byproducts (DBPs) generated in water. In this study, experimental studies and modeling approaches were applied to investigate the UV direct photolysis rate constants for 40 kinds of halogenated DBPs. The fluence-based pseudo-first-order rate constants for the removal of halogenated DBPs under UV photolysis spanned more than 2 orders of magnitude, with a range of (0.23-29.84) × 10-4 cm2 mJ-1. DBPs with higher number of halogenated substituents featured higher photolysis rate constants. The degradation efficiencies of DBPs were also affected by the species of halogen substituents, which followed the trend of iodo- > bromo- > chloro- DBPs. A quantitative structure-activity relationship (QSAR) model was established on the basis of the observed degradation rate constant values, which contained a quantum-chemical descriptor (ELUMO-EHOMO) and a molecular descriptor (Eta_C). The calculated parameters of the developed model indicated its good robustness and high reliability. The developed QSAR model can predict the degradation rate constants for DBPs within factors of 1/3 to 3. The model was validated using application domain and visualized in a Williams plot. The selected descriptors for QSAR model can explain the reaction mechanism for UV direct photolysis.
Collapse
Affiliation(s)
- Yiqing Zhang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yongjun Xiao
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Yicheng Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Teik-Thye Lim
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
41
|
Zhang A, Wang F, Chu W, Yang X, Pan Y, Zhu H. Integrated control of CX 3R-type DBP formation by coupling thermally activated persulfate pre-oxidation and chloramination. WATER RESEARCH 2019; 160:304-312. [PMID: 31154128 DOI: 10.1016/j.watres.2019.05.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
The alternative disinfectant chloramine can lower the formation of carbonaceous DBPs (C-DBPs) but promote the formation of nitrogenous DBPs (N-DBPs), which are more cytotoxic and genotoxic. In this study, the combination of thermally activated persulfate pre-oxidation and post-chloramination (TA/PS-NH2Cl) was proposed to control the formation and reduce the toxicity of both C-DBPs and N-DBPs. The formation, speciation and toxicity of trihalomethanes, haloacetic acids, haloaldehydes, haloacetonitriles, halonitromethanes and haloacetamides, collectively defined as CX3R-type DBPs, under TA/PS-NH2Cl process were compared with processes of chlorination alone (Cl2), chloramination alone (NH2Cl) and coupled thermally activated persulfate pre-oxidation with post-chlorination (TA/PS-Cl2). Results showed that chloramination could reduce formation of C-DBPs and total organic halogen (TOX) while increase N-DBP formation, and the introduction of TA/PS pretreatment process slightly increased the formation of C-DBPs and TOX but sharply reduced the formation of N-DBPs with higher toxicity as well as brominated CX3R-type DBPs that are more toxic than their chlorinated analogues. By comprehensive toxicity calculation, an outright decline of both cytotoxicity and genotoxicity risk of CX3R-type DBPs was observed during TA/PS-NH2Cl process compared with Cl2, NH2Cl, and TA/PS-Cl2 processes. In summary, TA/PS-NH2Cl process was a potential effective method for integrally controlling the formation of CX3R-type DBPs and their toxicity and is suggested to be used to treat raw waters containing no bromide or low levels of bromide considering bromate caused by TA/PS pre-oxidation. The study may provide a feasible and economical method for DBP control on the background of global warming.
Collapse
Affiliation(s)
- Aihong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai, 200092, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai, 200092, China.
| | - Xu Yang
- State Key Laboratory of Pollution Control and Resources Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai, 200092, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Huifeng Zhu
- Shanghai Municipal Water Supply Dispatching and Monitoring Center, Shanghai, 200002, China
| |
Collapse
|
42
|
Hua Z, Kong X, Hou S, Zou S, Xu X, Huang H, Fang J. DBP alteration from NOM and model compounds after UV/persulfate treatment with post chlorination. WATER RESEARCH 2019; 158:237-245. [PMID: 31039453 DOI: 10.1016/j.watres.2019.04.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
The UV/persulfate process is an effective advanced oxidation process (AOP) for the abatement of a variety of micropollutants via producing sulfate radicals (SO4•-). However, when this technology is used to reduce target pollutants, the precursors of disinfection byproducts (DBPs), such as natural organic matter (NOM) and organic nitrogen compounds, can be altered. This study systematically investigated the DBP formation from NOM and five model compounds after UV/H2O2 and UV/persulfate treatments followed with 24 h chlorination. Compared to chlorination alone, the yields of trichloromethane (TCM) and dichloroacetonitrile (DCAN) from NOM decreased by 50% and 54%, respectively, after UV/persulfate treatment followed with chlorination, whereas those of chloral hydrate (CH), 1,1,1-trichloropropanone (1,1,1-TCP) and trichloronitromethane (TCNM) increased by 217%, 136%, and 153%, respectively. The effect of UV/H2O2 treatment on DBP formation shared a similar trend to that of UV/persulfate treatment, but the DBP formation was higher from the former. As the UV/persulfate treatment time prolonged or the persulfate dosage increased, the formation of TCM and DCAN continuously decreased, while that of CH, 1,1,1-TCP and TCNM presented an increasing and then decreasing pattern. SO4•- activated benzoic acid (BA) to form phenolic compounds that enhanced the formation of TCM and CH, while it deactivated resorcinol to decrease the formation of TCM. SO4•- reacted with aliphatic amines such as methylamine (MA) and dimethylamine (DMA) to form nitro groups, which significantly increased the formation of TCNM in post chlorination, and the rate was determined to be higher than that of HO•. This study illuminated the diverse impacts of the structures of the precursors on DBP formation after UV/persulfate treatment, and DBP alteration depended on the reactivity between SO4•- and specific precursor.
Collapse
Affiliation(s)
- Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiujuan Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shaodong Hou
- Guangdong Shaoke Environmental Protection Technology Co., Ltd., Shaoguan, 512000, China
| | - Shiqian Zou
- Suzhou Environmental Monitoring Center, Suzhou, 215000, China
| | - Xibing Xu
- China Shipbuilding Industry Corporation International Engineering Co., Ltd., Beijing, 100121, China
| | - Huang Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
43
|
Sun X, Chen M, Wei D, Du Y. Research progress of disinfection and disinfection by-products in China. J Environ Sci (China) 2019; 81:52-67. [PMID: 30975330 DOI: 10.1016/j.jes.2019.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Disinfection is an indispensable water treatment process for killing harmful pathogens and protecting human health. However, the disinfection has caused significant public concern due to the formation of toxic disinfection by-products (DBPs). Lots of studies on disinfection and DBPs have been performed in the world since 1974. Although related studies in China started in 1980s, a great progress has been achieved during the last three decades. Therefore, this review summarized the main achievements on disinfection and DPBs studies in China, which included: (1) the occurrence of DBPs in water of China, (2) the identification and detection methods of DBPs, (3) the formation mechanisms of DBPs during disinfection process, (4) the toxicological effects and epidemiological surveys of DBPs, (5) the control and management countermeasures of DBPs in water disinfection, and (6) the challenges and chances of DBPs studies in future. It is expected that this review would provide useful information and reference for optimizing disinfection process, reducing DBPs formation and protecting human health.
Collapse
Affiliation(s)
- Xuefeng Sun
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Chen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Bulman DM, Mezyk SP, Remucal CK. The Impact of pH and Irradiation Wavelength on the Production of Reactive Oxidants during Chlorine Photolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4450-4459. [PMID: 30888799 DOI: 10.1021/acs.est.8b07225] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chlorine photolysis is an advanced oxidation process which relies on photolytic cleavage of free available chlorine (i.e., hypochlorous acid and hypochlorite) to generate hydroxyl radical, along with ozone and a suite of halogen radicals. Little is known about the impact of wavelength on reactive oxidant generation even though chlorine absorbs light within the solar spectrum. This study investigates the formation of reactive oxidants during chlorine photolysis as a function of pH (6-10) and irradiation wavelength (254, 311, and 365 nm) using a combination of reactive oxidant quantification with validated probe compounds and kinetic modeling. Observed chlorine loss rate constants increase with pH during irradiation at high wavelengths due to the higher molar absorptivity of hypochlorite (p Ka = 7.5), while there is no change at 254 nm. Hydroxyl radical and chlorine radical steady-state concentrations are greatest under acidic conditions for all tested wavelengths and are highest using 254 and 311 nm irradiation. Ozone generation is observed under all conditions, with maximum cumulative concentrations at pH 8 for 311 and 365 nm. A comprehensive kinetic model generally predicts the trends in chlorine loss and oxidant concentrations, but a comparison of previously published kinetic models reveals the challenges of modeling this complex system.
Collapse
Affiliation(s)
- Devon Manley Bulman
- Environmental Chemistry and Technology Program University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Stephen P Mezyk
- Department of Chemistry and Biochemistry California State University at Long Beach Long Beach , California 90840 , United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
- Department of Civil and Environmental Engineering University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
45
|
Chuang YH, Szczuka A, Shabani F, Munoz J, Aflaki R, Hammond SD, Mitch WA. Pilot-scale comparison of microfiltration/reverse osmosis and ozone/biological activated carbon with UV/hydrogen peroxide or UV/free chlorine AOP treatment for controlling disinfection byproducts during wastewater reuse. WATER RESEARCH 2019; 152:215-225. [PMID: 30677632 DOI: 10.1016/j.watres.2018.12.062] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 05/23/2023]
Abstract
Ozone and biological activated carbon (O3/BAC) is being considered as an alternative advanced treatment process to microfiltration and reverse osmosis (MF/RO) for the potable reuse of municipal wastewater. Similarly, the UV/free chlorine (UV/HOCl) advanced oxidation process (AOP) is being considered as an alternative to the UV/hydrogen peroxide (UV/H2O2) AOP. This study compared the performance of these alternative treatment processes for controlling N-nitrosamines and chloramine-reactive N-nitrosamine and halogenated disinfection byproduct (DBP) precursors during parallel, pilot-scale treatment of tertiary municipal wastewater effluent. O3/BAC outperformed MF/RO for controlling N-nitrosodimethylamine (NDMA), while MF/RO was more effective for controlling N-nitrosomorpholine (NMOR) and chloramine-reactive NDMA precursors. The UV/H2O2 and UV/HOCl AOPs were equally effective for controlling N-nitrosamines in O3/BAC effluent, but UV/HOCl was less effective for controlling NDMA in MF/RO effluent, likely due to the promotion of dichloramine under these conditions. MF/RO was more effective than O3/BAC for controlling chloramine-reactive halogenated DBP precursors on both a mass and toxicity-weighted basis. UV/H2O2 AOP treatment was more effective at controlling the toxicity-weighted chloramine-reactive DBP precursors for most halogenated DBP classes by preferentially degrading the more toxic brominated species. However, the total toxicity-weighted DBP precursor concentrations were similar for treatment by either AOP because UV/H2O2 AOP treatment promoted the formation of iodoacetic acid, which exhibits a very high toxic potency. The combined O3/BAC/MF/RO train was the most effective for controlling N-nitrosamines and the total toxicity-weighted DBP precursor concentrations with or without treatment by either AOP.
Collapse
Affiliation(s)
- Yi-Hsueh Chuang
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | - Aleksandra Szczuka
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | | | | | | | | | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA.
| |
Collapse
|
46
|
Al Marzouqi F, Al Farsi B, Kuvarega AT, Al Lawati HAJ, Al Kindy SMZ, Kim Y, Selvaraj R. Controlled Microwave-Assisted Synthesis of the 2D-BiOCl/2D-g-C 3N 4 Heterostructure for the Degradation of Amine-Based Pharmaceuticals under Solar Light Illumination. ACS OMEGA 2019; 4:4671-4678. [PMID: 31459654 PMCID: PMC6648535 DOI: 10.1021/acsomega.8b03665] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/01/2019] [Indexed: 06/02/2023]
Abstract
Designing efficient 2D-bismuth oxychloride (BiOCl)/2D-g-C3N4 heterojunction photocatalysts by the microwave-assisted method was studied in this work using different amounts of BiOCl plates coupled with g-C3N4 nanosheets. The effects of coupling the 2D structure of g-C3N4 with the 2D structure of BiOCl were systematically examined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence (PL), lifetime decay measurement, surface charges of the samples at various pH conditions, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The prepared photocatalysts were used for the degradation of amine-based pharmaceuticals, and nizatidine was used as a model pollutant to evaluate the photocatalytic activity. The UV-vis DRS and other optical properties indicated the major effect of coupling of BiOCl with g-C3N4 into a 2D/2D structure. The results showed a narrowing in the band gap energy of the composite form, whereas the PL and lifetime analysis showed greater inhibition of the electron-hole recombination process and slightly longer charge carrier lifetime. Accordingly, the BiOCl/g-C3N4 composite samples exhibited an enhancement in the photocatalytic performance, specifically for the 10% BiOCl/g-C3N4 sample. Moreover, the zeta potential of this sample at different pH values was evaluated to determine the isoelectric point of the synthesized composite material. Consequently, the pH was adjusted to match the isoelectric point of the complex materials, which further enhanced the activity. Further degradation of pharmaceuticals was studied under solar light irradiation, and 96% degradation was achieved within 30 min.
Collapse
Affiliation(s)
- Faisal Al Marzouqi
- Department
of Chemistry, College of Science and Department of Physics, College
of Science, Sultan Qaboos University, P.O. Box 36, P.C. 123, Al-Khoudh, Muscat, Sultanate of Oman
| | - Basim Al Farsi
- Department
of Chemistry, College of Science and Department of Physics, College
of Science, Sultan Qaboos University, P.O. Box 36, P.C. 123, Al-Khoudh, Muscat, Sultanate of Oman
| | - Alex T. Kuvarega
- Nanotechnology
and Water Sustainability Research Unit, College of Science, Engineering
and Technology, University of South Africa, Florida Science Campus, Johannesburg 2196, South Africa
| | - Haider A. J. Al Lawati
- Department
of Chemistry, College of Science and Department of Physics, College
of Science, Sultan Qaboos University, P.O. Box 36, P.C. 123, Al-Khoudh, Muscat, Sultanate of Oman
| | - Salma M. Z. Al Kindy
- Department
of Chemistry, College of Science and Department of Physics, College
of Science, Sultan Qaboos University, P.O. Box 36, P.C. 123, Al-Khoudh, Muscat, Sultanate of Oman
| | - Younghun Kim
- Department
of Chemical Engineering, Kwangwoon University, Seoul 139-701, Korea
| | - Rengaraj Selvaraj
- Department
of Chemistry, College of Science and Department of Physics, College
of Science, Sultan Qaboos University, P.O. Box 36, P.C. 123, Al-Khoudh, Muscat, Sultanate of Oman
| |
Collapse
|
47
|
Wang H, Wang T, Yang S, Liu X, Kou L, Huang T, Wen G. Nitrogen Removal in Oligotrophic Reservoir Water by a Mixed Aerobic Denitrifying Consortium: Influencing Factors and Immobilization Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E583. [PMID: 30781590 PMCID: PMC6406282 DOI: 10.3390/ijerph16040583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 11/16/2022]
Abstract
Nitrogen pollution in reservoirs has received increasing attention in recent years. Although a number of aerobic denitrifying strains have been isolated to remove nitrogen from eutrophic waters, the situation in oligotrophic water environments has not received significant attention. In this study, a mixed aerobic denitrifying consortium screened from reservoir samples was used to remove nitrogen in an oligotrophic denitrification medium and actual oligotrophic source water. The results showed that the consortium removed 75.32% of nitrate (NO₃--N) and 63.11% of the total nitrogen (TN) in oligotrophic reservoir water during a 24-h aerobic cultivation. More initial carbon source was helpful for simultaneous removal of carbon and nitrogen in the reservoir source water. NO₃--N and TN were still reduced by 60.93% and 46.56% at a lower temperature (10 °C), respectively, though the rates were reduced. Moreover, adding phosphorus promoted bacterial growth and increased TN removal efficiency by around 20%. The performance of the immobilized consortium in source water was also explored. After 6 days of immobilization, approximately 25% of TN in the source water could be removed by the carriers, and the effects could last for at least 9 cycles of reuse. These results provide a good reference for the use of aerobic denitrifiers in oligotrophic reservoirs.
Collapse
Affiliation(s)
- Hanyue Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tong Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xueqing Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Liqing Kou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
48
|
Nihemaiti M, Miklos DB, Hübner U, Linden KG, Drewes JE, Croué JP. Removal of trace organic chemicals in wastewater effluent by UV/H 2O 2 and UV/PDS. WATER RESEARCH 2018; 145:487-497. [PMID: 30193192 DOI: 10.1016/j.watres.2018.08.052] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
In this study, we comparatively investigated the degradation of 12 trace organic chemicals (TOrCs) during UV/H2O2 and UV/peroxydisulfate (PDS) processes. Second-order rate constants for the reactions of iopromide, phenytoin, caffeine, benzotriazole, and primidone with sulfate radical (SO4•-) were determined for the first time. Experiments were conducted in buffered pure water and wastewater effluent with spiked TOrCs. UV/PDS degraded all TOrCs more efficiently than UV/H2O2 in buffered pure water due to the higher yield of SO4•- than that of hydroxyl radical (•OH) at the same initial molar dose of PDS and H2O2, respectively. UV/PDS showed higher selectivity toward TOrCs removal than UV/H2O2 in wastewater effluent. Compounds with electron-rich moieties, such as diclofenac, venlafaxine, and metoprolol, were eliminated faster in UV/PDS whereas UV/H2O2 was more efficient in degrading compounds with lower reactivity to SO4•-. The fluence-based rate constants ( [Formula: see text] ) of TOrCs in wastewater effluent linearly increased as a function of initial H2O2 dose during UV/H2O2, possibly due to the constant scavenging impact of the wastewater matrix on •OH. However, exponential increase of kobs-UV/PDS with increasing PDS dose was observed for most compounds during UV/PDS, suggesting the decreasing scavenging effect of the water matrix (electron-rich site of effluent organic matter (EfOM)) after initial depletion of SO4•- at low PDS dose. Fulvic and humic-like fluorophores appeared to be more persistent during UV/H2O2 compared to aromatic protein and soluble microbial product-like fluorophores. In contrast, UV/PDS efficiently degraded all identified fluorophores and showed less selectivity toward the fluorescent EfOM components. Removal pattern of TOrCs during pilot-scale UV/PDS was consistent with lab-scale experiments, however, overall removal rates were lower due to the presence of higher concentration of EfOM and nitrite.
Collapse
Affiliation(s)
- Maolida Nihemaiti
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Perth, Australia
| | - David B Miklos
- Chair of Urban Water Systems Engineering, Technical University of Munich, Munich, Germany
| | - Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Munich, Germany
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, USA
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Munich, Germany
| | - Jean-Philippe Croué
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Perth, Australia.
| |
Collapse
|
49
|
Fang C, Krasner SW, Chu W, Ding S, Zhao T, Gao N. Formation and speciation of chlorinated, brominated, and iodinated haloacetamides in chloraminated iodide-containing waters. WATER RESEARCH 2018; 145:103-112. [PMID: 30121431 DOI: 10.1016/j.watres.2018.07.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Haloacetamides (HAMs), an emerging class of disinfection by-products, have received increasing attention due to their elevated cyto- and genotoxicity. However, only limited information is available regarding the iodinated analogues. This study investigated the formation and speciation of iodinated haloacetamides (I-HAMs) and their chlorinated/brominated analogues during the chloramination of bromide and/or iodide-containing waters and a model compound solution over various time periods. The rapid formation of diiodoacetamide (DIAM) was observed during chloramination of three simulated samples, whereas brominated (Br-HAMs) and chlorinated haloacetamides (Cl-HAMs) increased slowly with increasing reaction time. To further understand the differences in the formation of HAMs containing different halogens, experiments with the model compound asparagine in the presence/absence of iodide were conducted. Moreover, iodine utilisation factors and iodine incorporation factors were observed to increase significantly faster and were substantially higher than those of bromine. This implied that, compared with bromide, iodide has substantially greater potential to be transformed to the corresponding HAMs during chloramination, similar to that of other classes of DBPs. That is, I-HAMs formed faster than the other species investigated, including Cl-HAMs and Br-HAMs, in the early reaction stages (0-3 h). The effect of the bromide/iodide ratio (i.e., constant iodide, increasing bromide) on I-HAM formation was also examined. With increasing bromide/iodide ratio, the formation of Br-HAMs increased and dichloroacetamide decreased, but the formation of DIAM was largely unchanged. This was consistent with the constant level of iodide in spite of the increasing bromide. Chlorine and ammonia are applied separately during chloramination in water treatment, so the effect of pre-chlorination (before adding ammonia) on the formation and speciation of I-HAMs during in situ chloramination was also evaluated. Effective mitigation of DIAM formation with in situ chloramination was achieved, and the efficiency improved with increasing pre-chlorination time, where iodide was oxidised to iodate. The HAM-associated cytotoxicity was calculated to determine the change in toxicity at different reaction times, bromide/iodide ratios, and pre-chlorination times. A similar trend as the formation of I-HAMs was observed, which increased rapidly in the first 3 h, but decreased somewhat subsequently. When the bromide/iodide ratio and pre-chlorination time was increased, the calculated toxicity of the HAMs increased (due to more formation of Br-HAMs and less Cl-HAMs) and decreased (due to less DIAM formation), respectively.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, National Centre for International Research of Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | | | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, National Centre for International Research of Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resources Reuse, National Centre for International Research of Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Tiantao Zhao
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, National Centre for International Research of Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
50
|
Zhang J, Liu J, He CS, Qian C, Mu Y. Formation of iodo-trihalomethanes (I-THMs) during disinfection with chlorine or chloramine: Impact of UV/H 2O 2 pre-oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:764-771. [PMID: 29879665 DOI: 10.1016/j.scitotenv.2018.05.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Ultraviolet/hydrogen peroxide (UV/H2O2) pre-oxidation has the potential to induce reactions with dissolved organic matter (DOM) and alter the generation of disinfection byproducts (DBPs). This study evaluated the influence of UV/H2O2 pretreatment on the formation of iodo-trihalomethanes (I-THMs) during disinfection with chlorine or chloramine. The changes of precursors, I- and Br-, after UV/H2O2 pretreatment were investigated, and then, the formation and speciation of I-THMs during chlorination or chloramination after pre-oxidation were explored. Additionally, the effects of UV doses and H2O2 concentrations on the formation and speciation of I-THMs were studied. It was found that UV/H2O2 pretreatment could change larger molecular weight (MW) DOM to smaller MW species, which had less aromatic organic compounds and fluorescence substances. Additionally, insignificant transformations of I- and Br- were observed after UV/H2O2 treatment. Compared to direct disinfection, UV/H2O2 pretreatment resulted in 23.0 ± 3.5% reduction in I-THMs formation during post-chlorination while an enhancement was observed during post-chloramination at a UV dose of 460 mJ/cm2 and 20 mg/L H2O2. Moreover, total I-THM concentration increased from 43.7 ± 2.4 to 97.6 ± 14.9 nM with the increase of UV doses from 0 to 1400 mJ/cm2 during the post-chlorination process, while reduced when the UV fluence was >460 mJ/cm2 during the post-chloramination. Additionally, the generation of I-THMs during both post-chlorination and post-chloramination was positively related to the H2O2 levels from 0 to 20 mg/L in the UV/H2O2 pretreatment.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jing Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Chuan-Shu He
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Chen Qian
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|