1
|
Hernández B, Coïc YM, Kruglik SG, Sanchez-Cortes S, Ghomi M. Influence of Side Chain-Backbone Interactions and Explicit Hydration on Characteristic Aromatic Raman Fingerprints as Analysed in Tripeptides Gly-Xxx-Gly (Xxx = Phe, Tyr, Trp). Int J Mol Sci 2025; 26:3911. [PMID: 40332788 PMCID: PMC12027947 DOI: 10.3390/ijms26083911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Because of the involvement of π-electron cyclic constituents in their side chains, the so-called aromatic residues give rise to a number of strong, narrow, and well-resolved lines spread over the middle wavenumber (1800-600 cm-1) region of the Raman spectra of peptides and proteins. The number of characteristic aromatic markers increases with the structural complexity (Phe → Tyr → Trp), herein referred to as (Fi = 1, …, 6) in Phe, (Yi = 1, …, 7) in Tyr, and (Wi = 1, …, 8) in Trp. Herein, we undertake an overview of these markers through the analysis of a representative data base gathered from the most structurally simple tripeptides, Gly-Xxx-Gly (where Xxx = Phe, Tyr, Trp). In this framework, off-resonance Raman spectra obtained from the aqueous samples of these tripeptides were jointly used with the structural and vibrational data collected from the density functional theory (DFT) calculations using the M062X hybrid functional and 6-311++G(d,p) atomic basis set. The conformation dependence of aromatic Raman markers was explored upon a representative set of 75 conformers, having five different backbone secondary structures (i.e., β-strand, polyproline-II, helix, classic, and inverse γ-turn), and plausible side chain rotamers. The hydration effects were considered upon using both implicit (polarizable solvent continuum) and explicit (minimal number of 5-7 water molecules) models. Raman spectra were calculated through a multiconformational approach based on the thermal (Boltzmann) average of the spectra arising from all calculated conformers. A subsequent discussion highlights the conformational landscape of conformers and the wavenumber dispersion of aromatic Raman markers. In particular, a new interpretation was proposed for the characteristic Raman doublets arising from Tyr (~850-830 cm-1) and Trp (~1360-1340 cm-1), definitely excluding the previously suggested Fermi-resonance-based assignment of these markers through the consideration of the interactions between the aromatic side chain and its adjacent peptide bonds.
Collapse
Affiliation(s)
- Belén Hernández
- LVTS, INSERM U1148, 74 rue Marcel Cachin, 93017 Bobigny Cédex, France;
| | - Yves-Marie Coïc
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, F-75015 Paris, France;
| | - Sergei G. Kruglik
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, Laboratoire Jean Perrin, LJP, F-75005 Paris, France;
- Université Paris Cité, CNRS, Inserm, Laboratoire de Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé, NABI, F-75006 Paris, France
| | - Santiago Sanchez-Cortes
- Department of Nuclear, Vibrational and Disordered Media Spectroscopy, Instituto de Estructura de la Materia—Consejo Superior de Investigaciones Cientificas (IEM-CSIC), 28006 Madrid, Spain;
| | - Mahmoud Ghomi
- Department of Nuclear, Vibrational and Disordered Media Spectroscopy, Instituto de Estructura de la Materia—Consejo Superior de Investigaciones Cientificas (IEM-CSIC), 28006 Madrid, Spain;
| |
Collapse
|
2
|
Hernández B, Coïc YM, Kruglik SG, Sanchez-Cortes S, Ghomi M. Relationships between conformational and vibrational features of tryptophan characteristic Raman markers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124377. [PMID: 38701580 DOI: 10.1016/j.saa.2024.124377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Tryptophan (Trp) residue provides characteristic vibrational markers to the middle wavenumber spectral region of the Raman spectra recorded from peptides and proteins. In this report, we were particularly interested in eight Trp Raman markers, referred to as Wi (i = 1,…,8). All responsible for pronounced Raman lines, these markers originate from indole moiety, a bicyclic conjugated segment involved in the Trp structure. Numerous investigations have previously attempted to relate the variations observed in the spectral features of these markers to the environmental changes of Trp residues. To emphasize the most important points we can mention (i) the variations in the Raman profile of W4 (∼1360 cm-1) and W5 (∼1340 cm-1), frequently observed as a doublet with variable intensity ratio. These two markers were thought to result from a Fermi-resonance effect between certain planar and nonplanar modes; (ii) the changes observed in the wavenumbers and relative intensities of W4, W7 (∼880 cm-1) and W8 (∼760 cm-1) were supposed to be related to the accessibility of Trp to surrounding water molecules; and (iii) the wavenumber fluctuations of W3 (∼1550 cm-1), taken as a Trp side chain orientational marker. However, some ambiguities still exist regarding the interpretation of these markers, needing further clarification. Herein, upon a joint experimental and theoretical analysis based on a multiconformational approach, attention was paid to the relationships between structural and vibrational features of three indole-containing compounds with increasing structural complexity, i.e., skatole (3-methylindole), tryptophan, and tripeptide Gly-Trp-Gly. This study clearly shows that the existing assignments given to certain Trp Raman markers should be reconsidered, especially those based on the Fermi-resonance origin of W4-W5 (∼1360-1340 cm-1) doublet, as well as the purely environmental dependence of W7 and W8 markers.
Collapse
Affiliation(s)
- Belén Hernández
- LVTS, INSERM U1148. 74 rue Marcel Cachin. 93017 Bobigny Cédex France
| | - Yves-Marie Coïc
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, F-75015 Paris, France
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean-Perrin, 4 Place Jussieu, 75005 Paris, France
| | | | - Mahmoud Ghomi
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain.
| |
Collapse
|
3
|
Andrews B, Schweitzer-Stenner R, Urbanc B. Intrinsic Conformational Dynamics of Glycine and Alanine in Polarizable Molecular Dynamics Force Fields: Comparison to Spectroscopic Data. J Phys Chem B 2024; 128:6217-6231. [PMID: 38877893 PMCID: PMC11215781 DOI: 10.1021/acs.jpcb.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Molecular dynamics (MD) is a great tool for elucidating conformational dynamics of proteins and peptides in water at the atomistic level that often surpasses the level of detail available experimentally. Structure predictions, however, are limited by the accuracy of the underlying MD force field. This limitation is particularly stark in the case of intrinsically disordered peptides and proteins, which are characterized by solvent-accessible and disordered peptide regions and domains. Recent studies show that most additive MD force fields, including CHARMM36m, do not reproduce the intrinsic conformational distributions of guest amino acid residues x in cationic GxG peptides in water in line with experimental data. Positing that a lack of polarizability in additive MD force fields may be the culprit for the reported discrepancies, we here examine the conformational dynamics of guest glycine and alanine residues in cationic GxG peptides in water using two polarizable MD force fields, CHARMM Drude and AMOEBA. Our results indicate that while AMOEBA captures the experimental data better than CHARMM Drude, neither of the two polarizable force fields offers an improvement of the Ramachandran distributions of glycine and alanine residues in cationic GGG and GAG peptides, respectively, over CHARMM36m.
Collapse
Affiliation(s)
- Brian Andrews
- Department
of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | | - Brigita Urbanc
- Department
of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Hernández B, Coïc YM, Kruglik SG, Sanchez-Cortes S, Ghomi M. The relationship between the tyrosine residue 850-830 cm -1 Raman doublet intensity ratio and the aromatic side chain χ 1 torsion angle. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123681. [PMID: 38039641 DOI: 10.1016/j.saa.2023.123681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Tyrosine (Tyr) residue in a peptide chain is characterized by the presence of seven Raman markers, referred to as Yi (i = 1, …, 7), distributed over the middle wavenumber spectral region. Particularly, the changes observed in the relative intensity of Y5 and Y6 markers, appearing as a side by side doublet at ca. 850-830 cm-1, has received a great attention. Primarily assigned to a Fermi-resonance effect between phenol ring planar and nonplanar modes, former density functional theory calculations led us to affiliate the Y5-Y6 doublet to two distinct fundamental modes. Furthermore, despite the previous assumptions, it was evidenced that the reversal of the doublet intensity ratio cannot be solely explained by hydrogen bonding on the phenol hydroxyl group involved in Tyr. Herein, upon analyzing the observed and theoretical data collected from the cationic species of the tripeptide Gly-Tyr-Gly, the crucial effect of the aromatic side chain orientation, especially that of the χ1 torsion angle defined around the CαCβ bond, on the Tyr doublet intensity ratio has been evidenced.
Collapse
Affiliation(s)
- Belén Hernández
- LVTS, INSERM U1148, 74 rue Marcel Cachin, 93017 Bobigny Cédex, France
| | - Yves-Marie Coïc
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, F-75015 Paris, France
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean-Perrin, 4 Place Jussieu, 75005 Paris, France
| | | | - Mahmoud Ghomi
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain.
| |
Collapse
|
5
|
O'Neill N, Lima TA, Furlan Ferreira F, Alvarez NJ, Schweitzer-Stenner R. Determining the nanostructure and main axis of gly-his-gly fibrils using the amide I' bands in FTIR, VCD, and Raman spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123584. [PMID: 37956526 DOI: 10.1016/j.saa.2023.123584] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
The zwitterionic tripeptide glycyl-histidine-glycine (GHG) has been shown to self-assemble into visible crystalline fibrils that form a gel-supporting network with a very high storage modulus. Here we elaborate on the theory and experimental setup behind our novel approach employed to determining the main fibril axis for these gel-forming fibrils by simulating the amide I band profile for infrared absorption (IR), vibrational circular dichroism (VCD), and visible Raman scattering. We also highlight that combining these three vibrational spectroscopies can help in validating structures that are solved using powder x-ray diffraction analysis (PXRD). The PXRD analysis yielded a GHG fibril unit cell with P21 symmetry containing two peptide monomers and two water molecules. The monomers adopt a conformation reminiscent of the distorted polyproline II conformation obtained for tri-lysine in aqueous solution. Stabilization occurs primarily through peptide-peptide intermolecular hydrogen bond interactions, while the role of water in peptide hydration is minimal. The comparison of simulated and experimental amide I' band profiles suggests that the xz plane of the crystal unit cell is being predominantly probed in the experimental IR and VCD spectra, with the x axis of the unit cell pointing in the direction of the main fibril axis. The monomer peptide in the unit cell interacts with six adjacent peptides forming hydrophobic channels by edge-to-face and parallel-displaced ππstacking in the y direction. These cores are further stabilized by a plethora of intermolecular interactions in the x and z directions. Our result suggests that the hydrophobic xz-surfaces would be a good target for the adsorption of hydrophobic drugs.
Collapse
Affiliation(s)
- Nichole O'Neill
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA; Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Thamires A Lima
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Fabio Furlan Ferreira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-580, Brazil
| | - Nicolas J Alvarez
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
6
|
Harper M, Nudurupati U, Workman RJ, Lakoba TI, Perez N, Nelson D, Ou Y, Punihaole D. Toward determining amyloid fibril structures using experimental constraints from Raman spectroscopy. J Chem Phys 2023; 159:225101. [PMID: 38078532 PMCID: PMC10720587 DOI: 10.1063/5.0177437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
We present structural models for three different amyloid fibril polymorphs prepared from amylin20-29 (sequence SNNFGAILSS) and amyloid-β25-35 (Aβ25-35) (sequence GSNKGAIIGLM) peptides. These models are based on the amide C=O bond and Ramachandran ψ-dihedral angle data from Raman spectroscopy, which were used as structural constraints to guide molecular dynamics (MD) simulations. The resulting structural models indicate that the basic structural motif of amylin20-29 and Aβ25-35 fibrils is extended β-strands. Our data indicate that amylin20-29 forms both antiparallel and parallel β-sheet fibril polymorphs, while Aβ25-35 forms a parallel β-sheet fibril structure. Overall, our work lays the foundation for using Raman spectroscopy in conjunction with MD simulations to determine detailed molecular-level structural models of amyloid fibrils in a manner that complements gold-standard techniques, such as solid-state nuclear magnetic resonance and cryogenic electron microscopy.
Collapse
Affiliation(s)
- Madeline Harper
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA
| | - Uma Nudurupati
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA
| | - Riley J. Workman
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Taras I. Lakoba
- Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05405, USA
| | - Nicholas Perez
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA
| | - Delaney Nelson
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA
| | - Yangguang Ou
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA
| | - David Punihaole
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
7
|
Energetic, conformational and vibrational features of the tripeptide (Gly)3. Data from MP2 and DFT calculations. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2022.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Töpfer K, Upadhyay M, Meuwly M. Quantitative molecular simulations. Phys Chem Chem Phys 2022; 24:12767-12786. [PMID: 35593769 PMCID: PMC9158373 DOI: 10.1039/d2cp01211a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022]
Abstract
All-atom simulations can provide molecular-level insights into the dynamics of gas-phase, condensed-phase and surface processes. One important requirement is a sufficiently realistic and detailed description of the underlying intermolecular interactions. The present perspective provides an overview of the present status of quantitative atomistic simulations from colleagues' and our own efforts for gas- and solution-phase processes and for the dynamics on surfaces. Particular attention is paid to direct comparison with experiment. An outlook discusses present challenges and future extensions to bring such dynamics simulations even closer to reality.
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Meenu Upadhyay
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
9
|
Meuwly M. Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning─ Quo Vadis?. J Phys Chem B 2022; 126:2155-2167. [PMID: 35286087 DOI: 10.1021/acs.jpcb.2c00212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomistic simulations using accurate energy functions can provide molecular-level insight into functional motions of molecules in the gas and in the condensed phase. This Perspective delineates the present status of the field from the efforts of others and some of our own work and discusses open questions and future prospects. The combination of physics-based long-range representations using multipolar charge distributions and kernel representations for the bonded interactions is shown to provide realistic models for the exploration of the infrared spectroscopy of molecules in solution. For reactions, empirical models connecting dedicated energy functions for the reactant and product states allow statistically meaningful sampling of conformational space whereas machine-learned energy functions are superior in accuracy. The future combination of physics-based models with machine-learning techniques and integration into all-purpose molecular simulation software provides a unique opportunity to bring such dynamics simulations closer to reality.
Collapse
Affiliation(s)
- Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Andrews B, Guerra J, Schweitzer-Stenner R, Urbanc B. Do molecular dynamics force fields accurately model Ramachandran distributions of amino acid residues in water? Phys Chem Chem Phys 2022; 24:3259-3279. [PMID: 35048087 DOI: 10.1039/d1cp05069a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular dynamics (MD) is a powerful tool for studying intrinsically disordered proteins, however, its reliability depends on the accuracy of the force field. We assess Amber ff19SB, Amber ff14SB, OPLS-AA/M, and CHARMM36m with respect to their capacity to capture intrinsic conformational dynamics of 14 guest residues x (=G, A, L, V, I, F, Y, DP, EP, R, C, N, S, T) in GxG peptides in water. The MD-derived Ramachandran distribution of each guest residue is used to calculate 5 J-coupling constants and amide I' band profiles to facilitate a comparison to spectroscopic data through reduced χ2 functions. We show that the Gaussian model, optimized to best fit the experimental data, outperforms all MD force fields by an order of magnitude. The weaknesses of the MD force fields are: (i) insufficient variability of the polyproline II (pPII) population among the guest residues; (ii) oversampling of antiparallel at the expense of transitional β-strand region; (iii) inadequate sampling of turn-forming conformations for ionizable and polar residues; and (iv) insufficient guest residue-specificity of the Ramachandran distributions. Whereas Amber ff19SB performs worse than the other three force fields with respect to χ2 values, it accounts for residue-specific pPII content better than the other three force fields. Additional testing of residue-specific RSFF1 and Amber ff14SB combined with TIP4P/2005 on six guest residues x (=A, I, F, DP, R, S) reveals that residue specificity derived from protein coil libraries or an improved water model alone do not result in significantly lower χ2 values.
Collapse
Affiliation(s)
- Brian Andrews
- Department of Physics, Drexel University, Philadelphia, Pennsylvania, USA.
| | - Jose Guerra
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | | | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Milorey B, Schwalbe H, O'Neill N, Schweitzer-Stenner R. Repeating Aspartic Acid Residues Prefer Turn-like Conformations in the Unfolded State: Implications for Early Protein Folding. J Phys Chem B 2021; 125:11392-11407. [PMID: 34619031 DOI: 10.1021/acs.jpcb.1c06472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein folding can be described as a motion of the polypeptide chain in a potential energy funnel, where the conformational manifold is narrowed as the chain traverses from a completely unfolded state until it reaches the folded (native) state. The initial folding stages set the tone for this process by substantially narrowing the manifold of accessible conformations. In an ideally unfolded state with no long-range stabilizing forces, local conformations (i.e., residual structures) are likely to drive the folding process. While most amino acid residues tend to predominantly adopt extended structures in unfolded proteins and peptides, aspartic acid exhibits a relatively high intrinsic preference for turn-forming conformations. Regions in an unfolded polypeptide or protein that are rich in aspartic acid residues may therefore be crucial sites for protein folding steps. By combining NMR and vibrational spectroscopies, we observed that the conformational sampling of multiple sequentially neighbored aspartic acid residues in the model peptides GDDG and GDDDG even show an on average higher propensity for turn-forming structures than the intrinsic reference system D in GDG, which suggests that nearest neighbor interactions between adjacent aspartic acid residues stabilize local turn-forming structures. In the presence of the unlike neighbor phenylalanine, nearest neighbor interactions are of a totally different nature in that it they decrease the turn-forming propensities and mutually increase the sampling of polyproline II (pPII) conformations. We hypothesize the structural role of aspartic residues in intrinsically disordered proteins in general, and particularly in small linear motifs, that are very much determined by their respective neighbors.
Collapse
Affiliation(s)
- Bridget Milorey
- Deparment of Chemistry, Drexel University, Philadelphia, Pennsylvania 19026, United States
| | - Harald Schwalbe
- Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe Universität, Max von Laue Strasse 7, 60438 Frankfurt, Germany
| | - Nichole O'Neill
- Deparment of Chemistry, Drexel University, Philadelphia, Pennsylvania 19026, United States
| | | |
Collapse
|
12
|
Mondal P, Cazade PA, Das AK, Bereau T, Meuwly M. Multipolar Force Fields for Amide-I Spectroscopy from Conformational Dynamics of the Alanine Trimer. J Phys Chem B 2021; 125:10928-10938. [PMID: 34559531 DOI: 10.1021/acs.jpcb.1c05423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics and spectroscopy of N-methyl-acetamide (NMA) and trialanine in solution are characterized from molecular dynamics simulations using different energy functions, including a conventional point charge (PC)-based force field, one based on a multipolar (MTP) representation of the electrostatics, and a semiempirical DFT method. For the 1D infrared spectra, the frequency splitting between the two amide-I groups is 10 cm-1 from the PC, 13 cm-1 from the MTP, and 47 cm-1 from self-consistent charge density functional tight-binding (SCC-DFTB) simulations, compared with 25 cm-1 from experiment. The frequency trajectory required for the frequency fluctuation correlation function (FFCF) is determined from individual normal mode (INM) and full normal mode (FNM) analyses of the amide-I vibrations. The spectroscopy, time-zero magnitude of the FFCF C(t = 0), and the static component Δ02 from simulations using MTP and analysis based on FNM are all consistent with experiments for (Ala)3. Contrary to this, for the analysis excluding mode-mode coupling (INM), the FFCF decays to zero too rapidly and for simulations with a PC-based force field, the Δ02 is too small by a factor of two compared with experiments. Simulations with SCC-DFTB agree better with experiment for these observables than those from PC-based simulations. The conformational ensemble sampled from simulations using PCs is consistent with the literature (including PII, β, αR, and αL), whereas that covered by the MTP-based simulations is dominated by PII with some contributions from β and αR. This agrees with and confirms recently reported Bayesian-refined populations based on 1D infrared experiments. FNM analysis together with a MTP representation provides a meaningful model to correctly describe the dynamics of hydrated trialanine.
Collapse
Affiliation(s)
- Padmabati Mondal
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Pierre-André Cazade
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Tristan Bereau
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland.,Department of Chemistry, Brown University, Providence/RI 02912, United States
| |
Collapse
|
13
|
Yuan Y, Wang F. A comparison of three DFT exchange-correlation functionals and two basis sets for the prediction of the conformation distribution of hydrated polyglycine. J Chem Phys 2021; 155:094104. [PMID: 34496578 DOI: 10.1063/5.0059669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The performance of three density functional theory (DFT) exchange-correlation functionals, namely, Perdew-Burke-Ernzerhof (PBE), BP86, and B3LYP, in predicting conformational distributions of a hydrated glycine peptide is tested with two different basis sets in the framework of adaptive force matching (AFM). The conformational distributions yielded the free energy profiles of the DFT functional and basis set combinations. Unlike traditional validations of potential energy and structural parameters, our approach allows the free energy of DFT to be validated. When compared to experimental distributions, the def2-TZVP basis set provides better agreement than a slightly trimmed aug-cc-pVDZ basis set. B3LYP is shown to be better than BP86 and PBE. The glycine model fitted against B3LYP-D3(BJ) with the def2-TZVP basis set is the most accurate and named the AFM2021 model for glycine. The AFM2021 glycine model provides better agreement with experimental J-coupling constants than C36m and ff14SB, although the margin is very small when compared to C36m. Our previously published alanine model is also refitted with the slightly simplified AFM2021 energy expression. This work shows good promise of AFM for developing force fields for a range of proteinogenic peptides using only DFT as reference.
Collapse
Affiliation(s)
- Ying Yuan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Feng Wang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
14
|
Guo M, Rosbottom I, Zhou L, Yong CW, Zhou L, Yin Q, Todorov IT, Errington E, Heng JYY. Triglycine (GGG) Adopts a Polyproline II (pPII) Conformation in Its Hydrated Crystal Form: Revealing the Role of Water in Peptide Crystallization. J Phys Chem Lett 2021; 12:8416-8422. [PMID: 34436909 DOI: 10.1021/acs.jpclett.1c01622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polyproline II (pPII) is a left-handed 31-helix conformation, which has been observed to be the most abundant secondary structure in unfolded peptides and proteins compared to α-helix and β-sheet. Although pPII has been reported as the most stable conformation for several unfolded short chain peptides in aqueous solution, it is rarely observed in their solid state. Here, we show for the first time a glycine homopeptide (gly-gly-gly) adopting the pPII conformation in its crystalline dihydrate structure. The single crystal X-ray structure with molecular dynamic simulation suggests that a network of water and the charged carboxylate group is critical in stabilizing the pPII conformation in solid state, offering an insight into the structures of unfolded regions of proteins and the role of water in peptide crystallization.
Collapse
Affiliation(s)
| | | | - Lina Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Chin W Yong
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, U.K
| | - Ling Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Ilian T Todorov
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, U.K
| | | | | |
Collapse
|
15
|
Hesser M, Thursch LJ, Lewis TR, Lima TA, Alvarez NJ, Schweitzer-Stenner R. Concentration Dependence of a Hydrogel Phase Formed by the Deprotonation of the Imidazole Side Chain of Glycylhistidylglycine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6935-6946. [PMID: 34077210 DOI: 10.1021/acs.langmuir.1c00382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Upon deprotonation of its imidazole group at ∼pH 6, the unblocked tripeptide glycylhistidylglycine (GHG) self-assembles into very long crystalline fibrils on a 10-1000 μm scale which are capable of forming a volume spanning network, that is, hydrogel. The critical peptide concentration for self-assembly at a pH of 6 lies between 50 and 60 mM. The fraction of peptides that self-assemble into fibrils depends on the concentration of deprotonated GHG. While IR spectra seem to indicate the formation of fibrils with standard amyloid fibril β-sheet structures, vibrational circular dichroism spectra show a strongly enhanced amide I' signal, suggesting that the formed fibrils exhibit significant chirality. The fibril chirality appears to be a function of peptide concentration. Rheological measurements reveal that the rate of gelation is concentration-dependent and that there is an optimum gel strength at intermediate peptide concentrations of ca. 175 mM. This paper outlines the unique properties of the GHG gel phase which is underlain by a surprisingly dense fibril network with an exceptionally strong modulus that make them potential additives for biomedical applications.
Collapse
Affiliation(s)
- Morgan Hesser
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Lavenia J Thursch
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Todd R Lewis
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Thamires A Lima
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Nicolas J Alvarez
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
16
|
Katiyar A, Thompson WH. Temperature Dependence of Peptide Conformational Equilibria from Simulations at a Single Temperature. J Phys Chem A 2021; 125:2374-2384. [PMID: 33720712 DOI: 10.1021/acs.jpca.1c00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the structure of proteins is key to unraveling their function in biological processes. Thus, significant attention has been paid to the calculation of conformational free energies. In this paper, we demonstrate a simple extension of fluctuation theory that permits the calculation of the temperature derivative of the conformational free energy, and hence the internal energy and entropy, from single-temperature simulations. The method further enables the decomposition into the contribution of different interactions present in the system to the internal energy surface. We illustrate the method for the canonical test system of alanine dipeptide in aqueous solution, for which we examine the free energy as a function of two dihedral angles. This system, like many, is most effectively treated using accelerated sampling methods and we show how the present approach is compatible with an important class of these, those that introduce a bias potential, by implementing it within metadynamics.
Collapse
Affiliation(s)
- Ankita Katiyar
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
17
|
Hernández B, Pflüger F, Kruglik SG, Ghomi M. Multiconformational analysis of tripeptides upon consideration of implicit and explicit hydration effects. J Mol Graph Model 2020; 102:107790. [PMID: 33181423 DOI: 10.1016/j.jmgm.2020.107790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/10/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
During the last two decades, numerous observed data obtained by various physical techniques, also supported by molecular modeling approaches, have highlighted the structuring features of tripeptides, as well as their aggregation properties. Herein, we focus on the structural dynamics of four trimers, i.e., Gly-Gly-Gly, Gly-Ala-Gly, Ala-Ala-Ala and Ala-Phe-Ala, in an aqueous environment. Density functional theory calculations (DFT) were carried out to assess the stability of four types of secondary structures, i.e., β-strand, polyproline-II (pP-II), α-helix and γ-turn, of which the formation had been described in these tripeptides. Both implicit and explicit hydration effects were analyzed on the conformational and energetic features of trimers. It has been shown that the use of M062X functional (versus B3LYP) improve the stability of intramolecular H-bonds, especially in inverse γ-turn structures, as well as the energetic and conformational equilibrium in all tripeptides. Explicit hydration reflected by the presence of five water molecules around the backbone polar sites (NH3+, N-H, CO and NH2) considerably changes the conformational landscapes of the trimers. Characteristic intramolecular and intermolecular interactions evidenced by the calculations, were emphasized.
Collapse
Affiliation(s)
- Belén Hernández
- Laboratoire Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UMR 7369, Université de Reims, Faculté des Sciences, Moulin de la Housse, 51687, Reims Cedex 2, France; Université Sorbonne Paris Nord, UFR Santé-Médecine-Biologie Humaine, Groupe de Biophysique Moléculaire, 74 Rue Marcel Cachin, 93017, Bobigny cedex, France
| | - Fernando Pflüger
- Université Sorbonne Paris Nord, UFR Santé-Médecine-Biologie Humaine, Groupe de Biophysique Moléculaire, 74 Rue Marcel Cachin, 93017, Bobigny cedex, France
| | - Sergei G Kruglik
- Laboratoire Jean-Perrin, Sorbonne Université, CNRS UMR 8237, 4 Place Jussieu, 75005, Paris, France
| | - Mahmoud Ghomi
- Laboratoire Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UMR 7369, Université de Reims, Faculté des Sciences, Moulin de la Housse, 51687, Reims Cedex 2, France; Université Sorbonne Paris Nord, UFR Santé-Médecine-Biologie Humaine, Groupe de Biophysique Moléculaire, 74 Rue Marcel Cachin, 93017, Bobigny cedex, France.
| |
Collapse
|
18
|
Levine MS, Ghosh M, Hesser M, Hennessy N, DiGuiseppi DM, Adler-Abramovich L, Schweitzer-Stenner R. Formation of peptide-based oligomers in dimethylsulfoxide: identifying the precursor of fibril formation. SOFT MATTER 2020; 16:7860-7868. [PMID: 32761042 DOI: 10.1039/d0sm00035c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The well-studied dipeptide fluorenylmethyloxycarbonyl-di-phenylalanine (FmocFF) forms a rigid hydrogel upon dissolving in dimethylsulfoxide (DMSO) and dilution in H2O. Here, we explored the pre-aggregation of the peptide in pure DMSO by vibrational spectroscopies, X-ray powder diffraction and dynamic light scattering. Our results show an equilibrium between a dominant population of amorphous oligomers (on a length scale of 2 nm) and a small number of protofibrils/fibrils (on a length scale of 30 nm in the centimolar and of 200 nm in the sub-molar region). To probe the mechanism underlying the formation of these protofilaments, we measured the 1H-NMR, IR and visible Raman spectra of DMSO containing different FmocFF concentrations, ranging between 10 and 300 mM. Our data reveal that interpeptide hydrogen bonding leads to the self-assembly of FmocFF in the centimolar region, while π-π stacking between Fmoc-groups is observed above 100 mM. The high 3J(HNHCα) coupling constant of the N-terminal amide proton indicates that the Fmoc end-cap of the peptide locks the N-terminal residue into a conformational ensemble centered at a φ-value of ca. -120°, which corresponds to a parallel β-sheet type conformation. The 3J(HNHCα) coupling constant of the C-terminal residue is indicative of a polyproline II (pPII)/βt mixture. Our results suggest that the gelation of FmocFF caused by the addition of a small amount of water to DMSO mixtures is facilitated by the formation of disordered protofibrils in pure DMSO.
Collapse
Affiliation(s)
- Matthew S Levine
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Moumita Ghosh
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Morgan Hesser
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Nathan Hennessy
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - David M DiGuiseppi
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
19
|
Glycine in Water Favors the Polyproline II State. Biomolecules 2020; 10:biom10081121. [PMID: 32751224 PMCID: PMC7463814 DOI: 10.3390/biom10081121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023] Open
Abstract
Conformational preferences of amino acid residues in water are determined by the backbone and side-chain properties. Alanine is known for its high polyproline II (pPII) propensity. The question of relative contributions of the backbone and side chain to the conformational preferences of alanine and other amino acid residues in water is not fully resolved. Because glycine lacks a heavy-atom side chain, glycine-based peptides can be used to examine to which extent the backbone properties affect the conformational space. Here, we use published spectroscopic data for the central glycine residue of cationic triglycine in water to demonstrate that its conformational space is dominated by the pPII state. We assess three commonly used molecular dynamics (MD) force fields with respect to their ability to capture the conformational preferences of the central glycine residue in triglycine. We show that pPII is the mesostate that enables the functional backbone groups of the central residue to form the most hydrogen bonds with water. Our results indicate that the pPII propensity of the central glycine in GGG is comparable to that of alanine in GAG, implying that the water-backbone hydrogen bonding is responsible for the high pPII content of these residues.
Collapse
|
20
|
Schweitzer-Stenner R, Pecht I, Guo C. Orientation of Oligopeptides in Self-Assembled Monolayers Inferred from Infrared Reflection-Absorption Spectroscopy. J Phys Chem B 2019; 123:860-868. [PMID: 30607951 DOI: 10.1021/acs.jpcb.8b09180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of a single tryptophan containing oligo-alanine peptides were recently characterized as conductive molecules that enable electron transport between electrodes. IR reflection-absorption of self-assembled monolayers of such peptides on gold surfaces revealed that the relative intensities of amide I and II bands in the respective spectra depend on the tryptophan residue position in the oligopeptide sequence. This indicates different average peptide orientations with respect to the normal onto the carrying gold surface. We developed a model which calculates the polarized reflectivities of the amide I and II bands as function of the angle of the incident light, the average peptide orientation and the relative orientations of peptide group at the N-terminal. The orientation and strength of vibrational transition dipole moments were calculated by employing an excitonic coupling approach which considers probable conformational distributions of the disordered peptides. Our results revealed that the position of the tryptophan can affect the effective tilt angle of the peptide as well as the orientation of transition dipole moments with respect to the reflection plane. We have also calculated the average end to end distances of the examined peptides and found them to be in reasonable agreement with experimental values determined by ellipsometry. Some evidence is obtained for the notion that increasing the tilt angle of the investigated peptides reduces their conductivity.
Collapse
Affiliation(s)
- Reinhard Schweitzer-Stenner
- Department of Chemistry , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Israel Pecht
- Department of Chemical Immunology , The Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Cunlan Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
21
|
Okabe H, Miyata D, Nakabayashi T, Hiramatsu H. Evaluation of Dihedral Angles of Peptides Using IR Bands of Two Successive Isotope Labeled Residues. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hitomi Okabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Daisuke Miyata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
22
|
Balos V, Marekha B, Malm C, Wagner M, Nagata Y, Bonn M, Hunger J. Spezifische Ionen-Effekte am Beispiel eines Oligopeptids: die Rolle zweizähniger Koordination beim Guanidinium-Kation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vasileios Balos
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Derzeitige Adresse: Abteilung für physikalische Chemie; Fritz Haber Institut der Max-Planck-Gesellschaft; Faradayweg 4 14195 Berlin Deutschland
| | - Bogdan Marekha
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Christian Malm
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Manfred Wagner
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Yuki Nagata
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Mischa Bonn
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Johannes Hunger
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| |
Collapse
|
23
|
Balos V, Marekha B, Malm C, Wagner M, Nagata Y, Bonn M, Hunger J. Specific Ion Effects on an Oligopeptide: Bidentate Binding Matters for the Guanidinium Cation. Angew Chem Int Ed Engl 2019; 58:332-337. [PMID: 30403434 DOI: 10.1002/anie.201811029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/24/2018] [Indexed: 01/11/2023]
Abstract
Ion-protein interactions are important for protein function, yet challenging to rationalize owing to the multitude of possible ion-protein interactions. To explore specific ion effects on protein binding sites, we investigate the interaction of different salts with the zwitterionic peptide triglycine in solution. Dielectric spectroscopy shows that salts affect the peptide's reorientational dynamics, with a more pronounced effect for denaturing cations (Li+ , guanidinium (Gdm+ )) and anions (I- , SCN- ) than for weakly denaturing ones (K+ , Cl- ). The effects of Gdm+ and Li+ were found to be comparable. Molecular dynamics simulations confirm the enhanced binding of Gdm+ and Li+ to triglycine, yet with a different binding geometry: While Li+ predominantly binds to the C-terminal carboxylate group, bidentate binding to the terminus and the nearest amide is particularly important for Gdm+ . This bidentate binding markedly affects peptide conformation, and may help to explain the high denaturation activity of Gdm+ salts.
Collapse
Affiliation(s)
- Vasileios Balos
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Present address: Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4, 14195, Berlin, Germany
| | - Bogdan Marekha
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Christian Malm
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Manfred Wagner
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuki Nagata
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Johannes Hunger
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
24
|
Anharmonic vibrational spectroscopy calculations using the ab initio CSP method: Applications to H2CO3, (H2CO3)2, H2CO3-H2O and isotopologues. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2017.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Zhang Y, Zhou Y, He L, Fu Y, Zhang W, Hu J, Shi Z. Hydration effects on Leu's polyproline II population in AcLXPNH 2. Chem Commun (Camb) 2018; 54:5764-5767. [PMID: 29781018 DOI: 10.1039/c8cc02402b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydration is important in many fundamental processes. To investigate hydration effects on peptide conformations, we examined neighboring-residue and side-chain blocking effects in AcLXPNH2. A correlation between two effects suggests that hydration stabilizes PII more than β-structures. Our results are important for understanding the hydration effects on peptide conformations and hydration-forces in general.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Lee M, Yoon J, Jang S, Shin S. Conformational sampling of metastable states: Tq-REM as a novel replica exchange method. Phys Chem Chem Phys 2017; 19:5454-5464. [PMID: 28165074 DOI: 10.1039/c6cp05322j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although the replica exchange methods (REMs) were developed as efficient conformational sampling methods for bio-molecular simulations, their application to very large bio-systems is somewhat limited. We propose a new replica exchange scheme (Tq-REM) created by combining the conventional temperature-REM (T-REM) and one of the Hamiltonian-REMs, q-REM, using the effective potential with reduced barriers. In the proposed Tq-REM scheme, high temperature replicas in T-REM are substituted with q-replicas. This combined scheme is expected to exploit advantages of the T-REM and q-REM resulting in improved sampling efficiency while minimizing the drawbacks of both approaches. We investigated the performance of Tq-REM compared with T-REM by performing all-atom MD simulations on Met-enkephalin, (AAQAA)3, and Trpzip2. It was found that convergence of the free energy surfaces was improved by Tq-REM over the conventional T-REM. In particular, the trajectories of Tq-REM were able to sample the relevant conformations for all of the metastable folding intermediates, while some of the local minimum structures are poorly represented by T-REM. The results of the present study suggest that Tq-REM can provide useful tools to investigate systems where metastable states play important roles.
Collapse
Affiliation(s)
- MinJun Lee
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea.
| | - Jeseong Yoon
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea.
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul 143-747, Korea
| | - Seokmin Shin
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea.
| |
Collapse
|
27
|
Feng Y, Huang J, Kim S, Shim JH, MacKerell AD, Ge NH. Structure of Penta-Alanine Investigated by Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation. J Phys Chem B 2016; 120:5325-39. [PMID: 27299801 DOI: 10.1021/acs.jpcb.6b02608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the structure of (Ala)5, a model unfolded peptide, using a combination of 2D IR spectroscopy and molecular dynamics (MD) simulation. Two different isotopomers, each bis-labeled with (13)C═O and (13)C═(18)O, were strategically designed to shift individual site frequencies and uncouple neighboring amide-I' modes. 2D IR spectra taken under the double-crossed ⟨π/4, -π/4, Y, Z⟩ polarization show that the labeled four-oscillator systems can be approximated by three two-oscillator systems. By utilizing the different polarization dependence of diagonal and cross peaks, we extracted the coupling constants and angles between three pairs of amide-I' transition dipoles through spectral fitting. These parameters were related to the peptide backbone dihedral angles through DFT calculated maps. The derived dihedral angles are all located in the polyproline-II (ppII) region of the Ramachandran plot. These results were compared to the conformations sampled by Hamiltonian replica-exchange MD simulations with three different CHARMM force fields. The C36 force field predicted that ppII is the dominant conformation, consistent with the experimental findings, whereas C22/CMAP predicted similar population for α+, β, and ppII, and the polarizable Drude-2013 predicted dominating β structure. Spectral simulation based on MD representative conformations and structure ensembles demonstrated the need to include multiple 2D spectral features, especially the cross-peak intensity ratio and shape, in structure determination. Using 2D reference spectra defined by the C36 structure ensemble, the best spectral simulation is achieved with nearly 100% ppII population, although the agreement with the experimental cross-peak intensity ratio is still insufficient. The dependence of population determination on the choice of reference structures/spectra and the current limitations on theoretical modeling relating peptide structures to spectral parameters are discussed. Compared with the previous results on alanine based oligopeptides, the dihedral angles of our fitted structure, and the most populated ppII structure from the C36 simulation are in good agreement with those suggesting a major ppII population. Our results provide further support for the importance of ppII conformation in the ensemble of unfolded peptides.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| | - Jing Huang
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Seongheun Kim
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| | - Ji Hyun Shim
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
28
|
Zhou Y, He L, Zhang W, Hu J, Shi Z. Populations of the Minor α-Conformation in AcGXGNH2 and the α-Helical Nucleation Propensities. Sci Rep 2016; 6:27197. [PMID: 27256621 PMCID: PMC4891685 DOI: 10.1038/srep27197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/16/2016] [Indexed: 01/25/2023] Open
Abstract
Intrinsic backbone conformational preferences of different amino acids are important for understanding the local structure of unfolded protein chains. Recent evidence suggests α-structure is relatively minor among three major backbone conformations for unfolded proteins. The α-helices are the dominant structures in many proteins. For these proteins, how could the α-structures occur from the least in unfolded to the most in folded states? Populations of the minor α-conformation in model peptides provide vital information. Reliable determination of populations of the α-conformers in these peptides that exist in multiple equilibriums of different conformations remains a challenge. Combined analyses on data from AcGXPNH2 and AcGXGNH2 peptides allow us to derive the populations of PII, β and α in AcGXGNH2. Our results show that on average residue X in AcGXGNH2 adopt PII, β, and α 44.7%, 44.5% and 10.8% of time, respectively. The contents of α-conformations for different amino acids define an α-helix nucleation propensity scale. With derived PII, β and α-contents, we can construct a free energy-conformation diagram on each AcGXGNH2 in aqueous solution for the three major backbone conformations. Our results would have broad implications on early-stage events of protein folding.
Collapse
Affiliation(s)
- Yanjun Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Liu He
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Wenwen Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Jingjing Hu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Zhengshuang Shi
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| |
Collapse
|
29
|
Bastida A, Zúñiga J, Requena A, Miguel B, Candela ME, Soler MA. Conformational Changes of Trialanine in Water Induced by Vibrational Relaxation of the Amide I Mode. J Phys Chem B 2016; 120:348-57. [PMID: 26690744 DOI: 10.1021/acs.jpcb.5b09753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most of the protein-based diseases are caused by anomalies in the functionality and stability of these molecules. Experimental and theoretical studies of the conformational dynamics of proteins are becoming in this respect essential to understand the origin of these anomalies. However, a description of the conformational dynamics of proteins based on mechano-energetic principles still remains elusive because of the intrinsic high flexibility of the peptide chains, the participation of weak noncovalent interactions, and the role of the ubiquitous water solvent. In this work, the conformational dynamics of trialanine dissolved in water (D2O) is investigated through Molecular Dynamics (MD) simulations combined with instantaneous normal modes (INMs) analysis both at equilibrium and after the vibrational excitation of the C-terminal amide I mode. The conformational equilibrium between α and pPII conformers is found to be altered by the intramolecular relaxation of the amide I mode as a consequence of the different relaxation pathways of each conformer which modify the amount of vibrational energy stored in the torsional motions of the tripeptide, so the α → pPII and pPII → α conversion rates are increased differently. The selectivity of the process comes from the shifts of the vibrational frequencies with the conformational changes that modify the resonance conditions driving the intramolecular energy flows.
Collapse
Affiliation(s)
- Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia , 30100 Murcia, Spain
| | - José Zúñiga
- Departamento de Química Física, Universidad de Murcia , 30100 Murcia, Spain
| | - Alberto Requena
- Departamento de Química Física, Universidad de Murcia , 30100 Murcia, Spain
| | - Beatriz Miguel
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena , 30203 Cartagena, Spain
| | | | - Miguel Angel Soler
- Department of Medical and Biological Sciences, University of Udine , 33100 Udine, Italy
| |
Collapse
|
30
|
Drake JA, Pettitt BM. Force field-dependent solution properties of glycine oligomers. J Comput Chem 2015; 36:1275-85. [PMID: 25952623 PMCID: PMC4450816 DOI: 10.1002/jcc.23934] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/05/2015] [Accepted: 04/05/2015] [Indexed: 12/12/2022]
Abstract
Molecular simulations can be used to study disordered polypeptide systems and to generate hypotheses on the underlying structural and thermodynamic mechanisms that govern their function. As the number of disordered protein systems investigated with simulations increase, it is important to understand how particular force fields affect the structural properties of disordered polypeptides in solution. To this end, we performed a comparative structural analysis of Gly(3) and Gly(10) in aqueous solution from all atom, microsecond molecular dynamics (MD) simulations using the CHARMM 27 (C27), CHARMM 36 (C36), and Amber ff12SB force fields. For each force field, Gly(3) and Gly(10) were simulated for at least 300 ns and 1 μs, respectively. Simulating oligoglycines of two different lengths allows us to evaluate how force field effects depend on polypeptide length. Using a variety of structural metrics (e.g., end-to-end distance, radius of gyration, dihedral angle distributions), we characterize the distribution of oligoglycine conformers for each force field and show that each sample conformation space differently, yielding considerably different structural tendencies of the same oligoglycine model in solution. Notably, we find that C36 samples more extended oligoglycine structures than both C27 and ff12SB.
Collapse
Affiliation(s)
- Justin A. Drake
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0304, USA
| | - B. Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0304, USA
| |
Collapse
|
31
|
Xiao X, Kallenbach N, Zhang Y. Peptide Conformation Analysis Using an Integrated Bayesian Approach. J Chem Theory Comput 2014; 10:4152-4159. [PMID: 25221447 PMCID: PMC4159213 DOI: 10.1021/ct500433d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 01/22/2023]
Abstract
Unlike native proteins that are amenable to structural analysis at atomic resolution, unfolded proteins occupy a manifold of dynamically interconverting structures. Defining the conformations of unfolded proteins is of significant interest and importance, for folding studies and for understanding the properties of intrinsically disordered proteins. Short chain protein fragments, i.e., oligopeptides, provide an excellent test-bed in efforts to define the conformational ensemble of unfolded chains. Oligomers of alanine in particular have been extensively studied as minimalist models of the intrinsic conformational preferences of the peptide backbone. Even short alanine peptides occupy an ensemble of substates that are distinguished by small free energy differences, so that the problem of quantifying the conformational preferences of the backbone remains a fundamental challenge in protein biophysics. Here, we demonstrate an integrated computational-experimental-Bayesian approach to quantify the conformational ensembles of the model trialanine peptide in water. In this approach, peptide conformational substates are first determined objectively by clustering molecular dynamics snapshots based on both structural and dynamic information. Next, a set of spectroscopic data for each conformational substate is computed. Finally, a Bayesian statistical analysis of both experimentally measured spectroscopic data and computational results is carried out to provide a current best estimate of the substate population ensemble together with corresponding confidence intervals. This distribution of substates can be further systematically refined with additional high-quality experimental data and more accurate computational modeling. Using an experimental data set of NMR coupling constants, we have also applied this approach to characterize the conformation ensemble of trivaline in water.
Collapse
Affiliation(s)
- Xia Xiao
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Neville Kallenbach
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University , New York, New York 10003, United States ; NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China
| |
Collapse
|
32
|
Toal S, Schweitzer-Stenner R. Local order in the unfolded state: conformational biases and nearest neighbor interactions. Biomolecules 2014; 4:725-73. [PMID: 25062017 PMCID: PMC4192670 DOI: 10.3390/biom4030725] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022] Open
Abstract
The discovery of Intrinsically Disordered Proteins, which contain significant levels of disorder yet perform complex biologically functions, as well as unwanted aggregation, has motivated numerous experimental and theoretical studies aimed at describing residue-level conformational ensembles. Multiple lines of evidence gathered over the last 15 years strongly suggest that amino acids residues display unique and restricted conformational preferences in the unfolded state of peptides and proteins, contrary to one of the basic assumptions of the canonical random coil model. To fully understand residue level order/disorder, however, one has to gain a quantitative, experimentally based picture of conformational distributions and to determine the physical basis underlying residue-level conformational biases. Here, we review the experimental, computational and bioinformatic evidence for conformational preferences of amino acid residues in (mostly short) peptides that can be utilized as suitable model systems for unfolded states of peptides and proteins. In this context particular attention is paid to the alleged high polyproline II preference of alanine. We discuss how these conformational propensities may be modulated by peptide solvent interactions and so called nearest-neighbor interactions. The relevance of conformational propensities for the protein folding problem and the understanding of IDPs is briefly discussed.
Collapse
Affiliation(s)
- Siobhan Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19026, USA.
| | | |
Collapse
|
33
|
Bhattacharya S, Ghosh S, Pandey NK, Chaudhury S, Dasgupta S, Roy A. Distribution of protein Ramachandran psi (ψ) angle using non-resonance visible raman scattering measurements. J Phys Chem B 2013; 117:13993-4000. [PMID: 24134469 DOI: 10.1021/jp408009y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Knowing the distribution of Ramachandran angles helps in understanding peptide and protein backbone conformation. Empirical relations are proposed to correlate the spectral profile of the amide III3 band, obtained from ultraviolet resonance Raman measurements (UVRR), with the Ramachandran dihedral psi angle distribution in small peptide and protein molecules, in different environmental conditions (Mikhonin et al. J. Phys. Chem. B 2006, 110, 1928-1943). It has also been used for more complicated structures, like large globular proteins and protein fibrils. In our work here, we use visible Raman spectra and available empirical relations to obtain similar correlations for human serum albumin, hen egg white lysozyme, and human gamma crystallin. We also report the dihedral angle distribution in fibrils and a denatured protein in an ethanol environment using the same spectroscopic technique.
Collapse
|
34
|
Jiang F, Han W, Wu YD. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development. Phys Chem Chem Phys 2013; 15:3413-28. [PMID: 23385383 DOI: 10.1039/c2cp43633g] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The local conformational (φ, ψ, χ) preferences of amino acid residues remain an active research area, which are important for the development of protein force fields. In this perspective article, we first summarize spectroscopic studies of alanine-based short peptides in aqueous solution. While most studies indicate a preference for the P(II) conformation in the unfolded state over α and β conformations, significant variations are also observed. A statistical analysis from various coil libraries of high-resolution protein structures is then summarized, which gives a more coherent view of the local conformational features. The φ, ψ, χ distributions of the 20 amino acids have been obtained from a protein coil library, considering both backbone and side-chain conformational preferences. The intrinsic side-chain χ(1) rotamer preference and χ(1)-dependent Ramachandran plot can be generally understood by combining the interaction of the side-chain Cγ/Oγ atom with two neighboring backbone peptide groups. Current all-atom force fields such as AMBER ff99sb-ILDN, ff03 and OPLS-AA/L do not reproduce these distributions well. A method has been developed by combining the φ, ψ plot of alanine with the influence of side-chain χ(1) rotamers to derive the local conformational features of various amino acids. It has been further applied to improve the OPLS-AA force field. The modified force field (OPLS-AA/C) reproduces experimental (3)J coupling constants for various short peptides quite well. It also better reproduces the temperature-dependence of the helix-coil transition for alanine-based peptides. The new force field can fold a series of peptides and proteins with various secondary structures to their experimental structures. MD simulations of several globular proteins using the improved force field give significantly less deviation (RMSD) to experimental structures. The results indicate that the local conformational features from coil libraries are valuable for the development of balanced protein force fields.
Collapse
Affiliation(s)
- Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | | | | |
Collapse
|
35
|
Toal S, Meral D, Verbaro D, Urbanc B, Schweitzer-Stenner R. pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study. J Phys Chem B 2013; 117:3689-706. [PMID: 23448349 DOI: 10.1021/jp310466b] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several lines of evidence now well establish that unfolded peptides in general, and alanine in specific, have an intrinsic preference for the polyproline II (pPII) conformation. Investigation of local order in the unfolded state is, however, complicated by experimental limitations and the inherent dynamics of the system, which has in some cases yielded inconsistent results from different types of experiments. One method of studying these systems is the use of short model peptides, and specifically short alanine peptides, known for predominantly sampling pPII structure in aqueous solution. Recently, He et al. ( J. Am. Chem. Soc. 2012 , 134 , 1571 - 1576 ) proposed that unblocked tripeptides may not be suitable models for studying conformational propensities in unfolded peptides due to the presence of end effect, that is, electrostatic interactions between investigated amino acid residues and terminal charges. To determine whether changing the protonation states of the N- and C-termini influence the conformational manifold of the central amino acid residue in tripeptides, we have examined the pH-dependence of unblocked trialanine and the conformational preferences of alanine in the alanine dipeptide. To this end, we measured and globally analyzed amide I' band profiles and NMR J-coupling constants. We described conformational distributions as the superposition of two-dimensional Gaussian distributions assignable to specific subspaces of the Ramachandran plot. Results show that the conformational ensemble of trialanine as a whole, and the pPII content (χpPII = 0.84) in particular, remains practically unaffected by changing the protonation state. We found that compared to trialanine, the alanine dipeptide has slightly lower pPII content (χpPII = 0.74) and an ensemble more reminiscent of the unblocked Gly-Ala-Gly model peptide. In addition, a two-state thermodynamic analysis of the conformational sensitive Δε(T) and (3)J(H(N)H(α))(T) data obtained from electronic circular dichroism and H NMR spectra indicate that the free energy landscape of trialanine is similar in all protonation states. MD simulations for the investigated peptides corroborate this notion and show further that the hydration shell around unblocked trialanine is unaffected by the protonation/deprotonation of the C-terminal group. In contrast, the alanine dipeptide shows a reduced water density around the central residue as well as a less ordered hydration shell, which decreases the pPII propensity and reduces the lifetime of sampled conformations.
Collapse
Affiliation(s)
- Siobhan Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
36
|
Duitch L, Toal S, Measey TJ, Schweitzer-Stenner R. Triaspartate: A Model System for Conformationally Flexible DDD Motifs in Proteins. J Phys Chem B 2012; 116:5160-71. [DOI: 10.1021/jp2121565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Duitch
- Department of Chemistry, Drexel University, 3141 Chestnut Street,
Philadelphia, Pennsylvania 19104, United States
| | - Siobhan Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street,
Philadelphia, Pennsylvania 19104, United States
| | - Thomas J. Measey
- Department of Chemistry, University of Pennsylvania, Philadelphia,
Pennsylvania 19104, United States
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University, 3141 Chestnut Street,
Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
37
|
Schweitzer-Stenner R. Simulated IR, Isotropic and Anisotropic Raman, and Vibrational Circular Dichroism Amide I Band Profiles of Stacked β-Sheets. J Phys Chem B 2012; 116:4141-53. [DOI: 10.1021/jp2112445] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Reinhard Schweitzer-Stenner
- Department
of Chemistry, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, United
States
| |
Collapse
|
38
|
Numata J, Knapp EW. Balanced and Bias-Corrected Computation of Conformational Entropy Differences for Molecular Trajectories. J Chem Theory Comput 2012; 8:1235-45. [PMID: 26596740 DOI: 10.1021/ct200910z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jorge Numata
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Ernst-Walter Knapp
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Fabeckstrasse 36a, 14195 Berlin, Germany
| |
Collapse
|
39
|
He L, Navarro AE, Shi Z, Kallenbach NR. End Effects Influence Short Model Peptide Conformation. J Am Chem Soc 2012; 134:1571-6. [DOI: 10.1021/ja2070363] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liu He
- School of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Abel E. Navarro
- Department of Chemistry, New York University, 100 Washington Square East, New
York, New York 10003, United States
| | - Zhengshuang Shi
- School of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Neville R. Kallenbach
- Department of Chemistry, New York University, 100 Washington Square East, New
York, New York 10003, United States
| |
Collapse
|
40
|
Li W, Qin M, Tie Z, Wang W. Effects of solvents on the intrinsic propensity of peptide backbone conformations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041933. [PMID: 22181201 DOI: 10.1103/physreve.84.041933] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/16/2011] [Indexed: 05/31/2023]
Abstract
We investigated the effects of solvents on the intrinsic propensity of peptide backbone conformations based on molecular dynamics simulations. The results show that compared with pure water, aqueous urea decreases the helix propensity. In comparison, methanol decreases the polyproline II (PPII) propensity. Such a solvent dependence of the intrinsic propensity of the backbone conformation is correlated with the solvent dependence of the hydration of the backbone groups and the formation probability of the local intrapeptide hydrogen bonds. Aqueous urea which has low ability to stabilize the local intrapeptide hydrogen bonds disfavors the helical conformation. Whereas, methanol which has low ability to hydrate the backbone groups disfavors the polyproline II conformation. In addition, the solvent effects can be further modulated by the side chains of the peptides. The solvent effects of the intrinsic propensity of peptide backbone conformations observed in this work suggest that changing the intrinsic propensity of the protein backbone conformations can partly contribute to the solvent-induced protein structure and dynamics variations. These results will be useful in understanding the solvent dependence of the conformational distributions of the unfolded proteins or peptides (or intrinsically disordered proteins) in which the global tertiary interactions are less important than that in the well-folded proteins.
Collapse
Affiliation(s)
- Wenfei Li
- National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, China
| | | | | | | |
Collapse
|
41
|
Oh KI, Lee KK, Park EK, Yoo DG, Hwang GS, Cho M. Circular dichroism eigenspectra of polyproline II and β-strand conformers of trialanine in water: Singular value decomposition analysis. Chirality 2010; 22 Suppl 1:E186-201. [DOI: 10.1002/chir.20870] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Huerta-Viga A, Shaw DJ, Woutersen S. pH Dependence of the Conformation of Small Peptides Investigated with Two-Dimensional Vibrational Spectroscopy. J Phys Chem B 2010; 114:15212-20. [DOI: 10.1021/jp105133r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Adriana Huerta-Viga
- Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Daniel J. Shaw
- Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Oh KI, Kim W, Joo C, Yoo DG, Han H, Hwang GS, Cho M. Azido Gauche Effect on the Backbone Conformation of β-Azidoalanine Peptides. J Phys Chem B 2010; 114:13021-9. [DOI: 10.1021/jp107359m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, Korea University, Seoul 136-701, Korea, and Korea Basic Science Institute, Seoul 136-713, Korea
| | - Woosung Kim
- Department of Chemistry, Korea University, Seoul 136-701, Korea, and Korea Basic Science Institute, Seoul 136-713, Korea
| | - Cheonik Joo
- Department of Chemistry, Korea University, Seoul 136-701, Korea, and Korea Basic Science Institute, Seoul 136-713, Korea
| | - Dong-Geun Yoo
- Department of Chemistry, Korea University, Seoul 136-701, Korea, and Korea Basic Science Institute, Seoul 136-713, Korea
| | - Hogyu Han
- Department of Chemistry, Korea University, Seoul 136-701, Korea, and Korea Basic Science Institute, Seoul 136-713, Korea
| | - Geum-Sook Hwang
- Department of Chemistry, Korea University, Seoul 136-701, Korea, and Korea Basic Science Institute, Seoul 136-713, Korea
| | - Minhaeng Cho
- Department of Chemistry, Korea University, Seoul 136-701, Korea, and Korea Basic Science Institute, Seoul 136-713, Korea
| |
Collapse
|
44
|
Gaigeot MP. Infrared spectroscopy of the alanine dipeptide analog in liquid water with DFT-MD. Direct evidence for P(II)/beta conformations. Phys Chem Chem Phys 2010; 12:10198-209. [PMID: 20539891 DOI: 10.1039/c003485a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Following our previous work [J. Phys. Chem. B. Lett., 2009, 113, 10059], DFT-based molecular dynamics (DFTMD) simulations of 2-Ala peptide (i.e. Ac-Ala-NHMe dialanine peptide analog with methyl group caps at the extremities) immersed in liquid water at room temperature are reported. Our goal here is the theoretical calculation of the infrared spectrum of aqueous 2-Ala, in order to provide a definitive understanding of the average conformation adopted by this peptide in the liquid phase, taking into account solute and solvent at the same theoretical level of representation. We find that the experimental Amide I-II band predominantly results from a mixture of partially unfolded P(II) and unfolded beta conformational equilibrium of aqueous 2-Ala at room temperature.
Collapse
Affiliation(s)
- Marie-Pierre Gaigeot
- Université d'Evry val d'Essonne, LAMBE UMR8587 Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Blvd F. Mitterrand, Bât. Maupertuis, 91025 Evry, France.
| |
Collapse
|
45
|
Abstract
Polyglycine (polygly) is an important model system for understanding the structural preferences of unfolded polypeptides in solution. We utilized UV resonance and visible Raman spectroscopy to investigate the conformational preferences of polygly peptides of different lengths in water containing LiCl and LiClO(4). Lithium salts increase the solubility of polygly. Our study indicates that in solution the conformational ensemble of polygly, as well as central peptide bonds of gly(5) and gly(6), are dominated by the 3(1) extended helix, also known as the polyglycine II conformation (PGII). This preference of the polygly backbone for the PGII conformation in solution is likely a result of favorable interactions between carbonyl dipoles in these extended helices. We found that high concentrations of Li(+) stabilize the PGII conformation in solution, most likely by polarizing the peptide bond carbonyls that makes PGII-stabilizing carbonyl-carbonyl electrostatic interactions more favorable. This ability of Li(+) to stabilize 3(1)-helix conformations in solution gives use to the denaturing ability of lithium salts.
Collapse
Affiliation(s)
- Sergei Bykov
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sanford Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
46
|
Gaigeot MP. Theoretical spectroscopy of floppy peptides at room temperature. A DFTMD perspective: gas and aqueous phase. Phys Chem Chem Phys 2010; 12:3336-59. [PMID: 20336243 DOI: 10.1039/b924048a] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Theoretical spectroscopy is mandatory for a precise understanding and assignment of experimental spectra recorded at finite temperature. We review here room temperature DFT-based molecular dynamics simulations for the purpose of interpreting finite temperature infrared spectra of peptides of increasing size and complexity, in terms of temperature-dependent conformational dynamics and flexibility, and vibrational anharmonicities (potential energy surface anharmonicities, vibrational mode couplings and dipole anharmonicities). We take examples from our research projects in order to illustrate the main key-points and strengths of dynamical spectra modeling in that context. The calculations are presented in relation to room temperature gas phase IR-MPD experiments and room temperature liquid phase IR absorption experiments. These illustrations of floppy polypeptides have been chosen in order to convey the following ideas: temperature-dependent spectra modeling is pivotal for a precise understanding of gas phase spectra recorded at room temperature, including conformational dynamics and vibrational anharmonicities; harmonic spectroscopy (as commonly performed in the literature) can be misleading and even erroneous for a proper interpretation of spectra recorded at finite temperature; taking into account vibrational anharmonicities is pivotal for a proper interplay between theory and experiments; amide I-III bands are not necessarily the most relevant fingerprints for unraveling the local structures of peptides and more complex systems; liquid phase simulations have unraveled relationships between the zwitterionic properties of the peptide bonds and infrared signatures. The review presents a state-of-the-art account of the domain and offers perspectives and new developments for future still more challenging applications.
Collapse
Affiliation(s)
- Marie-Pierre Gaigeot
- Université d'Evry val d'Essonne, LAMBE UMR8587 Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Blvd F. Mitterrand, Bat Maupertuis, 91025 Evry, France.
| |
Collapse
|
47
|
Seabra GDM, Walker RC, Roitberg AE. Are current semiempirical methods better than force fields? A study from the thermodynamics perspective. J Phys Chem A 2010; 113:11938-48. [PMID: 19848431 DOI: 10.1021/jp903474v] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The semiempirical Hamiltonians MNDO, AM1, PM3, RM1, PDDG/MNDO, PDDG/PM3, and SCC-DFTB, when used as part of a hybrid QM/MM scheme for the simulation of biological molecules, were compared on their abilities to reproduce experimental ensemble averages at or near room temperatures for the model system alanine dipeptide in water. Free energy surfaces in the (phi, psi) dihedral angle space, (3)J(H(N),H(alpha)) NMR dipolar coupling constants, basin populations, and peptide-water radial distribution functions (RDF) were calculated from replica exchange simulations and compared to both experiment and fully classical force field calculations using the Amber ff99SB force field. In contrast with the computational chemist's intuitive idea that the more expensive a method the better its accuracy, the ff99SB force field results were more accurate than most of the semiempirical methods, with the exception of RM1. None of the methods, however, was able to accurately reproduce the experimental data. Analysis of the results indicate that the specific QM/MM interactions have little influence on the sampling of free energy surfaces, and the differences are well explained simply by the intrinsic properties of the various QM methods.
Collapse
Affiliation(s)
- Gustavo de M Seabra
- Quantum Theory Project and Department of Chemistry, University of Florida, 2234 New Physics Building #92, P.O. Box 118435, Gainesville, Florida 32611-8435, USA
| | | | | |
Collapse
|
48
|
Toroz D, van Mourik T. Structure of the gas-phase glycine tripeptide. Phys Chem Chem Phys 2010; 12:3463-73. [DOI: 10.1039/b921897a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Torii H. Nature of vibrational frequency modulations and the related one- and two-dimensional vibrational spectral features analysed for the amide I mode of tetraalanine in aqueous solution. Mol Phys 2009. [DOI: 10.1080/00268970902804542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Marinelli F, Pietrucci F, Laio A, Piana S. A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations. PLoS Comput Biol 2009; 5:e1000452. [PMID: 19662155 PMCID: PMC2711228 DOI: 10.1371/journal.pcbi.1000452] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 06/29/2009] [Indexed: 11/18/2022] Open
Abstract
Trp-cage is a designed 20-residue polypeptide that, in spite of its size, shares several features with larger globular proteins.Although the system has been intensively investigated experimentally and theoretically, its folding mechanism is not yet fully understood. Indeed, some experiments suggest a two-state behavior, while others point to the presence of intermediates. In this work we show that the results of a bias-exchange metadynamics simulation can be used for constructing a detailed thermodynamic and kinetic model of the system. The model, although constructed from a biased simulation, has a quality similar to those extracted from the analysis of long unbiased molecular dynamics trajectories. This is demonstrated by a careful benchmark of the approach on a smaller system, the solvated Ace-Ala3-Nme peptide. For theTrp-cage folding, the model predicts that the relaxation time of 3100 ns observed experimentally is due to the presence of a compact molten globule-like conformation. This state has an occupancy of only 3% at 300 K, but acts as a kinetic trap.Instead, non-compact structures relax to the folded state on the sub-microsecond timescale. The model also predicts the presence of a state at Calpha-RMSD of 4.4 A from the NMR structure in which the Trp strongly interacts with Pro12. This state can explain the abnormal temperature dependence of the Pro12-delta3 and Gly11-alpha3 chemical shifts. The structures of the two most stable misfolded intermediates are in agreement with NMR experiments on the unfolded protein. Our work shows that, using biased molecular dynamics trajectories, it is possible to construct a model describing in detail the Trp-cage folding kinetics and thermodynamics in agreement with experimental data.
Collapse
Affiliation(s)
- Fabrizio Marinelli
- International School for Advanced Studies (SISSA-ISAS) and DEMOCRITOS, Trieste, Italy
- Italian Institute of Technology (IIT), Trieste, Italy
| | - Fabio Pietrucci
- International School for Advanced Studies (SISSA-ISAS) and DEMOCRITOS, Trieste, Italy
| | - Alessandro Laio
- International School for Advanced Studies (SISSA-ISAS) and DEMOCRITOS, Trieste, Italy
| | - Stefano Piana
- Nanochemistry Research Institute, Curtin University of Technology, Perth, Western Australia, Australia
| |
Collapse
|