1
|
Castell C, Rodríguez-Lumbreras LA, Hervás M, Fernández-Recio J, Navarro JA. New Insights into the Evolution of the Electron Transfer from Cytochrome f to Photosystem I in the Green and Red Branches of Photosynthetic Eukaryotes. PLANT & CELL PHYSIOLOGY 2021; 62:1082-1093. [PMID: 33772595 PMCID: PMC8557733 DOI: 10.1093/pcp/pcab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/15/2021] [Indexed: 05/11/2023]
Abstract
In cyanobacteria and most green algae of the eukaryotic green lineage, the copper-protein plastocyanin (Pc) alternatively replaces the heme-protein cytochrome c6 (Cc6) as the soluble electron carrier from cytochrome f (Cf) to photosystem I (PSI). The functional and structural equivalence of 'green' Pc and Cc6 has been well established, representing an example of convergent evolution of two unrelated proteins. However, plants only produce Pc, despite having evolved from green algae. On the other hand, Cc6 is the only soluble donor available in most species of the red lineage of photosynthetic organisms, which includes, among others, red algae and diatoms. Interestingly, Pc genes have been identified in oceanic diatoms, probably acquired by horizontal gene transfer from green algae. However, the mechanisms that regulate the expression of a functional Pc in diatoms are still unclear. In the green eukaryotic lineage, the transfer of electrons from Cf to PSI has been characterized in depth. The conclusion is that in the green lineage, this process involves strong electrostatic interactions between partners, which ensure a high affinity and an efficient electron transfer (ET) at the cost of limiting the turnover of the process. In the red lineage, recent kinetic and structural modeling data suggest a different strategy, based on weaker electrostatic interactions between partners, with lower affinity and less efficient ET, but favoring instead the protein exchange and the turnover of the process. Finally, in diatoms the interaction of the acquired green-type Pc with both Cf and PSI may not yet be optimized.
Collapse
Affiliation(s)
- Carmen Castell
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, cicCartuja, Sevilla, Spain
| | - Luis A Rodríguez-Lumbreras
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC—Universidad de La Rioja—Gobierno de La Rioja, Logroño, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, cicCartuja, Sevilla, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC—Universidad de La Rioja—Gobierno de La Rioja, Logroño, Spain
| | | |
Collapse
|
2
|
Wang X, Roger M, Clément R, Lecomte S, Biaso F, Abriata LA, Mansuelle P, Mazurenko I, Giudici-Orticoni MT, Lojou E, Ilbert M. Electron transfer in an acidophilic bacterium: interaction between a diheme cytochrome and a cupredoxin. Chem Sci 2018; 9:4879-4891. [PMID: 29910941 PMCID: PMC5982212 DOI: 10.1039/c8sc01615a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
Acidithiobacillus ferrooxidans, a chemolithoautotrophic Gram-negative bacterium, has a remarkable ability to obtain energy from ferrous iron oxidation at pH 2. Several metalloproteins have been described as being involved in this respiratory chain coupling iron oxidation with oxygen reduction. However, their properties and physiological functions remain largely unknown, preventing a clear understanding of the global mechanism. In this work, we focus on two metalloproteins of this respiratory pathway, a diheme cytochrome c4 (Cyt c4) and a green copper protein (AcoP) of unknown function. We first demonstrate the formation of a complex between these two purified proteins, which allows homogeneous intermolecular electron-transfer in solution. We then mimic the physiological interaction between the two partners by replacing one at a time with electrodes displaying different chemical functionalities. From the electrochemical behavior of individual proteins, we show that, while electron transfer on AcoP requires weak electrostatic interaction, electron transfer on Cyt c4 tolerates different charge and hydrophobicity conditions, suggesting a pivotal role of this protein in the metabolic chain. The electrochemical study of the proteins incubated together demonstrates an intermolecular electron transfer involving the protein complex, in which AcoP is reduced through the high potential heme of Cyt c4. Modelling of the electrochemical signals at different scan rates allows us to estimate the rate constant of this intermolecular electron transfer in the range of a few s-1. Possible routes for electron transfer in the acidophilic bacterium are deduced.
Collapse
Affiliation(s)
- X Wang
- Aix Marseille Univ , CNRS , IMM , BIP , UMR 7281 , 31 Chemin Aiguier , 13009 Marseille , France . ;
| | - M Roger
- School of Life Sciences , University of Dundee , Dundee , DD1 5EH , Scotland , UK
| | - R Clément
- Aix Marseille Univ , CNRS , IMM , BIP , UMR 7281 , 31 Chemin Aiguier , 13009 Marseille , France . ;
| | - S Lecomte
- Institute for Chemistry and Biology of Membrane and Nano-objects , Allée Geoffroy St Hilaire , 33600 Pessac , France
| | - F Biaso
- Aix Marseille Univ , CNRS , IMM , BIP , UMR 7281 , 31 Chemin Aiguier , 13009 Marseille , France . ;
| | - L A Abriata
- Laboratory for Biomolecular Modeling , École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics , AAB014, Station 19 , 1015 Lausanne , Switzerland
| | - P Mansuelle
- Aix Marseille Univ , CNRS , Institut de Microbiologie de la Méditerranée , FR 3479, Plate-forme Protéomique, Marseille Protéomique (MaP), B.P. 71 , 13402 Marseille Cedex 20 , France
| | - I Mazurenko
- School of Biomedical Sciences , Leeds , LS2 9JT , UK
| | - M T Giudici-Orticoni
- Aix Marseille Univ , CNRS , IMM , BIP , UMR 7281 , 31 Chemin Aiguier , 13009 Marseille , France . ;
| | - E Lojou
- Aix Marseille Univ , CNRS , IMM , BIP , UMR 7281 , 31 Chemin Aiguier , 13009 Marseille , France . ;
| | - M Ilbert
- Aix Marseille Univ , CNRS , IMM , BIP , UMR 7281 , 31 Chemin Aiguier , 13009 Marseille , France . ;
| |
Collapse
|
3
|
The dynamic complex of cytochrome c6 and cytochrome f studied with paramagnetic NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1305-15. [DOI: 10.1016/j.bbabio.2014.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/13/2014] [Accepted: 03/16/2014] [Indexed: 11/23/2022]
|
4
|
Jiang N, Kuznetsov A, Nocek JM, Hoffman BM, Crane BR, Hu X, Beratan DN. Distance-independent charge recombination kinetics in cytochrome c-cytochrome c peroxidase complexes: compensating changes in the electronic coupling and reorganization energies. J Phys Chem B 2013; 117:9129-41. [PMID: 23895339 PMCID: PMC3809023 DOI: 10.1021/jp401551t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Charge recombination rate constants vary no more than 3-fold for interprotein ET in the Zn-substituted wild type (WT) cytochrome c peroxidase (CcP):cytochrome c (Cc) complex and in complexes with four mutants of the Cc protein (i.e., F82S, F82W, F82Y, and F82I), despite large differences in the ET distance. Theoretical analysis indicates that charge recombination for all complexes involves a combination of tunneling and hopping via Trp191. For three of the five structures (WT and F82S(W)), the protein favors hopping more than that in the other two structures that have longer heme → ZnP distances (F82Y(I)). Experimentally observed biexponential ET kinetics is explained by the complex locking in alternative coupling pathways, where the acceptor hole state is either primarily localized on ZnP (slow phase) or on Trp191 (fast phase). The large conformational differences between the CcP:Cc interface for the F82Y(I) mutants compared to that the WT and F82S(W) complexes are predicted to change the reorganization energies for the CcP:Cc ET reactions because of changes in solvent exposure and interprotein ET distances. Since the recombination reaction is likely to occur in the inverted Marcus regime, an increased reorganization energy compensates the decreased role for hopping recombination (and the longer transfer distance) in the F82Y(I) mutants. Taken together, coupling pathway and reorganization energy effects for the five protein complexes explain the observed insensitivity of recombination kinetics to donor-acceptor distance and docking pose and also reveals how hopping through aromatic residues can accelerate long-range ET.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Chemistry, Duke University, Durham, NC 27708
| | | | - Judith M. Nocek
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Xiangqian Hu
- Department of Chemistry, Duke University, Durham, NC 27708
| | - David N. Beratan
- Department of Chemistry, Duke University, Durham, NC 27708
- Department of Biochemistry, Duke University, Durham, NC 27708
- Department of Physics, Duke University, Durham, NC 27708
| |
Collapse
|
5
|
Simultaneous true, gated, and coupled electron-transfer reactions and energetics of protein rearrangement. J Inorg Biochem 2012; 106:143-50. [DOI: 10.1016/j.jinorgbio.2011.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022]
|
6
|
Ly HK, Marti MA, Martin DF, Alvarez-Paggi D, Meister W, Kranich A, Weidinger IM, Hildebrandt P, Murgida DH. Thermal Fluctuations Determine the Electron-Transfer Rates of Cytochrome c in Electrostatic and Covalent Complexes. Chemphyschem 2010; 11:1225-35. [DOI: 10.1002/cphc.200900966] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
McAlister GC, Kiessel SE, Coon JJ. In vacuo formation of peptide-metal coordination complexes. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2008; 276:149-152. [PMID: 19424441 PMCID: PMC2677728 DOI: 10.1016/j.ijms.2008.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Here we report on the reaction of rhenate anions (ReO(3) (-)) with multiply protonated peptide cations in a quadrupole linear ion trap mass spectrometer. These reactions effect the formation of an anion-cation complex that, upon collisional activation, dissociates along the peptide backbone rather than by displacement of the anion. Cleavage of the peptide backbone, with anion retention, leads us to conclude the anion-cationcomplexmust be tightly bound, most probably through coordination chemistry. We describe this chemistry and detail the possible application of such ion attachment reactions to the characterization of intact proteins.
Collapse
Affiliation(s)
- Graeme C. McAlister
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, United States
| | - Sharon E.B. Kiessel
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, United States
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, United States
| |
Collapse
|
8
|
Kang SA, Hoke KR, Crane BR. Solvent Isotope Effects on Interfacial Protein Electron Transfer in Crystals and Electrode Films. J Am Chem Soc 2006; 128:2346-55. [PMID: 16478190 DOI: 10.1021/ja0557482] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D(2)O-grown crystals of yeast zinc porphyrin substituted cytochrome c peroxidase (ZnCcP) in complex with yeast iso-1-cytochrome c (yCc) diffract to higher resolution (1.7 A) and pack differently than H(2)O-grown crystals (2.4-3.0 A). Two ZnCcP's bind the same yCc (porphyrin-to-porphyrin separations of 19 and 29 A), with one ZnCcP interacting through the same interface found in the H(2)O crystals. The triplet excited-state of at least one of the two unique ZnCcP's is quenched by electron transfer (ET) to Fe(III)yCc (k(e) = 220 s(-1)). Measurement of thermal recombination ET between Fe(II)yCc and ZnCcP+ in the D(2)O-treated crystals has both slow and fast components that differ by 2 orders of magnitude (k(eb)(1) = 2200 s(-1), k(eb)(2) = 30 s(-1)). Back ET in H(2)O-grown crystals is too fast for observation, but soaking H(2)O-grown crystals in D(2)O for hours generates slower back ET, with kinetics similar to those of the D(2)O-grown crystals (k(eb)(1) = 7000 s(-1), k(eb)(2) = 100 s(-1)). Protein-film voltammetry of yCc adsorbed to mixed alkanethiol monolayers on gold electrodes shows slower ET for D(2)O-grown yCc films than for H(2)O-grown films (k(H) = 800 s(-1); k(D) = 540 s(-1) at 20 degrees C). Soaking H(2)O- or D(2)O-grown films in the counter solvent produces an immediate inverse isotope effect that diminishes over hours until the ET rate reaches that found in the counter solvent. Thus, D(2)O substitution perturbs interactions and ET between yCc and either CcP or electrode films. The effects derive from slow exchanging protons or solvent molecules that in the crystal produce only small structural changes.
Collapse
Affiliation(s)
- Seong A Kang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
9
|
Kang SA, Crane BR. Effects of interface mutations on association modes and electron-transfer rates between proteins. Proc Natl Acad Sci U S A 2005; 102:15465-70. [PMID: 16227441 PMCID: PMC1266099 DOI: 10.1073/pnas.0505176102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 09/08/2005] [Indexed: 11/18/2022] Open
Abstract
Although bonding networks determine electron-transfer (ET) rates within proteins, the mechanism by which structure and dynamics influence ET across protein interfaces is not well understood. Measurements of photochemically induced ET and subsequent charge recombination between Zn-porphyrin-substituted cytochrome c peroxidase and cytochrome c in single crystals correlate reactivity with defined structures for different association modes of the redox partners. Structures and ET rates in crystals are consistent with tryptophan oxidation mediating charge recombination reactions. Conservative mutations at the interface can drastically affect how the proteins orient and dispose redox centers. Whereas some configurations are ET inactive, the wild-type complex exhibits the fastest recombination rate. Other association modes generate ET rates that do not correlate with predictions based on cofactor separations or simple bonding pathways. Inhibition of photoinduced ET at <273 K indicates gating by small-amplitude dynamics, even within the crystal. Thus, different associations achieve states of similar reactivity, and within those states conformational fluctuations enable interprotein ET.
Collapse
Affiliation(s)
- Seong A Kang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
10
|
Grubor NM, Hayes J, Small GJ, Jankowiak R. Cross-reactivity and conformational multiplicity of an anti-polycyclic aromatic hydrocarbon mAb. Proc Natl Acad Sci U S A 2005; 102:7453-8. [PMID: 15888556 PMCID: PMC1140447 DOI: 10.1073/pnas.0502540102] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cross-reactivity and multispecific functionality of antibodies play a central role in the immune system. The Ab's promiscuity is attributed to structural flexibility and conformational multiplicity of its binding sites governed by the rearrangement of hydrogen bonding centers. However, antibodies whose recognition and binding rely on less directional hydrophobic interactions might follow different interaction pathways. We investigated interaction of anti-polycyclic aromatic hydrocarbon mAb with two biologically important cross-reactants, pyrene and benzo(a)pyrene. Complex formation was characterized by means of low-temperature laser-induced fluorescence spectroscopy in both low- and high-resolution fluorescence line-narrowing (FLN) modes. It is shown that the FLN spectroscopy can identify various haptens cross-reacted with an Ab, as well as simultaneously differentiate between free and immunocomplexed haptens. In addition, our results suggest an interesting case of an Ab binding a particular cross-reactant by adopting two distinct conformations of its binding sites. The existence of the multiple conformations for anti-polycyclic aromatic hydrocarbon mAb that are trapped at low temperature can be rationalized through the existing models for Ab binding. Finally, as revealed by FLN spectra of immunocomplexed chromophores, pi-pi interactions, rather than hydrogen bonding, play the central role in complex formation.
Collapse
Affiliation(s)
- Nenad M Grubor
- Ames Laboratory-U.S. Department of Energy, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
11
|
Díaz-Moreno I, Díaz-Quintana A, Ubbink M, De la Rosa MA. An NMR-based docking model for the physiological transient complex between cytochromefand cytochromec6. FEBS Lett 2005; 579:2891-6. [PMID: 15876432 DOI: 10.1016/j.febslet.2005.04.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
The physiological transient complex between cytochrome f (Cf) and cytochrome c(6) (Cc(6)) from the cyanobacterium Nostoc sp. PCC 7119 has been analysed by NMR spectroscopy. The binding constant at low ionic strength is 8 +/- 2 mM(-1), and the binding site of Cc(6) for Cf is localized around its exposed haem edge. On the basis of the experimental data, the resulting docking simulations suggest that Cc(6) binds to Cf in a fashion that is analogous to that of plastocyanin but differs between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y Consejo Superior de Investigaciones Científicas, Spain
| | | | | | | |
Collapse
|
12
|
Schlarb-Ridley BG, Mi H, Teale WD, Meyer VS, Howe CJ, Bendall DS. Implications of the Effects of Viscosity, Macromolecular Crowding, and Temperature for the Transient Interaction between Cytochrome f and Plastocyanin from the Cyanobacterium Phormidium laminosum. Biochemistry 2005; 44:6232-8. [PMID: 15835911 DOI: 10.1021/bi047322q] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction between cytochrome f and plastocyanin is a central feature of the photosynthetic electron-transport system of all oxygenic organisms. We have studied the reaction in solution to understand how the very weak binding between the two proteins from Phormidium laminosum can nevertheless lead to fast rates of electron transfer. In a previous publication [Schlarb-Ridley, B. G., et al. (2003) Biochemistry 42, 4057-4063], we suggested that the reaction is diffusion-controlled because of a strong effect of viscosity of the medium. The effects of viscosity and temperature have now been examined in detail. High molecular mass viscogens (Ficoll 70 and Dextran 70), which might mimic in vivo conditions, had little effect up to a relative viscosity of 4. Low molecular mass viscogens (ethane diol, glycerol, and sucrose) strongly decreased the bimolecular rate constant (k(2)) over a similar viscosity range. The effects correlated well with the viscosities of the solutions of the three reagents but not with their dielectric constants or molalities. A power law dependence of k(2) on viscosity suggested that k(2) depends on two viscosity-sensitive reactions in series, while the reverse reactions are little affected by viscosity. The results were incompatible with diffusion control of the overall reaction. Determination of the effect of temperature on k(2) gave an activation enthalpy, DeltaH(++) = 45 kJ mol(-)(1), which is also incompatible with diffusion control. The results were interpreted in terms of a model in which the stable form of the protein-protein complex requires further thermal activation to be competent for electron transfer.
Collapse
Affiliation(s)
- Beatrix G Schlarb-Ridley
- Department of Biochemistry and Cambridge Centre for Molecular Recognition, University of Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
13
|
Hoffman BM, Celis LM, Cull DA, Patel AD, Seifert JL, Wheeler KE, Wang J, Yao J, Kurnikov IV, Nocek JM. Differential influence of dynamic processes on forward and reverse electron transfer across a protein-protein interface. Proc Natl Acad Sci U S A 2005; 102:3564-9. [PMID: 15738411 PMCID: PMC553314 DOI: 10.1073/pnas.0408767102] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We propose that the forward and reverse halves of a flash-induced protein-protein electron transfer (ET) photocycle should exhibit differential responses to dynamic interconversion of configurations when the most stable configuration is not the most reactive, because the reactants exist in different initial configurations: the flash-photoinitiated forward ET process begins with the protein partners in an equilibrium ensemble of configurations, many of which have little or no reactivity, whereas the reactant of the thermal back ET (the charge-separated intermediate) is formed in a nonequilibrium, "activated" protein configuration. We report evidence for this proposal in measurements on (i) mixed-metal hemoglobin hybrids, (ii) the complex between cytochrome c peroxidase and cytochrome c, and (iii and iv) the complexes of myoglobin and isolated hemoglobin alpha-chains with cytochrome b(5). For all three systems, forward and reverse ET does respond differently to modulation of dynamic processes; further, the response to changes in viscosity is different for each system.
Collapse
Affiliation(s)
- Brian M Hoffman
- Department of Chemistry, Northwestern University, 2145 North Sheridan Road, Evanston, IL 60208-3113, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|