1
|
Yang S, Ngai WSC, Chen PR. Chemical engineering of bacterial effectors for regulating cell signaling and responses. Curr Opin Chem Biol 2021; 64:48-56. [PMID: 33993047 DOI: 10.1016/j.cbpa.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 01/24/2023]
Abstract
Bacteria have evolved a variety of effector proteins to facilitate their survival and proliferation within the host environment. Continuous competition at the host-pathogen interface has empowered these effectors with unique mechanism and high specificity toward their host targets. The rich repertoire of bacterial effectors has thus provided us an attractive toolkit for investigating various cellular processes, such as signal transductions. With recent advances in protein chemistry and engineering, we now have the capability for on-demand control of protein activity with high precision. Herein, we review the development of chemically engineered bacterial effectors to control kinase-mediated signal transductions, inhibit protein translation, and direct genetic editing within host cells. We also highlight future opportunities for harnessing diverse prokaryotic effectors as powerful tools for mechanistic investigation and therapeutic intervention of eukaryotic systems.
Collapse
Affiliation(s)
- Shaojun Yang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - William Shu Ching Ngai
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Peng R Chen
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Wallabregue A, Moreau D, Sherin P, Moneva Lorente P, Jarolímová Z, Bakker E, Vauthey E, Gruenberg J, Lacour J. Selective Imaging of Late Endosomes with a pH-Sensitive Diazaoxatriangulene Fluorescent Probe. J Am Chem Soc 2016; 138:1752-5. [PMID: 26799309 DOI: 10.1021/jacs.5b09972] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Late endosomes are a major trafficking hub in the cell at the crossroads between endocytosis, autophagy, and degradation in lysosomes. Herein is disclosed the first small molecule allowing their selective imaging and monitoring in the form of a diazaoxatriangulene fluorophore, 1a (hexadecyl side chain). The compound is prepared in three steps from a simple carbenium precursor. In nanospheres, this pH-sensitive (pKa = 7.3), photochemically stable dye fluoresces in the red part of visible light (601 and 578 nm, acid and basic forms, respectively) with a quantum yield between 14 and 16% and an excited-state lifetime of 7.7-7.8 ns. Importantly, the protonated form 1a·H(+) provokes a specific staining of late endosome compartments (pH 5.0-5.5) after 5 h of incubation with HeLa cells. Not surprisingly, this late endosome marking depends on the intra-organelle pH, and changing the nature of the lipophilic chain provokes a loss of selectivity. Interestingly, fixation of the fluorophore is readily achieved with paraformaldehyde, giving the possibility to image both live and fixed cells.
Collapse
Affiliation(s)
| | | | - Peter Sherin
- International Tomography Center SB RAS , Institutskaya street 3A, 630090 Novosibirsk, Russia
| | | | | | | | | | | | | |
Collapse
|
3
|
Burgos ES, Vetticatt MJ, Schramm VL. Recycling nicotinamide. The transition-state structure of human nicotinamide phosphoribosyltransferase. J Am Chem Soc 2013; 135:3485-93. [PMID: 23373462 PMCID: PMC3627370 DOI: 10.1021/ja310180c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human nicotinamide phosphoribosyltransferase (NAMPT) replenishes the NAD pool and controls the activities of sirtuins, mono- and poly-(ADP-ribose) polymerases, and NAD nucleosidase. The nature of the enzymatic transition-state (TS) is central to understanding the function of NAMPT. We determined the TS structure for pyrophosphorolysis of nicotinamide mononucleotide (NMN) from kinetic isotope effects (KIEs). With the natural substrates, NMN and pyrophosphate (PPi), the intrinsic KIEs of [1'-(14)C], [1-(15)N], [1'-(3)H], and [2'-(3)H] are 1.047, 1.029, 1.154, and 1.093, respectively. A unique quantum computational approach was used for TS analysis that included structural elements of the catalytic site. Without constraints (e.g., imposed torsion angles), the theoretical and experimental data are in good agreement. The quantum-mechanical calculations incorporated a crucial catalytic site residue (D313), two magnesium atoms, and coordinated water molecules. The TS model predicts primary (14)C, α-secondary (3)H, β-secondary (3)H, and primary (15)N KIEs close to the experimental values. The analysis reveals significant ribocation character at the TS. The attacking PPi nucleophile is weakly interacting (r(C-O) = 2.60 Å), and the N-ribosidic C1'-N bond is highly elongated at the TS (r(C-N) = 2.35 Å), consistent with an A(N)D(N) mechanism. Together with the crystal structure of the NMN·PPi·Mg2·enzyme complex, the reaction coordinate is defined. The enzyme holds the nucleophile and leaving group in relatively fixed positions to create a reaction coordinate with C1'-anomeric migration from NAM to the PPi. The TS is reached by a 0.85 Å migration of C1'.
Collapse
Affiliation(s)
- Emmanuel S Burgos
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | | | | |
Collapse
|
4
|
Romaniuk SI, Kolybo DV, Komisarenko SV. Recombinant diphtheria toxin derivatives: Perspectives of application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 38:639-52. [DOI: 10.1134/s106816201206012x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Egea PF, Muller-Steffner H, Kuhn I, Cakir-Kiefer C, Oppenheimer NJ, Stroud RM, Kellenberger E, Schuber F. Insights into the mechanism of bovine CD38/NAD+glycohydrolase from the X-ray structures of its Michaelis complex and covalently-trapped intermediates. PLoS One 2012; 7:e34918. [PMID: 22529956 PMCID: PMC3329556 DOI: 10.1371/journal.pone.0034918] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/06/2012] [Indexed: 01/02/2023] Open
Abstract
Bovine CD38/NAD+glycohydrolase (bCD38) catalyses the hydrolysis of NAD+ into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2′-fluorinated analogs of NAD+. Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218. Compared to the non-covalent (Michaelis) complex, the ligands adopt a more folded conformation in the covalent complexes. Altogether these crystallographic snapshots along the reaction pathway reveal the drastic conformational rearrangements undergone by the ligand during catalysis with the repositioning of its adenine ring from a solvent-exposed position stacked against Trp168 to a more buried position stacked against Trp181. This adenine flipping between conserved tryptophans is a prerequisite for the proper positioning of the N1 of the adenine ring to perform the nucleophilic attack on the C1′ of the ribofuranoside ring ultimately yielding cADPR. In all structures, however, the adenine ring adopts the most thermodynamically favorable anti conformation, explaining why cyclization, which requires a syn conformation, remains a rare alternate event in the reactions catalyzed by bCD38 (cADPR represents only 1% of the reaction products). In the Michaelis complex, the substrate is bound in a constrained conformation; the enzyme uses this ground-state destabilization, in addition to a hydrophobic environment and desolvation of the nicotinamide-ribosyl bond, to destabilize the scissile bond leading to the formation of a ribooxocarbenium ion intermediate. The Glu218 side chain stabilizes this reaction intermediate and plays another important role during catalysis by polarizing the 2′-OH of the substrate NAD+. Based on our structural analysis and data on active site mutants, we propose a detailed analysis of the catalytic mechanism.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (PFE); (FS)
| | - Hélène Muller-Steffner
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Isabelle Kuhn
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Céline Cakir-Kiefer
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux, UR AFPA, Nancy Université, Vandoeuvre-les-Nancy, France
| | - Norman J. Oppenheimer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Esther Kellenberger
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Francis Schuber
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- * E-mail: (PFE); (FS)
| |
Collapse
|
6
|
Tangoulis V, Costes JP. Dual-mode X-Band EPR and magnetic study of (Cu2+,Ln3+) pairs: Investigation of magnetic anisotropy. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2007.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Bellocchi D, Costantino G, Pellicciari R, Re N, Marrone A, Coletti C. Poly(ADP-ribose)-polymerase-catalyzed hydrolysis of NAD+: QM/MM simulation of the enzyme reaction. ChemMedChem 2006; 1:533-9. [PMID: 16892389 DOI: 10.1002/cmdc.200500061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which uses NAD+ as substrate and catalyzes the transfer of multiple units of ADP-ribose to target proteins. PARP is an attractive target for the discovery of novel therapeutic agents and PARP inhibitors are currently evaluated for the treatment of a variety of pathological conditions such as brain ischemia, inflammation, and cancer. Herein, we use the PARP-catalyzed reaction of NAD+ hydrolysis as a model for gaining insight into the molecular details of the catalytic mechanism of PARP. The reaction has been studied in both the gas-phase and in the enzyme environment through a QM/MM approach. Our results indicate that the cleavage reaction of the nicotinamide-ribosyl bond proceeds through an SN2 dissociative mechanism via an oxacarbenium transition structure. These results confirm the importance of the structural water molecule in the active site and may constitute the basis for the design of transition-state-based PARP inhibitors.
Collapse
Affiliation(s)
- Daniele Bellocchi
- Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Xiao JF, Li ZS, Sun CC. Homology modeling and molecular dynamics studies of a novel C3-like ADP-ribosyltransferase. Bioorg Med Chem 2004; 12:2035-41. [PMID: 15080907 DOI: 10.1016/j.bmc.2004.02.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 02/27/2004] [Accepted: 02/28/2004] [Indexed: 11/30/2022]
Abstract
The novel C3-like ADP-ribosyltransferase is produced by a Staphylococcus aureus strain that especially ADP-ribosylates RhoE/Rnd3 subtype proteins, and its three-dimensional (3D) structure has not known. In order to understand the catalytic mechanism, the 3D structure of the protein is built by using homology modeling based on the known crystal structure of exoenzyme C3 from Clostridium botulinum (1G24). Then the model structure is further refined by energy minimization and molecular dynamics methods. The putative nicotinamide adenine dinucleotide (NAD(+))-binding pocket of exoenzyme C3(Stau) is determined by Binding-Site Search module. The NAD(+)-enzyme complex is developed by molecular dynamics simulation and the key residues involved in the combination of enzyme binding to the ligand-NAD(+) are determined, which is helpful to guide the experimental realization and the new mutant designs as well. Our results indicated that the key binding-site residues of Arg48, Glu180, Ser138, Asn134, Arg85, and Gln179 play an important role in the catalysis of exoenzyme C3(Stau), which is in consistent with experimental observation.
Collapse
Affiliation(s)
- Jing-fa Xiao
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, PR China.
| | | | | |
Collapse
|
9
|
Parikh SL, Schramm VL. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin. Biochemistry 2004; 43:1204-12. [PMID: 14756556 DOI: 10.1021/bi035907z] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial protein toxins are the most powerful human poisons known, exhibiting an LD(50) of 0.1-1 ng kg(-)(1). A major subset of such toxins is the NAD(+)-dependent ADP-ribosylating exotoxins, which include pertussis, cholera, and diphtheria toxin. Diphtheria toxin catalyzes the ADP ribosylation of the diphthamide residue of eukaryotic elongation factor 2 (eEF-2). The transition state of ADP ribosylation catalyzed by diphtheria toxin has been characterized by measuring a family of kinetic isotope effects using (3)H-, (14)C-, and (15)N-labeled NAD(+) with purified yeast eEF-2. Isotope trapping experiments yield a commitment to catalysis of 0.24 at saturating eEF-2 concentrations, resulting in suppression of the intrinsic isotope effects. Following correction for the commitment factor, intrinsic primary kinetic isotope effects of 1.055 +/- 0.003 and 1.022 +/- 0.004 were observed for [1(N)'-(14)C]- and [1(N)-(15)N]NAD(+), respectively; the double primary isotope effect was 1.066 +/- 0.004 for [1(N)'-(14)C, 1(N)-(15)N]NAD(+). Secondary kinetic isotope effects of 1.194 +/- 0.002, 1.101 +/- 0.003, 1.013 +/- 0.005, and 0.988 +/- 0.002 were determined for [1(N)'-(3)H]-, [2(N)'-(3)H]-, [4(N)'-(3)H]-, and [5(N)'-(3)H]NAD(+), respectively. The transition state structure was modeled using density functional theory (B1LYP/6-31+G) as implemented in Gaussian 98, and theoretical kinetic isotope effects were subsequently calculated using Isoeff 98. Constraints were varied in a systematic manner until the calculated kinetic isotope effects matched the intrinsic isotope effects. The transition state model most consistent with the intrinsic isotope effects is characterized by the substantial loss in bond order of the nicotinamide leaving group (bond order = 0.18, 1.99 A) and weak participation of the attacking imidazole nucleophile (bond order = 0.03, 2.58 A). The transition state structure imparts strong oxacarbenium ion character to the ribose ring even though significant bond order remains to the nicotinamide leaving group. The transition state model presented here is asymmetric and consistent with a dissociative S(N)1 type mechanism in which attack of the diphthamide nucleophile lags behind departure of the nicotinamide.
Collapse
Affiliation(s)
- Sapan L Parikh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
10
|
Mazumder D, Bruice TC. Exploring nucleoside hydrolase catalysis in silico: molecular dynamics study of enzyme-bound substrate and transition state. J Am Chem Soc 2002; 124:14591-600. [PMID: 12465969 DOI: 10.1021/ja021088e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of action of inosine-uridine nucleoside hydrolase has been investigated by long-term molecular dynamics (MD) simulation in TIP3P water using stochastic boundary conditions. Five MD studies have been performed with enzyme substrate complex (E.S), enzyme substrate complex with protonated His241 (EH.S), enzyme transition state complex (E.TS), enzyme transition state complex with protonated His241 (EH.TS), and His241Ala transition state complex E(H241A).TS. Special attention has been given to the role of His241, which has been considered as the general acid catalyst to assist departure of the leaving nucleobase on the basis of its location in the active site in the X-ray crystal structure (). Yet on the basis of the location in the active site, Tyr229 is closer to the aniline ring of pAPIR as compared to His241. On initiation of MD simulations, His241 does not approach the nucleobase in the structures of EH.S, E.S, EH.TS, and E.TS. In the solvated enzyme, Tyr229, which is a member of the hydrogen bonding network inosine O2'.Asp14.His241.Tyr229.inosine N7, serves as a proton source to the leaving nucleobase. The loss of significant activity of His241Ala mutant is shown to be related to the disruption of the above hydrogen bonded network and the distancing of Tyr229 from inosine N7. The structures of the enzyme complexes with substrate or TS are not visibly altered on protonation of His241, a most unusual outcome. The bell-shaped pH dependence upon pK(app)'s of 7.1 and 9.1 may be attributed to the necessity of the dissociation of Asp10 or Asp15 and the acid form of Tyr229, respectively. In TS, the residue Ile81 migrated closer, whereas Arg233 moved away from the nucleobase. The probability of ribooxocarbenium ion stabilization by Asn168 and Asp14 is discussed. The Asp14-CO(2)(-) is hydrogen bonded to the ribose 2'-OH for 96% of the MD simulation time. Nucleophilic addition of water138 to ribooxocarbenium ion is suggested to be assisted by the proton shuttle from water138 --> Asp10 --> Asp15 --> water pool. An anticorrelation motion between Tyr229-OH and Asn168-OD1 in EH.S and E.S is observed. The relationship of this anticorrelated motion to mechanism, if any, deserves further exploration, perhaps the formation of a near attack conformation.
Collapse
Affiliation(s)
- Devleena Mazumder
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | |
Collapse
|
11
|
Abstract
Binding TS in preference to S and increasing TDeltaS++by freezing out motions in E X S and E X TS have been accepted as the driving forces in enzymatic catalysis; however, the smaller value of DeltaG++ for a one-substrate enzymatic reaction, as compared to its nonenzymatic counterpart, is generally the result of a smaller value of DeltaH++. Ground-state conformers (E X NACs) are formed in enzymatic reactions that structurally resemble E X TS. E X NACs are in thermal equilibrium with all other E X S conformers and are turnstiles through which substrate molecules must pass to arrive at the lowest-energy TS. TS in E X TS may or may not be bound tighter than NAC in E X NAC.
Collapse
Affiliation(s)
- Thomas C Bruice
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|