1
|
Grasruck A, Schall K, Heinemann FW, Langer J, Herrera A, Frieß S, Schmid G, Dorta R. Dibenzoazepine hydrazine is a building block for N-alkene hybrid ligands: exploratory syntheses of complexes of Cu, Fe, and Li. Dalton Trans 2024; 53:8642-8656. [PMID: 38695637 DOI: 10.1039/d4dt00749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The new hydrazine 5H-dibenzo[b,f]azepin-5-amine (2) reacts with P- and Si-electrophiles via deprotonation to afford P(III)-, P(V)-, and TMS-hydrazides 3-8 and with carbonyl electrophiles via acid-free condensation to the N-substituted hydrazones 9-12 that are potential N-alkene ligands. While β-ketohydrazone 9 and α-dihydrazone 10 react with [Mes(Cu)]4, [Cu(NCCCH3)4]2PF6, and FeCl2(THF)1.5 to afford complexes devoid of alkene interaction, [Cu(OTf)]2·C6H6 reacts with the α-keto hydrazone 11 or with N,N dimethyl-hydrazone 12 to form the neutral dimeric Cu(I) complex 18 with bridging Cu(I)-alkene interactions or the tetrahedral cationic complex 19 in which 12 binds as a bidentate hydrazone-alkene ligand, respectively. The surprising stability of the alkene coordination in complexes 18 and 19 prevents substitutions with, e.g., PPh3.
Collapse
Affiliation(s)
- Alexander Grasruck
- Department of Chemistry and Pharmacy, Chair of Inorganic and General Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Kristina Schall
- Department of Chemistry and Pharmacy, Chair of Inorganic and General Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Chair of Inorganic and General Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Jens Langer
- Department of Chemistry and Pharmacy, Chair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Alberto Herrera
- Department of Chemistry and Pharmacy, Chair of Inorganic and General Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Sybille Frieß
- Department of Chemistry and Pharmacy, Chair of Inorganic and General Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Günter Schmid
- Siemens Energy Global GmbH & Co. KG, New Energy Business - Technology & Products, Freyeslebenstraße 1, 91058 Erlangen, Germany
| | - Romano Dorta
- Department of Chemistry and Pharmacy, Chair of Inorganic and General Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| |
Collapse
|
2
|
Jiang W, Rajeshkumar T, Guo M, Lin Y, Maron L, Zhang L. Rare-earth metal ethylene and ethyne complexes. Chem Sci 2024; 15:3495-3501. [PMID: 38455028 PMCID: PMC10915835 DOI: 10.1039/d3sc06599e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
Guanidinate homometallic rare-earth ethyl complexes [LLn(μ2-η1:η2-Et)(Et)]2 (Ln = Y(1-Y), Lu(1-Lu)) and heterobimetallic rare-earth ethyl complexes LLn(Et)(μ2-η1:η2-Et)(μ2-η1-Et)(AlEt2) (Ln = Y(2-Y), Lu(2-Lu)) have been synthesized by the treatment of LLn(CH2C6H4NMe2-o)2 (L = (PhCH2)2NC(NC6H3iPr2-2,6)2) with different equivalents of AlEt3 in toluene at ambient temperature. Interestingly, the unprecedented rare-earth ethyne complex [LY(μ2-η1-Et)2(AlEt)]2(μ4-η1:η1:η2:η2-C2H2) (3-Y) containing a [C2H2]4- unit was afforded from 2-Y. The formation mechanism study on 3-Y was carried out by DFT calculations. Furthermore, the nature of the bonding of 3-Y was also revealed by NBO analysis. The reactions of LLn(CH2 C6H4NMe2-o)2 (Ln = Y, Lu) with AlEt3 (4 equiv.) in toluene at 50 °C produced firstly the non-Cp rare-earth ethylene complex LY(μ3-η1:η1:η2-C2H4)[(μ2-η1-Et)(AlEt2)(μ2-η1-Et)2(AlEt)] (4-Y), and the Y/Al ethyl complex LY[(μ2-η1-Et)2(AlEt2)]2 (5-Y) as an intermediate of 4-Y was isolated from the reaction of LY(CH2C6H4NMe2-o)2 with AlEt3 (4 equiv.) in toluene at -10 °C.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | | | - Mengyue Guo
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | - Yuejian Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | | | - Lixin Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| |
Collapse
|
3
|
Cutsail G, Schott-Verdugo S, Müller L, DeBeer S, Groth G, Gohlke H. Spectroscopic and QM/MM studies of the Cu(I) binding site of the plant ethylene receptor ETR1. Biophys J 2022; 121:3862-3873. [PMID: 36086818 PMCID: PMC9674993 DOI: 10.1016/j.bpj.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 11/15/2022] Open
Abstract
Herein, we present, to our knowledge, the first spectroscopic characterization of the Cu(I) active site of the plant ethylene receptor ETR1. The x-ray absorption (XAS) and extended x-ray absorption fine structure (EXAFS) spectroscopies presented here establish that ETR1 has a low-coordinate Cu(I) site. The EXAFS resolves a mixed first coordination sphere of N/O and S scatterers at distances consistent with potential histidine and cysteine residues. This finding agrees with the coordination of residues C65 and H69 to the Cu(I) site, which are critical for ethylene activity and well conserved. Furthermore, the Cu K-edge XAS and EXAFS of ETR1 exhibit spectroscopic changes upon addition of ethylene that are attributed to modifications in the Cu(I) coordination environment, suggestive of ethylene binding. Results from umbrella sampling simulations of the proposed ethylene binding helix of ETR1 at a mixed quantum mechanics/molecular mechanics level agree with the EXAFS fit distance changes upon ethylene binding, particularly in the increase of the distance between H69 and Cu(I), and yield binding energetics comparable with experimental dissociation constants. The observed changes in the copper coordination environment might be the triggering signal for the transmission of the ethylene response.
Collapse
Affiliation(s)
- George Cutsail
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany; Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, Essen, Germany
| | - Stephan Schott-Verdugo
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lena Müller
- Institut für Biochemische Pflanzenphysiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Georg Groth
- Institut für Biochemische Pflanzenphysiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany; Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Karimata A, Gridneva T, Patil PH, Fayzullin RR, Khaskin E, Lapointe S, Garcia-Roca A, Khusnutdinova JR. Ethylene binding in mono- and binuclear Cu I complexes with tetradentate pyridinophane ligands. Dalton Trans 2022; 51:13426-13434. [PMID: 35993504 DOI: 10.1039/d2dt02180c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a series of CuI complexes supported by tetradentate RN4 pyridinophane ligands that coordinate to ethylene forming either mononuclear complexes with ethylene coordinated in an η2-mode or a binuclear complex where ethylene binds to two Cu atoms in a μ-η2-η2-mode, depending on the steric effects of the RN4 ligand and the reaction conditions. In the binuclear complex with bridging ethylene, the CC bond is significantly elongated, with a bond length of 1.444(8) Å according to X-ray diffraction analysis. This complex represents the only examination a μ-η2-η2-coordinated Cu-olefin complex reported to date, featuring one of the longest reported CC bonds. The spectroscopic characterization, structure, electrochemical properties and solution behavior are analyzed in this study. Coordination of ethylene was found to be reversible in these complexes and more favored in less sterically hindered RN4 ligands, so that ethylene binding is observed in a coordinating solvent (MeCN) environment. In the case of the MeN4 ligand, the ethylene complex is photoluminescent in the solid state. The ethylene binding modes in mono- and binuclear complexes are elucidated through Natural Bond Orbital and QTAIM analyses.
Collapse
Affiliation(s)
- Ayumu Karimata
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Tatiana Gridneva
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Pradnya H Patil
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Sébastien Lapointe
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Alèria Garcia-Roca
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|
5
|
Wise DE, Gamble AJ, Arkawazi SW, Walton PH, Galan MC, O'Hagan MP, Hogg KG, Marrison JL, O'Toole PJ, Sparkes HA, Lynam JM, Pringle PG. Cytotoxic ( cis, cis-1,3,5-triaminocyclohexane)ruthenium(II)-diphosphine complexes; evidence for covalent binding and intercalation with DNA. Dalton Trans 2020; 49:15219-15230. [PMID: 33021299 DOI: 10.1039/d0dt02612c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
We report cytotoxic ruthenium(ii) complexes of the general formula [RuCl(cis-tach)(diphosphine)]+ (cis-tach = cis-cis-1,3,5-triaminocyclohexane) that have been characterised by 1H, 13C and 31P{1H} NMR spectroscopy, mass spectrometry, X-ray crystallography and elemental analysis. The kinetics of aquation and stability of the active species have been studied, showing that the chlorido ligand is substituted by water at 298 K with first order rate constants of 10-2-10-3 s-1, ideal for potential clinical use as anti-tumour agents. Strong interactions with biologically relevant duplex and quadruplex DNA models correlate with the activity observed with A549, A2780 and 293T cell lines, and the degree of activity was found to be sensitive to the chelating diphosphine ligand. A label-free ptychographic cell imaging technique recorded cell death processes over 4 days. The Ru(ii) cis-tach diphosphine complexes exhibit anti-proliferative effects, in some cases outperforming cisplatin and other cytotoxic ruthenium complexes.
Collapse
Affiliation(s)
- Dan E Wise
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Aimee J Gamble
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Sham W Arkawazi
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Paul H Walton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Michael P O'Hagan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Karen G Hogg
- Imaging and Cytometry Laboratory, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Joanne L Marrison
- Imaging and Cytometry Laboratory, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Peter J O'Toole
- Imaging and Cytometry Laboratory, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Hazel A Sparkes
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Jason M Lynam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Paul G Pringle
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
6
|
Alkorta I, Montero-Campillo MM, Elguero J, Yáñez M, Mó O. Trapping One Electron between Three Beryllium Atoms: Very Strong One-Electron Three-Center Bonds. Chemphyschem 2018; 19:1068-1074. [DOI: 10.1002/cphc.201701240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/26/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica (CSIC); Juan de la Cierva, 3 E-28006 Madrid Spain
| | | | - José Elguero
- Instituto de Química Médica (CSIC); Juan de la Cierva, 3 E-28006 Madrid Spain
| | - Manuel Yáñez
- Dep. de Química; Facultad de Ciencias, Módulo 13, and Institute of Advanced Chemical Sciences (IadChem); Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC; Cantoblanco E-28049 Madrid Spain
| | - Otilia Mó
- Dep. de Química; Facultad de Ciencias, Módulo 13, and Institute of Advanced Chemical Sciences (IadChem); Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC; Cantoblanco E-28049 Madrid Spain
| |
Collapse
|
7
|
Shimizu I, Morimoto Y, Faltermeier D, Kerscher M, Paria S, Abe T, Sugimoto H, Fujieda N, Asano K, Suzuki T, Comba P, Itoh S. Tetrahedral Copper(II) Complexes with a Labile Coordination Site Supported by a Tris-tetramethylguanidinato Ligand. Inorg Chem 2017; 56:9634-9645. [DOI: 10.1021/acs.inorgchem.7b01154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ikuma Shimizu
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuma Morimoto
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Dieter Faltermeier
- Anorganisch-Chemisches Institut and Interdisciplinary
Center for Scientific Computing, Universität Heidelberg, INF 270, 69120 Heidelberg, Germany
| | - Marion Kerscher
- Anorganisch-Chemisches Institut and Interdisciplinary
Center for Scientific Computing, Universität Heidelberg, INF 270, 69120 Heidelberg, Germany
| | - Sayantan Paria
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tsukasa Abe
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hideki Sugimoto
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nobutaka Fujieda
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kaori Asano
- Comprehensive Analysis Center, The Institute of Scientific
and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0057, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, The Institute of Scientific
and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0057, Japan
| | - Peter Comba
- Anorganisch-Chemisches Institut and Interdisciplinary
Center for Scientific Computing, Universität Heidelberg, INF 270, 69120 Heidelberg, Germany
| | - Shinobu Itoh
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Tao Y, Li Y, Pang XH, Li HY, Huang FP, Qin HF, Bian HD. Four Cu I(ett) coordination polymorphs and changes in XRD upon hydrothermal condition optimization. CrystEngComm 2017. [DOI: 10.1039/c7ce01595j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Four [CuI(ett)]n coordination polymorphs (1-α, 1-β, 1-γ and 1-δ), based on 5-(ethylthio)-1H-tetrazole (Hett), have been prepared successfully.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - You Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - Xu-Hong Pang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - Hai-Ye Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - Fu-Ping Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - Huang-Fei Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - He-Dong Bian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| |
Collapse
|
9
|
Klimovica K, Kirschbaum K, Daugulis O. Synthesis and Properties of "Sandwich" Diimine-Coinage Metal Ethylene Complexes. Organometallics 2016; 35:2938-2943. [PMID: 27642213 PMCID: PMC5019172 DOI: 10.1021/acs.organomet.6b00487] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis and full characterization of cationic isostructural "sandwich" diimine-coinage metal ethylene complexes are reported. Ethylene self-exchange kinetics proceeds by an associative exchange mechanism for Cu and Au complexes. The fastest ligand exchange was observed for Ag complex 8a. The upper limit of ΔG‡, assuming associative ligand exchange, was found to be ca. 5.0 kcal/mol. Ethylene self-exchange in Cu complex 7b proceeds with ΔG298‡ = 12.9 ± 0.1 kcal/mol, while the exchange is the slowest in Au complex 9, with ΔG298‡ = 16.7 ± 0.1 kcal/mol. Copper complex 7b is unusually stable and can survive in air for years.
Collapse
Affiliation(s)
- Kristine Klimovica
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Kristin Kirschbaum
- Department of Chemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
10
|
Light KM, Wisniewski JA, Vinyard WA, Kieber-Emmons MT. Perception of the plant hormone ethylene: known-knowns and known-unknowns. J Biol Inorg Chem 2016; 21:715-28. [DOI: 10.1007/s00775-016-1378-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
|
11
|
Yao PF, Liu HF, Huang FP, Feng FL, Qin XH, Huang ML, Yu Q, Bian HD. A family of Zn(ii)/Cd(ii) halide systems incorporating 5,5′-di(pyridin-2-yl)-3,3′-bi(1,2,4-triazole). CrystEngComm 2016. [DOI: 10.1039/c5ce02236c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
CuIX (X = Cl−, Br−, I−) inorganic networks separated and stabilized by a mercaptotetrazole ligand. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Pan J, Jiang FL, Wu MY, Chen L, Qian JJ, Su KZ, Wan XY, Hong MC. Five novel Zn(ii)/Cd(ii) coordination polymers based on bis(pyrazinyl)-triazole and varied polycarboxylates: syntheses, topologies and photoluminescence. CrystEngComm 2014. [DOI: 10.1039/c4ce01959h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|