1
|
Harvey TK, Pota K, Mekhail MM, Freire DM, Agbaglo DA, Janesko BG, Green KN. Predicting p K a of flexible polybasic tetra-aza macrocycles. RSC Adv 2025; 15:10663-10670. [PMID: 40196824 PMCID: PMC11973477 DOI: 10.1039/d5ra01015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025] Open
Abstract
We present physics-based pK a predictions for a library of tetra-aza macrocycles. These flexible, polybasic molecules exhibit highly charged states and substantial prototropic tautomerism, presenting a challenge for pK a prediction. Our computational protocol combines CREST/xTB conformational sampling, density functional theory (DFT) refinement in continuum solvent, and a linear empirical correction (LEC). This approach predicts known tetra-aza macrocycle pK a to within a root-mean-square deviation 1.2 log units. This approach also provides reasonable predictions for the most stable protomers at different pH. We use this protocol to predict pK a values for four novel, synthetically achievable, previously un-synthesized tetra-aza macrocycles, providing new leads for future experiments.
Collapse
Affiliation(s)
- Tatum K Harvey
- Department of Chemistry & Biochemistry, Texas Christian University 2800 S. University Dr. Fort Worth TX 76129 USA
| | - Kristof Pota
- Department of Chemistry & Biochemistry, Texas Christian University 2800 S. University Dr. Fort Worth TX 76129 USA
| | - Magy M Mekhail
- Department of Chemistry, University of California Irvine USA
| | - David M Freire
- Department of Chemistry & Biochemistry, Texas Christian University 2800 S. University Dr. Fort Worth TX 76129 USA
| | - Donatus A Agbaglo
- Department of Chemistry & Biochemistry, Texas Christian University 2800 S. University Dr. Fort Worth TX 76129 USA
| | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University 2800 S. University Dr. Fort Worth TX 76129 USA
| | - Kayla N Green
- Department of Chemistry & Biochemistry, Texas Christian University 2800 S. University Dr. Fort Worth TX 76129 USA
| |
Collapse
|
2
|
Alexander C, Guo Z, Glover PB, Faulkner S, Pikramenou Z. Luminescent Lanthanides in Biorelated Applications: From Molecules to Nanoparticles and Diagnostic Probes to Therapeutics. Chem Rev 2025; 125:2269-2370. [PMID: 39960048 PMCID: PMC11869165 DOI: 10.1021/acs.chemrev.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Lanthanides are particularly effective in their clinical applications in magnetic resonance imaging and diagnostic assays. They have open-shell 4f electrons that give rise to characteristic narrow, line-like emission which is unique from other fluorescent probes in biological systems. Lanthanide luminescence signal offers selection of detection pathways based on the choice of the ion from the visible to the near-infrared with long luminescence lifetimes that lend themselves to time-resolved measurements for optical multiplexing detection schemes and novel bioimaging applications. The delivery of lanthanide agents in cells allows localized bioresponsive activity for novel therapies. Detection in the near-infrared region of the spectrum coupled with technological advances in microscopies opens new avenues for deep-tissue imaging and surgical interventions. This review focuses on the different ways in which lanthanide luminescence can be exploited in nucleic acid and enzyme detection, anion recognition, cellular imaging, tissue imaging, and photoinduced therapeutic applications. We have focused on the hierarchy of designs that include luminescent lanthanides as probes in biology considering coordination complexes, multimetallic lanthanide systems to metal-organic frameworks and nanoparticles highlighting the different strategies in downshifting, and upconversion revealing some of the opportunities and challenges that offer potential for further development in the field.
Collapse
Affiliation(s)
- Carlson Alexander
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhilin Guo
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Peter B. Glover
- Defence
Science and Technology Laboratory (DSTL), Porton Down, Salisbury SP4 0JQ, United
Kingdom
| | - Stephen Faulkner
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Zoe Pikramenou
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Saini P, Gupta S, Ramakrishnan S. Influence of internal electrostatics on reduction potentials in amine-ligated bimetallic copper complexes. Phys Chem Chem Phys 2025; 27:4398-4406. [PMID: 39927757 DOI: 10.1039/d4cp04569f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The electrostatic modulation of redox potentials of molecular electrocatalysts is a promising strategy to minimize overpotentials without compromising their catalytic activity given their intrinsic correlation. While the introduction of s-block cations to modulate the redox potential of single-site transition metal catalysts is known, the prevalence and nature of such electrostatic interactions in bimetallic complexes deserves further attention. In this work, using density functional theory and electrostatic charged sphere models, we quantify the influence of distance-dependent electrostatic effects on the reduction potentials of a bimetallic Cu(II) model system with a dipicolylamine (DPA) ligand, wherein the Cu(II) centers are bridged by an aliphatic diamine (NH2-(CH2)n-NH2) linker of varying chain lengths (n = 0 to 10). The calculated reduction potentials in non-aqueous solvation environments were found to vary linearly with the reciprocal of the Cu-Cu distance with a slope of 4.1 V Å, and span more than 500 mV, suggesting a strong distance-dependent coulombic electrostatic interaction between the two metal centers. The effect of chemical perturbations to the primary coordination sphere on the distance-dependent electrostatic effects, viz. nature of the metal ion, overall charge and ligand field, was quantified. The in silico predicted shifts in the one-electron redox potential as a function of the chain length in the model system were experimentally validated with the synthesis and cyclic voltammetry studies of two bimetallic Cu(II)(DPA) complexes bridged by 1,4-diaminobutane and 1,8-diaminooctane in acetonitrile.
Collapse
Affiliation(s)
- Prateek Saini
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Shubham Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Srinivasan Ramakrishnan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| |
Collapse
|
4
|
Gaß P, Casalino S, Worek F, Kubik S. Sulfonatocalix[4]arene-Based Scavengers for V-Type Nerve Agents with Enhanced Detoxification Activity. Chemistry 2025; 31:e202404321. [PMID: 39670444 DOI: 10.1002/chem.202404321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/14/2024]
Abstract
Synthetic small molecule scavengers that rapidly detoxify nerve agents in vivo allow (pre)treatment of nerve agent poisoning. However, scavengers that detoxify persistent V-type nerve agents at pH 7.4 and 37 °C with sufficient efficiency are still unknown. The most promising compound to date is a monosubstituted sulfonatocalix[4]arene containing a hydroxamic acid group. This compound was used to investigate the effect of structural modifications on detoxification activity. While none of the monosubstituted calixarene derivatives considered in this context possessed higher activity than the parent compound, the disubstituted derivatives were very active, exhibiting half-lives of detoxification under the conditions of an established in vitro assay of <1.5 min. The rate of detoxification decreased with decreasing scavenger concentration, but even at a fourfold molar excess of the scavenger, complete detoxification of 2.5 μM solutions of some nerve agents could be achieved within one hour. These disubstituted calixarene derivatives thus bring synthetic scavengers for V-type nerve agents closer to application.
Collapse
Affiliation(s)
- Patrick Gaß
- Fachbereich Chemie - Organische Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Sebastiano Casalino
- Fachbereich Chemie - Organische Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Franz Worek
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstraße 11, 80937, München, Germany
| | - Stefan Kubik
- Fachbereich Chemie - Organische Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| |
Collapse
|
5
|
Bonastre-Sabater I, Lopera A, Martínez-Camarena Á, Blasco S, Doménech-Carbó A, Jiménez HR, Verdejo B, García-España E, Clares MP. Exo- or endo-1 H-pyrazole metal coordination modulated by the polyamine chain length in [1 + 1] condensation azamacrocycles. Binuclear complexes with remarkable SOD activity. Dalton Trans 2024; 53:16480-16494. [PMID: 38973348 DOI: 10.1039/d4dt01236d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The Cu2+ complexes of three [1 + 1] azacyclophane macrocycles having the 1H-pyrazole ring as the spacer and the pentaamine 1,5,8,11,15-pentaazadecane (L1) or hexaamines 1,5,8,12,15,19-hexaazanonadecane (L2) and 1,5,9,13,17,21-hexaazaheneicosane (L3) as bridges show endo- coordination of the pyrazolate bridge giving rise to discrete monomeric species. Previously reported pyrazolacyclophanes evidenced, however, exo-coordination with the formation of dimeric species of 2 : 2, 3 : 2 or even 4 : 2 Cu2+ : L stoichiometry. The complexes have been characterized in solution using potentiometric studies, UV-Vis spectroscopy, paramagnetic NMR, cyclic voltammetry and mass spectrometry. The measurements show that all three ligands have as many protonation steps in water as secondary amines are in the bridge, while they are able to form both mono- and binuclear Cu2+ species. The crystal structures of the complexes [Cu(HL1)Br]Br(1+x)(ClO4)(1-x)·yH2O (1) and [Cu2(H-1L2)Cl(ClO4)](ClO4)·H2O·C2H5OH (2) have been solved by X-ray diffraction studies. In 1 the metal ion lies at one side of the macrocyclic cavity being coordinated by one nitrogen of the pyrazolate moiety and the three consecutive nitrogen atoms of the polyamine bridge. The other nitrogen of the pyrazole ring is hydrogen-bonded to an amine group. In 2 the two metal ions are interconnected by a pyrazolate bis(monodentate) moiety and complete their coordination spheres with three amines and either a bromide or a perchlorate anion, which occupy the axial positions of distorted square pyramid geometries. Paramagnetic NMR studies of the binuclear complexes confirm the coordination pattern observed in the crystal structures. Cyclic voltamperommetry data show potentials within the adequate range to exhibit superoxide dismutase (SOD) activity. The IC50 values calculated by McCord-Fridovich enzymatic assays show that the binuclear Cu2+ complexes of L2 and L3 have SOD activities that rank amongst the highest ones reported so far.
Collapse
Affiliation(s)
- Irene Bonastre-Sabater
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Alberto Lopera
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Álvaro Martínez-Camarena
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, avda. Complutense s/n, 28040 Madrid, Spain
| | - Salvador Blasco
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Antonio Doménech-Carbó
- Departamento de Química Analítica, Universidad de Valencia, Calle Dr Moliner s/n, 46100 Burjassot, Valencia, Spain
| | - Hermas R Jiménez
- Departamento de Química Inorgánica, Universidad de Valencia, Calle Doctor Moliner s/n, 46100 Burjasot, Valencia, Spain
| | - Begoña Verdejo
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Enrique García-España
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - M Paz Clares
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
6
|
Mekhail MA, Smith KJ, Freire DM, Pota K, Nguyen N, Burnett ME, Green KN. Increased Efficiency of a Functional SOD Mimic Achieved with Pyridine Modification on a Pyclen-Based Copper(II) Complex. Inorg Chem 2023; 62:5415-5425. [PMID: 36995929 PMCID: PMC10820499 DOI: 10.1021/acs.inorgchem.2c04327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A series of Cu(II) complexes with the formula [CuRPyN3]2+ varying in substitution on the pyridine ring were investigated as superoxide dismutase (SOD) mimics to identify the most efficient reaction rates produced by a synthetic, water-soluble copper-based SOD mimic reported to date. The resulting Cu(II) complexes were characterized by X-ray diffraction analysis, UV-visible spectroscopy, cyclic voltammetry, and metal-binding (log β) affinities. Unique to this approach, the modifications to the pyridine ring of the PyN3 parent system tune the redox potential while exhibiting high binding stabilities without changing the coordination environment of the metal complex within the PyN3 family of ligands. We were able to adjust in parallel the binding stability and the SOD activity without compromising on either through simple modification of the pyridine ring on the ligand system. This goldilocks effect of high metal stabilities and high SOD activity reveals the potential of this system to be explored in therapeutics. These results serve as a guide for factors that can be modified in metal complexes using pyridine substitutions for PyN3, which can be incorporated into a range of applications moving forward.
Collapse
Affiliation(s)
- Magy A Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Katherine J Smith
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - David M Freire
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Nam Nguyen
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Marianne E Burnett
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
7
|
Mekhail MA, Pota K, Kharel S, Freire DM, Green KN. Pyridine modifications regulate the electronics and reactivity of Fe-pyridinophane complexes. Dalton Trans 2023; 52:892-901. [PMID: 36537287 PMCID: PMC10903111 DOI: 10.1039/d2dt03485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
12-Membered pyridinophanes are the focus of many studies as biological mimics, chelators, and catalytic precursors. Therefore, the desire to tune the reactivity of pyridinophanes to better control the applications of derivative metal complexes has inspired many structure-activity relationship studies. However, the separation of structural versus electronic changes imparted by ligand modification has made these structure-activity relationship studies of transition metal catalysts challenging to define. In this work we show that 4-substitution of the pyridine ring in 12-membered tetra-aza pyridinophanes successfully provides a regulatory handle on the electronic properties of the metal center and, therefore, the catalytic C-C coupling activity of the respective iron complexes. The C-C coupling reaction catalyzed by Fe(L1-L6) provides a range of yields (32-58%) that directly correlate with iron redox potentials (ΔE1/2 = 152 mV) and metal binding constants (Δlog β = 3.45), while the geometry of the complexes was virtually indistinguishable. These are the first results to definitively show the redox potential and metal binding as independent properties from the coordination chemistry in one ligand series. Adjustments to these chemical properties were then shown to provide a regulatory handle for the C-C coupling reactivity tuned via pyridine substitution in pyridinophanes.
Collapse
Affiliation(s)
- Magy A Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA.
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA.
| | - Sugam Kharel
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA.
| | - David M Freire
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA.
| | - Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA.
| |
Collapse
|
8
|
Chemoselective Chan-Lam and reductive nitroarene coupling of boronic acid using an octahedral Ni-DMAP complex as catalyst. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Shtyrlin NV, Vafina RM, Bulatova ES, Sapozhnikov SV, Kalugin LE, Garipov MR, Yandimirova AS, Gnezdilov OI, Nikishova TV, Agafonova MN, Kazakova RR, Shtyrlin YG. Synthesis and antibacterial activity of quaternary ammonium compounds based on 3-hydroxypyridine. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
10
|
pH-dependent concatenation of an inorganic complex results in solid state helix formation. Inorganica Chim Acta 2022; 531:120740. [PMID: 36212525 PMCID: PMC9542219 DOI: 10.1016/j.ica.2021.120740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Growth of the library of tetraaza macrocyclic pyridinophane ligands is a result of the potential to treat neurodegenerative diseases by binding unregulated redox active metal-ions, scavenging radicals, and reducing oxidative stress. As part of this work, the copper complex of OH PyN 3 Cu (3,6,9,15-tetraazabicyclo[9.3.1]penta-deca-1(15),11,13-trien-13-ol) was previously identified as a discrete molecule in the solid state when isolated at lower pH values. However, here we report that OH PyN 3 Cu forms a helical structure upon crystallization around pH 6.5. Several properties of the ligand and complex were evaluated to understand the driving forces that led to the concatenation and formation of this solid-state helix. DFT studies along with a comparison of keto/enol tautomerization stability and bond lengths were used to determine the keto-character of the C=O within each subunit. This pH dependent keto-enol tautomerization is responsible for the solid state intermolecular C=O···Cu bonds observed in this metallohelix (Cu1 H ) when produced around pH 6.5. Perchlorate templating that occurs through hydrogen bonding between perchlorate counter ions and each Cu1 H unit is the primary driving factor for the twist that leads to the helix structure. Cu1 H does not exhibit the typical factors that stabilize the formation of helices, such as intra-strand hydrogen bonding or π-stacking. The helix structure further highlights the diversity of inorganic metallohelices and demonstrates the importance of tautomerization and pH that occurs with the pyridinophane ligand used in this study. To our knowledge and although these phenomenon have been observed individually, this is the first example of a pH dependent keto-enol tautomerization in an azamacrocycle being the driving force for the formation of a metallohelix solid state structure and is a particularly unique observation for pyridinophane complexes.
Collapse
|
11
|
Zahradníková E, Císařová I, Drahoš B. Syntheses and crystal structures of Ni(II) complexes with pyridine-based macrocyclic ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Panza N, Tseberlidis G, Caselli A, Vicente R. Recent progresses in the chemistry of 12-membered pyridine-containing tetraazamacrocycles: From synthesis to catalysis. Dalton Trans 2022; 51:10635-10657. [DOI: 10.1039/d2dt00597b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article provides an overview (non-comprehensive) on recent developments regarding pyridine-containing 12-membered tetraazamacrocycles with pyclen or Py2N2 backbones and their metal complexes from 2017 to the present. Firstly, the synthesis...
Collapse
|
13
|
Martínez-Camarena Á, Savastano M, Blasco S, Delgado-Pinar E, Giorgi C, Bianchi A, García-España E, Bazzicalupi C. Assembly of Polyiodide Networks with Cu(II) Complexes of Pyridinol-Based Tetraaza Macrocycles. Inorg Chem 2021; 61:368-383. [PMID: 34933551 PMCID: PMC8753606 DOI: 10.1021/acs.inorgchem.1c02967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Polyiodide networks
are currently of great practical interest for
the preparation of new electronic materials. The participation of
metals in the formation of these networks is believed to improve their
mechanical performance and thermal stability. Here we report the results
on the construction of polyiodide networks obtained using Cu(II) complexes
of a series of pyridinol-based tetraazacyclophanes as countercations.
The assembly of these crystalline polyiodides takes place from aqueous
solutions on the basis of similar structural elements, the [CuL]2+ and [Cu(H–1L)]+ (L = L2, L2-Me, L2-Me3) complex cations, so that the peculiarities induced by the
increase of N-methylation of ligands, the structural variable of ligands,
can be highlighted. First, solution equilibria involving ligands and
complexes were analyzed (potentiometry, NMR, UV–vis, ITC).
Then, the appropriate conditions could be selected to prepare polyiodides
based on the above complex cations. Single-crystal XRD analysis showed
that the coordination of pyridinol units to two metal ions is a prime
feature of these ligands, leading to polymeric coordination chains
of general formula {[Cu(H–1L)]}nn+ (L = L2-Me, L2-Me3). In the presence of the I–/I2 couple, the polymerization tendency
stops with the formation of [(CuL)(CuH–1L)]3+ (L = L2-Me, L2-Me3) dimers which are surrounded by polyiodide networks. Moreover,
coordination of the pyridinol group to two metal ions transforms the
surface charge of the ring from negative to markedly positive, generating
a suitable environment for the assembly of polyiodide anions, while
N-methylation shifts the directional control of the assembly from
H-bonds to I···I interactions. In fact, an extended
concatenation of iodine atoms occurs around the complex dimeric cations,
the supramolecular I···I interactions become shorter
and shorter, fading into stronger forces dominated by the orbital
overlap, which is promising for effective electronic materials. Polyiodides with high iodine density
are generated by Cu(II)
complexes of pyridinol-based tetraazacyclophanes. Direct coordination
of iodine atoms to Cu(II), anion−π interactions with
electron-poor aromatic surfaces, and shift of the directional control
of assembly from H-bonds to I···I interactions, governed
by N-methylation, are the main elements leading to enhanced iodine
chaining and strengthening of I···I contacts.
Collapse
Affiliation(s)
- Álvaro Martínez-Camarena
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Matteo Savastano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Salvador Blasco
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Estefanía Delgado-Pinar
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.,Department of Chemistry, CQC, University of Coimbra, P3004-535 Coimbra, Portugal
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Antonio Bianchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Enrique García-España
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Brewer SM, Schwartz TM, Mekhail MA, Turan LS, Prior TJ, Hubin TJ, Janesko BG, Green KN. Mechanistic Insights into Iron-Catalyzed C–H Bond Activation and C–C Coupling. Organometallics 2021; 40:2467-2477. [DOI: 10.1021/acs.organomet.1c00211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Samantha M. Brewer
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Timothy M. Schwartz
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Magy A. Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Lara S. Turan
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Timothy J. Prior
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, U.K
| | - Timothy J. Hubin
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, Oklahoma 73096, United States
| | - Benjamin G. Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| |
Collapse
|
15
|
Cavalleri M, Panza N, Biase A, Tseberlidis G, Rizzato S, Abbiati G, Caselli A. [Zinc(II)(Pyridine‐Containing Ligand)] Complexes as Single‐Component Efficient Catalyst for Chemical Fixation of CO
2
with Epoxides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Matteo Cavalleri
- Department of Chemistry Università degli Studi di Milano and CNR-SCITEC via Golgi 19 20133 Milano Italy
| | - Nicola Panza
- Department of Chemistry Università degli Studi di Milano and CNR-SCITEC via Golgi 19 20133 Milano Italy
| | - Armando Biase
- Department of Chemistry Università degli Studi di Milano and CNR-SCITEC via Golgi 19 20133 Milano Italy
| | - Giorgio Tseberlidis
- Department of Chemistry Università degli Studi di Milano and CNR-SCITEC via Golgi 19 20133 Milano Italy
- Department of Materials Science and Solar Energy Research Center (MIB-SOLAR) University of Milano-Bicocca via Cozzi 55 20125 Milano Italy
| | - Silvia Rizzato
- Department of Chemistry Università degli Studi di Milano and CNR-SCITEC via Golgi 19 20133 Milano Italy
| | - Giorgio Abbiati
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano via Venezian 21 20133 Milano Italy
| | - Alessandro Caselli
- Department of Chemistry Università degli Studi di Milano and CNR-SCITEC via Golgi 19 20133 Milano Italy
| |
Collapse
|
16
|
Kumar R, Guchhait T, Subramaniyan V, Schulzke C, Mani G. Versatility of the bis(iminopyrrolylmethyl)amine ligand: tautomerism, protonation, helical chirality, and the secondary coordination sphere with halogen bonds in the formation of copper(II) and nickel(II) complexes. Dalton Trans 2020; 49:13840-13853. [PMID: 33006344 DOI: 10.1039/d0dt02964e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of N,N-di(2,6-bis(isopropyl)phenylimino-pyrrolyl-α-methyl)-N-methylamine H2L1 with copper(i) sources such as CuX (X = Cl (1), Br (2), and I (3)) afforded bis(chelated) ionic copper(ii) complexes of the type [CuL1H]X. A similar type of mononuclear structure was obtained with Cu(NO3)2·(H2O)3. Conversely, binuclear copper(ii) complexes [Cu2(μ-L1)(μ-OOCCH3)(μ-OH)](4) and [Cu2(μ-L1H)(μ-OOCPh)(μ-O)] (5) were obtained from the reaction of Cu(O2CR)2·H2O with H2L1. Notably, these reactions in the presence of a base yielded the neutral copper(ii) complex [CuL1] (6). This product was also obtained from the reaction of complex 2 or 4 with NaOH in methanol. All structures feature a dianionic imino-pyrrole motif and a protonated central amine function except 4. The reaction of H2L1 with NiCl2·DME gave the mononuclear complex [NiCl2(L1H2)], 7. In contrast to this, the reaction of the newly synthesized sterically less encumbered ligand N,N-di(phenylimino-pyrrolyl-α-methyl)-N-methylamine H2L2 with NiCl2·DME gave the binuclear complex [NiCl(L2H2)(HOMe)]2[Cl]2 (8). Both 7 and 8 show the amine-azafulvene ligand form and coordination of the central amine. The reaction of complex 7 with NaHBEt3 yielded a neutral complex [NiL1] (8) containing the imino-pyrrole form. In the molecular structures, interesting secondary coordination spheres incorporating guest molecules such as CHCl3 and MeOH in the crystal lattices and the presence of helical enantiomers were observed and analysed. In one case, CHCl3 was found inside an unusual cage-like structure supported by halogen bonds. Preliminary DFT calculations on the geometry of the nickel complex with H2L1 showed that the pentacoordinated tbp geometry is more stable than the square planar geometry.
Collapse
Affiliation(s)
- Rajnish Kumar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721 302, India.
| | - Tapas Guchhait
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721 302, India.
| | - Vasudevan Subramaniyan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721 302, India.
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17289 Greifswald, Germany.
| | - Ganesan Mani
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721 302, India.
| |
Collapse
|
17
|
Freire DM, Beeri D, Pota K, Johnston HM, Palacios P, Pierce BS, Sherman BD, Green KN. Hydrogen Peroxide Disproportionation with Manganese Macrocyclic Complexes of Cyclen and Pyclen. Inorg Chem Front 2020; 7:1573-1582. [PMID: 32457818 DOI: 10.1039/c9qi01509d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The catalase family of enzymes, which include a variety with a binuclear manganese active site, mitigate the risk from reactive oxygen species by facilitating the disproportionation of hydrogen peroxide into molecular oxygen and water. In this work, hydrogen peroxide disproportionation using complexes formed between manganese and cyclen or pyclen were investigated due to the spectroscopic similarities with the native MnCAT enzyme. Potentiometric titrations were used to construct speciation diagrams that identify the manganese complex compositions at different pH values. Each complex behaves as a functional mimic of catalase enzymes. UV-visible spectroscopic investigations of the H2O2 decomposition reaction yielded information about the structure of the initial catalyst and intermediates that include monomeric and dimeric species. The results indicate that rigidity imparted by the pyridine ring of pyclen is a key factor in increased TON and TOF values measured compared to cyclen.
Collapse
Affiliation(s)
- David M Freire
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W.Bowie, Fort Worth, TX 76129, United States
| | - Debora Beeri
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W.Bowie, Fort Worth, TX 76129, United States
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W.Bowie, Fort Worth, TX 76129, United States
| | - Hannah M Johnston
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W.Bowie, Fort Worth, TX 76129, United States
| | - Philip Palacios
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019
| | - Brad S Pierce
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Box 870336 Tuscaloosa, AL 35487
| | - Benjamin D Sherman
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W.Bowie, Fort Worth, TX 76129, United States
| | - Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W.Bowie, Fort Worth, TX 76129, United States
| |
Collapse
|
18
|
Yepremyan A, Mekhail MA, Niebuhr BP, Pota K, Sadagopan N, Schwartz TM, Green KN. Synthesis of 12-Membered Tetra-aza Macrocyclic Pyridinophanes Bearing Electron-Withdrawing Groups. J Org Chem 2020; 85:4988-4998. [PMID: 32208700 DOI: 10.1021/acs.joc.0c00188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The number of substituted pyridine pyridinophanes found in the literature is limited due to challenges associated with 12-membered macrocycle and modified pyridine synthesis. Most notably, the electrophilic character at the 4-position of pyridine in pyridinophanes presents a unique challenge for introducing electrophilic chemical groups. Likewise, of the few reported, most substituted pyridine pyridinophanes in the literature are limited to electron-donating functionalities. Herein, new synthetic strategies for four new macrocycles bearing the electron-withdrawing groups CN, Cl, NO2, and CF3 are introduced. Potentiometric titrations were used to determine the protonation constants of the new pyridinophanes. Further, the influence of such modifications on the chemical behavior is predicted by comparing the potentiometric results to previously reported systems. X-ray diffraction analysis of the 4-Cl substituted species and its Cu(II) complex are also described to demonstrate the metal binding nature of these ligands. DFT analysis is used to support the experimental findings through energy calculations and ESP maps. These new molecules serve as a foundation to access a range of new pyridinophane small molecules and applications in future work.
Collapse
Affiliation(s)
- Akop Yepremyan
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Magy A Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Brian P Niebuhr
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Nishanth Sadagopan
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Timothy M Schwartz
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| | - Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie, Fort Worth, Texas 76129, United States
| |
Collapse
|
19
|
Mekhail MA, Pota K, Schwartz TM, Green KN. Functionalized pyridine in pyclen-based iron( iii) complexes: evaluation of fundamental properties. RSC Adv 2020; 10:31165-31170. [PMID: 34094507 PMCID: PMC8174454 DOI: 10.1039/d0ra05756h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Six iron(iii) pyridinophane complexes were evaluated to determine whether functionalizing the pyridine ring could introduce a handle by which electrochemical properties and thermodynamic stability can be tuned.
Collapse
Affiliation(s)
- Magy A. Mekhail
- Department of Chemistry and Biochemistry
- Texas Christian University
- Fort Worth
- USA
| | - Kristof Pota
- Department of Chemistry and Biochemistry
- Texas Christian University
- Fort Worth
- USA
| | - Timothy M. Schwartz
- Department of Chemistry and Biochemistry
- Texas Christian University
- Fort Worth
- USA
| | - Kayla N. Green
- Department of Chemistry and Biochemistry
- Texas Christian University
- Fort Worth
- USA
| |
Collapse
|
20
|
Johnston HM, Pota K, Barnett MM, Kinsinger O, Braden P, Schwartz TM, Hoffer E, Sadagopan N, Nguyen N, Yu Y, Gonzalez P, Tircsó G, Wu H, Akkaraju G, Chumley MJ, Green KN. Enhancement of the Antioxidant Activity and Neurotherapeutic Features through Pyridol Addition to Tetraazamacrocyclic Molecules. Inorg Chem 2019; 58:16771-16784. [PMID: 31774280 PMCID: PMC7323501 DOI: 10.1021/acs.inorgchem.9b02932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's and other neurodegenerative diseases are chronic conditions affecting millions of individuals worldwide. Oxidative stress is a consistent component described in the development of many neurodegenerative diseases. Therefore, innovative strategies to develop drug candidates that overcome oxidative stress in the brain are needed. To target these challenges, a new, water-soluble 12-membered tetraaza macrocyclic pyridinophane L4 was designed and produced using a building-block approach. Potentiometric data show that the neutral species of L4 provides interesting zwitterionic behavior at physiological pH, akin to amino acids, and a nearly ideal isoelectric point of 7.3. The copper(II) complex of L4 was evaluated by X-ray diffraction and cyclic voltammetry to show the potential modes of antioxidant activity derived, which was also demonstrated by 2,2-diphenyl-1-picrylhydrazyl and coumarin carboxylic acid antioxidant assays. L4 was shown to have dramatically enhanced antioxidant activity and increased biological compatibility compared to parent molecules reported previously. L4 attenuated hydrogen peroxide (H2O2)-induced cell viability loss more efficiently than precursor molecules in the mouse hippocampal HT-22 cell model. L4 also showed potent (fM) level protection against H2O2 cell death in a BV2 microglial cell culture. Western blot studies indicated that L4 enhanced the cellular antioxidant defense capacity via Nrf2 signaling activation as well. Moreover, a low-cost analysis and high metabolic stability in phase I and II models were observed. These encouraging results show how the rational design of lead compounds is a suitable strategy for the development of treatments for neurodegenerative diseases where oxidative stress plays a substantial role.
Collapse
Affiliation(s)
- Hannah M. Johnston
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Madalyn M. Barnett
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Olivia Kinsinger
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Paige Braden
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Timothy M. Schwartz
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Emily Hoffer
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Nishanth Sadagopan
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Nam Nguyen
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Yu Yu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas (UNT) Health Science Center, Fort Worth, Texas 76107, United States
| | - Paulina Gonzalez
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4010, Hungary
| | - Hongli Wu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas (UNT) Health Science Center, Fort Worth, Texas 76107, United States
- North Texas Eye Research Institute, University of North Texas (UNT) Health Science Center, Fort Worth, Texas 76107, United States
| | - Giridhar Akkaraju
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Michael J. Chumley
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| |
Collapse
|
21
|
Green KN, Pota K, Tircsó G, Gogolák RA, Kinsinger O, Davda C, Blain K, Brewer SM, Gonzalez P, Johnston HM, Akkaraju G. Dialing in on pharmacological features for a therapeutic antioxidant small molecule. Dalton Trans 2019; 48:12430-12439. [PMID: 31342985 PMCID: PMC6863055 DOI: 10.1039/c9dt01800j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pyridinophane molecule L2 (3,6,9,15-tetraazabicyclo[9.3.1]penta-deca-1(15),11,13-trien-13-ol) has shown promise as a therapuetic for neurodegenerative diseases involving oxidative stress and metal ion misregulation. Protonation and metal binding stability constants with Mg2+, Ca2+, Cu2+, and Zn2+ ions were determined to further explore the therapeutic and pharmacological potential of this water soluble small molecule. These studies show that incorporation of an -OH group in position 4 of the pyridine ring decreases the pI values compared to cyclen and L1 (3,6,9,15-tetraazabicyclo[9.3.1]penta-deca-1(15),11,13-triene). Furthermore, this approach tunes the basicity of the tetra-aza macrocyclic ligand through the enhanced resonance stabilization of the -OH in position 4 and rigidity of the pyridine ring such that L2 has increased basicity compared to previously reported tetra-aza macrocycles. A metal binding preference for Cu2+, a redox cycling agent known to produce oxidative stress, indicates that this would be the in vivo metal target of L2. However, the binding constant of L2 with Cu2+ is moderated compared to cyclen due to the rigidity of the ligand and shows how ligand design can be used to tune metal selectivity. An IC50 = 298.0 μM in HT-22 neuronal cells was observed. Low metabolic liability was determined in both Phase I and II in vitro models. Throughout these studies other metal binding systems were used for comparison and as appropriate controls. The reactivity reported to date and pharmacological features described herein warrant further studies in vivo and the pursuit of L2 congeners using the knowledge that pyridine substitution in a pyridinophane can be used to tune the structure of the ligand and retain the positive therapeutic outcomes.
Collapse
Affiliation(s)
- Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA.
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA.
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4010, Hungary
| | - Réka Anna Gogolák
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4010, Hungary
| | - Olivia Kinsinger
- Department of Biology, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA
| | - Collin Davda
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA.
| | - Kimberly Blain
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA. and Department of Biology, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA
| | - Samantha M Brewer
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA.
| | - Paulina Gonzalez
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA.
| | - Hannah M Johnston
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA.
| | - Giridhar Akkaraju
- Department of Biology, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, USA
| |
Collapse
|
22
|
Brewer SM, Wilson KR, Jones DG, Reinheimer EW, Archibald SJ, Prior TJ, Ayala MA, Foster AL, Hubin TJ, Green KN. Increase of Direct C-C Coupling Reaction Yield by Identifying Structural and Electronic Properties of High-Spin Iron Tetra-azamacrocyclic Complexes. Inorg Chem 2018; 57:8890-8902. [PMID: 30024738 PMCID: PMC7067264 DOI: 10.1021/acs.inorgchem.8b00777] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Macrocyclic ligands have been explored extensively as scaffolds for transition metal catalysts for oxygen and hydrogen atom transfer reactions. C-C reactions facilitated using earth abundant metals bound to macrocyclic ligands have not been well-understood but could be a green alternative to replacing the current expensive and toxic precious metal systems most commonly used for these processes. Therefore, the yields from direct Suzuki-Miyaura C-C coupling of phenylboronic acid and pyrrole to produce 2-phenylpyrrole facilitated by eight high-spin iron complexes ([Fe3+L1(Cl)2]+, [Fe3+L4(Cl)2]+, [Fe2+L5(Cl)]+, [Fe2+L6(Cl)2], [Fe3+L7(Cl)2]+, [Fe3+L8(Cl)2]+, [Fe2+L9(Cl)]+, and [Fe2+L10(Cl)]+) were compared to identify the effect of structural and electronic properties on catalytic efficiency. Specifically, catalyst complexes were compared to evaluate the effect of five properties on catalyst reaction yields: (1) the coordination requirements of the catalyst, (2) redox half-potential of each complex, (3) topological constraint/rigidity, (4) N atom modification(s) increasing oxidative stability of the complex, and (5) geometric parameters. The need for two labile cis-coordination sites was confirmed based on a 42% decrease in catalytic reaction yield observed when complexes containing pentadentate ligands were used in place of complexes with tetradentate ligands. A strong correlation between iron(III/II) redox potential and catalytic reaction yields was also observed, with [Fe2+L6(Cl)2] providing the highest yield (81%, -405 mV). A Lorentzian fitting of redox potential versus yields predicts that these catalysts can undergo more fine-tuning to further increase yields. Interestingly, the remaining properties explored did not show a direct, strong relationship to catalytic reaction yields. Altogether, these results show that modifications to the ligand scaffold using fundamental concepts of inorganic coordination chemistry can be used to control the catalytic activity of macrocyclic iron complexes by controlling redox chemistry of the iron center. Furthermore, the data provide direction for the design of improved catalysts for this reaction and strategies to understand the impact of a ligand scaffold on catalytic activity of other reactions.
Collapse
Affiliation(s)
- Samantha M. Brewer
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, United States
| | - Kevin R. Wilson
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Donald G. Jones
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Eric W. Reinheimer
- Rigaku Oxford Diffraction, 9009 New Trails Drive The Woodlands, TX, United States
| | - Stephen J. Archibald
- Department of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Timothy J. Prior
- Department of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Megan A. Ayala
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Alexandria L. Foster
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Timothy J. Hubin
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, United States
| |
Collapse
|
23
|
Brewer SM, Palacios PM, Johnston HM, Pierce BS, Green KN. Isolation and identification of the pre-catalyst in iron-catalyzed direct arylation of pyrrole with phenylboronic acid. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Le Fur M, Molnár E, Beyler M, Fougère O, Esteban-Gómez D, Rousseaux O, Tripier R, Tircsó G, Platas-Iglesias C. Expanding the Family of Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Lanthanide Complexation. Inorg Chem 2018; 57:6932-6945. [DOI: 10.1021/acs.inorgchem.8b00598] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mariane Le Fur
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Enikő Molnár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Maryline Beyler
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Olivier Fougère
- Groupe Guerbet,
Centre de Recherche d’Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Olivier Rousseaux
- Groupe Guerbet,
Centre de Recherche d’Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Raphaël Tripier
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
25
|
Burnett ME, Adebesin B, Funk AM, Kovacs Z, Sherry AD, Ekanger LA, Allen MJ, Green KN, Ratnakar SJ. Electrochemical investigation of the Eu 3+/2+ redox couple in complexes with variable numbers of glycinamide and acetate pendant arms. Eur J Inorg Chem 2017; 2017:5001-5005. [PMID: 29403330 DOI: 10.1002/ejic.201701070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Eu3+/2+ redox couple provides a convenient design platform for responsive pO2 sensors for magnetic resonance imaging (MRI). Specifically the Eu2+ ion provides T1w contrast enhancement under hypoxic conditions in tissues, whereas, under normoxia, the Eu3+ ion can produce contrast from chemical exchange saturation transfer in MRI. The oxidative stability of the Eu3+/2+ redox couple for a series of tetraaza macrocyclic complexes was investigated in this work using cyclic voltammetry. A series of Eu-containing cyclen-based macrocyclic complexes revealed positive shifts in the Eu3+/2+ redox potentials with each replacement of a carboxylate coordinating arm of the ligand scaffold with glycinamide pendant arms. The data obtained reveal that the complex containing four glycinamide coordinating pendant arms has the highest oxidative stability of the series investigated.
Collapse
Affiliation(s)
- Marianne E Burnett
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129
| | - Bokola Adebesin
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Alexander M Funk
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Zoltan Kovacs
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas 75390
| | - A Dean Sherry
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas 75390.,Department of Chemistry, University of Texas at Dallas, Texas, 75080
| | - Levi A Ekanger
- Department of Chemistry, Wayne State University, Detroit, MI, 48202
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, Detroit, MI, 48202
| | - Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129
| | - S James Ratnakar
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
26
|
Wright KD, Gowenlock CE, Bear JC, Barron AR. Understanding the Effect of Functional Groups on the Seeded Growth of Copper on Carbon Nanotubes for Optimizing Electrical Transmission. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27202-27212. [PMID: 28742321 DOI: 10.1021/acsami.7b10650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a study of the seeded growth of copper on the surface of two classes of single-walled carbon nanotubes (SWNTs) in order to compare the effects of surface functional groups. Pyridine-functionalized HiPco SWNTs and ultrashort SWNTs (US-SWNTs) were synthesized (py-SWNTs and py-US-SWNTs, respectively), and the functionality was used as seed sites for copper, via an aqueous electroless deposition reaction, as a comparison to the carboxylic acid functionality present on piranha-etched SWNTs and the native US-SWNTs. UV-vis spectroscopy demonstrated the take-up of Cu(II) ions by the functionalized SWNTs. TEM showed that the SWNTs with pyridine functionality more rapidly produced a more even distribution of copper seeds with a narrower size distribution (3-12 nm for py-US-SWNTs) than those SWNTs with oxygen functional groups (ca. 30 nm), showing the adventitious role of the pyridine functional group in the seeding process. Seed composition was confirmed as Cu(0) by XPS and SAED. Copper growth rate and morphology were shown to be affected by degree of pyridine functionality, the length of the SWNT, and the electroless reaction solvent used.
Collapse
Affiliation(s)
- Kourtney D Wright
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - Cathren E Gowenlock
- Energy Safety Research Institute (ESRI), Swansea University Bay Campus , Fabian Way, Swansea SA1 8EN, United Kingdom
| | - Joseph C Bear
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew R Barron
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
- Energy Safety Research Institute (ESRI), Swansea University Bay Campus , Fabian Way, Swansea SA1 8EN, United Kingdom
- Department of Materials Science and Nanoengineering, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
27
|
Tseberlidis G, Intrieri D, Caselli A. Catalytic Applications of Pyridine-Containing Macrocyclic Complexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700633] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Giorgio Tseberlidis
- Department of Chemistry; Università degli Studi di Milano and ISTM-CNR-Milano; Via Golgi 19 20133 Milan Italy
| | - Daniela Intrieri
- Department of Chemistry; Università degli Studi di Milano and ISTM-CNR-Milano; Via Golgi 19 20133 Milan Italy
| | - Alessandro Caselli
- Department of Chemistry; Università degli Studi di Milano and ISTM-CNR-Milano; Via Golgi 19 20133 Milan Italy
| |
Collapse
|
28
|
Zhou YH, Chen LQ, Tao J, Shen JL, Gong DY, Yun RR, Cheng Y. Effective cleavage of phosphodiester promoted by the zinc(II) and copper(II) inclusion complexes of β-cyclodextrin. J Inorg Biochem 2016; 163:176-184. [DOI: 10.1016/j.jinorgbio.2016.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022]
|
29
|
Green KN, Johnston HM, Burnett ME, Brewer SM. Hybrid Antioxidant and Metal Sequestering Small Molecules Targeting the Molecular Features of Alzheimer’s Disease. COMMENT INORG CHEM 2016. [DOI: 10.1080/02603594.2016.1241616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Le Fur M, Beyler M, Lepareur N, Fougère O, Platas-Iglesias C, Rousseaux O, Tripier R. Pyclen Tri-n-butylphosphonate Ester as Potential Chelator for Targeted Radiotherapy: From Yttrium(III) Complexation to (90)Y Radiolabeling. Inorg Chem 2016; 55:8003-8012. [PMID: 27486673 DOI: 10.1021/acs.inorgchem.6b01135] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Y(3+) complex of PCTMB, the tri-n-butyl phosphonate ester of pyclen (3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene), was synthesized as well as its Ho(3+) and Lu(3+) analogues. X-ray diffraction analyses revealed isomorphous dimeric M2(PCTMB)2·9H2O (M = Y, Ho, Lu) structures that crystallize in the centrosymmetric P1̅ triclinic space group. (1)H NMR and UV studies in aqueous solutions indicated that Y(3+) complexation is fast, being quantitative in 167 min at pH 3.8 and in 13 min at pH 5.5 (25 °C, acetate buffer, I = 0.150 M, [Y(3+)] = [PCTMB] = 0.2 mM). (1)H NMR DOSY and photon correlation spectroscopy experiments evidenced the formation of aggregates in chloroform with a bimodal distribution that changes slightly with concentration (11-24 and 240-258 nm). The behavior of the acid-assisted dissociation of the complex of Y(3+) with PCTMB was studied under pseudo-first-order conditions, and the half-life of the [Y(PCTMB)] complex in 0.5 M HCl at 25 °C was found to be 37 min, a value that decreases to 2.6 min in 5 M HCl. The Y(3+) complex of PCTMB is thermodynamically very stable, with a stability constant of log KY-PCTMB = 19.49 and pY = 16.7 measured by potentiometry. (90)Y complexation studies revealed fast radiolabeling kinetics; optimal radiolabeling conditions were obtained for (90)Y in acetate medium, PCTMB at 10(-4) to 10(-2) M in acetate buffer pH = 4.75, 15 min at 45-60 °C. In vitro stability studies in human serum showed that [(90)Y(PCTMB)] is quite stable, with about 90% of the activity still in the form of the radiotracer at 24 h and 80% from 48 h to 72 h. A comparison with other ligands such as PCTA, DOTA, and DTPA already used for in vivo application shows that [(90)Y(PCTMB)] is an interesting lipophilic and neutral analogue of these reference chelates for therapeutic applications in aqueous and nonaqueous media.
Collapse
Affiliation(s)
- Mariane Le Fur
- Université de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques , 6 Avenue Victor le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | - Maryline Beyler
- Université de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques , 6 Avenue Victor le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | - Nicolas Lepareur
- Département de Médecine Nucléaire, Centre Eugène Marquis, INSERM U991 , Avenue de la Bataille Flandres-Dunkerque, CS 44229, 35042 Rennes Cedex, France
| | - Olivier Fougère
- Guerbet Group, Centre de Recherche d'Aulnay-sous-Bois , BP 57400, 95943 Roissy CdG Cedex, France
| | - Carlos Platas-Iglesias
- Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña , Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Olivier Rousseaux
- Guerbet Group, Centre de Recherche d'Aulnay-sous-Bois , BP 57400, 95943 Roissy CdG Cedex, France
| | - Raphaël Tripier
- Université de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques , 6 Avenue Victor le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| |
Collapse
|
31
|
Johnston HM, Palacios PM, Pierce BS, Green KN. Spectroscopic and solid-state evaluations of tetra-aza macrocyclic cobalt complexes with parallels to the classic cobalt(II) chloride equilibrium. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1191630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hannah M. Johnston
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, USA
| | - Philip M. Palacios
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Brad S. Pierce
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, USA
| |
Collapse
|
32
|
Derrick JS, Kerr RA, Korshavn KJ, McLane MJ, Kang J, Nam E, Ramamoorthy A, Ruotolo BT, Lim MH. Importance of the Dimethylamino Functionality on a Multifunctional Framework for Regulating Metals, Amyloid-β, and Oxidative Stress in Alzheimer's Disease. Inorg Chem 2016; 55:5000-13. [PMID: 27119456 DOI: 10.1021/acs.inorgchem.6b00525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex and multifaceted pathology of Alzheimer's disease (AD) continues to present a formidable challenge to the establishment of long-term treatment strategies. Multifunctional compounds able to modulate the reactivities of various pathological features, such as amyloid-β (Aβ) aggregation, metal ion dyshomeostasis, and oxidative stress, have emerged as a useful tactic. Recently, an incorporation approach to the rational design of multipurpose small molecules has been validated through the production of a multifunctional ligand (ML) as a potential chemical tool for AD. In order to further the development of more diverse and improved multifunctional reagents, essential pharmacophores must be identified. Herein, we report a series of aminoquinoline derivatives (AQ1-4, AQP1-4, and AQDA1-3) based on ML's framework, prepared to gain a structure-reactivity understanding of ML's multifunctionality in addition to tuning its metal binding affinity. Our structure-reactivity investigations have implicated the dimethylamino group as a key component for supplying the antiamyloidogenic characteristics of ML in both the absence and presence of metal ions. Two-dimensional NMR studies indicate that structural variations of ML could tune its interaction sites along the Aβ sequence. In addition, mass spectrometric analyses suggest that the ability of our aminoquinoline derivatives to regulate metal-induced Aβ aggregation may be influenced by their metal binding properties. Moreover, structural modifications to ML were also observed to noticeably change its metal binding affinities and metal-to-ligand stoichiometries that were shown to be linked to their antiamyloidogenic and antioxidant activities. Overall, our studies provide new insights into rational design strategies for multifunctional ligands directed at regulating metal ions, Aβ, and oxidative stress in AD and could advance the development of improved next-generation multifunctional reagents.
Collapse
Affiliation(s)
- Jeffrey S Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | | | | | | | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | | | | | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| |
Collapse
|
33
|
Morrow JR. Editorial for the ACS Select Virtual Issue on Emerging Investigators in Bioinorganic Chemistry. Inorg Chem 2015. [DOI: 10.1021/acs.inorgchem.5b02597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Pedrazzini T, Pirovano P, Dell'Acqua M, Ragaini F, Illiano P, Macchi P, Abbiati G, Caselli A. Organometallic Reactivity of [Silver(I)(Pyridine‐Containing Ligand)] Complexes Relevant to Catalysis. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tommaso Pedrazzini
- Università degli Studi di Milano and ISTM‐CNR, Via Golgi 19, 20133 Milano, Italy, http://users.unimi.it/acaselli/
| | - Paolo Pirovano
- Università degli Studi di Milano and ISTM‐CNR, Via Golgi 19, 20133 Milano, Italy, http://users.unimi.it/acaselli/
| | - Monica Dell'Acqua
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy http://users.unimi.it/istchimorg/giorgio.htm
| | - Fabio Ragaini
- Università degli Studi di Milano and ISTM‐CNR, Via Golgi 19, 20133 Milano, Italy, http://users.unimi.it/acaselli/
| | - Pasquale Illiano
- Università degli Studi di Milano and ISTM‐CNR, Via Golgi 19, 20133 Milano, Italy, http://users.unimi.it/acaselli/
| | - Piero Macchi
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Giorgio Abbiati
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy http://users.unimi.it/istchimorg/giorgio.htm
| | - Alessandro Caselli
- Università degli Studi di Milano and ISTM‐CNR, Via Golgi 19, 20133 Milano, Italy, http://users.unimi.it/acaselli/
| |
Collapse
|
35
|
Lincoln KM, Arroyo - Currás N, Johnston HM, Hayden TD, Pierce BS, Bhuvanesh N, Green KN. Chemical characteristics of the products of the complexation reaction between copper(II) and a tetra-aza macrocycle in the presence of chloride ions. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1068935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Hannah M. Johnston
- Department of Chemistry, Texas Christian University, Fort Worth, TX, USA
| | - Travis D. Hayden
- Department of Chemistry, Texas Christian University, Fort Worth, TX, USA
| | - Brad S. Pierce
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | | | - Kayla N. Green
- Department of Chemistry, Texas Christian University, Fort Worth, TX, USA
| |
Collapse
|
36
|
Das RK, Barnea E, Andrea T, Kapon M, Fridman N, Botoshansky M, Eisen MS. Group 4 Lanthanide and Actinide Organometallic Inclusion Complexes. Organometallics 2015. [DOI: 10.1021/om501103v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Raj K. Das
- Schulich Faculty of Chemistry
and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Eyal Barnea
- Schulich Faculty of Chemistry
and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tamer Andrea
- Schulich Faculty of Chemistry
and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Moshe Kapon
- Schulich Faculty of Chemistry
and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry
and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Mark Botoshansky
- Schulich Faculty of Chemistry
and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Moris S. Eisen
- Schulich Faculty of Chemistry
and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
37
|
Despotović I. Complexation of some alkali and alkaline earth metal cations by macrocyclic compounds containing four pyridine subunits – a DFT study. NEW J CHEM 2015. [DOI: 10.1039/c5nj00459d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tetradentate pyridine-based macrocyclic compounds offer useful ligands capable of efficient and selective complexation of M = Li+, Na+, K+, Be2+, Mg2+and Ca2+.
Collapse
Affiliation(s)
- Ines Despotović
- Quantum Organic Chemistry Group
- Department of Organic Chemistry and Biochemistry
- Ruđer Bošković Institute
- Zagreb 10000
- Croatia
| |
Collapse
|