1
|
Fracchioni G, Vailati S, Grazioli M, Pirota V. Structural Unfolding of G-Quadruplexes: From Small Molecules to Antisense Strategies. Molecules 2024; 29:3488. [PMID: 39124893 PMCID: PMC11314335 DOI: 10.3390/molecules29153488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures that have gathered significant interest in medicinal chemistry over the past two decades due to their unique structural features and potential roles in a variety of biological processes and disorders. Traditionally, research efforts have focused on stabilizing G4s, while in recent years, the attention has progressively shifted to G4 destabilization, unveiling new therapeutic perspectives. This review provides an in-depth overview of recent advances in the development of small molecules, starting with the controversial role of TMPyP4. Moreover, we described effective metal complexes in addition to G4-disrupting small molecules as well as good G4 stabilizing ligands that can destabilize G4s in response to external stimuli. Finally, we presented antisense strategies as a promising approach for destabilizing G4s, with a particular focus on 2'-OMe antisense oligonucleotide, peptide nucleic acid, and locked nucleic acid. Overall, this review emphasizes the importance of understanding G4 dynamics as well as ongoing efforts to develop selective G4-unfolding strategies that can modulate their biological function and therapeutic potential.
Collapse
Affiliation(s)
- Giorgia Fracchioni
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| | - Sabrina Vailati
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- PhD National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Marta Grazioli
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| |
Collapse
|
2
|
Westerlund K, Oroujeni M, Gestin M, Clinton J, Hani Rosly A, Tano H, Vorobyeva A, Orlova A, Eriksson Karlström A, Tolmachev V. Shorter Peptide Nucleic Acid Probes Improve Affibody-Mediated Peptide Nucleic Acid-Based Pretargeting. ACS Pharmacol Transl Sci 2024; 7:1595-1611. [PMID: 38751640 PMCID: PMC11091976 DOI: 10.1021/acsptsci.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Affibody-mediated PNA-based pretargeting shows promise for HER2-expressing tumor radiotherapy. In our recent study, a 15-mer ZHER2:342-HP15 affibody-PNA conjugate, in combination with a shorter 9-mer [177Lu]Lu-HP16 effector probe, emerged as the most effective pretargeting strategy. It offered a superior tumor-to-kidney uptake ratio and more efficient tumor targeting compared to longer radiolabeled effector probes containing 12 or 15 complementary PNA bases. To enhance the production efficiency of our pretargeting system, we here introduce even shorter 6-, 7-, and 8-mer secondary probes, designated as HP19, HP21, and HP20, respectively. We also explore the replacement of the original 15-mer Z-HP15 primary probe with shorter 12-mer Z-HP12 and 9-mer Z-HP9 alternatives. This extended panel of shorter PNA-based probes was synthesized using automated microwave-assisted methods and biophysically screened in vitro to identify shorter probe combinations with the most effective binding properties. In a mouse xenograft model, we evaluated the biodistribution of these probes, comparing them to the Z-HP15:[177Lu]Lu-HP16 combination. Tumor-to-kidney ratios at 4 and 144 h postinjection of the secondary probe showed no significant differences among the Z-HP9:[177Lu]Lu-HP16, Z-HP9:[177Lu]Lu-HP20, and the Z-HP15:[177Lu]Lu-HP16 pairs. Importantly, tumor uptake significantly exceeded, by several hundred-fold, that of most normal tissues, with kidney uptake being the critical organ for radiation therapy. This suggests that using a shorter 9-mer primary probe, Z-HP9, in combination with 9-mer HP16 or 8-mer HP20 secondary probes effectively targets tumors while minimizing the dose-limiting kidney uptake of radionuclide. In conclusion, the Z-HP9:HP16 and Z-HP9:HP20 probe combinations offer good prospects for both cost-effective production and efficient in vivo pretargeting of HER2-expressing tumors.
Collapse
Affiliation(s)
- Kristina Westerlund
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| | - Maryam Oroujeni
- Department
of Immunology, Genetics and
Pathology, Uppsala University, Uppsala 751 23, Sweden
- Affibody
AB, Solna 171
65, Sweden
| | - Maxime Gestin
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| | - Jacob Clinton
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| | - Alia Hani Rosly
- Department
of Immunology, Genetics and
Pathology, Uppsala University, Uppsala 751 23, Sweden
| | - Hanna Tano
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| | - Anzhelika Vorobyeva
- Department
of Immunology, Genetics and
Pathology, Uppsala University, Uppsala 751 23, Sweden
| | - Anna Orlova
- Department
of Medicinal Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Amelie Eriksson Karlström
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| | - Vladimir Tolmachev
- Department
of Immunology, Genetics and
Pathology, Uppsala University, Uppsala 751 23, Sweden
| |
Collapse
|
3
|
Oyaghire SN, Quijano E, Perera JDR, Mandl HK, Saltzman WM, Bahal R, Glazer PM. DNA recognition and induced genome modification by a hydroxymethyl-γ tail-clamp peptide nucleic acid. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101635. [PMID: 37920723 PMCID: PMC10621889 DOI: 10.1016/j.xcrp.2023.101635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Peptide nucleic acids (PNAs) can target and stimulate recombination reactions in genomic DNA. We have reported that γPNA oligomers possessing the diethylene glycol γ-substituent show improved efficacy over unmodified PNAs in stimulating recombination-induced gene modification. However, this structural modification poses a challenge because of the inherent racemization risk in O-alkylation of the precursory serine side chain. To circumvent this risk and improve γPNA accessibility, we explore the utility of γPNA oligomers possessing the hydroxymethyl-γ moiety for gene-editing applications. We demonstrate that a γPNA oligomer possessing the hydroxymethyl modification, despite weaker preorganization, retains the ability to form a hybrid with the double-stranded DNA target of comparable stability and with higher affinity than that of the diethylene glycol-γPNA. When formulated into poly(lactic-co-glycolic acid) nanoparticles, the hydroxymethyl-γPNA stimulates higher frequencies (≥ 1.5-fold) of gene modification than the diethylene glycol γPNA in mouse bone marrow cells.
Collapse
Affiliation(s)
- Stanley N. Oyaghire
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- These authors contributed equally
| | - Elias Quijano
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- These authors contributed equally
| | - J. Dinithi R. Perera
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hanna K. Mandl
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Lead contact
| |
Collapse
|
4
|
Sarkar S, Colón‐Roura G, Pearse A, Armitage BA. Targeting a KRAS i-motif forming sequence by unmodified and gamma-modified peptide nucleic acid oligomers. Biopolymers 2023; 114:e23529. [PMID: 36573547 PMCID: PMC10078108 DOI: 10.1002/bip.23529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Growing interest in i-motif DNA as a transcriptional regulatory element motivates development of synthetic molecules capable of targeting these structures. In this study, we designed unmodified peptide nucleic acid (PNA) and gamma-modified PNA (γPNA) oligomers complementary to an i-motif forming sequence derived from the promoter of the KRAS oncogene. Biophysical techniques such as circular dichroism (CD) spectroscopy, CD melting, and fluorescence spectroscopy demonstrated the successful invasion of the i-motif by PNA and γPNA. Both PNA and γPNA showed very strong binding to the target sequence with high thermal stability of the resulting heteroduplexes. Interestingly fluorescence and CD experiments indicated formation of an intermolecular i-motif structure via the overhangs of target-probe heteroduplexes formed by PNA/γPNA invasion of the intramolecular i-motif. Targeting promoter i-motif forming sequences with high-affinity oligonucleotide mimics like γPNAs may represent a new approach for inhibiting KRAS transcription, thereby representing a potentially useful anti-cancer strategy.
Collapse
Affiliation(s)
- Srijani Sarkar
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Gabriela Colón‐Roura
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Alexander Pearse
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Adjusting the Structure of a Peptide Nucleic Acid (PNA) Molecular Beacon and Promoting Its DNA Detection by a Hybrid with Quencher-Modified DNA. Processes (Basel) 2022. [DOI: 10.3390/pr10040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, we performed an elaborate adjustment of the structure of peptide nucleic acid (PNA) molecular beacons as probes for detecting nucleic acids. We synthesized the PNA beacons with various numbers of Glu, Lys, and dabcyl (Dab) quenchers in them, and we investigated their fluorescence changes (F1/1/F0) with and without full-match DNA. As the numbers of Glu/Lys or Dab increased, the F1/1/F0 tended to decrease. Among the different beacons, the PNA beacon with one Glu and one Lys (P1Q1) showed the largest F1/1/F0. On the other hand, a relatively large F1/1/F0 was obtained when the number of Glu/Lys and the number of Dab were the same, and the balance between the numbers of Glu/Lys and Dab seemed to affect the F1/1/F0. We also investigated the DNA detection by the prehybrid of P1Q1, which consists of the T790M base sequence, [P1Q1(T790M)], with quencher-modified DNA (Q-DNA). We examined the DNA detection with single-base mismatch by P1Q1(T790M), and we clarified that there was difficulty in detecting the sequence with P1Q1 alone, but that the sequence was successfully detected by the prehybrid of P1Q1 with the Q-DNA.
Collapse
|
6
|
Jarošová P, Hannig P, Kolková K, Mazzini S, Táborská E, Gargallo R, Borgonovo G, Artali R, Táborský P. Alkaloid Escholidine and Its Interaction with DNA Structures. BIOLOGY 2021; 10:1225. [PMID: 34943140 PMCID: PMC8698932 DOI: 10.3390/biology10121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022]
Abstract
Berberine, the most known quaternary protoberberine alkaloid (QPA), has been reported to inhibit the SIK3 protein connected with breast cancer. Berberine also appears to reduce the bcl-2 and XIAP expression-proteins responsible for the inhibition of apoptosis. As some problems in the therapy with berberine arose, we studied the DNA binding properties of escholidine, another QPA alkaloid. CD, fluorescence, and NMR examined models of i-motif and G-quadruplex sequences present in the n-myc gene and the c-kit gene. We provide evidence that escholidine does not induce stabilization of the i-motif sequences, while the interaction with G-quadruplex structures appears to be more significant.
Collapse
Affiliation(s)
- Petra Jarošová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (P.J.); (P.H.); (K.K.)
| | - Pavel Hannig
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (P.J.); (P.H.); (K.K.)
| | - Kateřina Kolková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (P.J.); (P.H.); (K.K.)
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (G.B.)
| | - Eva Táborská
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1, E-08028 Barcelona, Spain;
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (G.B.)
| | | | - Petr Táborský
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (P.J.); (P.H.); (K.K.)
| |
Collapse
|
7
|
Zhan X, Deng L, Chen G. Mechanisms and applications of peptide nucleic acids selectively binding to double-stranded RNA. Biopolymers 2021; 113:e23476. [PMID: 34581432 DOI: 10.1002/bip.23476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
RNAs form secondary structures containing double-stranded base paired regions and single-stranded regions. Probing, detecting and modulating RNA structures and dynamics requires the development of molecular sensors that can differentiate the sequence and structure of RNAs present in viruses and cells, as well as in extracellular space. In this review, we summarize the recent progress on the development of chemically modified peptide nucleic acids (PNAs) for the selective recognition of double-stranded RNA (dsRNA) sequences over both single-stranded RNA (ssRNA) and double-stranded DNA (dsDNA) sequences. We also briefly discuss the applications of sequence-specific dsRNA-binding PNAs in sensing and stabilizing dsRNA structures and inhibiting dsRNA-protein interactions.
Collapse
Affiliation(s)
- Xuan Zhan
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Liping Deng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
8
|
Kabza AM, Kundu N, Zhong W, Sczepanski JT. Integration of chemically modified nucleotides with DNA strand displacement reactions for applications in living systems. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1743. [PMID: 34328690 DOI: 10.1002/wnan.1743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 01/21/2023]
Abstract
Watson-Crick base pairing rules provide a powerful approach for engineering DNA-based nanodevices with programmable and predictable behaviors. In particular, DNA strand displacement reactions have enabled the development of an impressive repertoire of molecular devices with complex functionalities. By relying on DNA to function, dynamic strand displacement devices represent powerful tools for the interrogation and manipulation of biological systems. Yet, implementation in living systems has been a slow process due to several persistent challenges, including nuclease degradation. To circumvent these issues, researchers are increasingly turning to chemically modified nucleotides as a means to increase device performance and reliability within harsh biological environments. In this review, we summarize recent progress toward the integration of chemically modified nucleotides with DNA strand displacement reactions, highlighting key successes in the development of robust systems and devices that operate in living cells and in vivo. We discuss the advantages and disadvantages of commonly employed modifications as they pertain to DNA strand displacement, as well as considerations that must be taken into account when applying modified oligonucleotide to living cells. Finally, we explore how chemically modified nucleotides fit into the broader goal of bringing dynamic DNA nanotechnology into the cell, and the challenges that remain. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Adam M Kabza
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Nandini Kundu
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Wenrui Zhong
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
9
|
Cadoni E, De Paepe L, Manicardi A, Madder A. Beyond small molecules: targeting G-quadruplex structures with oligonucleotides and their analogues. Nucleic Acids Res 2021; 49:6638-6659. [PMID: 33978760 PMCID: PMC8266634 DOI: 10.1093/nar/gkab334] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited. In this review, after introducing important general notions about G4s, we aim to list, explain and critically analyse in more detail the principal approaches available to target G4s by using oligonucleotides and synthetic analogues such as Locked Nucleic Acids (LNAs) and Peptide Nucleic Acids (PNAs), reporting on the most relevant examples described in literature to date.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
10
|
Luchian T, Mereuta L, Park Y, Asandei A, Schiopu I. Single-molecule, hybridization-based strategies for short nucleic acids detection and recognition with nanopores. Proteomics 2021; 22:e2100046. [PMID: 34275186 DOI: 10.1002/pmic.202100046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
DNA nanotechnology has seen large developments over the last 30 years through the combination of detection and discovery of DNAs, and solid phase synthesis to increase the chemical functionalities on nucleic acids, leading to the emergence of novel and sophisticated in features, nucleic acids-based biopolymers. Arguably, nanopores developed for fast and direct detection of a large variety of molecules, are part of a revolutionary technological evolution which led to cheaper, smaller and considerably easier to use devices enabling DNA detection and sequencing at the single-molecule level. Through their versatility, the nanopore-based tools proved useful biomedicine, nanoscale chemistry, biology and physics, as well as other disciplines spanning materials science to ecology and anthropology. This mini-review discusses the progress of nanopore- and hybridization-based DNA detection, and explores a range of state-of-the-art applications afforded through the combination of certain synthetically-derived polymers mimicking nucleic acids and nanopores, for the single-molecule biophysics on short DNA structures.
Collapse
Affiliation(s)
- Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, Republic of Korea
| | - Alina Asandei
- Interdisciplinary Research Institute, Sciences Department, "Alexandru I. Cuza" University, Iasi, Romania
| | - Irina Schiopu
- Interdisciplinary Research Institute, Sciences Department, "Alexandru I. Cuza" University, Iasi, Romania
| |
Collapse
|
11
|
Kundu N, Young BE, Sczepanski JT. Kinetics of heterochiral strand displacement from PNA-DNA heteroduplexes. Nucleic Acids Res 2021; 49:6114-6127. [PMID: 34125895 PMCID: PMC8216467 DOI: 10.1093/nar/gkab499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Dynamic DNA nanodevices represent powerful tools for the interrogation and manipulation of biological systems. Yet, implementation remains challenging due to nuclease degradation and other cellular factors. Use of l-DNA, the nuclease resistant enantiomer of native d-DNA, provides a promising solution. On this basis, we recently developed a strand displacement methodology, referred to as ‘heterochiral’ strand displacement, that enables robust l-DNA nanodevices to be sequence-specifically interfaced with endogenous d-nucleic acids. However, the underlying reaction – strand displacement from PNA–DNA heteroduplexes – remains poorly characterized, limiting design capabilities. Herein, we characterize the kinetics of strand displacement from PNA–DNA heteroduplexes and show that reaction rates can be predictably tuned based on several common design parameters, including toehold length and mismatches. Moreover, we investigate the impact of nucleic acid stereochemistry on reaction kinetics and thermodynamics, revealing important insights into the biophysical mechanisms of heterochiral strand displacement. Importantly, we show that strand displacement from PNA–DNA heteroduplexes is compatible with RNA inputs, the most common nucleic acid target for intracellular applications. Overall, this work greatly improves the understanding of heterochiral strand displacement reactions and will be useful in the rational design and optimization of l-DNA nanodevices that operate at the interface with biology.
Collapse
Affiliation(s)
- Nandini Kundu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Brian E Young
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
12
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
13
|
Sarkar S, Armitage BA. Targeting a Potential G-Quadruplex Forming Sequence Found in the West Nile Virus Genome by Complementary Gamma-Peptide Nucleic Acid Oligomers. ACS Infect Dis 2021; 7:1445-1456. [PMID: 33886274 DOI: 10.1021/acsinfecdis.0c00793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the United States, West Nile virus (WNV) infects approximately 2500 people per year, of which 100-200 cases are fatal. No antiviral drug or vaccine is currently available for WNV. In this study, we designed gamma-modified peptide nucleic acid (γPNA) oligomers to target a newly identified guanine-rich gene sequence in the WNV genome. The target is found in the NS5 protein-coding region and was previously predicted to fold into a G-quadruplex (GQ) structure. Biophysical techniques such as UV melting analysis, circular dichroism spectroscopy, and fluorescence spectroscopy demonstrated that the target RNA indeed folds into a moderately stable GQ structure at physiological temperature and potassium concentration. Successful invasion of the GQ by three complementary γPNAs was also characterized by the above-mentioned biophysical techniques. The γPNAs showed very strong binding to the target with low femtomolar affinity at physiological temperature. Targeting this potential guanine quadruplex forming sequence (PQS) and other related sequences with γPNA may represent a new approach for inhibiting both WNV replication and transcription, thereby representing a generally useful antiviral strategy.
Collapse
Affiliation(s)
- Srijani Sarkar
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| |
Collapse
|
14
|
Yang L, Toh DFK, Krishna MS, Zhong Z, Liu Y, Wang S, Gong Y, Chen G. Tertiary Base Triple Formation in the SRV-1 Frameshifting Pseudoknot Stabilizes Secondary Structure Components. Biochemistry 2020; 59:4429-4438. [PMID: 33166472 DOI: 10.1021/acs.biochem.0c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.
Collapse
Affiliation(s)
- Lixia Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhensheng Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Shaomeng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
15
|
Berlyoung AS, Armitage BA. Assembly and Characterization of RNA/DNA Hetero-G-Quadruplexes. Biochemistry 2020; 59:4072-4080. [PMID: 33048532 DOI: 10.1021/acs.biochem.0c00657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transient association of guanine-rich RNA and DNA in the form of hetero-G-quadruplexes (RDQs) has emerged as an important mechanism for regulating genome transcription and replication but relatively little is known about the structure and biophysical properties of RDQs compared with DNA and RNA homo-G-quadruplexes. Herein, we report the assembly and characterization of three RDQs based on sequence motifs found in human telomeres and mitochondrial nucleic acids. Stable RDQs were assembled using a duplex scaffold, which prevented segregation of the DNA and RNA strands into separate homo-GQs. Each of the RDQs exhibited UV melting temperatures above 50 °C in 100 mM KCl and predominantly parallel morphologies, evidently driven by the RNA component. The fluorogenic dye thioflavin T binds to each RDQ with low micromolar KD values, similar to its binding to RNA and DNA homo-GQs. These results establish a method for assembling RDQs that should be amenable to screening compounds and libraries to identify selective RDQ-binding small molecules, oligonucleotides, and proteins.
Collapse
Affiliation(s)
- April S Berlyoung
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Bruce A Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
16
|
Liang Y, Miao S, Mao J, DeSantis C, Bong D. Context-Sensitive Cleavage of Folded DNAs by Loop-Targeting bPNAs. Biochemistry 2020; 59:2410-2418. [PMID: 32519542 DOI: 10.1021/acs.biochem.0c00362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we demonstrate context-dependent molecular recognition of DNA by synthetic bPNA iron and copper complexes, using oxidative backbone cleavage as a chemical readout for binding. Oligoethylenimine bPNAs displaying iron·EDTA or copper·phenanthroline sites were found to be efficient chemical nucleases for designed and native structured DNAs with T-rich single-stranded domains. Cleavage reactivity depends strongly on structural context, as strikingly demonstrated with DNA substrates of the form (GGGTTA)n. This repeat sequence from the human telomere is known to switch between parallel and antiparallel G-quadruplex (G4) topologies with a change from potassium to sodium buffer: notably, bPNA-copper complexes efficiently cleave long repeat sequences into ∼22-nucleotide portions in sodium, but not potassium, buffer. We hypothesize preferential cleavage of the antiparallel topology (Na+) over the parallel topology (K+) due to the greater accessibility of the TTA loop to bPNA in the antiparallel (Na+) form. Similar ion-sensitive telomere shortening upon treatment with bPNA nucleases can be observed in both isolated and intracellular DNA from PC3 cells by quantitative polymerase chain reaction. Live cell treatment was accompanied by accelerated cellular senescence, as expected for significant telomere shortening. Taken together, the loop-targeting approach of bPNA chemical nucleases complements prior intercalation strategies targeting duplex and quadruplex DNA. Structurally sensitive loop targeting enables discrimination between similar target sequences, thus expanding bPNA targeting beyond simple oligo-T sequences. In addition, bPNA nucleases are cell membrane permeable and therefore may be used to target native intracellular substrates. In addition, these data indicate that bPNA scaffolds can be a platform for new synthetic binders to particular nucleic acid structural motifs.
Collapse
Affiliation(s)
- Yufeng Liang
- Department of Chemistry & Biochemistry and Center for RNA Biology, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiqin Miao
- Department of Chemistry & Biochemistry and Center for RNA Biology, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jie Mao
- Department of Chemistry & Biochemistry and Center for RNA Biology, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Chris DeSantis
- Department of Chemistry & Biochemistry and Center for RNA Biology, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Dennis Bong
- Department of Chemistry & Biochemistry and Center for RNA Biology, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Xu M, Fu P, Xing S, Zhao Y, Zhao C. A PNA-DNA 2 Triple-Helix Molecular Switch-Based Colorimetric Sensor for Sensitive and Specific Detection of microRNAs from Cancer Cells. Chembiochem 2020; 21:2667-2675. [PMID: 32304168 DOI: 10.1002/cbic.202000155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Indexed: 01/07/2023]
Abstract
Peptide nucleic acids (PNAs), the synthetic DNA mimics that can bind to oligonucleotides to form duplexes, triplexes, and quadruplexes, could be advantageous as probes for nucleic acid sequences owing to their unique physicochemical and biochemical properties. We have found that a homopurine PNA strand could bind to two homopyrimidine DNA strands to form a PNA-DNA2 triplex. Moreover, the cyanine dye DiSC2 (5) could bind with high affinity to this triplex and cause a noticeable color change. On the basis of this phenomenon, we have designed a label-free colorimetric sensing platform for miRNAs from cancer cells by using a PNA-DNA2 triple-helix molecular switch (THMS) and DiSC2 (5). This sensing platform can detect miRNA-21 specifically with a detection limit of 0.18 nM, which is comparable to that of the THMS-mediated fluorescence sensing platform. Moreover, this colorimetric platform does not involve any chemical modification or enzymatic signal amplification, which boosts its applicability and availability at the point of care in resource-limited settings. The universality of this approach can be simply achieved by altering the sequences of the probe DNA for specific targets.
Collapse
Affiliation(s)
- Mengjia Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shu Xing
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yang Zhao
- College of Science and Technology, Ningbo University, Ningbo, 315212, P. R. China
| | - Chao Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
18
|
Su Y, Edwards PJB, Stetsenko DA, Filichev VV. The Importance of Phosphates for DNA G-Quadruplex Formation: Evaluation of Zwitterionic G-Rich Oligodeoxynucleotides. Chembiochem 2020; 21:2455-2466. [PMID: 32281223 DOI: 10.1002/cbic.202000110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Indexed: 12/21/2022]
Abstract
A quaternary ammonium butylsulfonyl phosphoramidate group (N+) was designed to replace all the phosphates in a G-rich oligodeoxynucleotide d(TG4 T), resulting in a formally charge-neutral zwitterionic N+TG4 T sequence. We evaluated the effects of N+phosphate modifications on the structural, thermodynamic and kinetic properties of the parallel G-quadruplexes (G4) formed by TG4 T and compared them to the properties of the recently published phosphoryl guanidine d(TG4 T) (PG-TG4 T). Using size-exclusion chromatography, we established that, unlike PG-TG4 T, which exists as a mixture of complexes of different molecularity in solution, N+TG4 T forms an individual tetramolecular complex. In contrast to PG modifications that destabilized G4s, the presence of N+ modifications increased thermal stability relative to unmodified [d(TG4 T)]4 . The initial stage of assembly of N+TG4 T proceeded faster in the presence of Na+ than K+ ions and, similarly to PG-TG4 T, was independent of the salt concentration. However, after complex formation exceeded 75 %, N+TG4 T in solution with Na+ showed slower association than with K+ . N+TG4 T could also form G4s in solution with Li+ ions at a very low strand concentration (10 μM); something that has never been reported for the native d(TG4 T). Charge-neutral PG-G4s can invade preformed native G4s, whereas no invasion was observed between N+and native G4s, possibly due to the increased thermal stability of [N+TG4 T]4 . The N+ modification makes d(TG4 T) fully resistant to enzymatic digestion, which could be useful for intracellular application of N+-modified DNA or RNA.
Collapse
Affiliation(s)
- Yongdong Su
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand
| | - Patrick J B Edwards
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand
| | - Dmitry A Stetsenko
- Novosibirsk State University, 2 Pirogov Street, Novosibirsk, 630090, Russia.,Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Vyacheslav V Filichev
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| |
Collapse
|
19
|
Muangkaew P, Vilaivan T. Modulation of DNA and RNA by PNA. Bioorg Med Chem Lett 2020; 30:127064. [PMID: 32147357 DOI: 10.1016/j.bmcl.2020.127064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
Peptide nucleic acid (PNA), a synthetic DNA mimic that is devoid of the (deoxy)ribose-phosphate backbone yet still perfectly retains the ability to recognize natural nucleic acids in a sequence-specific fashion, can be employed as a tool to modulate gene expressions via several different mechanisms. The unique strength of PNA compared to other oligonucleotide analogs is its ability to bind to nucleic acid targets with secondary structures such as double-stranded and quadruplex DNA as well as RNA. This digest aims to introduce general readers to the advancement in the area of modulation of DNA/RNA functions by PNA, its current status and future research opportunities, with emphasis on recent progress in new targeting modes of structured DNA/RNA by PNA and PNA-mediated gene editing.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
20
|
Canady TD, Berlyoung AS, Martinez JA, Emanuelson C, Telmer CA, Bruchez MP, Armitage BA. Enhanced Hybridization Selectivity Using Structured GammaPNA Probes. Molecules 2020; 25:molecules25040970. [PMID: 32098111 PMCID: PMC7070858 DOI: 10.3390/molecules25040970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/30/2022] Open
Abstract
High affinity nucleic acid analogues such as gammaPNA (γPNA) are capable of invading stable secondary and tertiary structures in DNA and RNA targets but are susceptible to off-target binding to mismatch-containing sequences. We introduced a hairpin secondary structure into a γPNA oligomer to enhance hybridization selectivity compared with a hairpin-free analogue. The hairpin structure features a five base PNA mask that covers the proximal five bases of the γPNA probe, leaving an additional five γPNA bases available as a toehold for target hybridization. Surface plasmon resonance experiments demonstrated that the hairpin probe exhibited slower on-rates and faster off-rates (i.e., lower affinity) compared with the linear probe but improved single mismatch discrimination by up to a factor of five, due primarily to slower on-rates for mismatch vs. perfect match targets. The ability to discriminate against single mismatches was also determined in a cell-free mRNA translation assay using a luciferase reporter gene, where the hairpin probe was two-fold more selective than the linear probe. These results validate the hairpin design and present a generalizable approach to improving hybridization selectivity.
Collapse
Affiliation(s)
- Taylor D. Canady
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA; (T.D.C.); (A.S.B.); (J.A.M.); (C.E.); (M.P.B.)
| | - April S. Berlyoung
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA; (T.D.C.); (A.S.B.); (J.A.M.); (C.E.); (M.P.B.)
| | - Joe A. Martinez
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA; (T.D.C.); (A.S.B.); (J.A.M.); (C.E.); (M.P.B.)
| | - Cole Emanuelson
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA; (T.D.C.); (A.S.B.); (J.A.M.); (C.E.); (M.P.B.)
| | - Cheryl A. Telmer
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA;
| | - Marcel P. Bruchez
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA; (T.D.C.); (A.S.B.); (J.A.M.); (C.E.); (M.P.B.)
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA;
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA; (T.D.C.); (A.S.B.); (J.A.M.); (C.E.); (M.P.B.)
- Correspondence:
| |
Collapse
|
21
|
Su Y, Fujii H, Burakova EA, Chelobanov BP, Fujii M, Stetsenko DA, Filichev VV. Neutral and Negatively Charged Phosphate Modifications Altering Thermal Stability, Kinetics of Formation and Monovalent Ion Dependence of DNA G-Quadruplexes. Chem Asian J 2019; 14:1212-1220. [PMID: 30600926 DOI: 10.1002/asia.201801757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/22/2018] [Indexed: 12/18/2022]
Abstract
The effect of phosphate group modifications on formation and properties of G-quadruplexes (G4s) has not been investigated in detail. Here, we evaluated the structural, thermodynamic and kinetic properties of the parallel G-quadruplexes formed by oligodeoxynucleotides d(G4 T), d(TG4 T) and d(TG5 T), in which all phosphates were replaced with N-methanesulfonyl (mesyl) phosphoramidate or phosphoryl guanidine groups resulting in either negatively charged or neutral DNA sequences, respectively. We established that all modified sequences were able to form G-quadruplexes of parallel topology; however, the presence of modifications led to a decrease in thermal stability relative to unmodified G4s. In contrast to negatively charged G4s, assembly of neutral G4 DNA species was faster in the presence of sodium ions than potassium ions, and was independent of the salt concentration used. Formation of mixed G4s composed of both native and neutral G-rich strands has been detected using native gel electrophoresis, size-exclusion chromatography and ESI-MS. In summary, our results indicate that the phosphate modifications studied are compatible with G-quadruplex formation, which could be used for the design of biologically active compounds.
Collapse
Affiliation(s)
- Yongdong Su
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand
| | - Hirofumi Fujii
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Fukuoka, Iizuka, Japan
| | - Ekaterina A Burakova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Boris P Chelobanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Masayuki Fujii
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Fukuoka, Iizuka, Japan
| | - Dmitry A Stetsenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Vyacheslav V Filichev
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand
| |
Collapse
|
22
|
Debacker AJ, Sharma VK, Meda Krishnamurthy P, O'Reilly D, Greenhill R, Watts JK. Next-Generation Peptide Nucleic Acid Chimeras Exhibit High Affinity and Potent Gene Silencing. Biochemistry 2018; 58:582-589. [PMID: 30520300 DOI: 10.1021/acs.biochem.8b00827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present a new design of mixed-backbone antisense oligonucleotides (ASOs) containing both DNA and peptide nucleic acid (PNA). Previous generations of PNA-DNA chimeras showed low binding affinity, reducing their potential as therapeutics. The addition of a 5'-wing of locked nucleic acid as well as the combination of a modified nucleotide and a PNA monomer at the junction between PNA and DNA yielded high-affinity chimeras. The resulting ASOs demonstrated high serum stability and elicited robust RNase H-mediated cleavage of complementary RNA. These properties allowed the chimeric ASOs to demonstrate high gene silencing efficacy and potency in cells, comparable with those of LNA gapmer ASOs, via both lipid transfection and gymnosis.
Collapse
Affiliation(s)
- Alexandre J Debacker
- RNA Therapeutics Institute , UMass Medical School , Worcester , Massachusetts 01605 , United States.,Department of Chemistry , University of Southampton , Southampton SO17 1BJ , U.K
| | - Vivek K Sharma
- RNA Therapeutics Institute , UMass Medical School , Worcester , Massachusetts 01605 , United States
| | | | - Daniel O'Reilly
- Department of Chemistry , University of Southampton , Southampton SO17 1BJ , U.K
| | - Rachel Greenhill
- Department of Chemistry , University of Southampton , Southampton SO17 1BJ , U.K
| | - Jonathan K Watts
- RNA Therapeutics Institute , UMass Medical School , Worcester , Massachusetts 01605 , United States.,Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , Massachusetts 01605 , United States
| |
Collapse
|
23
|
Patlolla PR, Mallajosyula SS, Datta B. Template-Free Self-Assembly of Dimeric Dicarbocyanine Dyes. ChemistrySelect 2017. [DOI: 10.1002/slct.201702045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Prathap Reddy Patlolla
- Department of Chemistry; Indian Institute of Technology Gandhinagar; Palaj, Gandhinagar 382355 India, Phone: 079-2395-2073, Fax: 079-2397-2622
| | - Sairam S. Mallajosyula
- Department of Chemistry; Indian Institute of Technology Gandhinagar; Palaj, Gandhinagar 382355 India, Phone: 079-2395-2073, Fax: 079-2397-2622
| | - Bhaskar Datta
- Department of Chemistry; Indian Institute of Technology Gandhinagar; Palaj, Gandhinagar 382355 India, Phone: 079-2395-2073, Fax: 079-2397-2622
| |
Collapse
|
24
|
Wu JC, Meng QC, Ren HM, Wang HT, Wu J, Wang Q. Recent advances in peptide nucleic acid for cancer bionanotechnology. Acta Pharmacol Sin 2017; 38:798-805. [PMID: 28414202 DOI: 10.1038/aps.2017.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
Abstract
Peptide nucleic acid (PNA) is an oligomer, in which the phosphate backbone has been replaced by a pseudopeptide backbone that is meant to mimic DNA. Peptide nucleic acids are of the utmost importance in the biomedical field because of their ability to hybridize with neutral nucleic acids and their special chemical and biological properties. In recent years, PNAs have emerged in nanobiotechnology for cancer diagnosis and therapy due to their high affinity and sequence selectivity toward corresponding DNA and RNA. In this review, we summarize the recent progresses that have been made in cancer detection and therapy with PNA biotechnology. In addition, we emphasize nanoparticle PNA-based strategies for the efficient delivery of drugs in anticancer therapies.
Collapse
|
25
|
Oyaghire SN, Cherubim CJ, Telmer CA, Martinez JA, Bruchez MP, Armitage BA. RNA G-Quadruplex Invasion and Translation Inhibition by Antisense γ-Peptide Nucleic Acid Oligomers. Biochemistry 2016; 55:1977-88. [PMID: 26959335 DOI: 10.1021/acs.biochem.6b00055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the abilities of three complementary γ-peptide nucleic acid (γPNA) oligomers to invade an RNA G-quadruplex and potently inhibit translation of a luciferase reporter transcript containing the quadruplex-forming sequence (QFS) within its 5'-untranslated region. All three γPNA oligomers bind with low nanomolar affinities to an RNA oligonucleotide containing the QFS. However, while all probes inhibit translation with low to midnanomolar IC50 values, the γPNA designed to hybridize to the first two G-tracts of the QFS and adjacent 5'-overhanging nucleotides was 5-6 times more potent than probes directed to either the 3'-end or internal regions of the target at 37 °C. This position-dependent effect was eliminated after the probes and target were preincubated at an elevated temperature prior to translation, demonstrating that kinetic effects exert significant control over quadruplex invasion and translation inhibition. We also found that antisense γPNAs exhibited similarly potent effects against luciferase reporter transcripts bearing QFS motifs having G2, G3, or G4 tracts. Finally, our results indicate that γPNA oligomers exhibit selectivity and/or potency higher than those of other antisense molecules such as standard PNA and 2'-OMe RNA previously reported to target G-quadruplexes in RNA.
Collapse
Affiliation(s)
- Stanley N Oyaghire
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Collin J Cherubim
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Cheryl A Telmer
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Joe A Martinez
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Marcel P Bruchez
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Bruce A Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| |
Collapse
|
26
|
Kormuth KA, Woolford JL, Armitage BA. Homologous PNA Hybridization to Noncanonical DNA G-Quadruplexes. Biochemistry 2016; 55:1749-57. [PMID: 26950608 DOI: 10.1021/acs.biochem.6b00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potential guanine (G) quadruplex-forming sequences (QFSs) found throughout the genomes and transcriptomes of organisms have emerged as biologically relevant structures. These G-quadruplexes represent novel opportunities for gene regulation at the DNA and RNA levels. Recently, the definition of functional QFSs has been expanding to include a variety of unconventional motifs, including relatively long loop sequences (i.e., >7 nucleotides) separating adjacent G-tracts. We have identified a QFS within the 25S rDNA gene from Saccharomyces cerevisae that features a long loop separating the two 3'-most G-tracts. An oligonucleotide based on this sequence, QFS3, folds into a stable G-quadruplex in vitro. We have studied the interaction between QFS3 and several loop mutants with a small, homologous (G-rich) peptide nucleic acid (PNA) oligomer that is designed to form a DNA/PNA heteroquadruplex. The PNA successfully invades the DNA quadruplex target to form a stable heteroquadruplex, but with surprisingly high PNA:DNA ratios based on surface plasmon resonance and mass spectrometric results. A model for high stoichiometry PNA-DNA heteroquadruplexes is proposed, and the implications for quadruplex targeting by G-rich PNA are discussed.
Collapse
Affiliation(s)
- Karen A Kormuth
- Department of Chemistry, ‡Department of Biological Sciences, and §Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - John L Woolford
- Department of Chemistry, ‡Department of Biological Sciences, and §Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Bruce A Armitage
- Department of Chemistry, ‡Department of Biological Sciences, and §Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| |
Collapse
|
27
|
Abstract
Advances and applications of synthetic genetic polymers (xeno-nucleic acids) are reviewed in this article. The types of synthetic genetic polymers are summarized. The basic properties of them are elaborated and their technical applications are presented. Challenges and prospects of synthetic genetic polymers are discussed.
Collapse
Affiliation(s)
- Qian Ma
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Danence Lee
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Yong Quan Tan
- Department of Biochemistry
- National University of Singapore
- Singapore 117597
| | - Garrett Wong
- Department of Biochemistry
- National University of Singapore
- Singapore 117597
| | - Zhiqiang Gao
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| |
Collapse
|
28
|
Gupta P, Rastede EE, Appella DH. Multivalent LKγ-PNA oligomers bind to a human telomere DNA G-rich sequence to form quadruplexes. Bioorg Med Chem Lett 2015; 25:4757-4760. [PMID: 26259805 PMCID: PMC5603266 DOI: 10.1016/j.bmcl.2015.07.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/15/2022]
Abstract
We report G-quadruplex formation between peptide nucleic acids (PNAs) composed of (L)Kγ-PNA-G monomers and a known portion of human telomeric DNA that adopts three G3 tracts via intramolecular hydrogen bonding. The resulting complex is a bimolecular PNA-DNA heteroquadruplex. In this Letter, we show that introduction of a γ-modification and addition of a peptide ligand does not disrupt the heteroquadruplex. Although the unmodified PNA1 forms a quadruplex with itself, the γ-substituted PNAs (PNA2-PNA6) do not form G-quadruplexes on their own, at even high concentrations. The selectivity of these PNAs could influence the design of new quadruplex-targeting molecules or allow the quadruplex structure to be used as a scaffold for multivalent display of protein binding ligands.
Collapse
Affiliation(s)
- Pankaj Gupta
- Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD 20892, USA
| | | | - Daniel H Appella
- Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Goux E, Lespinasse Q, Guieu V, Perrier S, Ravelet C, Fiore E, Peyrin E. Fluorescence anisotropy-based structure-switching aptamer assay using a peptide nucleic acid (PNA) probe. Methods 2015; 97:69-74. [PMID: 26455538 DOI: 10.1016/j.ymeth.2015.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/04/2015] [Accepted: 09/18/2015] [Indexed: 01/04/2023] Open
Abstract
This study describes for the first time the feasibility of using peptide nucleic acids (PNAs) as an alternative to the DNA probes in structure-switching aptamer fluorescence polarisation assays. The effects of experimental parameters such as the length of the PNA strand, the nature of dye and the buffer conditions on the assay performances are first explored using two different methodologies based on the competition between the PNA/aptamer hydribridisation and the target/aptamer complexation. D-ATP can be detected from 1 to 25 μM in a linear range and a detection limit (LOD) of 3 μM can be reached. For this target, this lowers by a factor >5 the LOD reported with conventional DNA-based fluorescent structure switching aptamer-based assays and by a factor 3 the LOD observed with non-competitive fluorescent sensing platform indicating the usefulness of the PNA-based approach.
Collapse
Affiliation(s)
- Emma Goux
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Quentin Lespinasse
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Valérie Guieu
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France.
| | - Sandrine Perrier
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Corinne Ravelet
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Emmanuelle Fiore
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France
| | - Eric Peyrin
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, Campus universitaire, Saint-Martin d'Hères, France.
| |
Collapse
|
30
|
König SLB, Evans AC, Huppert JL. Seven essential questions on G-quadruplexes. Biomol Concepts 2015; 1:197-213. [PMID: 25961997 DOI: 10.1515/bmc.2010.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The helical duplex architecture of DNA was discovered by Francis Crick and James Watson in 1951 and is well known and understood. However, nucleic acids can also adopt alternative structural conformations that are less familiar, although no less biologically relevant, such as the G-quadruplex. G-quadruplexes continue to be the subject of a rapidly expanding area of research, owing to their significant potential as therapeutic targets and their unique biophysical properties. This review begins by focusing on G-quadruplex structure, elucidating the intermolecular and intramolecular interactions underlying its formation and highlighting several substructural variants. A variety of methods used to characterize these structures are also outlined. The current state of G-quadruplex research is then addressed by proffering seven pertinent questions for discussion. This review concludes with an overview of possible directions for future research trajectories in this exciting and relevant field.
Collapse
|
31
|
DNA template-assisted inhibition of tyrosinase activity. Int J Biol Macromol 2015; 79:278-83. [PMID: 25934109 DOI: 10.1016/j.ijbiomac.2015.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/21/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022]
Abstract
Enzyme-mediated polymerization reactions have been widely studied in the context of DNA template-assisted reactions. We have recently highlighted the ability of DNA templates to modulate enzyme-catalyzed single-step transformations. In this work, we focus on the intramolecular transformation of L-dopa catalyzed by enzyme tyrosinase and report a novel role of DNA templates in inhibition of the enzyme. The kinetics of mushroom tyrosinase monitored by UV-visible spectroscopy reveals significant decrease in the enzyme's efficiency in the presence of short double-stranded DNA molecules. KM of tyrosinase is found to increase by nearly 1.8-fold, implying a lower affinity of the enzyme for L-dopa, whereas Vmax is only marginally affected. The mode of inhibition is assessed to be a mixed mode with kinetic constants of inhibition in the micromolar range. Further, in the presence of cinnamic acid and DNA duplexes, the KM of tyrosinase increases nearly 3.5-fold, whereas Ki and Ki' are lowered by an order of magnitude. These results are a corollary of the known influence of substrate-template interactions and greater local substrate concentrations on enzyme activity and expand the paradigm with respect to use of DNA templates in enzyme-catalyzed reactions.
Collapse
|
32
|
Nanoplasmonic biosensor: Detection and amplification of dual bio-signatures of circulating tumor DNA. Biosens Bioelectron 2015; 67:443-9. [DOI: 10.1016/j.bios.2014.09.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023]
|
33
|
Komiyama M. Chemical modifications of artificial restriction DNA cutter (ARCUT) to promote its in vivo and in vitro applications. ARTIFICIAL DNA, PNA & XNA 2014; 5:e1112457. [PMID: 26744220 PMCID: PMC5329899 DOI: 10.1080/1949095x.2015.1112457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 05/10/2023]
Abstract
Recently, completely chemistry-based tools for site-selective scission of DNA (ARCUT) have been prepared by combining 2 strands of pseudo-complementary PNA (pcPNA: site-selective activator) and a Ce(IV)-EDTA complex (molecular scissors). Its site-specificity is sufficient to cut the whole human genome at one predetermined site. In this first-generation ARCUT, however, there still remain several problems to be solved for wider applications. This review presents recent approaches to solve these problems. They are divided into (i) covalent modification of pcPNA with other functional groups and (ii) new strategies using conventional PNA, in place of pcPNA, as site-selective activator. Among various chemical modifications, conjugation with positively-charged nuclear localization signal peptide is especially effective. Furthermore, unimolecular activators, a single strand of which successfully activates the target site in DNA for site-selective scission, have been also developed. As the result of these modifications, the site-selective scission by Ce(IV)-EDTA was achieved promptly even under high salt conditions which are otherwise unfavourable for double-duplex invasion. Furthermore, it has been shown that "molecular crowding effect," which characterizes the inside of living cells, enormously promotes the invasion, and thus the invasion seems to proceed effectively and spontaneously in the cells. Strong potential of pcPNA for further applications in vivo and in vitro has been confirmed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance; University of Tsukuba; Tsukuba, Ibaraki, Japan
| |
Collapse
|
34
|
Rouleau SG, Beaudoin JD, Bisaillon M, Perreault JP. Small antisense oligonucleotides against G-quadruplexes: specific mRNA translational switches. Nucleic Acids Res 2014; 43:595-606. [PMID: 25510493 PMCID: PMC4288198 DOI: 10.1093/nar/gku1311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
G-quadruplexes (G4) are intricate RNA structures found throughout the transcriptome. Because they are associated with a variety of biological cellular mechanisms, these fascinating structural motifs are seen as potential therapeutic targets against many diseases. While screening of chemical compounds specific to G4 motifs has yielded interesting results, no single compound successfully discriminates between G4 motifs based on nucleotide sequences alone. This level of specificity is best attained using antisense oligonucleotides (ASO). Indeed, oligonucleotide-based strategies are already used to modulate DNA G4 folding in vitro. Here, we report that, in human cells, the use of short ASO to promote and inhibit RNA G4 folding affects the translation of specific mRNAs, including one from the 5'UTR of the H2AFY gene, a histone variant associated with cellular differentiation and cancer. These results suggest that the relatively high specificity of ASO-based strategies holds significant potential for applications aimed at modulating G4-motif folding.
Collapse
Affiliation(s)
- Samuel G Rouleau
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Denis Beaudoin
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Québec, J1E 4K8, Canada
| | - Martin Bisaillon
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Québec, J1E 4K8, Canada
| |
Collapse
|
35
|
Mohammed HS, Delos Santos JO, Armitage BA. Noncovalent binding and fluorogenic response of cyanine dyes to DNA homoquadruplex and PNA-DNA heteroquadruplex structures. ARTIFICIAL DNA, PNA & XNA 2014; 2:43-49. [PMID: 21912726 DOI: 10.4161/adna.2.2.16339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/10/2011] [Indexed: 12/18/2022]
Abstract
Two symmetrical cyanine dyes based on benzothiazole heterocycles and a trimethine bridge were found to bind to a parallel-stranded DNA guanine quadruplex based on the MYC oncogene promoter sequence with high nanomolar affinity and 1:1 stoichiometry. The dyes exhibited substantial fluorescence enhancements upon binding. In the presence of homologous guanine-rich peptide nucleic acid oligomers, PNA-DNA heteroquadruplexes were formed. The dyes retained their ability to bind to the heteroquadruplexes at low micromolar concentrations and with varying fluorescence enhancements, although indeterminate stoichiometries preclude quantitative comparison of the affinities with the DNA homoquadruplex precursor. The difference in fluorescence enhancement between DNA homoquadruplex and PNA-DNA heteroquadruplex allows the dyes to be used as fluorogenic indicators of hybridization in a facile method for determining PNA-DNA stoichiometry.
Collapse
Affiliation(s)
- Halimatu S Mohammed
- Department of Chemistry and Center for Nucleic Acids Science and Technology; Carnegie Mellon University; Pittsburgh, PA USA
| | | | | |
Collapse
|
36
|
Formation and characterization of PNA-containing heteroquadruplexes. Methods Mol Biol 2014; 1050:73-82. [PMID: 24297351 DOI: 10.1007/978-1-62703-553-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The guanine quadruplex is a secondary structure formed by DNA and RNA that has been implicated in regulation of gene expression and maintenance of genome stability. Guanine-rich PNA oligomers can invade DNA or RNA quadruplex targets to form heteroquadruplex structures. Affinities in the low nanomolar range are routinely observed, making PNAs among the tightest binding of all quadruplex-targeted agents. Although inherently more promiscuous than heteroduplex formation based on Watson-Crick pairing, selectivity of heteroquadruplex formation can be improved through rational design of the sequence and backbone structure of the PNA. This chapter presents design rules and methods for characterizing PNA-DNA/RNA heteroquadruplexes.
Collapse
|
37
|
Park W, Kim MJ, Choe Y, Kim SK, Woo K. Highly photoluminescent superparamagnetic silica composites for on-site biosensors. J Mater Chem B 2014; 2:1938-1944. [DOI: 10.1039/c3tb21331e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Kameshima W, Ishizuka T, Minoshima M, Yamamoto M, Sugiyama H, Xu Y, Komiyama M. Conjugation of peptide nucleic acid with a pyrrole/imidazole polyamide to specifically recognize and cleave DNA. Angew Chem Int Ed Engl 2013; 52:13681-4. [PMID: 24155125 DOI: 10.1002/anie.201305489] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/03/2013] [Indexed: 11/06/2022]
Abstract
Cut loose: A pseudocomplementary peptide nucleic acid was tethered to a pyrrole/imidazole hairpin polyamide, and was used to selectively target a specific DNA sequence. Binding even occurs under high salt conditions. Furthermore, the conjugate facilitated sequence-specific scission of long dsDNA. This simple approach promises to resolve the technical difficulties in targeting DNA sequences with PNA.
Collapse
Affiliation(s)
- Wataru Kameshima
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)
| | | | | | | | | | | | | |
Collapse
|
39
|
Kameshima W, Ishizuka T, Minoshima M, Yamamoto M, Sugiyama H, Xu Y, Komiyama M. Conjugation of Peptide Nucleic Acid with a Pyrrole/Imidazole Polyamide to Specifically Recognize and Cleave DNA. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Amato J, Stellato MI, Pizzo E, Petraccone L, Oliviero G, Borbone N, Piccialli G, Orecchia A, Bellei B, Castiglia D, Giancola C. PNA as a potential modulator of COL7A1 gene expression in dominant dystrophic epidermolysis bullosa: a physico-chemical study. MOLECULAR BIOSYSTEMS 2013; 9:3166-74. [PMID: 24121392 DOI: 10.1039/c3mb70283a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dominant diseases are single gene disorders occurring in the heterozygous state. The mutated allele exerts a dominant effect because it produces an abnormal polypeptide that interferes with the function of the normal allele product. Peptide Nucleic Acids (PNAs) offer a route for a potential therapy for dominant diseases by selectively silencing the allele carrying the dominant mutation. Here, we have synthesized and studied the properties of a 15-mer PNA fully complementary to the site of the c.5272-38T>A sequence variation, which identifies a recurrent mutant COL7A1 allele causing dominant dystrophic epidermolysis bullosa (DDEB), a mendelian disease characterized by skin blistering. The PNA was conjugated with four lysine residues at the C-terminus and a fluorescent probe at the N-terminus. Physico-chemical results proved the formation of a stable, selective PNA/mutant-DNA heteroduplex in vitro. Intriguingly, when transfected into normal human fibroblasts, the PNA correctly localized in the cell nucleus. Our results open new therapeutic possibilities for patients with DDEB.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gupta A, Lee LL, Roy S, Tanious FA, Wilson WD, Ly DH, Armitage BA. Strand invasion of DNA quadruplexes by PNA: comparison of homologous and complementary hybridization. Chembiochem 2013; 14:1476-84. [PMID: 23868291 PMCID: PMC3856695 DOI: 10.1002/cbic.201300263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 12/18/2022]
Abstract
Molecular recognition of DNA quadruplex structures is envisioned to be a strategy for regulating gene expression at the transcriptional level and for in situ analysis of telomere structure and function. The recognition of DNA quadruplexes by peptide nucleic acid (PNA) oligomers is presented here, with a focus on comparing complementary, heteroduplex-forming and homologous, heteroquadruplex-forming PNAs. Surface plasmon resonance and optical spectroscopy experiments demonstrated that the efficacy of a recognition mode depended strongly on the target. Homologous PNA readily invades a quadruplex derived from the promoter regulatory region found upstream of the MYC proto-oncogene to form a heteroquadruplex at high potassium concentration mimicking the intracellular environment, whereas complementary PNA exhibits virtually no hybridization. In contrast, complementary PNA is superior to the homologous in hybridizing to a quadruplex modeled on the human telomere sequence. The results are discussed in terms of the different structural morphologies of the quadruplex targets and the implications for in vivo recognition of quadruplexes by PNAs.
Collapse
Affiliation(s)
- Anisha Gupta
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Ling-Ling Lee
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Subhadeep Roy
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Farial A. Tanious
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - Danith H. Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
| |
Collapse
|
42
|
Abstract
The oxazole homodimer YOYO-1 has served as a valuable tool for the detection and quantification of nucleic acids. While the base specificity and selectivity of binding of YOYO-1 has been researched to some extent, the effect of unorthodox nucleic acid conformations on dye binding has received relatively less attention. In this work, we attempt to correlate the quadruplex-forming ability of G-rich sequences with binding of YOYO-1. Oligonucleotides differing in the number of tandem G repeats, total length, and length of loop sequence were evaluated for their ability to form quadruplexes in presence of sodium (Na(+)) or potassium (K(+)) ions. The fluorescence behavior of YOYO-1 upon binding such G-rich sequences was also ascertained. A distinct correlation was observed between the strength and propensity of quadruplex formation, and the affinity of YOYO-1 to bind such sequences. Specifically, as exemplified by the oligonucleotides 5'-G4T2G4-3' and 5'-G3TG3TG3-3', sequences possessing longer G-rich regions and shorter loop sequences formed stronger quadruplexes in presence of K(+) which translated to weaker binding of YOYO-1. The dependence of binding of YOYO-1 on sequence and structural features of G-rich DNA has not been explored previously and such studies are expected to aid in more effective interpretation of applications involving the fluorophore.
Collapse
Affiliation(s)
- Shohini Ghosh Datta
- a Department of Chemistry , Indian Institute of Technology Gandhinagar , VGEC Complex Chandkheda, Ahmedabad , 382424 , India
| | | | | | | |
Collapse
|
43
|
Goldman JM, Zhang LA, Manna A, Armitage BA, Ly DH, Schneider JW. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination. Biomacromolecules 2013; 14:2253-61. [PMID: 23777445 DOI: 10.1021/bm400388a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hybridization analysis of short DNA and RNA targets presents many challenges for detection. The commonly employed sandwich hybridization approach cannot be implemented for these short targets due to insufficient probe-target binding strengths for unmodified DNA probes. Here, we present a method capable of rapid and stable sandwich hybridization detection for 22 nucleotide DNA and RNA targets. Stable hybridization is achieved using an n-alkylated, polyethylene glycol γ-carbon modified peptide nucleic acid (γPNA) amphiphile. The γPNA's exceptionally high affinity enables stable hybridization of a second DNA-based probe to the remaining bases of the short target. Upon hybridization of both probes, an electrophoretic mobility shift is measured via interaction of the n-alkane modification on the γPNA with capillary electrophoresis running buffer containing nonionic surfactant micelles. We find that sandwich hybridization of both probes is stable under multiple binding configurations and demonstrate single base mismatch discrimination. The binding strength of both probes is also stabilized via coaxial stacking on adjacent hybridization to targets. We conclude with a discussion on the implementation of the proposed sandwich hybridization assay as a high-throughput microRNA detection method.
Collapse
Affiliation(s)
- Johnathan M Goldman
- Department of Chemical Engineering and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890, United States
| | | | | | | | | | | |
Collapse
|
44
|
Wang Q, Chen L, Long Y, Tian H, Wu J. Molecular beacons of xeno-nucleic acid for detecting nucleic acid. Theranostics 2013; 3:395-408. [PMID: 23781286 PMCID: PMC3677410 DOI: 10.7150/thno.5935] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/10/2013] [Indexed: 12/24/2022] Open
Abstract
Molecular beacons (MBs) of DNA and RNA have aroused increasing interest because they allow a continuous readout, excellent spatial and temporal resolution to observe in real time. This kind of dual-labeled oligonucleotide probes can differentiate between bound and unbound DNA/RNA in homogenous hybridization with a high signal-to-background ratio in living cells. This review briefly summarizes the different unnatural sugar backbones of oligonucleotides combined with fluorophores that have been employed to sense DNA/RNA. With different probes, we epitomize the fundamental understanding of driving forces and these recognition processes. Moreover, we will introduce a few novel and attractive emerging applications and discuss their advantages and disadvantages. We also highlight several perspective probes in the application of cancer therapeutics.
Collapse
|
45
|
Panyutin IG, Onyshchenko MI, Englund EA, Appella DH, Neumann RD. Targeting DNA G-quadruplex structures with peptide nucleic acids. Curr Pharm Des 2012; 18:1984-91. [PMID: 22376112 DOI: 10.2174/138161212799958440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/28/2011] [Indexed: 11/22/2022]
Abstract
Regulation of genetic functions based on targeting DNA or RNA sequences with complementary oligonucleotides is especially attractive in the post-genome era. Oligonucleotides can be rationally designed to bind their targets based on simple nucleic acid base pairing rules. However, the use of natural DNA and RNA oligonucleotides as targeting probes can cause numerous off-target effects. In addition, natural nucleic acids are prone to degradation in vivo by various nucleases. To address these problems, nucleic acid mimics such as peptide nucleic acids (PNA) have been developed. They are more stable, show less off-target effects, and, in general, have better binding affinity to their targets. However, their high affinity to DNA can reduce their sequence-specificity. The formation of alternative DNA secondary structures, such as the G-quadruplex, provides an extra level of specificity as targets for PNA oligomers. PNA probes can target the loops of G-quadruplex, invade the core by forming PNA-DNA guanine-tetrads, or bind to the open bases on the complementary cytosine-rich strand. Not only could the development of such G-quadruplex-specific probes allow regulation of gene expression, but it will also provide a means to clarify the biological roles G-quadruplex structures may possess.
Collapse
|
46
|
Ishizuka T, Yang J, Komiyama M, Xu Y. G-rich sequence-specific recognition and scission of human genome by PNA/DNA hybrid G-quadruplex formation. Angew Chem Int Ed Engl 2012; 51:7198-202. [PMID: 22700182 DOI: 10.1002/anie.201201176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/12/2012] [Indexed: 12/17/2022]
Abstract
Hole in one: A single peptide nucleic acid (PNA) effectively targets the G-rich region in double-stranded DNA through formation of a PNA/DNA hybrid G-quadruplex. Only one target site in the whole human genome was selectively cleaved by the hybrid G-quadruplex. Such site-selective scission of DNA is central to gene manipulation for molecular biology, biotechnology, and therapy.
Collapse
Affiliation(s)
- Takumi Ishizuka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | | | | | |
Collapse
|
47
|
Ishizuka T, Yang J, Komiyama M, Xu Y. G-Rich Sequence-Specific Recognition and Scission of Human Genome by PNA/DNA Hybrid G-Quadruplex Formation. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Bezer S, Rapireddy S, Skorik YA, Ly DH, Achim C. Coordination-driven inversion of handedness in ligand-modified PNA. Inorg Chem 2011; 50:11929-37. [PMID: 22059624 DOI: 10.1021/ic200855p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide nucleic acid (PNA) is a synthetic analogue of DNA, which has the same nucleobases as DNA but typically has a backbone based on aminoethyl glycine (Aeg). PNA forms duplexes by Watson Crick hybridization. The Aeg-based PNA duplexes adopt a chiral helical structure but do not have a preferred handedness because they do not contain a chiral center. An L-lysine situated at the C-end of one or both strands of a PNA duplex causes the duplex to preferably adopt a left-handed structure. We have introduced into the PNA duplexes both a C-terminal L-lysine and one or two PNA monomers that have a γ-(S)-methyl-aminoethyl glycine backbone, which is known to induce a preference for a right-handed structure. Indeed, we found that in these duplexes the γ-methyl monomer exerts the dominant chiral induction effect causing the duplexes to adopt a right-handed structure. The chiral PNA monomer had a 2,2':6',2''-terpyridine (Tpy) ligand instead of a nucleobase and PNA duplexes that contained one or two Tpys formed [Cu(Tpy)(2)](2+) complexes in the presence of Cu(2+). The CD spectroscopy studies showed that these metal-coordinated duplexes were right-handed due to the chiral induction effect exerted by the S-Tpy PNA monomer(s) except for the cases when the [Cu(Tpy)(2)](2+) complex was formed with Tpy ligands from two different PNA duplexes. In the latter case, the metal complex bridged the two PNA duplexes and the duplexes were left-handed. The results of this study show that the preferred handedness of a ligand-modified PNA can be switched as a consequence of metal coordination to the ligand. This finding could be used as a tool in the design of functional nucleic-acid based nanostructures.
Collapse
Affiliation(s)
- Silvia Bezer
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, USA
| | | | | | | | | |
Collapse
|
49
|
Roy S, Zanotti KJ, Murphy CT, Tanious FA, Wilson WD, Ly DH, Armitage BA. Kinetic discrimination in recognition of DNA quadruplex targets by guanine-rich heteroquadruplex-forming PNA probes. Chem Commun (Camb) 2011; 47:8524-6. [PMID: 21717030 PMCID: PMC3163151 DOI: 10.1039/c1cc12805a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Guanine-rich peptide nucleic acid probes hybridize to DNA G quadruplex targets with high affinity, forming PNA-DNA heteroquadruplexes. We report a surprising degree of kinetic discrimination for PNA heteroquadruplex formation with a series of DNA targets. The fastest hybridization is observed for targets folded into parallel morphologies.
Collapse
Affiliation(s)
- Subhadeep Roy
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA USA 15213
| | - Kimberly J. Zanotti
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA USA 15213
| | - Connor T. Murphy
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA USA 15213
| | - Farial A. Tanious
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - Danith H. Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA USA 15213
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA USA 15213
| |
Collapse
|
50
|
Ji X, Sun H, Zhou H, Xiang J, Tang Y, Zhao C. Research Progress of RNA Quadruplex. Nucleic Acid Ther 2011; 21:185-200. [DOI: 10.1089/nat.2010.0272] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaohui Ji
- Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs and Biological Technology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Huaxi Zhou
- Department of Systems Science, School of Management, Beijing Normal University, Beijing, China
| | - Junfeng Xiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Changqi Zhao
- Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs and Biological Technology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|