1
|
Stamos NA, Kerrigan S, Stiven A, Nichol GS, Bezzu CG, Burt L, Moggach SA, Turner GF, McKeown NB. Porous Molecular Crystals Derived from Cofacial Porphyrin/Phthalocyanine Heterodimers. Angew Chem Int Ed Engl 2025; 64:e202418443. [PMID: 39530334 DOI: 10.1002/anie.202418443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Porphyrin-based porous materials are of growing interest as heterogeneous catalysts especially for reactions that are of importance to sustainability. Here we demonstrate that porous molecular crystals can be prepared by the simple co-crystallisation of tetraphenylporphyrin (TPP) with octa(2',6'-di-iso-propylphenoxy)phthalocyanine or some of its metal complexes [(dipPhO)8PcM; M=H2, Al-OH, Ti=O, Mn-Cl, Fe-Cl, Co, Ni, Cu, Zn, Ga-Cl, Ag, In-Cl or Au-Cl]. This process is facilitated by the efficient formation of the supramolecular heterodimer between TPP and (dipPhO)8PcM, which is driven by the complementary shape and symmetry of the two macrocycles. The (dipPhO)8PcM component directs the crystal structure of the heterodimers to form Phthalocyanine Nanoporous Crystals (PNCs) of similar structure to those formed by (dipPhO)8PcM alone. The incorporation of TPP appears to partially stabilise the PNCs towards the removal of included solvent and for cocrystals containing (dipPhO)8PcCo stability can be enhanced further by the insitu addition of 4,4-bipyridyl to act as a "molecular wall tie". These stabilised PNC/TPP cocrystals have a Brunauer-Emmett-Teller surface area (SABET) of 454 m2 g-1 and a micropore volume (Vmp) of 0.22 mL g-1. The reactivity of both macrocycles within the PNC/TPP co-crystals is demonstrated by insitu metal insertion.
Collapse
Affiliation(s)
- Nikolaos-Angelos Stamos
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Shannah Kerrigan
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Alexander Stiven
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Gary S Nichol
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - C Grazia Bezzu
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Luke Burt
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Gemma F Turner
- School of Molecular Sciences, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Neil B McKeown
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
2
|
Su L, Yang D, Jiang Y, Li Y, Di K, Wang B, Ye S, Qu J. A Bioinspired Iron‐Molybdenum μ‐Nitrido Complex and Its Reactivity toward Ammonia Formation. Angew Chem Int Ed Engl 2022; 61:e202203121. [DOI: 10.1002/anie.202203121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Linan Su
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yang Jiang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Yahui Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Kai Di
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Shengfa Ye
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
- State Key Laboratory of Bioreactor Engineering Shanghai Collaborative Innovation Centre for Biomanufacturing Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
3
|
Su L, Yang D, Jiang Y, Li Y, Di K, Wang B, Ye S, Qu J. A Bioinspired Iron‐Molybdenum μ‐Nitrido Complex and Its Reactivity toward Ammonia Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Linan Su
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yang Jiang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Yahui Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Kai Di
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Shengfa Ye
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
- State Key Laboratory of Bioreactor Engineering Shanghai Collaborative Innovation Centre for Biomanufacturing Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
4
|
Zaitseva SV, Zdanovich SA, Tyurin DV, Koifman OI. Macroheterocyclic μ-Nitrido- and μ-Carbido Dimeric Iron and Ruthenium Complexes as a Molecular Platform for Modeling Oxidative Enzymes (A Review). RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622030160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Ng R, Ng WM, Cheung WM, Sung HHY, Williams ID, Leung WH. Heterometallic iron(IV) μ-nitrido complexes supported by a tetradentate Schiff base ligand. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Zaitseva SV, Yu. Tyulyaeva E, Tyurin DV, Zdanovich SA, Koifman OI. Easy access to powerful ruthenium phthalocyanine high-oxidized species. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
|
8
|
Zhang S, Cui P, Liu T, Wang Q, Longo TJ, Thierer LM, Manor BC, Gau MR, Carroll PJ, Papaefthymiou GC, Tomson NC. N-H Bond Formation at a Diiron Bridging Nitride. Angew Chem Int Ed Engl 2020; 59:15215-15219. [PMID: 32441448 PMCID: PMC7680347 DOI: 10.1002/anie.202006391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 01/07/2023]
Abstract
Despite their connection to ammonia synthesis, little is known about the ability of iron-bound, bridging nitrides to form N-H bonds. Herein we report a linear diiron bridging nitride complex supported by a redox-active macrocycle. The unique ability of the ligand scaffold to adapt to the geometric preference of the bridging species was found to facilitate the formation of N-H bonds via proton-coupled electron transfer to generate a μ-amide product. The structurally analogous μ-silyl- and μ-borylamide complexes were shown to form from the net insertion of the nitride into the E-H bonds (E=B, Si). Protonation of the parent bridging amide produced ammonia in high yield, and treatment of the nitride with PhSH was found to liberate NH3 in high yield through a reaction that engages the redox-activity of the ligand during PCET.
Collapse
Affiliation(s)
- Shaoguang Zhang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Peng Cui
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Tianchang Liu
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Thomas J Longo
- Department of Physics, Villanova University, Villanova, PA, 19085, USA
| | - Laura M Thierer
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Michael R Gau
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | | | - Neil C Tomson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Zhang S, Cui P, Liu T, Wang Q, Longo TJ, Thierer LM, Manor BC, Gau MR, Carroll PJ, Papaefthymiou GC, Tomson NC. N−H Bond Formation at a Diiron Bridging Nitride. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shaoguang Zhang
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Peng Cui
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Tianchang Liu
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Thomas J. Longo
- Department of Physics Villanova University Villanova PA 19085 USA
| | - Laura M. Thierer
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Brian C. Manor
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Michael R. Gau
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | | | - Neil C. Tomson
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
10
|
Nevonen DE, Ferch LS, Chernii VY, Herbert DE, van Lierop J, Nemykin VN. X-Ray structures, Mössbauer hyperfine parameters, and molecular orbital descriptions of the phthalocyaninato iron(II) azole complexes. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619502043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The electronic structures of a set of PcFe(azole)2 complexes (azole = imidazole, [Formula: see text]-methylimidazole, pyrazole, isoxazole, thiazole, 1,2,4-triazole, 3-amino-1,2,4,-triazole, and 5-amino-1,2,3,4-tetrazole) were examined by Mössbauer spectroscopy and Density Functional Theory (DFT) calculations. In addition, the geometric distortions in these compounds were elucidated by X-ray crystallography for imidazole, pyrazole, and thiazole-containing compounds. Predicted by DFT calculations, Mössbauer hyperfine parameters for all compounds are in reasonable agreement with experimental results, and the influence of the [Formula: see text]-donor and [Formula: see text]-acceptor properties of the axial azoles on the electronic structure of the PcFe(azole)2 complexes is demonstrated by comparison with the reference PcFePy2 compound.
Collapse
Affiliation(s)
- Dustin E. Nevonen
- Department of Chemistry, University of Manitoba, R3T 2N2 Winnipeg, MB, Canada
| | - Laura S. Ferch
- Department of Chemistry, University of Manitoba, R3T 2N2 Winnipeg, MB, Canada
| | - Victor Y. Chernii
- Institute of General and Inorganic Chemistry NASU, 03142 Kyiv, Ukraine
| | - David E. Herbert
- Department of Chemistry, University of Manitoba, R3T 2N2 Winnipeg, MB, Canada
| | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, R3T 2N2 Winnipeg, MB, Canada
| | - Victor N. Nemykin
- Department of Chemistry, University of Manitoba, R3T 2N2 Winnipeg, MB, Canada
| |
Collapse
|
11
|
Xu G, Zhou J, Wang Z, Holm RH, Chen XD. Controlled Incorporation of Nitrides into W-Fe-S Clusters. Angew Chem Int Ed Engl 2019; 58:16469-16473. [PMID: 31489739 DOI: 10.1002/anie.201908968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 11/08/2022]
Abstract
Incorporation of monatomic 2p ligands into the core of iron-sulfur clusters has been researched since the discovery of interstitial carbide in the FeMo cofactor of Mo-dependent nitrogenase, but has proven to be a synthetic challenge. Herein, two distinct synthetic pathways are rationalized to install nitride ligands into targeted positions of W-Fe-S clusters, generating unprecedented nitride-ligated iron-sulfur clusters, namely [(Tp*)2 W2 Fe6 (μ4 -N)2 S6 L4 ]2- (Tp*=tris(3,5-dimethyl-1-pyrazolyl)hydroborate(1-), L=Cl- or Br- ). 57 Fe Mössbauer study discloses metal oxidation states of WIV 2 FeII 4 FeIII 2 with localized electron distribution, which is analogous to the mid-valent iron centres of FeMo cofactor at resting state. Good agreement of Mössbauer data with the empirical linear relationship for Fe-S clusters indicates similar ligand behaviour of nitride and sulfide in such clusters, providing useful reference for reduced nitrogen in a nitrogenase-like environment.
Collapse
Affiliation(s)
- Gan Xu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jie Zhou
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Zheng Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Richard H Holm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Xu-Dong Chen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
12
|
Xu G, Zhou J, Wang Z, Holm RH, Chen X. Controlled Incorporation of Nitrides into W‐Fe‐S Clusters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gan Xu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing Jiangsu 210023 China
| | - Jie Zhou
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing Jiangsu 210023 China
| | - Zheng Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing Jiangsu 210023 China
| | - Richard H. Holm
- Department of Chemistry and Chemical BiologyHarvard University Cambridge MA 02138 USA
| | - Xu‐Dong Chen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing Jiangsu 210023 China
| |
Collapse
|
13
|
Yamada Y, Sugiura T, Morita K, Ariga-Miwa H, Tanaka K. Improved synthesis of monocationic μ–nitrido-bridged iron phthalocyanine dimer with no peripheral substituents. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Mihara N, Yamada Y, Takaya H, Kitagawa Y, Igawa K, Tomooka K, Fujii H, Tanaka K. Site-Selective Supramolecular Complexation Activates Catalytic Ethane Oxidation by a Nitrido-Bridged Iron Porphyrinoid Dimer. Chemistry 2019; 25:3369-3375. [PMID: 30548706 DOI: 10.1002/chem.201805580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 11/06/2022]
Abstract
Development of supramolecular methods to further activate a highly reactive intermediate is a fascinating strategy to create novel potent catalysts for activation of inert chemicals. Herein, a supramolecular approach to enhance the oxidizing ability of a high-valent oxo species of a nitrido-bridged iron porphyrinoid dimer that is a known potent molecular catalyst for light alkane oxidation is reported. For this purpose, a nitrido-bridged dinuclear iron complex of porphyrin-phthalocyanine heterodimer 35+ , which is connected through a fourfold rotaxane, was prepared. Heterodimer 35+ catalyzed ethane oxidation in the presence of H2 O2 at a relatively low temperature. The site-selective complexation of 35+ with an additional anionic porphyrin (TPPS4- ) through π-π stacking and electrostatic interactions afforded a stable 1:1 complex. It was demonstrated that the supramolecular post-synthetic modification of 35+ enhances its catalytic activity efficiently. Moreover, supramolecular conjugates achieved higher catalytic ethane oxidation activity than nitrido-bridged iron phthalocyanine dimer, which is the most potent iron-oxo-based molecular catalyst for light-alkane oxidation reported so far. Electrochemical measurements proved that the electronic perturbation from TPPS4- to 35+ enhanced the catalytic activity.
Collapse
Affiliation(s)
- Nozomi Mihara
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Hikaru Takaya
- IRCELS, Institute for Chemical Research, Kyoto University, Goka-sho Uji, Kyoto, 611-0011, Japan
| | - Yasutaka Kitagawa
- Division of Chemical Engineering, Department of Materials Engineering, Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, and IRCCS, Kyushu University, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, and IRCCS, Kyushu University, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Graduate School of Humanities and Science, Nara Women's University, Kitauoyanishi, Nara, 630-8506, Japan
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
15
|
Zaitseva SV, Zdanovich SA, Tyurin DV, Koifman OI. Molecular Complexes of μ-Carbidodimeric Iron(IV) Tetra-4-tert-butylphthalocyaninate with Nitrogenous Bases. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218060166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Cheung WM, Ng WM, Wong WH, Lee HK, Sung HHY, Williams ID, Leung WH. A Nitrido-bridged Heterometallic Ruthenium(IV)/Iron(IV) Phthalocyanine Complex Supported by A Tripodal Oxygen Ligand, [Co(η 5-C 5H 5){P(O)(OEt) 2} 3] -: Synthesis, Structure, and Its Oxidation to Give Phthalocyanine Cation Radical and Hydroxyphthalocyanine Complexes. Inorg Chem 2018; 57:9215-9222. [PMID: 29992815 DOI: 10.1021/acs.inorgchem.8b01229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dinuclear iron nitrido phthalocyanine complexes are of interest owing to their applications in catalytic oxidation of hydrocarbons. While nitrido-bridged diiron phthalocyanine complexes are well documented, the oxidation chemistry of heterodinuclear iron(IV) phthalocyanine nitrides has not been well explored. In this paper we report on the synthesis of a heterometallic FeIV/RuIV phthalocyanine nitride and its oxidation to yield phthalocyanine cation radical and hydroxyphthalocyanine complexes. Treatment of [FeII(Pc)] (Pc2- = phthalocyanine dianion) with [RuVI(LOEt)(N)Cl2] (LOEt- = [Co(η5-C5H5){P(O)(OEt)2}3]-) (1) afforded the heterometallic μ-nitrido complex [Cl2(LOEt)RuIV(μ-N)FeIV(Pc)(H2O)] (2) that contains an RuIV=N = FeIV linkage with the Ru-N and Fe-N distances of 1.689(6) and 1.677(6) Å, respectively, and Ru-N-Fe angle of 176.0(4)°. Substitution of 2 with 4- tert-butylpyridine (Bupy) gave [Cl2(LOEt)RuIV(μ-N)FeIV(Pc)(Bupy)]. The cyclic voltammogram of 2 displayed a reversible Pc-centered oxidation couple at +0.18 V versus Fc+/0 (Fc = ferrocene). The oxidation of 2 with [N(4-BrC6H4)3]SbCl6 led to isolation of the cationic complex [Cl2(LOEt)RuIV(μ-N)FeIV(Pc·+)(H2O)][SbCl6]0.85[SbCl5(OH)]0.15 (2[SbCl6]0.85[SbCl5(OH)]0.15), whereas that with PhICl2 yielded the chloride complex [Cl2(LOEt)RuIV(μ-N)FeIV(Pc·+)Cl] (3). Complexes 2[SbCl6]0.85[SbCl5(OH)]0.15 and 3 have been characterized by X-ray crystallography. The UV/visible spectra of 2+ (λmax = 515 and 747 nm) and 3 (λmax = 506 and 748 nm) displayed absorption bands that are characteristic of Pc cation radical. The EPR spectrum of 3 showed a signal with the g value of 2.0012 (width = 5 G) that is consistent with an organic radical. The spectroscopic data support the formulation of 2+ and 3 as RuIV-FeIV Pc cation radical complexes. The reaction of 2 with PhI(CF3CO2)2 in dried CH2Cl2 afforded a mixture of [Cl2(LOEt)RuIV(μ-N)FeIV(Pc·+)(CF3CO2)] (4) and a hydroxyphthalocyanine complex, [Cl2(LOEt)RuIV(μ-N)FeIV(Pc-OH)(H2O)](CF3CO2) (5), whereas that in wet CH2Cl2 (containing ca. 0.5% water) led to isolation of 5 as the sole product. Complex 4 was independently prepared by salt metathesis of 3 with AgCF3CO2.
Collapse
Affiliation(s)
- Wai-Man Cheung
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| | - Wai-Ming Ng
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| | - Wai-Ho Wong
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| | - Hung Kay Lee
- Department of Chemistry , The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong , China
| | - Herman H-Y Sung
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| | - Ian D Williams
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| | - Wa-Hung Leung
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| |
Collapse
|
17
|
Colomban C, Kudrik EV, Sorokin AB. Heteroleptic μ-nitrido diiron complex supported by phthalocyanine and octapropylporphyrazine ligands: Formation of oxo species and their reactivity with fluorinated compounds. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis and reactivity of [Formula: see text]-bridged diiron macrocyclic complexes have been a topic of increasing interest in recent years since the observation of particular catalytic properties of these complexes. Herein, we report a preparation of a novel heteroleptic μ-nitrido diiron complex with unsubstituted phthalocyanine and octapropylporphyrazine macrocycles. This complex reacts with [Formula: see text]-chloroperbenzoic acid to form high-valent diiron oxo species showing strong oxidizing properties. The formation and structure of the transient oxo species was investigated by cryospray collision induced dissociation MS/MS technique. Analysis of fragmentation pattern showed that the attachment of oxo moiety occurred at either iron phthalocyanine or at iron porphyrazine site with slight preference for the phthalocyanine iron site. The catalytic properties of the heteroleptic μ-nitrido diiron complex were evaluated in the oxidative transformation of hexafluorobenzene and perfluoro(allylbenzene).
Collapse
Affiliation(s)
- Cédric Colomban
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS-Universitè Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Evgeny V. Kudrik
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS-Universitè Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
- Ivanovo State University of Chemistry and Technology 7, av F. Engels; 153000 Ivanovo, Russia
| | - Alexander B. Sorokin
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS-Universitè Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| |
Collapse
|
18
|
Cheung WM, Chiu WH, de Vere-Tucker M, Sung HHY, Williams ID, Leung WH. Heterobimetallic Nitrido Complexes of Group 8 Metalloporphyrins. Inorg Chem 2017; 56:5680-5687. [PMID: 28429931 DOI: 10.1021/acs.inorgchem.7b00281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterobimetallic nitrido porphyrin complexes with the [(L)(por)M-N-M'(LOEt)Cl2] formula {por2- = 5,10,15,20-tetraphenylporphyrin (TPP2-) or 5,10,15,20-tetra(p-tolyl)porphyrin (TTP2-) dianion; LOEt- = [Co(η5-C5H5){P(O)(OEt)2}3]-; M = Fe, Ru, or Os; M' = Ru or Os; L = H2O or pyridine} have been synthesized, and their electrochemistry has been studied. Treatment of trans-[Fe(TPP)(py)2] (py = pyridine) with Ru(VI) nitride [Ru(LOEt)(N)Cl2] (1) afforded Fe/Ru μ-nitrido complex [(py)(TPP)Fe(μ-N)Ru(LOEt)Cl2] (2). Similarly, Fe/Os analogue [(py)(TPP)Fe(μ-N)Os(LOEt)Cl2] (3) was obtained from trans-[Fe(TPP)(py)2] and [Os(LOEt)(N)Cl2]. However, no reaction was found between trans-[Fe(TPP)(py)2] and [Re(LOEt)(N)Cl(PPh3)]. Treatment of trans-[M(TPP)(CO)(EtOH)] with 1 afforded μ-nitrido complexes [(H2O)(TPP)M(μ-N)Ru(LOEt)Cl2] [M = Ru (4a) or Os (5)]. TTP analogue [(H2O)(TTP)Ru(μ-N)Ru(LOEt)Cl2] (4b) was prepared similarly from trans-[Ru(TTP)(CO)(EtOH)] and 1. Reaction of [(H2O)(por)M(μ-N)M(LOEt)Cl2] with pyridine gave adducts [(py)(por)M(μ-N)Ru(LOEt)Cl2] [por = TTP, and M = Ru (6); por = TPP, and M = Os (7)]. The diamagnetism and short (por)M-N(nitride) distances in 2 [Fe-N, 1.683(3) Å] and 4b [Ru-N, 1.743(3) Å] are indicative of the MIV═N═M'IV bonding description. The cyclic voltammograms of the Fe/Ru (2) and Ru/Ru (4b) complexes in CH2Cl2 displayed oxidation couples at approximately +0.29 and +0.35 V versus Fc+/0 (Fc = ferrocene) that are tentatively ascribed to the oxidation of the {LOEtRu} and {Ru(TTP)} moieties, respectively, whereas the Fe/Os (3) and Os/Ru (5) complexes exhibited Os-centered oxidation at approximately -0.06 and +0.05 V versus Fc+/0, respectively. The crystal structures of 2 and 4b have been determined.
Collapse
Affiliation(s)
- Wai-Man Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | - Wai-Hang Chiu
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | - Matthew de Vere-Tucker
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | - Herman H-Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | - Wa-Hung Leung
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| |
Collapse
|
19
|
Sorokin AB. μ-Nitrido Diiron Phthalocyanine and Porphyrin Complexes: Unusual Structures With Interesting Catalytic Properties. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
İşci Ü, Faponle AS, Afanasiev P, Albrieux F, Briois V, Ahsen V, Dumoulin F, Sorokin AB, de Visser SP. Site-selective formation of an iron(iv)-oxo species at the more electron-rich iron atom of heteroleptic μ-nitrido diiron phthalocyanines. Chem Sci 2015; 6:5063-5075. [PMID: 30155008 PMCID: PMC6088558 DOI: 10.1039/c5sc01811k] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/16/2015] [Indexed: 11/21/2022] Open
Abstract
A combination of MS and computation on μ-nitrido bridged diiron complexes reveals H2O2 binding to the complex and generates an oxidant capable of oxidizing methane.
Iron(iv)–oxo species have been identified as the active intermediates in key enzymatic processes, and their catalytic properties are strongly affected by the equatorial and axial ligands bound to the metal, but details of these effects are still unresolved. In our aim to create better and more efficient oxidants of H-atom abstraction reactions, we have investigated a unique heteroleptic diiron phthalocyanine complex. We propose a novel intramolecular approach to determine the structural features that govern the catalytic activity of iron(iv)–oxo sites. Heteroleptic μ-nitrido diiron phthalocyanine complexes having an unsubstituted phthalocyanine (Pc1) and a phthalocyanine ligand substituted with electron-withdrawing alkylsulfonyl groups (PcSO2R) were prepared and characterized. A reaction with terminal oxidants gives two isomeric iron(iv)–oxo and iron(iii)–hydroperoxo species with abundances dependent on the equatorial ligand. Cryospray ionization mass spectrometry (CSI-MS) characterized both hydroperoxo and diiron oxo species in the presence of H2O2. When m-CPBA was used as the oxidant, the formation of diiron oxo species (PcSO2R)FeNFe(Pc1)
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O was also evidenced. Sufficient amounts of these transient species were trapped in the quadrupole region of the mass-spectrometer and underwent a CID-MS/MS fragmentation. Analyses of fragmentation patterns indicated a preferential formation of hydroperoxo and oxo moieties at more electron-rich iron sites of both heteroleptic μ-nitrido complexes. DFT calculations show that both isomers are close in energy. However, the analysis of the iron(iii)–hydroperoxo bond strength reveals major differences for the (Pc1)FeN(PcSO2R)FeIIIOOH system as compared to (PcSO2R)FeN(Pc1)FeIIIOOH system, and, hence binding of a terminal oxidant will be preferentially on more electron-rich sides. Subsequent kinetics studies showed that these oxidants are able to even oxidize methane to formic acid efficiently.
Collapse
Affiliation(s)
- Ümit İşci
- Gebze Technical University , Department of Chemistry , P.O. Box 141, Gebze , 41400 Kocaeli , Turkey .
| | - Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , UK .
| | - Pavel Afanasiev
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON) , UMR 5256 , CNRS-Université Lyon 1 , 2, av. A. Einstein , 69626 Villeurbanne Cedex , France .
| | - Florian Albrieux
- Centre Commun de Spectrométrie de Masse UMR 5246 , CNRS-Université Claude Bernard Lyon 1 , Université de Lyon , Bâtiment Curien , 43, bd du 11 Novembre , 69622 Villeurbanne Cedex , France
| | - Valérie Briois
- Synchrotron Soleil , L'orme des merisiers, St-Aubin , 91192 Gif-sur-Yvette , France
| | - Vefa Ahsen
- Gebze Technical University , Department of Chemistry , P.O. Box 141, Gebze , 41400 Kocaeli , Turkey .
| | - Fabienne Dumoulin
- Gebze Technical University , Department of Chemistry , P.O. Box 141, Gebze , 41400 Kocaeli , Turkey .
| | - Alexander B Sorokin
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON) , UMR 5256 , CNRS-Université Lyon 1 , 2, av. A. Einstein , 69626 Villeurbanne Cedex , France .
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , UK .
| |
Collapse
|
21
|
Colomban C, Kudrik EV, Tyurin DV, Albrieux F, Nefedov SE, Afanasiev P, Sorokin AB. Synthesis and characterization of μ-nitrido, μ-carbido and μ-oxo dimers of iron octapropylporphyrazine. Dalton Trans 2015; 44:2240-51. [DOI: 10.1039/c4dt03207a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural and electronic properties of single-atom bridged diiron macrocyclic complexes are determined by the nature of the bridge.
Collapse
Affiliation(s)
- Cédric Colomban
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON)
- UMR 5256
- CNRS-Université Lyon
- 69626 Villeurbanne Cedex
- France
| | - Evgeny V. Kudrik
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON)
- UMR 5256
- CNRS-Université Lyon
- 69626 Villeurbanne Cedex
- France
| | - Dmitry V. Tyurin
- State University of Chemistry and Technology
- 153000 Ivanovo
- Russia
| | - Florian Albrieux
- Université Lyon 1
- UMR 5246
- Centre Commun de Spectrométrie de Masse
- 69622 Villeurbanne cadex
- France
| | - Sergei E. Nefedov
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Science
- Moscow
- Russia
| | - Pavel Afanasiev
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON)
- UMR 5256
- CNRS-Université Lyon
- 69626 Villeurbanne Cedex
- France
| | - Alexander B. Sorokin
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON)
- UMR 5256
- CNRS-Université Lyon
- 69626 Villeurbanne Cedex
- France
| |
Collapse
|
22
|
Ansari M, Vyas N, Ansari A, Rajaraman G. Oxidation of methane by an N-bridged high-valent diiron–oxo species: electronic structure implications on the reactivity. Dalton Trans 2015; 44:15232-43. [DOI: 10.1039/c5dt01060h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Methane activation by dinuclear high-valent iron–oxo species: do we need two metals to activate such inert bonds? Our theoretical study using DFT methods where electronic structure details and mechanistic aspects are established answers this intriguing question.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Nidhi Vyas
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Azaj Ansari
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Gopalan Rajaraman
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
23
|
Li M, Scheidt WR. Structural characterization of the μ-Nitrido Complex {[Fe(OEP)] 2N}. J PORPHYR PHTHALOCYA 2014; 18:380-384. [PMID: 25382965 DOI: 10.1142/s1088424614500096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The molecular structure of the μ-nitrido dimer, μ-nitrido-bis(2,3,7,8,12,13, 17,18-octaethylporphyrinato)iron, is reported. The axial Fe-N distances average to 1.657 (11) Å and the equatorial distances average to 2.005(5) Å. Although not required by symmetry, the two iron centers appear equivalent and are consistent with an assignment of a low-spin state and a formal oxidation state of +3.5. A comparison of this structure with other nitrido-bridged species is given.
Collapse
Affiliation(s)
- Ming Li
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - W Robert Scheidt
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556 USA
| |
Collapse
|
24
|
Makarova AS, Kudrik EV, Makarov SV, Koifman OI. Stability and catalytic properties of μ-oxo and μ-nitrido dimeric iron tetrasulfophthalocyanines in the oxidation of Orange II by tert-butylhydroperoxide. J PORPHYR PHTHALOCYA 2014. [DOI: 10.1142/s1088424614500369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A study of catalytic activity of μ-nitrido- and μ-oxo-dimeric iron tetrasulfophthalocyanines in the oxidation of Orange II by tert-butylhydroperoxide in aqueous solutions has been performed. It is shown that though in one catalytic cycle activity of μ-oxo-dimer is higher, stability of this complex in oxidative conditions is poor. μ-nitrido-dimer combines relatively good catalytic activity with very high stability in the presence of tert-butylhydroperoxide. The mechanisms of oxidative decomposition of dimers and catalytic oxidation of Orange II have been proposed on the base of kinetic results. The products of catalytic processes are shown to be bio-degradable non-toxic small organic compounds.
Collapse
Affiliation(s)
- Anna S. Makarova
- G. A. Krestov Institute of Solution Chemistry of RAS, Academicheskaya str. 1, 153045 Ivanovo, Russia
- State University of Chemistry and Technology, Sheremetevsky av. 7, 153000 Ivanovo, Russia
| | - Evgeny V. Kudrik
- State University of Chemistry and Technology, Sheremetevsky av. 7, 153000 Ivanovo, Russia
| | - Sergei V. Makarov
- State University of Chemistry and Technology, Sheremetevsky av. 7, 153000 Ivanovo, Russia
| | - Oskar I. Koifman
- G. A. Krestov Institute of Solution Chemistry of RAS, Academicheskaya str. 1, 153045 Ivanovo, Russia
- State University of Chemistry and Technology, Sheremetevsky av. 7, 153000 Ivanovo, Russia
| |
Collapse
|
25
|
|
26
|
Rodriguez MM, Bill E, Brennessel WW, Holland PL. N₂reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 2011; 334:780-3. [PMID: 22076372 DOI: 10.1126/science.1211906] [Citation(s) in RCA: 400] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The most common catalyst in the Haber-Bosch process for the hydrogenation of dinitrogen (N(2)) to ammonia (NH(3)) is an iron surface promoted with potassium cations (K(+)), but soluble iron complexes have neither reduced the N-N bond of N(2) to nitride (N(3-)) nor produced large amounts of NH(3) from N(2). We report a molecular iron complex that reacts with N(2) and a potassium reductant to give a complex with two nitrides, which are bound to iron and potassium cations. The product has a Fe(3)N(2) core, implying that three iron atoms cooperate to break the N-N triple bond through a six-electron reduction. The nitride complex reacts with acid and with H(2) to give substantial yields of N(2)-derived ammonia. These reactions, although not yet catalytic, give structural and spectroscopic insight into N(2) cleavage and N-H bond-forming reactions of iron.
Collapse
Affiliation(s)
- Meghan M Rodriguez
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
27
|
Afanasiev P, Kudrik EV, Millet JMM, Bouchu D, Sorokin AB. High-valent diiron species generated from N-bridged diiron phthalocyanine and H2O2. Dalton Trans 2011; 40:701-10. [DOI: 10.1039/c0dt00958j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Afanasiev P, Bouchu D, Kudrik EV, Millet JMM, Sorokin AB. Stable N-bridged diiron (IV) phthalocyanine cation radical complexes: synthesis and properties. Dalton Trans 2009:9828-36. [DOI: 10.1039/b916047g] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
İşci Ü, Afanasiev P, Millet JMM, Kudrik EV, Ahsen V, Sorokin AB. Preparation and characterization of μ-nitrido diiron phthalocyanines with electron-withdrawing substituents: application for catalytic aromatic oxidation. Dalton Trans 2009:7410-20. [DOI: 10.1039/b902592h] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Gorun SM, Rathke JW, Chen MJ. Long-range solid-state ordering and high geometric distortions induced in phthalocyanines by small fluoroalkyl groups. Dalton Trans 2009:1095-7. [DOI: 10.1039/b821000b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Nemykin VN, Tret'yakova IN, Volkov SV, Li VD, Mekhryakova NG, Kaliya OL, Luk'yanets EA. Synthesis, structure and properties of coordination compounds of iron phthalocyanines and their analogues. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc2000v069n04abeh000545] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Hersleth HP, Uchida T, Røhr AK, Teschner T, Schünemann V, Kitagawa T, Trautwein AX, Görbitz CH, Andersson KK. Crystallographic and Spectroscopic Studies of Peroxide-derived Myoglobin Compound II and Occurrence of Protonated FeIV–O. J Biol Chem 2007; 282:23372-86. [PMID: 17565988 DOI: 10.1074/jbc.m701948200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High resolution crystal structures of myoglobin in the pH range 5.2-8.7 have been used as models for the peroxide-derived compound II intermediates in heme peroxidases and oxygenases. The observed Fe-O bond length (1.86-1.90 A) is consistent with that of a single bond. The compound II state of myoglobin in crystals was controlled by single-crystal microspectrophotometry before and after synchrotron data collection. We observe some radiation-induced changes in both compound II (resulting in intermediate H) and in the resting ferric state of myoglobin. These radiation-induced states are quite unstable, and compound II and ferric myoglobin are immediately regenerated through a short heating above the glass transition temperature (<1 s) of the crystals. It is unclear how this influences our compound II structures compared with the unaffected compound II, but some crystallographic data suggest that the influence on the Fe-O bond distance is minimal. Based on our crystallographic and spectroscopic data we suggest that for myoglobin the compound II intermediate consists of an Fe(IV)-O species with a single bond. The presence of Fe(IV) is indicated by a small isomer shift of delta = 0.07 mm/s from Mössbauer spectroscopy. Earlier quantum refinements (crystallographic refinement where the molecular-mechanics potential is replaced by a quantum chemical calculation) and density functional theory calculations suggest that this intermediate H species is protonated.
Collapse
Affiliation(s)
- Hans-Petter Hersleth
- Department of Chemistry, University of Oslo, PO Box 1033, Blindern, Oslo N-0315, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rawling T, McDonagh A. Ruthenium phthalocyanine and naphthalocyanine complexes: Synthesis, properties and applications. Coord Chem Rev 2007. [DOI: 10.1016/j.ccr.2006.09.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Donzello MP, Bartolino L, Ercolani C, Rizzoli C. A Rare μ-Hydroxo-Bridged Species. Synthesis, Structure, and Properties of μ-Hydroxo(tetraphenylporphyrinatomanganese(III))(phthalocyaninato(azido)chromium(III)), [(TPP)Mn−O(H)−CrPc(N3)]. Inorg Chem 2006; 45:6988-95. [PMID: 16903758 DOI: 10.1021/ic060574q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel ditetrapyrrolic, heteroleptic, and heterometallic (Mn-Cr) mu-hydroxo-bridged complex has been prepared, and its structural and general properties have been studied. The species mu-hydroxo(tetraphenylporphyrinatomanganese(III))(phthalocyaninato(azido)chromium(III)), [(TPP)Mn-O(H)-CrPc(N3)], isolated as a chloronaphthalene (ClNP) solvate, has been structurally characterized by single-crystal X-ray work. The two (TPP)Mn and CrPc(N3) fragments are held together by the bridging mu-hydroxo ion with long Mn-O [1.993(5) A] and Cr-O [1.976(5) A] bond distances and a Mn-O(H)-Cr angle of 163.7(3) degrees . The five-coordinate Mn center in the (TPP)Mn fragment is displaced from the TPP rigorously planar central N4 core by 0.128 A, and the environment is typical of a Mn(III) high-spin site. The six-coordinate Cr(III) in the CrPc(N3) moiety lies practically in the plane of the phthalocyanine macrocycle (displacement toward the azido group: 0.054 A). The average Mn-N(pyr) and Cr-N(pyr) bond distances are 2.011(6) and 1.982(6) A, respectively, and the Mn-Cr bond distance is 3.929(2) A. The porphyrin and phthalocyanine rings are in an almost eclipsed position [5.16(2) degrees ], and the mean planes of the two macrocycles form a dihedral angle of 5.79(4) degrees. Crystal data for [(TPP)Mn-O(H)-CrPc(N3)].2ClNP, C76H45CrMnN15O.2C10H7Cl: a = 16.645(3) A, b = 17.692(4) A, c = 25.828(5) A, alpha = 90 degrees , beta = 98.79(3) degrees , gamma = 90 degrees , space group P2(1)/c (No. 14), V = 7517(3) A(3), Z = 4, R1 = 0.086, and wR2 = 0.267. IR and UV-vis-near-IR spectral and room temperature magnetic susceptibility data of the [Mn-Cr] species are also presented.
Collapse
Affiliation(s)
- Maria Pia Donzello
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, I-00185 Rome, Italy
| | | | | | | |
Collapse
|
35
|
Mehn MP, Peters JC. Mid- to high-valent imido and nitrido complexes of iron. J Inorg Biochem 2006; 100:634-43. [PMID: 16529818 DOI: 10.1016/j.jinorgbio.2006.01.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 01/11/2006] [Accepted: 01/11/2006] [Indexed: 10/24/2022]
Abstract
This short review summarizes recent advances in the synthesis and reactivity of iron imides and nitrides. Both monometallic and multimetallic assemblies featuring these moieties are discussed. Recent synthetic approaches have led to the availability of new mid- to high-valent iron imides and nitrides, allowing us to begin assembling models to describe the factors influencing their relative stabilities and reactivity patterns.
Collapse
Affiliation(s)
- Mark P Mehn
- Division of Chemistry and Chemical Engineering, Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, CA 91125, USA
| | | |
Collapse
|
36
|
Bennett MV, Stoian S, Bominaar EL, Münck E, Holm RH. Initial members of the family of molecular mid-valent high-nuclearity iron nitrides: [Fe4N2X10]4- and [Fe10N8X12]5- (X = Cl-, Br-). J Am Chem Soc 2005; 127:12378-86. [PMID: 16131219 DOI: 10.1021/ja052150l] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Current theoretical and experimental evidence points toward X = N as the identity of the interstitial atom in the [MoFe7S9X] core of the iron-molybdenum cofactor cluster of nitrogenase. This atom functions with mu6 bridging multiplicity to six iron atoms and, if it is nitrogen as nitride, raises a question as to the existence of a family of molecular iron nitrides of higher nuclearity than known dinuclear Fe(III,IV) species with linear [Fe-N-Fe]5+,4+ bridges. This matter has been initially examined by variation of reactant stoichiometry in the self-assembly systems [FeX4]1-/(Me3Sn)3N (X = Cl-, Br-) in acetonitrile. A 2:1 mol ratio affords [Fe4N2Cl10]4- (1), isolated as the Et4N+ salt (72%). This cluster has idealized C2h symmetry with a planar antiferromagnetically coupled [Fe(III)4(mu3-N)2]6+ core containing an Fe2N2 rhombus to which are attached two FeCl3 units. DFT calculations have been performed to determine the dominant magnetic exchange pathway. An 11:8 mol ratio leads to [Fe10N8Cl12]5- (3) as the Et4N+ salt (37%). The cluster possesses idealized D2h symmetry and is built of 15 edge- and vertex-shared rhomboids involving two mu3-N and six mu4-N bridging atoms, and incorporates two of the core units of 1. Four FeN2Cl2 and four FeN3Cl sites are tetrahedral and two FeN5 sites are trigonal pyramidal. The cluster is mixed-valence (9Fe(III) + Fe(IV)); a discrete Fe(IV) site was not detected by crystallography or Mössbauer spectroscopy. The corresponding clusters [Fe4N2Br10]4- and [Fe10N8Br12]5- are isostructural with 1 and 3, respectively. Future research is directed toward defining the scope of the family of molecular iron nitrides.
Collapse
Affiliation(s)
- Miriam V Bennett
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Svensson PH, Kloo L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem Rev 2003; 103:1649-84. [PMID: 12744691 DOI: 10.1021/cr0204101] [Citation(s) in RCA: 528] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Per H Svensson
- Inorganic Chemistry, Royal Institute of Technology, S-100 44 Stockholm, Sweden
| | | |
Collapse
|
39
|
Freedman D, Emge TJ, Brennan JG. Chalcogen-rich lanthanide clusters: compounds with Te(2-), (TeTe)(2-), TePh, TeTePh, (TeTeTe(Ph)TeTe)(5-), and [(TeTe)(4)TePh](9-) ligands; single source precursors to solid-state lanthanide tellurides. Inorg Chem 2002; 41:492-500. [PMID: 11825075 DOI: 10.1021/ic010981w] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lanthanide metals react with PhTeTePh and elemental Te in pyridine to give (py)(y)Ln(4)(Te)(TeTe)(2)(TeTeTe(Ph)TeTe)(Te(x)TePh) (Ln = Sm (y = 9; x = 0); Tb, Ho (y = 8, x = 0.1)), and (py)(7)Tm(4)(Te)[(TeTe)(4)TePh](Te(0.6)TePh) clusters. The Sm, Tb, and Ho compounds contain a square array of Ln(III) ions all connected to a central Te(2-) ligand. Two adjacent edges of the square are bridged by ditelluride ligands, with the Ln ion that is eta(2) bound to both of these TeTe ligands also coordinating to a terminal TePh ligand. The other two edges of the square are spanned by ditellurides that both coordinate a TePh ligand that has been displaced from the Ln ion by pyridine, to give the pentaanion (mu-eta(2)-eta(2)-Te(2)Te(Ph)Te(2)).(5-) In the Tm compound, the displaced TePh interacts with all four TeTe units. The compounds are air-, light-, and temperature-sensitive. Upon thermolysis, they decompose to give solid-state TbTe(2-x), HoTe, or TmTe, with elimination of Te and TePh(2).
Collapse
Affiliation(s)
- Deborah Freedman
- Department of Chemistry, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854-8087, USA
| | | | | |
Collapse
|
40
|
Kornienko AY, Emge TJ, Brennan JG. Chalcogen-rich lanthanide clusters: cluster reactivity and the influence of ancillary ligands on structure. J Am Chem Soc 2001; 123:11933-9. [PMID: 11724600 DOI: 10.1021/ja011487u] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ytterbium metal reacts with PhEEPh (E = S, Se, Te) and elemental Se in pyridine to give (pyridine)(8)Yb(4)(SeSe)(2)(Se)(2)(mu(2)-SPh)(2)(SPh)(2), (py)(8)Yb(4)Se(SeSe)(3)(SeSeSePh)(Se(0.38)SePh), and (py)(8)Yb(4)Se(SeSe)(3)(SeSeTePh)(SeTePh), respectively. The SePh and TePh compounds contain a square array of Ln(III) ions all connected to a central Se(2)(-) ligand. Three edges of the square are bridged by diselenide ligands, with the fourth SeSe unit coordinating to an EPh ligand that has been displaced from an inner Yb coordination sphere. Differences in the two compounds have their origin in the relative strength of the Yb-E(Ph) bond. In the TePh compound, there is a complete insertion of Se into the remaining Yb-Te(Ph) bond to give a terminal SeTePh ligand, while in the SePh compound there is a compositional disorder in the structure comprised of a terminal SePh ligand and a minor component that has Se inserted into the Yb-Se(Ph) bond to give a terminal SeSePh ligand. The thiolate compound differs dramatically, crystallizing as a rhombohedral array of four Yb(III) ions connected by a pair of mu(3)-Se(2)(-) ligands, with the edges of the rhombus spanned by alternating diselenide and SPh. The SPh coordinate directly to Yb(III) ions in terminal or bridging modes. Cluster interconversion is facile: (py)(4)Yb(SePh)(2) reduces (py)(8)Yb(4)Se(SeSe)(3)(SeSeSePh)(Se(0.38)SePh) to give the cubane cluster [(py)(2)YbSe(SePh)](4), and the cubane reacts with elemental Se to give (py)(8)Yb(4)Se(SeSe)(3)(SeSeSePh)(Se(0.38)SePh). Upon thermolysis, these compounds give YbSe(x)().
Collapse
Affiliation(s)
- A Y Kornienko
- Department of Chemistry, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, USA
| | | | | |
Collapse
|
41
|
Bonomo L, Solari E, Scopelliti R, Floriani C. Ruthenium Nitrides: Redox Chemistry and Photolability of the Ru-Nitrido Group. Angew Chem Int Ed Engl 2001; 40:2529-2531. [DOI: 10.1002/1521-3773(20010702)40:13<2529::aid-anie2529>3.0.co;2-b] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Indexed: 11/11/2022]
|
42
|
Bonomo L, Solari E, Scopelliti R, Floriani C. Ruthenium Nitrides: Redox Chemistry and Photolability of the Ru-Nitrido Group. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20010702)113:13<2597::aid-ange2597>3.0.co;2-h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Donzello MP, Ercolani C, Russo U, Chiesi-Villa A, Rizzoli C. Metal- and ligand-centered monoelectronic oxidation of mu-nitrido[((tetraphenylporphyrinato)manganese)phthalocyaninatoiron)], [(TPP)Mn-N-FePc]. X-ray crystal structure of the Fe(IV)-containing species [(THF)(TPP)Mn-N-FePc(H(2)O)](I(5))02THF. Inorg Chem 2001; 40:2963-7. [PMID: 11399161 DOI: 10.1021/ic000874m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of mu-nitrido[((tetraphenylporphyrinato)manganese)(phthalocyaninatoiron)], [(TPP)Mn-N-FePc], with I(2) in THF develops with the formation of two different species, i.e., [(THF)(TPP)Mn-N-FePc(H(2)O)](I(5)).2THF (I) and [(TPP)Mn(IV)-N-Fe(III)Pc](I(3)) (II). On the basis of single-crystal X-ray work and Mössbauer, EPR, Raman, and magnetic susceptibility data, I, found to be isostructural with the corresponding Fe-Fe complex, is shown to contain a low-spin triatomic Mn(IV)=N=Fe(IV) system (metal-centered oxidation). Data at hand for II (Mössbauer, EPR, Raman) show, instead, that oxidation takes place at one of the two macrocycles, very likely TPP (ligand-centered oxidation). The same cationic fragment present in I, and containing the Mn(IV)=N=Fe(IV) bond system, is also obtained when (TPP)Mn-N-FePc is allowed to react in THF with (phen)SbCl(6) (molar ratio 1:1). There are indications that the use of (phen)SbCl(6) in excess (2:1 molar ratio), in benzene, probably determines further oxidation with the formation of a species showing the combined presence of the Mn(IV)-Fe(IV) couple and of a pi-cation radical.
Collapse
Affiliation(s)
- M P Donzello
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, I-00185 Rome, Italy
| | | | | | | | | |
Collapse
|
44
|
Ebadi M, Alexiou C, Lever ABP. The reduction of oxygen and hydrogen peroxide on dinuclear ruthenium phthalocyanine electrocatalytic surfaces. CAN J CHEM 2001. [DOI: 10.1139/v01-031] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The electrochemical properties of both mononuclear L2RuIIPc and dinuclear [(THF)Rupc]2 species are described. The former is dominated by ring oxidation and reduction processes while the latter displays a series of metal localized processes. A Pourbaix diagram describes the various surfaces which can be generated by exposing a graphite electrode modified with [(THF)Rupc]2 to aqueous buffer at different polarization over a wide range of pH. The behavior of these various surfaces towards the electrocatalytic reduction of both oxygen and hydrogen peroxide is described. Most importantly, three different regimes of hydrogen peroxide reduction are observed dependent on the nature of the modified electrode surface. At high pH the four electron reduction of oxygen to water is observed via a 2 + 2 mechanism.Key words: phthalocyanine, ruthenium, ruthenium phthalocyanine, cyclic voltammetry, suface modified electrode, Pourbaix diagram, electrocatalysis, oxygen reduction, hydrogen peroxide reduction.
Collapse
|
45
|
Zobi F, Stynes DV. Hetero trinuclear oxo-bridged complexes of ruthenium porphyrin and iron phthalocyanine. CAN J CHEM 2001. [DOI: 10.1139/v00-180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
New diamagnetic hetero bi- and trinuclear oxo-bridged metal complexes of formula (L)(Pc)Fe-O-Ru(TPP')(O) and (L)(Pc)Fe-O-Ru(TPP')-O-Fe(Pc)(L) have been prepared from Ru(TPP')(O)2 and Fe(Pc)(L)2 (TPP' = tetrakis(4-methoxyphenyl)porphyrinate, Pc = phthalocyanate ion, L = monodentate ligand). The trinuclear complex binds a variety of ligands (4,4'-bipy, 4-MePy, P(OEt)3, pip, NH3, 1-MeIm, P(Me)2Ph) trans to the oxo-bridge. 1H NMR spectra are characterized by large ring current shifts (rcs) due to the TPP' and Pc ions. The complexes show an unusually weak Pc Q band in their visible spectra at 700 nm and two CT bands in the near-IR region from 1000 to 1500 nm, which are sensitive to the trans ligand. The trinuclear complex can be reversibly oxidized to the +1 and +2 ions, formally Fe(IV)-O-Ru(IV)-O-Fe(III) and Fe(IV)-O-Ru(IV)-O-Fe(IV) at 0.4 and 0.76 V. The +1 ion is chemically obtained by reaction of the neutral species with (Cp)2Fe+ for L = 4-MePy and this reaction is reversed upon addition of L' = P(Me)2Ph. Reductive cleavage by hydroquinone, phosphines and phosphites are the slowest of all RuTPP[O(FeN4)]2 systems studied to date (t1/2 = 8 h at 40°C).Key words: ruthenium, iron, porphyrin, phthalocyanine, oxo.
Collapse
|
46
|
Affiliation(s)
- Atul K. Verma
- Department of Chemistry, Princeton University Princeton, New Jersey 08544
| | - Tamim N. Nazif
- Department of Chemistry, Princeton University Princeton, New Jersey 08544
| | - Catalina Achim
- Department of Chemistry, Princeton University Princeton, New Jersey 08544
| | - Sonny C. Lee
- Department of Chemistry, Princeton University Princeton, New Jersey 08544
| |
Collapse
|
47
|
Dutta SK, Beckmann U, Bill E, Weyhermüller T, Wieghardt K. 1,2-bis(pyridine-2-carboxamido)benzenate(2-), (bpb)2-: a noninnocent ligand. Syntheses, structures, and mechanisms of formation of [(n-Bu)4N][FeIV2(mu-N)(bpb)2(X)2] (X = CN-, N3-) and the electronic structures of [MIII(bpbox1)(CN)2] (M = Co, Fe). Inorg Chem 2000; 39:3355-64. [PMID: 11196875 DOI: 10.1021/ic0001107] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The well-known tetradentate ligand 1,2-bis(pyridine-2-carboxamido)benzenate(2-), (bpb)2-, and its 4,5-dichloro analogue, (bpc)2-, are shown to be "noninnocent" ligands in the sense that in coordination compounds they can exist in their radical one- and diamagnetic two-electron-oxidized forms (bpbox1)- and (bpbox2)0 (and (bpcox1)- and (bpcox2)0), respectively. Photolysis of high-spin [(n-Bu)4N][FeIII(bpb)(N3)2] and its (bpc)2- analogue in acetone solution at room temperature generates the diamagnetic dinuclear complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(N3)2] and its (bpc)2- analogue; the corresponding cyano complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2] has been prepared via N3- substitution by CN-. Photolysis in frozen acetonitrile solution produces a low-spin ferric species (S = 1/2) which presumably is [FeIII(bpbox2)(N)(N3)]-, as has been established by EPR and Mössbauer spectroscopy. The mononuclear complexes [(n-Bu)4N][FeIII(bpb)(CN2)] (low spin), [Et4N][CoIII(bpb)(CN)2] and Na[CoIII(bpc)-(CN)2].3CH3OH can be electrochemically or chemically one-electron-oxidized to give [FeIII(bpbox1)(CN)2]0 (S = 0), [CoIII(bpbox1)(CN)2]0 (S = 1/2), and [CoIII(bpcox1)(CN)2]0 (S = 1/2). All complexes have been characterized by UV-vis, EPR, and Mössbauer spectroscopy, and their electro- and magnetochemistries have been studied. The crystal structures of [(n-Bu)4N][FeIII(bpb)(N3)2].1/2C6H6CH3, Na[FeIII(bpb)(CN)2], Na[CoIII(bpc)(CN)2].3CH3OH, [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2], and [(n-Bu)4N][FeIV2(mu-N)(bpb)(N3)2] have been determined by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- S K Dutta
- Max-Planck-Institut für Strahlenchemie, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | | | |
Collapse
|
48
|
Abstract
The molecular structure of the formal iron(IV) porphyrinate derivative, [[Fe(TTP)]2N]SbCl6 (TTP = tetratolylporphyrinate), is reported. The structural parameters are compared to the previously reported species [Fe(TPP)]2N, in which the iron oxidation state is +3.5. Both the equatorial and axial bond distances in [[Fe(TTP)]2N]SbCl6 are slightly shortened and consistent with an increased formal charge on iron. The value for the axial Fe-N distance is 1.6280(7) A, and the average value of the equatorial Fe-Np distances is 1.979(5) A. The Mössbauer isomer shift decreases upon oxidation, again consistent with an increase in formal charge. Values for the isomer shift at room temperature are -0.13 mm/s for [[Fe(TTP)]2N]SbCl6 and 0.04 mm/s for [Fe(TTP)]2N. Crystal data for [[Fe(TTP)]2N]SbCl6 are as follows: orthorhombic, space group Fddd, Z = 8, a = 23.689(2) A, b = 31.056(3) A, c = 22.7788(18) A.
Collapse
Affiliation(s)
- M Li
- The Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA
| | | | | | | | | |
Collapse
|
49
|
Newton C, Edwards KD, Ziller JW, Doherty NM. Electron-Rich Nitrido-Bridged Complexes. Structure and Bonding in Triosmium Dinitrido Compounds. Inorg Chem 1999. [DOI: 10.1021/ic981257p] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claire Newton
- Department of Chemistry, University of California, Irvine, 516 Rowland Hall, Irvine, California 92697-2025
| | - Kimberly D. Edwards
- Department of Chemistry, University of California, Irvine, 516 Rowland Hall, Irvine, California 92697-2025
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, 516 Rowland Hall, Irvine, California 92697-2025
| | - Nancy M. Doherty
- Department of Chemistry, University of California, Irvine, 516 Rowland Hall, Irvine, California 92697-2025
| |
Collapse
|
50
|
Heterobimetallic nitrido-bridged Ru(II)NOs(VIII) and Ru(II)NOs(VI) complexes containing ruthenium porphyrins. Inorganica Chim Acta 1999. [DOI: 10.1016/s0020-1693(99)00096-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|