1
|
Zhang J, Zhang Z, Su M, Xu X, Gao R, Yu B, Yan X. Cyclometalated N-Difluoromethylbenzimidazolylidene Platinum(II) Complexes with Built-in Secondary Coordination Spheres: Photophysical Properties and Bioimaging. Inorg Chem 2024. [PMID: 39546802 DOI: 10.1021/acs.inorgchem.4c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Bidentate Pt(II) complexes with cyclometalated N-heteroarene or N-heterocyclic carbene (NHC) ligands have been extensively studied as phosphorescent emitters over the past two decades. Herein, we introduce a difluoromethyl group (CF2H) into the wingtip of NHCs, where CF2H acts as a lipophilic hydrogen bond (HB) donor. Their cyclometalated Pt(II) complexes show excellent PLQYs (up to 93%) and phosphorescence lifetimes mainly due to the rigid structure with hydrogen bonding between the CF2H group and the adjacent O atom at the β-diketonate ligand. Bioimaging studies demonstrate high cellular uptake efficiency and deep tumor penetration capability of complex 7 in HeLa cells and multicellular tumor spheroids, highlighting their potential as bioimaging probes.
Collapse
Affiliation(s)
- Jingli Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Mengrui Su
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyu Xu
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China
| | - Rongyao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Bingran Yu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
2
|
Tzeng BC, Wu YT, Sun BJ, Chang AHH, Chien SY. Mechanochromic and Solvent-Induced Luminescence of a Supramolecular Pt(II)-Bipyridine Complex with Di(4-pyridylmethyl)aminedithiocarbamate. Inorg Chem 2024; 63:18589-18595. [PMID: 39316829 DOI: 10.1021/acs.inorgchem.4c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
[Pt(bpy)(DPMACS2)]2Cl2•3H2O (1•3H2O) (bpy = 2,2'-bipyridine, DPMACS2 = di(4-pyridylmethyl)aminedithiocarbamate) was synthesized and characterized by X-ray diffraction studies, and its crystal structure displayed intermolecular Pt(II)···Pt(II) contacts of 3.471 and 5.065 Å. Upon excitation, 1•3H2O showed broad luminescence at 538 nm, which was red-shifted and enhanced to 560 nm while cooling to 77 K. To this end, the B3LYP/LanL2DZ calculation results were performed to clearly explain their excited-state origin. Moreover, complex 1•3H2O displayed a dramatic mechanochromic shift from 538 to 608 nm while grinding, and the above red-shift was also observed while exposed to air within 1 day, suggestive of the simultaneous mechanochromic and solvent-induced luminescence. It is noted that the luminescence almost reverted to the original luminescence at 535-542 nm upon immersion in various solvents for the ground samples of complex 1•3H2O. In addition, the luminescence for the acetone-immersed ground samples returned to 608 nm in 1 min. The possible interactions between halogenated solvents and the free pyridyl groups in DPMACS2, which were not expected for acetone, have been proposed to be responsible for such a dramatic difference in this study.
Collapse
Affiliation(s)
- Biing-Chiau Tzeng
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chiayi 62102, Taiwan
| | - Yi-Ting Wu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chiayi 62102, Taiwan
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan
| | - Agnes H H Chang
- Department of Chemistry, National Dong Hwa University, 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan
| | - Su-Ying Chien
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
3
|
Mochizuki T, Yoshida M, Kobayashi A, Kato M. Controlled crystallisation of porous crystals of luminescent platinum(II) complexes by electronic tuning of ancillary ligands. Dalton Trans 2024; 53:12064-12072. [PMID: 38616678 DOI: 10.1039/d4dt00713a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Porous molecular crystals (PMCs) have gained significant importance as next-generation functional porous materials. However, the selective crystallisation of the PMC phase remains a challenge. Herein, we have systematically controlled the stability of the luminescent PMC phase prepared using the luminescent Pt(II) complex [Pt(pbim)(N^O)] (pbim = 2-phenylbenzimidazolate, N^O = N-heteroaryl carboxylate) with Pt⋯Pt electronic interactions. The PMC phase formation varied significantly among the complexes depending on the heteroaryl group of the ancillary N^O ligand; the oxazolyl-bearing complex did not form a PMC phase, whereas the pyrazyl- and 5-fluoropyridyl-bearing complexes spontaneously formed a porous structure. This difference was rationalised by the π-stacking capability of the heteroaryl group of the ancillary ligand. Furthermore, owing to the presence of the one-dimensional Pt⋯Pt chains in this PMC phase, the photophysical properties of PMCs resulting from the Pt⋯Pt interactions were also significantly changed by the ancillary ligands.
Collapse
Affiliation(s)
- Takanari Mochizuki
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
4
|
Thakur V, Thomas JM, Adnan M, Sivasankar C, Vijaya Prakash G, Thirupathi N. Syntheses, structural, photophysical and theoretical studies of heteroleptic cycloplatinated guanidinate(1-) complexes bearing acetylacetonate and picolinate ancillary ligands. RSC Adv 2024; 14:13291-13305. [PMID: 38655486 PMCID: PMC11037393 DOI: 10.1039/d4ra00828f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Cycloplatination of symmetrical N,N',N''-triarylguanidines, (ArNH)2C[double bond, length as m-dash]NAr with cis-[Pt(TFA)2(S(O)Me2)2] in toluene afforded cis-[Pt(TAG)(TFA)(S(O)Me2)] (TAG = triarylguanidinate(1-)-κC,κN; TFA = OC(O)CF3; 6-9) in 75-82% yields. The reactions of 6-9 and the previously known cis-[Pt(TAG)X(S(O)Me2)] (X = Cl (1) and TFA (2-5)) with acetylacetone (acacH) or 2-picolinic acid (picH) in the presence of a base afforded [Pt(TAG)(acac)] (acac = acetylacetonate-κ2O,O'; 10-18) and [Pt(TAG)(pic)] (pic = 2-picolinate-κN,κO; 19) in high yields. The new complexes were characterised by analytical, IR and multinuclear NMR spectroscopies. Further, molecular structures of 11, 12, 13·0.5 toluene and 14-19 were determined by single crystal X-ray diffraction. Absorption spectra of 10-19 in solution and their emission spectra in crystalline form were measured. Platinacycles 10-19 are bluish green light emitter in the crystalline form, and emit in the λPL = 488-529 nm range (11 and 13-19) while 12 emits at λPL = 570 nm. Unlike other platinacycles, the emission band of 12 is broad, red shifted, and this pattern is ascribed to the presence of an intermolecular N-H⋯Pt interaction involving the endocyclic amino unit of the six-membered [Pt(TAG)] ring and the Pt(ii) atom in the adjacent molecule in an asymmetric unit of the crystal lattice. Lifetime measurements were carried out for all platinacycles in crystalline form, which revealed lifetime in the order of nanoseconds. The origin of absorption and emission properties of 11, 15, 18 and 19 were studied by TD-DFT calculations.
Collapse
Affiliation(s)
- Vasudha Thakur
- Department of Chemistry, University of Delhi Delhi 110 007 India
| | - Jisha Mary Thomas
- Department of Chemistry, Catalysis and Energy Laboratory, Pondicherry University Puducherry 605 014 India
| | - Mohammad Adnan
- Department of Physics, Nanophotonics Laboratory, Indian Institute of Technology-Delhi New Delhi 110 016 India
| | - Chinnappan Sivasankar
- Department of Chemistry, Catalysis and Energy Laboratory, Pondicherry University Puducherry 605 014 India
| | - G Vijaya Prakash
- Department of Physics, Nanophotonics Laboratory, Indian Institute of Technology-Delhi New Delhi 110 016 India
| | | |
Collapse
|
5
|
Poveda D, Vivancos Á, Bautista D, González-Herrero P. Luminescent Platinum(II) Complexes with Terdentate N∧C∧C Ligands. Inorg Chem 2023; 62:20987-21002. [PMID: 38051299 PMCID: PMC10751801 DOI: 10.1021/acs.inorgchem.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
The synthesis, structure, and luminescence of Pt(II) complexes of the type [Pt(N∧C∧C)(L)] are reported, where N∧C∧C is a terdentate ligand resulting from the cycloplatination of 2-(3,5-diphenoxyphenyl)pyridine or 2-(4,4″-dimethyl-[1,1':3',1″-terphenyl]-5'-yl)pyridine, and L represents a monodentate ancillary ligand, which can be γ-picoline, 4-pyridinecarboxaldehyde, PPh3, n-butyl or 2,6-dimethylphenyl isocyanide, CO, or the N-heterocyclic carbenes 1-butyl-3-methylimidazol-2-ylidene or 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene. Derivatives bearing CO, isocyanides, or carbenes showed the highest stabilities in solution, whereas the pyridine and PPh3 derivatives establish ligand-exchange equilibria in acetonitrile. Different supramolecular structures are observed in the solid state, which largely depend on the nature of the ancillary ligand. Isocyanides and CO favor π interactions between the aromatic rings, metallophilic Pt···Pt contacts, or a combination of both. In contrast, pyridine ligands may lead to bimolecular assemblies driven by C-H···O, C-H···Pt, or C-H/π hydrogen bonds. Luminescence was examined in fluid solution, poly(methyl methacrylate) matrices, and the solid state at 298 K, and in 2-methyltetrahydrofuran glasses at 77 K. The majority of derivatives show highly efficient emissions from 3ILCT/MLCT or 3ILCT/MLCT/LLCT excited states of monomeric species. The formation of excimers and different types of emissive aggregates are demonstrated, which lead to red-shifted emissions of different origins and characteristics depending on the involved noncovalent interactions.
Collapse
Affiliation(s)
- Dionisio Poveda
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Ángela Vivancos
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área
Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|
6
|
López-López JC, Nguyen YH, Jiang C, Teets TS. Luminescent Platinum Complexes with π-Extended Aryl Acetylide Ligands Supported by Isocyanides or Acyclic Diaminocarbenes. Inorg Chem 2023; 62:17843-17850. [PMID: 37845787 DOI: 10.1021/acs.inorgchem.3c02641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In this work, we present a series of luminescent platinum acetylide complexes with acetylides that are electronically modified and/or π-extended. Six isocyanide-supported complexes with the general formula cis-[Pt(CNAr)2(C≡CR)2] and six acyclic diaminocarbene (ADC) complexes of the form trans-[Pt(ADC)2(C≡CR)2], all using the same five acetylide ligands, are described. The compounds are characterized by multinuclear NMR, FT-IR, and single-crystal X-ray diffraction. In most cases, the phosphorescence arises from an acetylide-centered 3(π → π*) excited state, although in one of the isocyanide compounds there is evidence for a charge-transfer excited state. The photoluminescence wavelength depends strongly on the substitution pattern and extent of the π conjugation on the acetylide, with maxima spanning the range of ca. 460-540 nm. Most photoluminescence lifetimes are long, beyond 50 μs, and quantum yields are low to moderate, 0.043-0.27. The photoluminescence quantum yields and lifetimes in these compounds do not systematically improve in the ADC complexes compared to the isocyanide versions, suggesting the neutral ligand σ-donor character does not play a large role in the excited-state dynamics when the triplet excited state is delocalized over a large π system.
Collapse
Affiliation(s)
- Juan Carlos López-López
- University of Houston, Department of Chemistry, Lamar Fleming Jr. Building, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, Edificio 19, 30100 Murcia, Spain
| | - Yennie H Nguyen
- University of Houston, Department of Chemistry, Lamar Fleming Jr. Building, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Chenggang Jiang
- University of Houston, Department of Chemistry, Lamar Fleming Jr. Building, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S Teets
- University of Houston, Department of Chemistry, Lamar Fleming Jr. Building, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
7
|
Makino Y, Yoshida M, Hayashi S, Sasaki T, Takamizawa S, Kobayashi A, Kato M. Elastic and bright assembly-induced luminescent crystals of platinum(II) complexes with near-unity emission quantum yield. Dalton Trans 2023. [PMID: 36847788 DOI: 10.1039/d3dt00192j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Molecular crystals of Pt(II) complexes with metallophilic interactions can provide bright assembly-induced luminescence with colour tunability. However, the brittleness of many of these crystals makes their application in flexible optical materials difficult. Herein, we have achieved the elastic deformation of crystals of polyhalogenated Pt(II) complexes exhibiting bright assembly-induced luminescence. A crystal of [Pt(bpic)(dFppy)] (Hbpic = 5-bromopicolinic acid, HdFppy = 2-(2,4-difluorophenyl)pyridine) and a co-crystal of [Pt(bpic)(dFppy)] and [Pt(bpic)(ppy)] (Hppy = 2-phenylpyridine) were found to exhibit significant elastic deformation due to their highly anisotropic interaction topologies. While the crystal of [Pt(bpic)(dFppy)] exhibited monomer-based ligand-centred 3ππ* emission with an emission quantum yield of 0.40, the co-crystal exhibited bright, triplet metal-metal-to-ligand charge transfer (3MMLCT) emission owing to Pt⋯Pt interactions, thereby achieving a significantly higher emission quantum yield of 0.94.
Collapse
Affiliation(s)
- Yusuke Makino
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Shotaro Hayashi
- School of Environmental Science and Engineering and Research Centre for Molecular Design, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Toshiyuki Sasaki
- Department of Materials System Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Satoshi Takamizawa
- Department of Materials System Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
8
|
Fitzgerald SA, Xiao X, Zhao J, Horton PN, Coles SJ, Knighton RC, Ward BD, Pope SJA. Organometallic Platinum(II) Photosensitisers that Demonstrate Ligand-Modulated Triplet-Triplet Annihilation Energy Upconversion Efficiencies. Chemistry 2023; 29:e202203241. [PMID: 36394514 PMCID: PMC10107691 DOI: 10.1002/chem.202203241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/18/2022]
Abstract
A series of 2-phenylquinoxaline ligands have been synthesised that introduce either CF3 or OCF3 electron-withdrawing groups at different positions of the phenyl ring. These ligands were investigated as cyclometalating reagents for platinum(II) to give neutral complexes of the form [Pt(C^N)(acac)] (in which C^N=cyclometalating ligand; acac=acetyl acetonate). X-ray crystallographic studies on three examples showed that the complexes adopt an approximate square planar geometry. All examples revealed strong Pt-Pt linear contacts of 3.2041(6), 3.2199(3) and 3.2586(2) Å. The highly coloured complexes display efficient visible absorption at 400-500 nm (ϵ ≈5000 M-1 cm-1 ) and orange red photoluminescent characteristics (λem =603-620 nm; Φem ≤37 %), which were subtly tuned by the ligand. Triplet emitting character was confirmed by microsecond luminescence lifetimes and the photogeneration of singlet oxygen with quantum efficiencies up to 57 %. Each complex was investigated as a photosensitiser for triplet-triplet annihilation energy upconversion using 9,10-diphenylanthracene as the annihilator species: a range of good upconversion efficiencies (ΦUC 5.9-14.1 %) were observed and shown to be strongly influenced by the ligand structure in each case.
Collapse
Affiliation(s)
| | - Xiao Xiao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P.R. China
| | - Peter N. Horton
- UK National Crystallographic Service, ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Simon J. Coles
- UK National Crystallographic Service, ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | | | - Benjamin D. Ward
- School of ChemistryMain BuildingCardiff UniversityCardiffCF10 3ATUK
| | - Simon J. A. Pope
- School of ChemistryMain BuildingCardiff UniversityCardiffCF10 3ATUK
| |
Collapse
|
9
|
Trinuclear and Cyclometallated Organometallic Dinuclear Pt-Pyrazolato Complexes: A Combined Experimental and Theoretical Study. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two differently substituted pyrazole ligands have been investigated with regard to the topology of their Pt complexes: upon deprotonation, two mononuclear 1:2 PtII-pyrazole complexes—one of the sterically unhindered 4-Me-pzH and one of the bulky 3,5-tBu-pzH (pzH = pyrazole)—yield the corresponding 1:2 PtII-pyrazolato species; the former a triangular, trinuclear metallacycle (1), and the latter a dinuclear, half-lantern species (2) formed via the unprecedented cyclometallation of a butyl group. Stoichiometric oxidation of the colorless PtII2 complex produces the deep-blue, metal–metal bonded PtIII2 analog (3) with a rarely encountered unsymmetrical coordination across the Pt-Pt bond. All three complexes have been characterized by single crystal X-ray structure determination, 1H-NMR, IR, and UV-vis-NIR spectroscopic methods. The XPS spectra of the PtII2 and PtIII2 species are also reported. Density functional theory calculations were carried out to investigate the electronic structure, spectroscopic properties, and chemical bonding of the new complexes. The calculated natural population analysis charges and Wiberg bonding indices indicate a weak σ-interaction in the case of 2 and a formal Pt-Pt single bond in 3.
Collapse
|
10
|
Sadeghian M, Gómez de Segura D, Golbon Haghighi M, Safari N, Lalinde E, Moreno MT. Luminescent Anionic Cyclometalated Organoplatinum (II) Complexes with Terminal and Bridging Cyanide Ligand: Structural and Photophysical Properties. Inorg Chem 2023; 62:1513-1529. [PMID: 36651903 PMCID: PMC9890487 DOI: 10.1021/acs.inorgchem.2c03668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present the synthesis and characterization of two series of mononuclear heteroleptic anionic cycloplatinated(II) complexes featuring terminal cyanide ligand Q+[Pt(C^N)(p-MeC6H4)(CN)]- [C^N = benzoquinolate (bzq), Q+ = K+ 1 and NBu4+ 4; 2-phenylpyridinate (ppy), Q+ = K+ 2 and NBu4+ 5 and 2-(2,4- difluorophenyl)pyridinate (dfppy), Q+ = K+ 3 and NBu4+ 6] and a series of symmetrical binuclear complexes (NBu4)[Pt2(C^N)2(p-MeC6H4)2(μ-CN)] (C^N = bzq 7, ppy 8, dfppy 9). Compounds 5, 6, and 7-9 were further determined by single-crystal X-ray diffraction. There are no apparent intermolecular Pt···Pt interactions owing to the presence of bulky NBu4+ counterion. Slow crystallization of K[Pt(ppy)(p-MeC6H4)(CN)] 2 in acetone/hexane evolves with formation of yellow crystals, which were identified by single-crystal X-ray diffraction methods as the salt complex {[Pt(ppy)(p-MeC6H4)(CN)]2K3(OCMe2)4(μ-OCMe2)2}[Pt(ppy)(p-MeC6H4)(μ-CN)Pt(ppy)(p-MeC6H4)]·2acetone (10), featuring the binuclear anionic unit 8- neutralized by an hybrid inorganic-organometallic coordination polymer {[Pt(ppy)(p-MeC6H4)(CN)]2K3(OCMe2)4(μ-OCMe2)2}+. The photophysical properties of all compounds were recorded in powder, polystyrene film, and solution states with a quantum yield up to 21% for 9 in the solid state. All complexes displayed bright emission in rigid media, and for the interpretation of their absorption and emission properties, density functional theory (DFT) and time-dependent DFT calculations were applied.
Collapse
Affiliation(s)
- Mina Sadeghian
- Department
of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran,Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - David Gómez de Segura
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | | | - Nasser Safari
- Department
of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran
| | - Elena Lalinde
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain,
| | - M. Teresa Moreno
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain,
| |
Collapse
|
11
|
Tzeng BC, Liao CC, Jung PY, Chen SY, Sun BJ, Cheng WC, Chang AHH, Lee GH. Luminescent Pt(II) Complexes Containing (1-Aza-15-crown-5)dithiocarbamate and (1-Aza-18-crown-6)dithiocarbamate: Mechanochromic and Solvent-Induced Luminescence. Inorg Chem 2023; 62:916-929. [PMID: 36584668 DOI: 10.1021/acs.inorgchem.2c03726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The strong tendency to stack in the solid state and rich luminescence for the Pt(II) complexes makes them potential candidates as new mechanochromic materials and sensing applications. Six mononuclear complexes [Pt(ppy)(O4NCS2)] (1), [Pt(bpy)(O4NCS2)]ClO4 (2), [Pt(ppy)(O5NCS2)] (3), [Pt(phen)(O4NCS2)]ClO4·CH3OH (5a), [Pt(phen)(O4NCS2)]ClO4 (5b), and [Pt(phen)(O5NCS2)]ClO4 (6a), one dinuclear complex [Pt2(phen)2(NaO5NCS2)2(ClO4)3]ClO4 (6b), and one one-dimensional (1-D) coordination polymer {[Pt2(bpy)2(NaO5NCS2)2(ClO4)2](ClO4)2}n (4) were synthesized by reacting [Pt(ppy)Cl]2, Pt(bpy)Cl2, and Pt(phen)Cl2 (ppy = 2-phenylpyridine, bpy = 2,2'-bipyridine, and phen = 1,10-phenanthroline) with (1-aza-15-crown-5)dithiocarbamate (O4NCS2) or (1-aza-18-crown-6)dithiocarbamate (O5NCS2), respectively, which have been isolated and structurally characterized by X-ray diffraction. Neutral complexes 1 and 3 contain no intermolecular Pt(II)···Pt(II) contact, whereas cationic complexes 2, 5a, 5b, and 6a with ClO4- as counteranions show alternative intermolecular Pt(II)···Pt(II) contacts of 3.535/4.091, 3.480/5.001, 3.527/4.571, and 3.446/4.987 Å in the solid state, respectively. Interestingly, complex 4 forms a 1-D coordination polymer through coordination between the encapsulated Na+ ions inside the azacrown ether rings of O5NCS2 and ClO4- anions with respective intra- and intermolecular Pt(II)···Pt(II) contacts of 3.402 and 3.847 Å in crystal lattices, whereas a dinuclear complex 6b was surprisingly formed and also connected by the encapsulated Na+ ions and ClO4- anions with alternative intra- and intermolecular Pt(II)···Pt(II) contacts of 3.650 and 3.677/4.4.372 Å, respectively. Upon excitation, complexes 1 and 3 showed similar vibronic luminescence at 507, 534, and 502, 532 nm, respectively, and the other complexes 2 and 4-6 showed broad luminescence with maxima at 537-567 nm. The B3LYP/LanL2DZ calculation was carried out and used to clarify their excited-state properties. In addition, the powder samples for complexes 1-4 almost showed no energy shift for the luminescence and significantly those of complexes 5-6 exhibited the mechanochromic luminescence upon grinding. It is noted that complexes 5a and 6a only showed minor red shifts (i.e., from 544 to 556 nm for complex 5a and from 551 to 565 nm for complex 6a), whereas complex 6b exhibited a remarkable red shift from 558 to 603 nm upon grinding. Besides, their luminescence reversibility was also examined toward various solvents.
Collapse
Affiliation(s)
- Biing-Chiau Tzeng
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Chi-Chung Liao
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Peng-Yuan Jung
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Si-Ying Chen
- Department of Chemistry, National Dong Hwa University, 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan
| | - Wei-Chung Cheng
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Agnes H H Chang
- Department of Chemistry, National Dong Hwa University, 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Shigeta Y, Nomoto T, Kato M, Mizuno M. Mechanical and Thermal ON-OFF Switching of the Vapochromic Behavior of a Luminescent Polymorphic Pt(II) Complex. Inorg Chem 2023; 62:66-74. [PMID: 36543520 DOI: 10.1021/acs.inorgchem.2c02865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vapochromic materials that exhibit color/luminescence changes induced by vapor exposure have attracted considerable attention. Herein, we report the grinding- and heating-induced ON-OFF switching of the vapochromic behavior of [Pt(ppyCl2)(Clacac)] (1; ppyCl2 = 2-(3-chlorophenyl)-4-chloropyridinato, Clacac = 3-chloroacetylacetonato). 1 formed yellow and orange polymorphs (1-Y and 1-O), and 1-Y could be converted to 1-Og, which showed a very similar crystal structure but with a broadened X-ray diffraction pattern compared with that of 1-O. Moreover, 1-Og can be reversibly transformed into 1-O via heating and grinding. Notably, 1-Og underwent a N,N-dimethylacetamide vapor-induced transformation to 1-Y, whereas 1-O did not undergo such a transformation. These results indicate the ON-OFF switching of vapochromic behavior induced via grinding and heating. This finding will be beneficial for developing intelligent molecular devices.
Collapse
Affiliation(s)
- Yasuhiro Shigeta
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan.,Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Tatsuya Nomoto
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo669-1330, Japan
| | - Motohiro Mizuno
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan.,Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| |
Collapse
|
13
|
Palladium(II) and Platinum(II) Deprotonated Diaminocarbene Complexes Based on N-(2-Pyridyl)ureas with Oxadiazole Periphery. INORGANICS 2022. [DOI: 10.3390/inorganics10120247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metal mediated coupling of isocyanides with substituted N-(pyridine-2-yl) ureas was first used to incorporate privileged biological motifs into platinum metal complexes. We synthesized two palladium(II) and two platinum(II) cyclometallated species with oxadiazole cores. The compounds were isolated in good yields (61–73%) and characterized by high-resolution mass spectrometry and 1H, 13C, and 195Pt NMR spectroscopies. The structures of three complexes were additionally elucidated by X-ray diffraction analysis. These complexes indeed showed cytotoxic activity. The species bearing the 1,3,4-oxadiazole moiety exhibit more potency than the ones with the 1,2,4-oxadiazole ring. Particularly, the cytotoxic effect of both 1,3,4-oxadiazole-based complexes towards T98G cells significantly exceeds the common antitumor metal-drug cisplatin.
Collapse
|
14
|
Fung TH, Ng M, Wu NM, Yam VW. Dithienylethene‐Containing Cyclometalated Platinum(II) Complexes with Tunable Photochromic and Photophysical Properties. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tony Ho‐Ching Fung
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Maggie Ng
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Nathan Man‐Wai Wu
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Vivian Wing‐Wah Yam
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
15
|
Scarpelli F, Ionescu A, Crispini A, Marino N, Di Maio G, La Deda M, Godbert N, Aiello I. Structural investigation of anionic cyclometalated Pt(II)-tetrabromocatecholate complexes: quasi-halogen bonding and elusive polymorphism at play. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2132483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Francesca Scarpelli
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Andreea Ionescu
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Alessandra Crispini
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Nadia Marino
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Giuseppe Di Maio
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Massimo La Deda
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
- CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, Arcavacata di Rende, Cosenza, Italy
| | - Nicolas Godbert
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Iolinda Aiello
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
- CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
16
|
Spence KA, Chari JV, Di Niro M, Susick RB, Ukwitegetse N, Djurovich PI, Thompson ME, Garg NK. π-Extension of heterocycles via a Pd-catalyzed heterocyclic aryne annulation: π-extended donors for TADF emitters. Chem Sci 2022; 13:5884-5892. [PMID: 35685807 PMCID: PMC9132060 DOI: 10.1039/d2sc01788a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
We report the annulation of heterocyclic building blocks to access π-extended polycyclic aromatic hydrocarbons (PAHs). The method involves the trapping of short-lived hetarynes with catalytically-generated biaryl palladium intermediates and allows for the concise appendage of three or more fused aromatic rings about a central heterocyclic building block. Our studies focus on annulating the indole and carbazole heterocycles through the use of indolyne and carbazolyne chemistry, respectively, the latter of which required the synthesis of a new carbazolyne precursor. Notably, these represent rare examples of transition metal-catalyzed reactions of N-containing hetarynes. We demonstrate the utility of our methodology in the synthesis of heterocyclic π-extended PAHs, which were then applied as ligands in two-coordinate metal complexes. As a result of these studies, we identified a new thermally-activated delayed fluorescence (TADF) emitter that displays up to 81% photoluminescence efficiency, along with insight into structure-property relationships. These studies underscore the utility of heterocyclic strained intermediates in the synthesis and study of organic materials.
Collapse
Affiliation(s)
- Katie A Spence
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Jason V Chari
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Mattia Di Niro
- Department of Chemistry, University of Southern California Los Angeles California 90089 USA
| | - Robert B Susick
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Narcisse Ukwitegetse
- Department of Chemistry, University of Southern California Los Angeles California 90089 USA
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California Los Angeles California 90089 USA
| | - Mark E Thompson
- Department of Chemistry, University of Southern California Los Angeles California 90089 USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| |
Collapse
|
17
|
Intermolecular (Isocyano group)···PtII interactions involving coordinated isocyanides in cyclometalated PtII complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Nishimoto M, Uetake Y, Yakiyama Y, Ishiwari F, Saeki A, Sakurai H. Synthesis of the C 70 Fragment Buckybowl, Homosumanene, and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone. J Org Chem 2022; 87:2508-2519. [PMID: 35179377 DOI: 10.1021/acs.joc.1c02416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bowl-shaped aromatic molecules, buckybowls, are attractive molecules because of the unique properties derived from their curved-π scaffolds. Doping heteroatoms into buckybowl frameworks is a powerful method to change their structural and electronical properties. Herein, we report the synthesis of C70 fragment buckybowl, homosumanene, and heterahomosumanenes having a lactone moiety and a lactam moiety via three ring-expansion reactions using sumanenone as a common intermediate. X-ray diffraction analysis of the single crystals reveals their columnar packing structure with a shallow bowl-depth. The lactam moiety is readily derivatized to give azahomosumanene derivatives, nitrogen-doped analogues of homosumanene possessing a pyridine ring at the peripheral carbon. The synthetic application of the α-phenyl azahomosumanene as a cyclometalating ligand with platinum also revealed its utility for preparing a metal complex bearing a buckybowl ligand.
Collapse
Affiliation(s)
- Mikey Nishimoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuta Uetake
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumi Yakiyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumitaka Ishiwari
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Ortiz RJ, Braun JD, Williams JAG, Herbert DE. Brightly Luminescent Platinum Complexes of N∧C-∧N Ligands Forming Six-Membered Chelate Rings: Offsetting Deleterious Ring Size Effects Using Site-Selective Benzannulation. Inorg Chem 2021; 60:16881-16894. [PMID: 34730936 DOI: 10.1021/acs.inorgchem.1c02551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brightly emissive platinum(II) complexes (λemission,max = 607-612 nm) of the type RLPtCl are reported, where RL is a cyclometalated N∧C-∧N-coordinating ligand derived from 1,3-di(2-trifluoromethyl-4-phenanthridinyl)benzene (CF3LH) or 1,3-di(2-tert-butyl-4-phenanthridinyl)benzene (tBuLH). Metathesis of the chlorido ligand can be achieved under mild conditions, enabling isolation of ionic compounds with the formula [CF3LPtL']PF6 where L' = pyridine or (4-dimethylamino)pyridine (DMAP), as well as the charge-neutral species tBuLPt(C≡C─C6H4─tBu) (C≡C─C6H4─tBu = 4-tert-butylphenylacetylido). Compared with N∧N∧N-ligated Pt(II) complexes that form 5-membered chelates, these compounds all contain 6-membered rings. Expanding the chelate ring size from 5 to 6 has been previously demonstrated to enhance emission in some N∧N∧N-coordinated Pt(II) species─for example, in complexes of 2,6-di(8-quinolinyl)pyridine vs those of 2,2':6',2″-terpyridine─but in related N∧C-∧N-coordinated species, luminescence quantum yields are significantly lower for the 6-membered chelate ring complexes. Here, we demonstrate that site-selective benzannulation of the quinolinyl side-arms can offset the deleterious effect of changing the chelate ring-size and boost photophysical properties such as the quantum yield. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations suggest that benzannulation counterintuitively destabilizes the emissive triplet states compared to the smaller π-system, with the "imine-bridged biphenyl" form of the phenanthridinyl arm helping to buffer against larger molecular distortions, enhancing photoluminescence quantum yields up to 0.09 ± 0.02. The spontaneous formation under aerated conditions of a Pt(IV) derivative (CF3LPtCl3) is also reported, together with its molecular structure in the solid state.
Collapse
Affiliation(s)
- Robert J Ortiz
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jason D Braun
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | | | - David E Herbert
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
20
|
Dobrynin MV, Kasatkina SO, Baykov SV, Savko PY, Antonov NS, Mikherdov AS, Boyarskiy VP, Islamova RM. Deprotonated diaminocarbene platinum complexes for thermoresponsive luminescent silicone materials: both catalysts and luminophores. Dalton Trans 2021; 50:14994-14999. [PMID: 34693947 DOI: 10.1039/d1dt02823e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C,N-Chelate deprotonated diaminocarbene platinum(II) complexes were synthesized by coupling coordinated isocyanides and azinyl-substituted ureas. The complexes act as catalysts of α,ω-divinylpolydimethylsiloxane and poly(dimethylsiloxane-co-methylhydrosiloxane) hydrosilylation cross-linking. Silicone rubbers obtained with (aminoisoquinoline)-containing complex 3d exhibit temperature-responsive luminescence. Their emission changes irreversibly when heated from 80-100 °C (green radiation) to 120 °C or more (blue radiation).
Collapse
Affiliation(s)
- Mikhail V Dobrynin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Svetlana O Kasatkina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Polina Y Savko
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Nikita S Antonov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Alexander S Mikherdov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Vadim P Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Regina M Islamova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
21
|
Wang L, Xiao H, Qu L, Song J, Zhou W, Zhou X, Xiang H, Xu ZX. Axially Chiral Bis-Cycloplatinated Binaphthalenes and Octahydro-Binaphthalenes for Efficient Circularly Polarized Phosphorescence in Solution-Processed Organic Light-Emitting Diodes. Inorg Chem 2021; 60:13557-13566. [PMID: 34409839 DOI: 10.1021/acs.inorgchem.1c01861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new series of axially chiral binuclear Pt(II) complexes with bridging ligands of binaphthalenes and octahydro-binaphthalenes and auxiliary ligands of β-diketones were designed and prepared. These complexes, identified by spectral and electrochemical methods and single-crystal X-ray diffraction, emit an orange-red phosphorescence with a quantum yield up to 21% and 70% in solution and solid, respectively, due to the effect of steric hindrance from bridging ligands and the 2,3-position extension of chiral axis planes. They can be used as emitters in solution-processed organic light-emitting diodes to achieve luminance efficiency, asymmetry factor, and external quantum efficiency up to 5.4 cd A-1, 3.0 × 10-3, and 3.1%, respectively. Moreover, the essential relationships between their chemical structures and luminescence quantum efficiency and asymmetry factor are discussed, which affords explicit insights for designing circularly polarized luminescent materials and devices.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Hui Xiao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
| | - Lang Qu
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Jintong Song
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Weilan Zhou
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Haifeng Xiang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
22
|
Kuno A, Hirata G, Tanaka H, Kobayashi Y, Yasuda N, Maeda H. Dipyrrolyldiketone Pt II Complexes: Ion-Pairing π-Electronic Systems with Various Anion-Binding Modes. Chemistry 2021; 27:10068-10076. [PMID: 34002907 DOI: 10.1002/chem.202100855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 11/10/2022]
Abstract
A variety of π-electronic ion-pairing assemblies can be constructed by combining anion complexes of π-electronic systems and countercations. In this study, a series of anion-responsive π-electronic molecules, dipyrrolyldiketone PtII complexes containing a phenylpyridine ligand, were synthesized. The resulting PtII complexes exhibited phosphorescence emission, with higher emission quantum yields (0.30-0.42) and microsecond-order lifetimes, and solution-state anion binding, as revealed by our spectroscopic analyses. These PtII complexes displayed solid-state ion-pairing assemblies, exhibiting various anion-binding modes, which derived from pyrrole-inverted and pyrrole-non-inverted conformations, and packing structures, with the contribution of charge-by-charge assemblies, which were dependent on the substituents in the PtII complexes and the geometries and electronic states of their countercations.
Collapse
Affiliation(s)
- Atsuko Kuno
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Goki Hirata
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Hiroki Tanaka
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Nobuhiro Yasuda
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute, Sayo, 679-5198, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
23
|
Rastogi R, Krishna G, Tarannum N, Mishra S, Rastogi A, Butcher RJ. Study based on docking of antimicrobial activity and fluorescence behavior of ammonium salt of diisopropyl dithiophosphate, O, O′- diisopropanediyl S-( N-phthalimido methyl) and zinc diisopropyl dithiophosphates. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1860983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rupali Rastogi
- Department of Chemistry, ITM University, Gwalior, Madhya Pradesh, India
| | - Gokul Krishna
- Department of Chemistry, ITM University, Gwalior, Madhya Pradesh, India
| | - Nazia Tarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Swapnil Mishra
- Center of Bioinformatics, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Anugya Rastogi
- Department of Physics, Jiwaji University, Gwalior, Madhya Pradesh, India
| | | |
Collapse
|
24
|
Photophysical Properties and Kinetic Studies of 2-Vinylpyridine-Based Cycloplatinated(II) Complexes Containing Various Phosphine Ligands. Molecules 2021; 26:molecules26072034. [PMID: 33918450 PMCID: PMC8038257 DOI: 10.3390/molecules26072034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022] Open
Abstract
A series of cycloplatinated(II) complexes with general formula of [PtMe(Vpy)(PR3)], Vpy = 2-vinylpyridine and PR3 = PPh3 (1a); PPh2Me (1b); PPhMe2 (1c), were synthesized and characterized by means of spectroscopic methods. These cycloplatinated(II) complexes were luminescent at room temperature in the yellow–orange region’s structured bands. The PPhMe2 derivative was the strongest emissive among the complexes, and the complex with PPh3 was the weakest one. Similar to many luminescent cycloplatinated(II) complexes, the emission was mainly localized on the Vpy cyclometalated ligand as the main chromophoric moiety. The present cycloplatinated(II) complexes were oxidatively reacted with MeI to yield the corresponding cycloplatinated(IV) complexes. The kinetic studies of the reaction point out to an SN2 mechanism. The complex with PPhMe2 ligand exhibited the fastest oxidative addition reaction due to the most electron-rich Pt(II) center in its structure, whereas the PPh3 derivative showed the slowest one. Interestingly, for the PPhMe2 analog, the trans isomer was stable and could be isolated as both kinetic and thermodynamic product, while the other two underwent trans to cis isomerization.
Collapse
|
25
|
Samiee S, Noorabadi FE, Azadi R. Cyclopalladated benzo[h]quinolinate complexes based on stabilized phosphonium-phosphine ylides: Synthesis, characterization, and application as catalyst in aqueous-phase Suzuki-Miyaura reaction. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Shi C, Li F, Li Q, Zhao W, Cao Y, Zhao Q, Yuan A. B- and N-Embedded π-Conjugation Units Tuning Intermolecular Interactions and Optical Properties of Platinum(II) Complexes. Inorg Chem 2021; 60:525-534. [PMID: 33378182 DOI: 10.1021/acs.inorgchem.0c03078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new series of neutral and cationic platinum(II) complexes containing a B- or N-embedded π-conjugation unit has been prepared. Notably, significantly different intermolecular interactions (Pt-Pt, π-π, head to tail, and head to head) and interesting optical properties exist in these complexes, which can be attributed to the difference in spatial structures and π-electron properties between B- and N-embedded π-conjugation units. Unexpectedly, under a hypoxic atmosphere, N-embedded neutral complex PtNacac can display a distinct dual-emission with both fluorescence and phosphorescence, whereas only a single fluorescence emission was observed in the air, which is different from the B-embedded neutral complex PtBacac with only a single phosphorescence emission at any atmosphere, as well confirmed by lifetime measurement and oxygen sensing experiments. DFT calculations reveal that unusual ligand-to-metal charge transfer (LMCT) excited state character and low spin orbit coupling (SOC) elements can be found in N-embedded complexes due to the strong electron-donating ability of the N-embedded unit. Based on this, as a novel ratiometric oxygen probe with a simple structure, PtNacac can be successfully used to examine intracellular oxygen levels by monitoring both fluorescence and phosphorescence signals via ratiometric photoluminescence imaging and time-resolved luminescence imaging (TRLI) technology. This work provides a completely new idea for designing fluorescence/phosphorescence dual-emissive complexes.
Collapse
Affiliation(s)
- Chao Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Feiyang Li
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People's Republic of China
| | - Qiuxia Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Weili Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People's Republic of China
| | - Yibo Cao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People's Republic of China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| |
Collapse
|
27
|
Abstract
Coordination compounds, characterized by fascinating and tunable electronic properties, are capable of binding easily to proteins, polymers, wires and DNA. Upon irradiation, these molecular systems develop functions finding applications in solar cells, photocatalysis, luminescent and conformational probes, electron transfer triggers and diagnostic or therapeutic tools. The control of these functions is activated by the light wavelength, the metal/ligand cooperation and the environment within the first picoseconds (ps). After a brief summary of the theoretical background, this perspective reviews case studies, from 1st row to 3rd row transition metal complexes, that illustrate how spin-orbit, vibronic coupling and quantum effects drive the photophysics of this class of molecules at the early stage of the photoinduced elementary processes within the fs-ps time scale range.
Collapse
Affiliation(s)
- Chantal Daniel
- Laboratoire de Chimie Quantique, Université de Strasbourg, CNRS UMR7177, Institut Le Bel, 4 Rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
28
|
Mondal R, Braun JD, Lozada IB, Nickel R, van Lierop J, Herbert DE. Group VIII coordination complexes of bidentate P^N ligands bearing π-extended quinoline or phenanthridine N-heterocycles. NEW J CHEM 2021. [DOI: 10.1039/d1nj00254f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Group 8 complexes of π-extended N-heterocyclic ligands present some unexpected results. Benzannulation shifts the lowest energy excitation to the blue by impacting the character of the transition rather than affecting frontier orbital energies.
Collapse
Affiliation(s)
| | - Jason D. Braun
- Department of Chemistry
- University of Manitoba
- Winnipeg
- Canada
| | | | - Rachel Nickel
- Department of Physics and Astronomy
- University of Manitoba
- Winnipeg
- Canada
| | - Johan van Lierop
- Department of Physics and Astronomy
- University of Manitoba
- Winnipeg
- Canada
- Manitoba Institute for Materials
| | - David E. Herbert
- Department of Chemistry
- University of Manitoba
- Winnipeg
- Canada
- Manitoba Institute for Materials
| |
Collapse
|
29
|
Synthesis and physical property studies of cyclometalated Pt(II) and Pd(II) complexes with tridentate ligands containing pyrazole and pyridine groups. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
New yellow-emitting iridium(III) complexes containing 2-phenyl-2H-indazole-based ligands for high efficient OLEDs with EQE over 25%. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Dou S, Jia X, Liu Z, Meng Y, Mo Z, Li G, Niu Z. Cyclometalated iridium(
III
) complexes containing
2‐phenyl‐2
H
‐indazole ligand: Synthesis, photophysical studies, and
DFT
calculations. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shao‐Bin Dou
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Xing‐Liang Jia
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Zhi‐Jun Liu
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Ya‐Qi Meng
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Zheng‐Rong Mo
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education Hainan Normal University Haikou China
| | - Gao‐Nan Li
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Zhi‐Gang Niu
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education Hainan Normal University Haikou China
| |
Collapse
|
32
|
Jamshidi M, Barzegar-Kiadehi SR, Golbon Haghighi M, Notash B. Dual-Emissive Bis(diphenylphosphino)amine Platinum Complexes: Structural, Reactivity, Photophysical, and Theoretical Investigations. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahboubeh Jamshidi
- Department of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | - Behrouz Notash
- Department of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran
| |
Collapse
|
33
|
Saito D, Ogawa T, Yoshida M, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Intense Red‐Blue Luminescence Based on Superfine Control of Metal–Metal Interactions for Self‐Assembled Platinum(II) Complexes. Angew Chem Int Ed Engl 2020; 59:18723-18730. [PMID: 32666592 DOI: 10.1002/anie.202008383] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Daisuke Saito
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Tomohiro Ogawa
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Current address: Institute for Integrated Cell-Materials Sciences Kyoto University Kyoto 606-8501 Japan
| | - Masaki Yoshida
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Atsushi Kobayashi
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
34
|
Saito D, Ogawa T, Yoshida M, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Intense Red‐Blue Luminescence Based on Superfine Control of Metal–Metal Interactions for Self‐Assembled Platinum(II) Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daisuke Saito
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Tomohiro Ogawa
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Current address: Institute for Integrated Cell-Materials Sciences Kyoto University Kyoto 606-8501 Japan
| | - Masaki Yoshida
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Atsushi Kobayashi
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
35
|
The history of organoplatinum chemistry in Iran: 40-year research. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01892-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Pinter P, Soellner J, Strassner T. Heteroleptic Cyclometalated NHC Iridium(III) complex with a bulky acetylacetonate: Photophysics of an unexplored class of compounds. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Wakasugi C, Yoshida M, Sameera WMC, Shigeta Y, Kobayashi A, Kato M. Bright Luminescent Platinum(II)-Biaryl Emitters Synthesized Without Air-Sensitive Reagents. Chemistry 2020; 26:5449-5458. [PMID: 32086967 DOI: 10.1002/chem.201905821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Indexed: 11/06/2022]
Abstract
Transition-metal complexes bearing biaryl-2,2'-diyl ligands tend to show intense luminescence. However, difficulties in synthesis have prevented their further functionalization and practical applications. Herein, a series of platinum(II) complexes bearing biaryl-2,2'-diyl ligands, which have never been prepared in air, were synthesized through transmetalation and successive cyclometalation of biarylboronic acids. This approach does not require any air- or moisture-sensitive reagents and features a simple synthesis even in air. The resulting (Et4 N)2 [Pt(m,n-F2 bph)(CN)2 ] (m,n-F2 bph=m,n-difluorobiphenyl-2,2'-diyl) complexes exhibit intense green emissions with high quantum efficiencies of up to 0.80 at 298 K. The emission spectral fitting and variable-temperature emission lifetime measurements indicate that the high quantum efficiency was achieved because of the tight packing structure and strong σ-donating ability of bph.
Collapse
Affiliation(s)
- Chuei Wakasugi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, Hokkaido, 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, Hokkaido, 060-0810, Japan
| | - W M C Sameera
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, Hokkaido, 060-0810, Japan.,Current address: Institute of Low Temperature Science, Hokkaido University, North-19 West-8, Kita-ku, Sapporo, Hokkaido, 060-0819, Japan
| | - Yasuhiro Shigeta
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, Hokkaido, 060-0810, Japan.,Current address: Nanomaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, Hokkaido, 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
38
|
|
39
|
Föller J, Friese DH, Riese S, Kaminski JM, Metz S, Schmidt D, Würthner F, Lambert C, Marian CM. On the photophysical properties of Ir III, Pt II, and Pd II (phenylpyrazole) (phenyldipyrrin) complexes. Phys Chem Chem Phys 2020; 22:3217-3233. [PMID: 31993597 DOI: 10.1039/c9cp05603c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The absorption and emission characteristics of (ppz)2(dipy)IrIII, (ppz)(dipy)PtII and (ppz)(dipy)PdII, where ppz stands for phenylpyrazole and dipy for a phenyl meso-substituted dipyrrin ligand, have been investigated by means of combined density functional theory and multireference configuration interaction including scalar relativistic and spin-orbit coupling effects. These results were compared with experimental spectra. The complexes exhibit a high density of low-lying electronically excited states originating from ligand-centered (LC) and metal-to-ligand charge transfer (MLCT) states involving the dipyrrin ligand. In addition, metal-centered (MC) states are found to be low-lying in the Pd complex. In all three cases, the first strong absorption band and the phosphorescence emission band stem from LC excitations on the dipyrrin ligand with small MLCT contributions. The MLCT states show more pronounced relaxation effects than the LC states, with the consequence that the first excited state with predominant singlet multiplicity is of SMLCT/LC type in the heavier Ir and Pt complexes. Substantial spin-orbit coupling between SMLCT/LC and TLC enables fast and efficient intersystem crossing (ISC) and a high triplet quantum yield. Phosphorescence rate constants are rather small in accord with the dominant LC character of the transitions. Out-of-plane distortion promotes nonradiative decay of the excited state population via the MC states thus explaining the lower phosphorescence quantum yield of the Pt complex. The spectral properties of the Pd complex are different in many aspects. Optimization of the S1 state yields a dipyrrin intraligand charge transfer (ILCT) state with highly distorted nuclear arrangement in the butterfly conformers leading to nonradiative deactivation. In contrast, the primarily excited SLC state and the SMLCT/LC state of the twist conformer have nearly equal adiabatic excitation energies. The lack of a driving force toward the SMLCT/LC minimum, the high fluorescence rate constant of the bright SLC state and its moderately efficient ISC to the triplet manifold explain the experimentally observed dual emission of the Pd complex at room temperature.
Collapse
Affiliation(s)
- Jelena Föller
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Phosphorescence properties of anionic cyclometalated platinum(II) complexes with fluorine-substituted tridentate diphenylpyridine in the solid state. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
|
42
|
Fan J, Zhang W, Gao W, Wang T, Duan WL, Liang Y, Zhang Z. Syntheses of Benzofuranoquinolines and Analogues via Photoinduced Acceptorless Dehydrogenative Annulation of o-Phenylfuranylpyridines. Org Lett 2019; 21:9183-9187. [DOI: 10.1021/acs.orglett.9b03556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinming Fan
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Wangxi Gao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Wei-Liang Duan
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Yong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| |
Collapse
|
43
|
Nikahd S, Babadi Aghakhanpour R, Nabavizadeh SM, Niroomand Hosseini F, Hoseini SJ, Pfitzner A, Samandar Sangari M. Luminescent mononuclear and dinuclear cycloplatinated (II) complexes comprising azide and phosphine ancillary ligands. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sahebeh Nikahd
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of SciencesShiraz University Shiraz 71467‐13565 Iran
| | | | - S. Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of SciencesShiraz University Shiraz 71467‐13565 Iran
| | | | - S. Jafar Hoseini
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of SciencesShiraz University Shiraz 71467‐13565 Iran
| | - Arno Pfitzner
- Institut für Anorganische ChemieUniversität Regensburg 93040 Regensburg Germany
| | - Mozhgan Samandar Sangari
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of SciencesShiraz University Shiraz 71467‐13565 Iran
- Institut für Anorganische ChemieUniversität Regensburg 93040 Regensburg Germany
| |
Collapse
|
44
|
Nosova EV, Achelle S, Lipunova GN, Charushin VN, Chupakhin ON. Functionalized benzazines as luminescent materials and components for optoelectronics. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4887] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Mandapati P, Braun JD, Killeen C, Davis RL, Williams JAG, Herbert DE. Luminescent Platinum(II) Complexes of N^N–^N Amido Ligands with Benzannulated N-Heterocyclic Donor Arms: Quinolines Offer Unexpectedly Deeper Red Phosphorescence than Phenanthridines. Inorg Chem 2019; 58:14808-14817. [DOI: 10.1021/acs.inorgchem.9b02480] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Pavan Mandapati
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jason D. Braun
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Charles Killeen
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Rebecca L. Davis
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | | | - David E. Herbert
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
46
|
Paziresh S, Sicilia V, Ara I, Martín A, Fuertes S. The Influence of Cyclometalated Ligand Motifs on the Solid-State Assemblies and Luminescent Properties of Pt(II)-Tl(I) Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sareh Paziresh
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Violeta Sicilia
- Departamento de Química Inorgánica, Escuela de Ingeniería y Arquitectura de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Campus Rio Ebro, Edificio Torres Quevedo, 50018, Zaragoza, Spain
| | - Irene Ara
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Antonio Martín
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Sara Fuertes
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
47
|
Pinter P, Strassner T. Prediction of emission wavelengths of phosphorescent NHC based emitters for OLEDs. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Nazari M, Shahsavari HR. Strong red emissions induced by Pt–Pt interactions in binuclear cycloplatinated(II) complexes containing bridging diphosphines. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Morteza Nazari
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137‐66731 Iran
| | - Hamid R. Shahsavari
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137‐66731 Iran
| |
Collapse
|
49
|
Heil A, Marian CM. Structure-Emission Property Relationships in Cyclometalated Pt(II) β-Diketonate Complexes. Inorg Chem 2019; 58:6123-6136. [PMID: 31021083 DOI: 10.1021/acs.inorgchem.9b00403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Extending the ligand π-system of phosphorescent (C∧C*) or (C∧N) cyclometalated platinum(II) β-diketonate complexes can lead to large and seemingly abrupt variations of the photophysical properties such as triplet quantum yields and phosphorescence lifetimes. Quantum chemical studies using methods including elements from density functional theory (DFT) and multireference configuration interaction (MRCI) as well as spin-orbit coupling (SOC) provide a rationale for these observations. In the Franck-Condon region, the first excited singlet states (S1) of these complexes are characterized by mixed metal-to-ligand charge-transfer (MLCT) and ligand-centered (LC) excitations. With increasing extension of the effective π-system, the lowest-lying triplet state yields more and more LC character, thus leading to a decrease of the phosphorescence rate constant. The ability to undergo efficient intersystem crossing from S1 to T1 is not diminished as the S1 state largely retains its character. In the N-heterocyclic carbene (NHC) complexes investigated here, at least two triplet states are found energetically below the S1 state. Out-of-plane distortion enhances the probability for nonradiative decay of the triplet population. In the smaller compounds emitting in the violet or blue spectral region, the phosphorescent state is separated from the lowest-lying dark metal-centered (MC) triplet state by a small barrier only, explaining their experimentally observed low photoluminescence quantum yields in liquid solution. The semiempirical DFT/MRCI-R2018 Hamiltonian employed in our studies proves well-suited for investigating the absorption and emission properties of these platinum(II) complexes. Generally, good agreement is observed between our calculated data and the experimental findings.
Collapse
Affiliation(s)
- Adrian Heil
- Institut für Theoretische Chemie und Computerchemie , Heinrich-Heine-Universität Düsseldorf , Universitätsstr. 1 , D-40225 Düsseldorf , Germany
| | - Christel M Marian
- Institut für Theoretische Chemie und Computerchemie , Heinrich-Heine-Universität Düsseldorf , Universitätsstr. 1 , D-40225 Düsseldorf , Germany
| |
Collapse
|
50
|
Zábranský M, Soellner J, Horký F, Císařová I, Štěpnička P, Strassner T. Synthesis and Characterization of Cyclometalated NHC Platinum Complexes with Chelating Carboxylate Ligands. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Martin Zábranský
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 2030, 12840 Prague Czech Republic
| | - Johannes Soellner
- Physikalische Organische Chemie Faculty of Science Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Filip Horký
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 2030, 12840 Prague Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 2030, 12840 Prague Czech Republic
| | - Petr Štěpnička
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 2030, 12840 Prague Czech Republic
| | - Thomas Strassner
- Physikalische Organische Chemie Faculty of Science Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| |
Collapse
|