1
|
Rasul HO, Ghafour DD, Aziz BK, Hassan BA, Rashid TA, Kivrak A. Decoding Drug Discovery: Exploring A-to-Z In Silico Methods for Beginners. Appl Biochem Biotechnol 2025; 197:1453-1503. [PMID: 39630336 DOI: 10.1007/s12010-024-05110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 03/29/2025]
Abstract
The drug development process is a critical challenge in the pharmaceutical industry due to its time-consuming nature and the need to discover new drug potentials to address various ailments. The initial step in drug development, drug target identification, often consumes considerable time. While valid, traditional methods such as in vivo and in vitro approaches are limited in their ability to analyze vast amounts of data efficiently, leading to wasteful outcomes. To expedite and streamline drug development, an increasing reliance on computer-aided drug design (CADD) approaches has merged. These sophisticated in silico methods offer a promising avenue for efficiently identifying viable drug candidates, thus providing pharmaceutical firms with significant opportunities to uncover new prospective drug targets. The main goal of this work is to review in silico methods used in the drug development process with a focus on identifying therapeutic targets linked to specific diseases at the genetic or protein level. This article thoroughly discusses A-to-Z in silico techniques, which are essential for identifying the targets of bioactive compounds and their potential therapeutic effects. This review intends to improve drug discovery processes by illuminating the state of these cutting-edge approaches, thereby maximizing the effectiveness and duration of clinical trials for novel drug target investigation.
Collapse
Affiliation(s)
- Hezha O Rasul
- Department of Pharmaceutical Chemistry, College of Science, Charmo University, Peshawa Street, Chamchamal, 46023, Sulaimani, Iraq.
| | - Dlzar D Ghafour
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, 46001, Sulaimani, Iraq
- Department of Chemistry, College of Science, University of Sulaimani, 46001, Sulaimani, Iraq
| | - Bakhtyar K Aziz
- Department of Nanoscience and Applied Chemistry, College of Science, Charmo University, Peshawa Street, Chamchamal, 46023, Sulaimani, Iraq
| | - Bryar A Hassan
- Computer Science and Engineering Department, School of Science and Engineering, University of Kurdistan Hewler, KRI, Iraq
- Department of Computer Science, College of Science, Charmo University, Peshawa Street, Chamchamal, 46023, Sulaimani, Iraq
| | - Tarik A Rashid
- Computer Science and Engineering Department, School of Science and Engineering, University of Kurdistan Hewler, KRI, Iraq
| | - Arif Kivrak
- Department of Chemistry, Faculty of Sciences and Arts, Eskisehir Osmangazi University, Eskişehir, 26040, Turkey
| |
Collapse
|
2
|
Frost CF, Antoniou D, Schwartz SD. The Evolution of the Acylation Mechanism in β-Lactamase and Rapid Protein Dynamics. ACS Catal 2024; 14:13640-13651. [PMID: 39464311 PMCID: PMC11507604 DOI: 10.1021/acscatal.4c03065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
β-Lactamases are a class of well-studied enzymes that are known to have existed since billions of years ago, starting as a defense mechanism to stave off competitors and are now enzymes responsible for antibiotic resistance. Using ancestral sequence reconstruction, it is possible to study the crystal structure of a laboratory resurrected 2-3 billion year-old β-lactamase. Comparing the ancestral enzyme to its modern counterpart, a TEM-1 β-lactamase, the structural changes are minor, and it is probable that dynamic effects play an important role in the evolution of function. We used molecular dynamics simulations and employed transition path sampling methods to identify the presence of rate-enhancing dynamics at the femtosecond level in both systems, found that these fast motions are more efficiently coordinated in the modern enzyme, and examined how specific dynamics can pinpoint evolutionary effects that are essential for improving enzymatic catalysis.
Collapse
Affiliation(s)
- Clara F Frost
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Dimitri Antoniou
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Jabeen H, Beer M, Spencer J, van der Kamp MW, Bunzel HA, Mulholland AJ. Electric Fields Are a Key Determinant of Carbapenemase Activity in Class A β-Lactamases. ACS Catal 2024; 14:7166-7172. [PMID: 38721371 PMCID: PMC11075022 DOI: 10.1021/acscatal.3c05302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 01/06/2025]
Abstract
Resistance to antibiotics is a public health crisis. Although carbapenems are less susceptible to resistance than other β-lactam antibiotics, β-lactamases mediating resistance against these drugs are spreading. Here, we dissect the contributions of electric fields to carbapenemase activity in class A β-lactamases. We perform QM/MM molecular dynamics simulations of meropenem acyl-enzyme hydrolysis that correctly discriminate carbapenemases. Electric field analysis shows that active-site fields in the deacylation transition state and tetrahedral intermediate are important determinants of activity. The active-site fields identify several residues, some distal, that distinguish efficient carbapenemases. Our field analysis script (www.github.com/bunzela/FieldTools) may help in understanding and combating antibiotic resistance.
Collapse
Affiliation(s)
- Hira Jabeen
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
| | - Michael Beer
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
- School
of Cellular and Molecular Medicine, University
of Bristol, BS8 1TD Bristol, United Kingdom
| | - James Spencer
- School
of Cellular and Molecular Medicine, University
of Bristol, BS8 1TD Bristol, United Kingdom
| | - Marc W. van der Kamp
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
- School
of Biochemistry, University of Bristol, BS8 1TD Bristol, United Kingdom
| | - H. Adrian Bunzel
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
- Department
of Biosystem Science and Engineering, ETH
Zurich, 4056 Basel, Switzerland
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
| |
Collapse
|
4
|
Hu S, Xu L, Xie C, Hong J. Structural Insights into the Catalytic Activity of Cyclobacterium marinum N-Acetylglucosamine Deacetylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:783-793. [PMID: 38141024 DOI: 10.1021/acs.jafc.3c06146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
N-Acetylglucosamine deacetylase from Cyclobacterium marinum (CmCBDA) is a highly effective and selective biocatalyst for the production of d-glucosamine (GlcN) from N-acetylglucosamine (GlcNAc). However, the underlying catalytic mechanism remains elusive. Here, we show that CmCBDA is a metalloenzyme with a preference for Ni2+ over Mn2+. Crystal structures of CmCBDA in complex with Ni2+ and Mn2+ revealed slight remodeling of the CmCBDA active site by the metal ions. We also demonstrate that CmCBDA exists as a mixture of homodimers and monomers in solution, and dimerization is indispensable for catalytic activity. A mutagenesis analysis also indicated that the active site residues Asp22, His72, and His143 as well as the residues involved in dimerization, Pro52, Trp53, and Tyr55, are essential for catalytic activity. Furthermore, a mutation on the protein surface, Lys219Glu, resulted in a 2.3-fold improvement in the deacetylation activity toward GlcNAc. Mechanistic insights obtained here may facilitate the development of CmCBDA variants with higher activities.
Collapse
Affiliation(s)
- Shenglin Hu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, China
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230027, China
| | - Li Xu
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Changlin Xie
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Lu S, Montoya M, Hu L, Neetu N, Sankaran B, Prasad BVV, Palzkill T. Mutagenesis and structural analysis reveal the CTX-M β-lactamase active site is optimized for cephalosporin catalysis and drug resistance. J Biol Chem 2023; 299:104630. [PMID: 36963495 PMCID: PMC10139949 DOI: 10.1016/j.jbc.2023.104630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023] Open
Abstract
CTX-M β-lactamases are a widespread source of resistance to β-lactam antibiotics in Gram-negative bacteria. These enzymes readily hydrolyze penicillins and cephalosporins, including oxyimino-cephalosporins such as cefotaxime. To investigate the preference of CTX-M enzymes for cephalosporins, we examined eleven active-site residues in the CTX-M-14 β-lactamase model system by alanine mutagenesis to assess the contribution of the residues to catalysis and specificity for the hydrolysis of the penicillin, ampicillin, and the cephalosporins cephalothin and cefotaxime. Key active site residues for class A β-lactamases, including Lys73, Ser130, Asn132, Lys234, Thr216, and Thr235, contribute significantly to substrate binding and catalysis of penicillin and cephalosporin substrates in that alanine substitutions decrease both kcat and kcat/KM. A second group of residues, including Asn104, Tyr105, Asn106, Thr215, and Thr216, contribute only to substrate binding, with the substitutions decreasing only kcat/KM. Importantly, calculating the average effect of a substitution across the 11 active-site residues shows that the most significant impact is on cefotaxime hydrolysis while ampicillin hydrolysis is least affected, suggesting the active site is highly optimized for cefotaxime catalysis. Furthermore, we determined X-ray crystal structures for the apo-enzymes of the mutants N106A, S130A, N132A, N170A, T215A, and T235A. Surprisingly, in the structures of some mutants, particularly N106A and T235A, the changes in structure propagate from the site of substitution to other regions of the active site, suggesting that the impact of substitutions is due to more widespread changes in structure and illustrating the interconnected nature of the active site.
Collapse
Affiliation(s)
- Shuo Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Miranda Montoya
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Liya Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Neetu Neetu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - B V Venkataram Prasad
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
6
|
Tooke C, Hinchliffe P, Beer M, Zinovjev K, Colenso CK, Schofield CJ, Mulholland AJ, Spencer J. Tautomer-Specific Deacylation and Ω-Loop Flexibility Explain the Carbapenem-Hydrolyzing Broad-Spectrum Activity of the KPC-2 β-Lactamase. J Am Chem Soc 2023; 145:7166-7180. [PMID: 36972204 PMCID: PMC10080687 DOI: 10.1021/jacs.2c12123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 03/29/2023]
Abstract
KPC-2 (Klebsiella pneumoniae carbapenemase-2) is a globally disseminated serine-β-lactamase (SBL) responsible for extensive β-lactam antibiotic resistance in Gram-negative pathogens. SBLs inactivate β-lactams via a mechanism involving a hydrolytically labile covalent acyl-enzyme intermediate. Carbapenems, the most potent β-lactams, evade the activity of many SBLs by forming long-lived inhibitory acyl-enzymes; however, carbapenemases such as KPC-2 efficiently deacylate carbapenem acyl-enzymes. We present high-resolution (1.25-1.4 Å) crystal structures of KPC-2 acyl-enzymes with representative penicillins (ampicillin), cephalosporins (cefalothin), and carbapenems (imipenem, meropenem, and ertapenem) obtained utilizing an isosteric deacylation-deficient mutant (E166Q). The mobility of the Ω-loop (residues 165-170) negatively correlates with antibiotic turnover rates (kcat), highlighting the role of this region in positioning catalytic residues for efficient hydrolysis of different β-lactams. Carbapenem-derived acyl-enzyme structures reveal the predominance of the Δ1-(2R) imine rather than the Δ2 enamine tautomer. Quantum mechanics/molecular mechanics molecular dynamics simulations of KPC-2:meropenem acyl-enzyme deacylation used an adaptive string method to differentiate the reactivity of the two isomers. These identify the Δ1-(2R) isomer as having a significantly (7 kcal/mol) higher barrier than the Δ2 tautomer for the (rate-determining) formation of the tetrahedral deacylation intermediate. Deacylation is therefore likely to proceed predominantly from the Δ2, rather than the Δ1-(2R) acyl-enzyme, facilitated by tautomer-specific differences in hydrogen-bonding networks involving the carbapenem C-3 carboxylate and the deacylating water and stabilization by protonated N-4, accumulating a negative charge on the Δ2 enamine-derived oxyanion. Taken together, our data show how the flexible Ω-loop helps confer broad-spectrum activity upon KPC-2, while carbapenemase activity stems from efficient deacylation of the Δ2-enamine acyl-enzyme tautomer.
Collapse
Affiliation(s)
- Catherine
L. Tooke
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Philip Hinchliffe
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Michael Beer
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
- Centre
for Computational Chemistry, School of Chemistry, Cantock’s
Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Kirill Zinovjev
- School
of Biochemistry, Biomedical Sciences Building, University
Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
- Departamento
de Química Física, Universitat
de València, Burjassot 46100, Comunitat Valenciana, Spain
| | - Charlotte K. Colenso
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
- Centre
for Computational Chemistry, School of Chemistry, Cantock’s
Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, Mansfield Road, University of Oxford, Oxford OX1 3TA United
Kingdom
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, Cantock’s
Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - James Spencer
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
7
|
Yin C, Song Z, Tian H, Palzkill T, Tao P. Unveiling the structural features that regulate carbapenem deacylation in KPC-2 through QM/MM and interpretable machine learning. Phys Chem Chem Phys 2023; 25:1349-1362. [PMID: 36537692 PMCID: PMC11162551 DOI: 10.1039/d2cp03724f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Resistance to carbapenem β-lactams presents major clinical and economical challenges for the treatment of pathogen infections. The fast hydrolysis of carbapenems by carbapenemase-producing bacterial strains enables the effective deactivation of carbapenem antibiotics. In this study, we aim to unravel the structural features that distinguish the notable deacylation activity of carbapenemases. The deacylation reactions between imipenem (IPM) and the KPC-2 class A serine-based β-lactamases (ASβLs) are modeled with combined quantum mechanical/molecular mechanical (QM/MM) minimum energy pathway (MEP) calculations and interpretable machine-learning (ML) methods. We first applied a dual-level computational protocol to achieve fast sampling of QM/MM MEPs. A tree-based ensemble ML model was employed to learn the MEP activation barriers from the conformational features of the KPC-2/IPM active site. The barrier-predicting model was then unboxed using the Shapley additive explanation (SHAP) importance attribution methods to derive mechanistic insights, which were also verified by additional QM/MM wavefunction analysis. Essentially, we show that potential hydrogen bonding interactions of the general base and the tautomerization states of the carbapenem pyrroline ring could concertedly regulate the activation barrier of KPC-2/IPM deacylation. Nonetheless, we demonstrate the efficacy of interpretable ML to assist the analysis of QM/MM simulation data for robust extraction of human-interpretable mechanistic insights.
Collapse
Affiliation(s)
- Chao Yin
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75205, USA.
| | - Zilin Song
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75205, USA.
| | - Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75205, USA.
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75205, USA.
| |
Collapse
|
8
|
Fındık V, Varınca Gerçik BT, Sinek Ö, Erdem SS, Ruiz-López MF. Mechanistic Investigation of Lysine-Targeted Covalent Inhibition of PI3Kδ via ONIOM QM:QM Computations. J Chem Inf Model 2022; 62:6775-6787. [PMID: 35980989 DOI: 10.1021/acs.jcim.2c00569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) enzymes are important drug targets, especially in oncology, and several inhibitors are currently under investigation in clinical trials for the treatment of lymphocytic leukemia, follicular lymphoma, breast, thyroid, colorectal, and lung cancer. Targeted covalent inhibitors hold significant promise for drug discovery research especially for kinases. Targeting the lysine residues attracts attention as a new strategy in designing targeted covalent inhibitors, since the lysine residue provides several advantages over the traditional cysteine residue. Recently, new highly selective covalent inhibitors of PI3Kδ with activated ester warheads, targeting the conserved Lys779 residue, were reported. Based on the observed kinetics, a covalent inhibition mechanism was proposed, but the atomistic details of the reaction are still not understood. Therefore, in the present work, we have conducted quantum chemical ONIOM M06-2X/6-31+G(d,p):PM6 calculations on the active site cluster structure of PI3Kδ to elucidate the microscopic details of the mechanism of the aminolysis reaction between Lys779 and the ester inhibitors. Our calculations clearly discriminate the noncovalent methyl ester inhibitor and the covalent inhibitors with activated phenolic esters. For the representative p-NO2, p-F, p-H, and p-OCH3 phenolic esters, the Gibbs free energy profiles of alternative mechanistic paths through either Asp782 or Asp911 demonstrate the modulatory role of active site aspartate residues. The most plausible path alters depending on the electron-withdrawing/donating nature of the p-substituted phenolate leaving group. Inhibitors with sufficiently strong electron-withdrawing group prefer direct dissociation of the leaving group from the tetrahedral zwitterion intermediate, while the ones with electron-donating group favor the formation of a neutral tetrahedral intermediate prior to the dissociation. The relative Gibbs free energy barriers of p-NO2 < p-F < p-H < p-OCH3 substituted phenyl esters display the same qualitative trend as the experimentally measured kinact/KI values. Our results provide in depth insight into the mechanism, which can pave the way for optimizing the inhibitor efficiency.
Collapse
Affiliation(s)
- Volkan Fındık
- LPCT, UMR 7019, University of Lorraine, CNRS, 54000, Nancy, France.,Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722, Istanbul, Turkey
| | | | - Öykü Sinek
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722, Istanbul, Turkey
| | - Safiye Sağ Erdem
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722, Istanbul, Turkey
| | | |
Collapse
|
9
|
Wang L, Zheng W, Hou Q, Zhong L, Li Q, Jiang X. Breathable and Stretchable Dressings for Accelerating Healing of Infected Wounds. Adv Healthc Mater 2022; 11:e2201053. [PMID: 35765937 DOI: 10.1002/adhm.202201053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Indexed: 01/27/2023]
Abstract
Multidrug-resistant (MDR) bacteria-infected wounds are challenging issues that threaten human health. Herein, L-thioproline (T) and Boc-capped L-thioproline (BT)-decorated gold nanoparticles (TBT-GNPs) with potent antibacterial activity against MDR bacteria are reported. The TBT-GNPs are composited with bacterial cellulose to form wound dressings which show excellent antimicrobial performance both in vitro and in vivo. Moreover, this dressing is both breathable and stretchable which is favorable for gas exchange to accelerate the wound healing. This work is insightful for developing multifunctional dressings to satisfy the clinical requirements.
Collapse
Affiliation(s)
- Le Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Wenfu Zheng
- GBA Research Innovation Institute for Nanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, China
| | - Qinghong Hou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Leni Zhong
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Qizhen Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
10
|
Song Z, Trozzi F, Tian H, Yin C, Tao P. Mechanistic Insights into Enzyme Catalysis from Explaining Machine-Learned Quantum Mechanical and Molecular Mechanical Minimum Energy Pathways. ACS PHYSICAL CHEMISTRY AU 2022; 2:316-330. [PMID: 35936506 PMCID: PMC9344433 DOI: 10.1021/acsphyschemau.2c00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With the increasing popularity of machine learning (ML) applications, the demand for explainable artificial intelligence techniques to explain ML models developed for computational chemistry has also emerged. In this study, we present the development of the Boltzmann-weighted cumulative integrated gradients (BCIG) approach for effective explanation of mechanistic insights into ML models trained on high-level quantum mechanical and molecular mechanical (QM/MM) minimum energy pathways. Using the acylation reactions of the Toho-1 β-lactamase and two antibiotics (ampicillin and cefalexin) as the model systems, we show that the BCIG approach could quantitatively attribute the energetic contribution in one system and the relative reactivity of individual steps across different systems to specific chemical processes such as the bond making/breaking and proton transfers. The proposed BCIG contribution attribution method quantifies chemistry-interpretable insights in terms of contributions from each elementary chemical process, which is in agreement with the validating QM/MM calculations and our intuitive mechanistic understandings of the model reactions.
Collapse
|
11
|
Dalal V, Golemi-Kotra D, Kumar P. Quantum Mechanics/Molecular Mechanics Studies on the Catalytic Mechanism of a Novel Esterase (FmtA) of Staphylococcus aureus. J Chem Inf Model 2022; 62:2409-2420. [PMID: 35475370 DOI: 10.1021/acs.jcim.2c00057] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FmtA is a novel esterase that shares the penicillin-binding protein (PBP) core structural folding but found to hydrolyze the removal of d-Ala from teichoic acids. Molecular docking, dynamics, and MM-GBSA of FmtA and its variants S127A, K130A, Y211A, D213A, and K130AY211A, in the presence or absence of wall teichoic acid (WTA), suggest that active site residues S127, K130, Y211, D213, N343, and G344 play a role in substrate binding. Quantum mechanics (QM)/molecular mechanics (MM) calculations reveal that during WTA catalysis, K130 deprotonates S127, and the nucleophilic S127 attacks the carbonyl carbon of d-Ala bound to WTA. The tetrahedral intermediate (TI) complex is stabilized by hydrogen bonding to the oxyanion holes. The TI complex displays a high energy gap and collapses to an energetically favorable acyl-enzyme complex.
Collapse
Affiliation(s)
- Vikram Dalal
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttrakhand 247667, India
| | - Dasantila Golemi-Kotra
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttrakhand 247667, India
| |
Collapse
|
12
|
Akher FB, Farrokhzadeh A, Ravenscroft N, Kuttel MM. Deciphering the Mechanism of Binding Selectivity of Chlorofluoroacetamide-Based Covalent Inhibitors toward L858R/T790M Resistance Mutation. J Chem Inf Model 2022; 62:997-1013. [PMID: 35119858 DOI: 10.1021/acs.jcim.1c01399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Covalent modification of the oncogenic mutant epidermal growth factor receptor (EGFR) by small molecules is an efficient strategy for achieving an enhanced and sustained pharmacological effect in the treatment of non-small-cell lung cancer. NSP-037 (18), an irreversible inhibitor of the L858R/T790M double-mutant EGFR (EGFRDM) using α-chlorofluoroacetamide (CFA) as a novel warhead, has seven times the inhibition selectivity for EGFRDM over the wild type (EGFRWT), as compared to clinically approved osimertinib (7). Here, we employ multiple computational approaches to elucidate the mechanism underlining this improved selectivity, as well as the effect of CFA on the selectivity enhancement of inhibitor 18 over 7. We find that EGFRDM undergoes significantly larger conformational changes than EGFRWT upon binding to 18. The conformational stability of the diamine side chain and the CFA motif of 18 in the orthosteric site of EGFRDM is identified as key for the disparate binding mechanism and inhibitory prowess of 18 with respect to EGFRWT and EGFRDM and 18's higher selectivity than 7. The binding free energy of the 18-bound complexes is -6.38 kcal/mol greater than that of the 7-bound complexes, explaining the difference in selectivity of these inhibitors. Further, free energy decomposition analysis indicates that the electrostatic contribution of key residues plays an important role in the 18-bound complexes. QM/MM calculations show that the most favored mechanism for the Cys797 alkylation reaction is the direct displacement mechanism through a CFA-based inhibitor, producing a reaction with the lowest energy barrier and most stable product.
Collapse
Affiliation(s)
- Farideh Badichi Akher
- Department of Computer Science, University of Cape Town, Cape Town 7700, South Africa.,Department of Chemistry, University of Cape Town, Cape Town 7700, South Africa.,Department of Biochemistry & Molecular Biology, University of Dalhousie, Halifax, NS B3H 4R2, Canada
| | | | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Cape Town 7700, South Africa
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
13
|
Exploring the Catalytic Mechanism of the RNA Cap Modification by nsp16-nsp10 Complex of SARS-CoV-2 through a QM/MM Approach. Int J Mol Sci 2021; 23:ijms23010300. [PMID: 35008724 PMCID: PMC8745711 DOI: 10.3390/ijms23010300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
The inhibition of key enzymes that may contain the viral replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have assumed central importance in drug discovery projects. Nonstructural proteins (nsps) are essential for RNA capping and coronavirus replication since it protects the virus from host innate immune restriction. In particular, nonstructural protein 16 (nsp16) in complex with nsp10 is a Cap-0 binding enzyme. The heterodimer formed by nsp16-nsp10 methylates the 5′-end of virally encoded mRNAs to mimic cellular mRNAs and thus it is one of the enzymes that is a potential target for antiviral therapy. In this study, we have evaluated the mechanism of the 2′-O methylation of the viral mRNA cap using hybrid quantum mechanics/molecular mechanics (QM/MM) approach. It was found that the calculated free energy barriers obtained at M062X/6-31+G(d,p) is in agreement with experimental observations. Overall, we provide a detailed molecular analysis of the catalytic mechanism involving the 2′-O methylation of the viral mRNA cap and, as expected, the results demonstrate that the TS stabilization is critical for the catalysis.
Collapse
|
14
|
Song Z, Trozzi F, Palzkill T, Tao P. QM/MM modeling of class A β-lactamases reveals distinct acylation pathways for ampicillin and cefalexin. Org Biomol Chem 2021; 19:9182-9189. [PMID: 34647114 PMCID: PMC8613693 DOI: 10.1039/d1ob01593a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Efficient mechanism-based design of antibiotics that are not susceptible to β-lactamases is hindered by the lack of comprehensive knowledge on the energetic landscapes for the hydrolysis of various β-lactams. Herein, we adopted efficient quantum mechanics/molecular mechanics simulations to explore the acylation reaction catalyzed by CTX-M-44 (Toho-1) β-lactamase. We show that the catalytic pathways for β-lactam hydrolysis are correlated to substrate scaffolds: using Glu166 as the only general base for acylation is viable for ampicillin but prohibitive for cefalexin. The present computational workflow provides quantitative insights to facilitate the optimization of future β-lactam antibiotics.
Collapse
Affiliation(s)
- Zilin Song
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, USA.
| | - Francesco Trozzi
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, USA.
| | - Timothy Palzkill
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, USA.
| |
Collapse
|
15
|
Galdadas I, Qu S, Oliveira ASF, Olehnovics E, Mack AR, Mojica MF, Agarwal PK, Tooke CL, Gervasio FL, Spencer J, Bonomo RA, Mulholland AJ, Haider S. Allosteric communication in class A β-lactamases occurs via cooperative coupling of loop dynamics. eLife 2021; 10:e66567. [PMID: 33755013 PMCID: PMC8060031 DOI: 10.7554/elife.66567] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding allostery in enzymes and tools to identify it offer promising alternative strategies to inhibitor development. Through a combination of equilibrium and nonequilibrium molecular dynamics simulations, we identify allosteric effects and communication pathways in two prototypical class A β-lactamases, TEM-1 and KPC-2, which are important determinants of antibiotic resistance. The nonequilibrium simulations reveal pathways of communication operating over distances of 30 Å or more. Propagation of the signal occurs through cooperative coupling of loop dynamics. Notably, 50% or more of clinically relevant amino acid substitutions map onto the identified signal transduction pathways. This suggests that clinically important variation may affect, or be driven by, differences in allosteric behavior, providing a mechanism by which amino acid substitutions may affect the relationship between spectrum of activity, catalytic turnover, and potential allosteric behavior in this clinically important enzyme family. Simulations of the type presented here will help in identifying and analyzing such differences.
Collapse
Affiliation(s)
- Ioannis Galdadas
- University College London, Department of ChemistryLondonUnited Kingdom
| | - Shen Qu
- University College London School of Pharmacy, Pharmaceutical and Biological ChemistryLondonUnited Kingdom
| | - Ana Sofia F Oliveira
- University of Bristol, Centre for Computational Chemistry, School of ChemistryBristolUnited Kingdom
| | - Edgar Olehnovics
- University College London School of Pharmacy, Pharmaceutical and Biological ChemistryLondonUnited Kingdom
| | - Andrew R Mack
- Veterans Affairs Northeast Ohio Healthcare System, Research ServiceClevelandUnited States
- Case Western Reserve University, Department of Molecular Biology and MicrobiologyClevelandUnited States
| | - Maria F Mojica
- Veterans Affairs Northeast Ohio Healthcare System, Research ServiceClevelandUnited States
- Case Western Reserve University, Department of Infectious Diseases, School of MedicineClevelandUnited States
| | - Pratul K Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State UniversityStillwaterUnited States
| | - Catherine L Tooke
- University of Bristol, School of Cellular and Molecular MedicineBristolUnited Kingdom
| | - Francesco Luigi Gervasio
- University College London, Department of ChemistryLondonUnited Kingdom
- University College London, Institute of Structural and Molecular BiologyLondonUnited Kingdom
- University of Geneva, Pharmaceutical SciencesGenevaSwitzerland
| | - James Spencer
- University of Bristol, School of Cellular and Molecular MedicineBristolUnited Kingdom
| | - Robert A Bonomo
- Veterans Affairs Northeast Ohio Healthcare System, Research ServiceClevelandUnited States
- Case Western Reserve University, Department of Molecular Biology and MicrobiologyClevelandUnited States
- Case Western Reserve University, Department of Infectious Diseases, School of MedicineClevelandUnited States
- Case Western Reserve University, Department of BiochemistryClevelandUnited States
- Case Western Reserve University, Department of PharmacologyClevelandUnited States
- Case Western Reserve University, Department of Proteomics and BioinformaticsClevelandUnited States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES)ClevelandUnited States
| | - Adrian J Mulholland
- University of Bristol, Centre for Computational Chemistry, School of ChemistryBristolUnited Kingdom
| | - Shozeb Haider
- University College London School of Pharmacy, Pharmaceutical and Biological ChemistryLondonUnited Kingdom
| |
Collapse
|
16
|
Meelua W, Wanjai T, Thinkumrob N, Oláh J, Mujika JI, Ketudat-Cairns JR, Hannongbua S, Jitonnom J. Active site dynamics and catalytic mechanism in arabinan hydrolysis catalyzed by GH43 endo-arabinanase from QM/MM molecular dynamics simulation and potential energy surface. J Biomol Struct Dyn 2021; 40:7439-7449. [PMID: 33715601 DOI: 10.1080/07391102.2021.1898469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The endo-1,5-α-L-arabinanases, belonging to glycoside hydrolase family 43 (GH43), catalyse the hydrolysis of α-1,5-arabinofuranosidic bonds in arabinose-containing polysaccharides. These enzymes are proposed targets for industrial and medical applications. Here, molecular dynamics (MD), potential energy surface and free energy (potential of mean force) simulations are undertaken using hybrid quantum mechanical/molecular mechanical (QM/MM) potentials to understand the active site dynamics, catalytic mechanism and the electrostatic influence of active site residues of the GH43 endo-arabinanase from G. stearothermophilus. The calculated results give support to the single-displacement mechanism proposed for the inverting GH43 enzymes: first a proton is transferred from the general acid E201 to the substrate, followed by a nucleophilic attack by water, activated by the general base D27, on the anomer carbon. A conformational change (2E ↔E3 ↔ 4E) in the -1 sugar ring is observed involving a transition state featuring an oxocarbenium ion character. Residues D87, K106, H271 are highlighted as potential targets for future mutation experiments in order to increase the efficiency of the reaction. To our knowledge, this is the first QM/MM study providing molecular insights into the glycosidic bond hydrolysis of a furanoside substrate by an inverting GH in solution.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wijitra Meelua
- Demonstration School, University of Phayao, Phayao, Thailand.,Division of Chemistry, School of Science, University of Phayao, Phayao, Thailand
| | | | | | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Jon I Mujika
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, and Donostia International Physics Center (DIPC), Donostia, Euskadi, Spain
| | - James R Ketudat-Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Jitrayut Jitonnom
- Division of Chemistry, School of Science, University of Phayao, Phayao, Thailand
| |
Collapse
|
17
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
18
|
Song Z, Zhou H, Tian H, Wang X, Tao P. Unraveling the energetic significance of chemical events in enzyme catalysis via machine-learning based regression approach. Commun Chem 2020; 3:134. [PMID: 36703376 PMCID: PMC9814854 DOI: 10.1038/s42004-020-00379-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/11/2020] [Indexed: 01/29/2023] Open
Abstract
The bacterial enzyme class of β-lactamases are involved in benzylpenicillin acylation reactions, which are currently being revisited using hybrid quantum mechanical molecular mechanical (QM/MM) chain-of-states pathway optimizations. Minimum energy pathways are sampled by reoptimizing pathway geometry under different representative protein environments obtained through constrained molecular dynamics simulations. Predictive potential energy surface models in the reaction space are trained with machine-learning regression techniques. Herein, using TEM-1/benzylpenicillin acylation reaction as the model system, we introduce two model-independent criteria for delineating the energetic contributions and correlations in the predicted reaction space. Both methods are demonstrated to effectively quantify the energetic contribution of each chemical process and identify the rate limiting step of enzymatic reaction with high degrees of freedom. The consistency of the current workflow is tested under seven levels of quantum chemistry theory and three non-linear machine-learning regression models. The proposed approaches are validated to provide qualitative compliance with experimental mutagenesis studies.
Collapse
Affiliation(s)
- Zilin Song
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, 75275, USA
| | - Hongyu Zhou
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, 75275, USA
| | - Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, 75275, USA
| | - Xinlei Wang
- Department of Statistical Science, Southern Methodist University, Dallas, TX, 75275, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|
19
|
Akher FB, Farrokhzadeh A, Ravenscroft N, Kuttel MM. Mechanistic Study of Potent Fluorinated EGFR Kinase Inhibitors with a Quinazoline Scaffold against L858R/T790M/C797S Resistance Mutation: Unveiling the Fluorine Substituent Cooperativity Effect on the Inhibitory Activity. J Phys Chem B 2020; 124:5813-5824. [PMID: 32603111 DOI: 10.1021/acs.jpcb.0c03440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fluorination has considerable potential with regard to the design of kinase inhibitors for anticarcinoma therapy. It was recently reported that fluorination increases the potency of inhibitors of the epidermal growth factor receptor (EGFR), mutations of which have been linked specifically to nonsmall-cell lung cancer. For the L858R/T790M/C797S triplet mutant (EGFRTM), a difluorinated inhibitor, 25g, was found to have 4.23 times greater potency against the EGFRTM than an unfluorinated inhibitor, 25a. This discovery necessitates a rational explanation for the underlying inhibitory mechanisms. Here, we apply multiple computational approaches to explore, validate, and differentiate the binding modes of 25a and 25g in the EGFRTM and investigate the cooperativity effect of fluorine substituents on the inhibitory activity. Our results showed that the EGFRTM in the presence of 25g undergoes a series of conformational changes that favor inhibitor binding to both the active and allosteric sites. Further, the cooperativity effect of fluorine substituents is positive: the complex stability is increased by each additional fluorine substituent. Estimated binding free energies show good correlation with the experimental biological activity. Subsequently, the decomposition energy analysis revealed that the van der Waals interaction is the principal force contributing to variations in the binding affinities of 25a and 25g to the EGFRTM. Per-residue energy-based hierarchical clustering analysis suggests that three hot-spot residues, L718, K745, and D855, are the key in achieving optimal binding modes for 25g with higher affinity in the EGFRTM compared to 25a. This study provides a rationale for the superior EGFRTM-inhibitory potency exhibited by 25g over 25a, which is expected to be useful for the future rational structure-based design of novel EGFRTM inhibitors with improved potency and selectivity.
Collapse
Affiliation(s)
- Farideh Badichi Akher
- Department of Computer Science, University of Cape Town, Cape Town 7701, South Africa.,Department of Chemistry, University of Cape Town, Cape Town 7700, South Africa
| | - Abdolkarim Farrokhzadeh
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Cape Town 7700, South Africa
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
20
|
Cheng Q, DeYonker NJ. Acylation and deacylation mechanism and kinetics of penicillin G reaction with Streptomyces R61 DD-peptidase. J Comput Chem 2020; 41:1685-1697. [PMID: 32323874 DOI: 10.1002/jcc.26210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/26/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
Abstract
Two quantum mechanical (QM)-cluster models are built for studying the acylation and deacylation mechanism and kinetics of Streptomyces R61 DD-peptidase with the penicillin G at atomic level detail. DD-peptidases are bacterial enzymes involved in the cross-linking of peptidoglycan to form the cell wall, necessary for bacterial survival. The cross-linking can be inhibited by antibiotic beta-lactam derivatives through acylation, preventing the acyl-enzyme complex from undergoing further deacylation. The deacylation step was predicted to be rate-limiting. Transition state and intermediate structures are found using density functional theory in this study, and thermodynamic and kinetic properties of the proposed mechanism are evaluated. The acyl-enzyme complex is found lying in a deep thermodynamic sink, and deacylation is indeed the severely rate-limiting step, leading to suicide inhibition of the peptidoglycan cross-linking. The usage of QM-cluster models is a promising technique to understand, improve, and design antibiotics to disrupt function of the Streptomyces R61 DD-peptidase.
Collapse
Affiliation(s)
- Qianyi Cheng
- Department of Chemistry, University of Memphis, Memphis, Tennessee, USA
| | - Nathan J DeYonker
- Department of Chemistry, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
21
|
He Y, Lei J, Pan X, Huang X, Zhao Y. The hydrolytic water molecule of Class A β-lactamase relies on the acyl-enzyme intermediate ES* for proper coordination and catalysis. Sci Rep 2020; 10:10205. [PMID: 32576842 PMCID: PMC7311446 DOI: 10.1038/s41598-020-66431-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/06/2020] [Indexed: 11/16/2022] Open
Abstract
Serine-based β-lactamases of Class A, C and D all rely on a key water molecule to hydrolyze and inactivate β-lactam antibiotics. This process involves two conserved catalytic steps. In the first acylation step, the β-lactam antibiotic forms an acyl-enzyme intermediate (ES*) with the catalytic serine residue. In the second deacylation step, an activated water molecule serves as nucleophile (WAT_Nu) to attack ES* and release the inactivated β-lactam. The coordination and activation of WAT_Nu is not fully understood. Using time-resolved x-ray crystallography and QM/MM simulations, we analyzed three intermediate structures of Class A β-lactamase PenP as it slowly hydrolyzed cephaloridine. WAT_Nu is centrally located in the apo structure but becomes slightly displaced away by ES* in the post-acylation structure. In the deacylation structure, WAT_Nu moves back and is positioned along the Bürgi–Dunitz trajectory with favorable energetic profile to attack ES*. Unexpectedly, WAT_Nu is also found to adopt a catalytically incompetent conformation in the deacylation structure forming a hydrogen bond with ES*. Our results reveal that ES* plays a significant role in coordinating and activating WAT_Nu through subtle yet distinct interactions at different stages of the catalytic process. These interactions may serve as potential targets to circumvent β-lactamase-mediated antibiotic resistance.
Collapse
Affiliation(s)
- Yunjiao He
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P. R. China.,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Jinping Lei
- Department of Chemistry, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xuehua Pan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P. R. China.,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Xuhui Huang
- Department of Chemistry, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.
| | - Yanxiang Zhao
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P. R. China. .,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| |
Collapse
|
22
|
Markovic M, Ben-Shabat S, Dahan A. Computational Simulations to Guide Enzyme-Mediated Prodrug Activation. Int J Mol Sci 2020; 21:ijms21103621. [PMID: 32443905 PMCID: PMC7279318 DOI: 10.3390/ijms21103621] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Prodrugs are designed to improve pharmaceutical/biopharmaceutical characteristics, pharmacokinetic/pharmacodynamic properties, site-specificity, and more. A crucial step in successful prodrug is its activation, which releases the active parent drug, exerting a therapeutic effect. Prodrug activation can be based on oxidation/reduction processes, or through enzyme-mediated hydrolysis, from oxidoreductases (i.e., Cytochrome P450) to hydrolytic enzymes (i.e., carboxylesterase). This study provides an overview of the novel in silico methods for the optimization of enzyme-mediated prodrug activation. Computational methods simulating enzyme-substrate binding can be simpler like molecular docking, or more complex, such as quantum mechanics (QM), molecular mechanics (MM), and free energy perturbation (FEP) methods such as molecular dynamics (MD). Examples for MD simulations used for elucidating the mechanism of prodrug (losartan, paclitaxel derivatives) metabolism via CYP450 enzyme are presented, as well as an MD simulation for optimizing linker length in phospholipid-based prodrugs. Molecular docking investigating quinazolinone prodrugs as substrates for alkaline phosphatase is also presented, as well as QM and MD simulations used for optimal fit of different prodrugs within the human carboxylesterase 1 catalytical site. Overall, high quality computational simulations may show good agreement with experimental results, and should be used early in the prodrug development process.
Collapse
|
23
|
Hirvonen VHA, Mulholland AJ, Spencer J, van der Kamp MW. Small Changes in Hydration Determine Cephalosporinase Activity of OXA-48 β-Lactamases. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Viivi H. A. Hirvonen
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD United Kingdom
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS United Kingdom
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, BS8 1TD United Kingdom
| | - Marc W. van der Kamp
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD United Kingdom
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS United Kingdom
| |
Collapse
|
24
|
Silva JRA, Cianni L, Araujo D, Batista PHJ, de Vita D, Rosini F, Leitão A, Lameira J, Montanari CA. Assessment of the Cruzain Cysteine Protease Reversible and Irreversible Covalent Inhibition Mechanism. J Chem Inf Model 2020; 60:1666-1677. [PMID: 32126170 DOI: 10.1021/acs.jcim.9b01138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reversible and irreversible covalent ligands are advanced cysteine protease inhibitors in the drug development pipeline. K777 is an irreversible inhibitor of cruzain, a necessary enzyme for the survival of the Trypanosoma cruzi (T. cruzi) parasite, the causative agent of Chagas disease. Despite their importance, irreversible covalent inhibitors are still often avoided due to the risk of adverse effects. Herein, we replaced the K777 vinyl sulfone group with a nitrile moiety to obtain a reversible covalent inhibitor (Neq0682) of cysteine protease. Then, we used advanced experimental and computational techniques to explore details of the inhibition mechanism of cruzain by reversible and irreversible inhibitors. The isothermal titration calorimetry (ITC) analysis shows that inhibition of cruzain by an irreversible inhibitor is thermodynamically more favorable than by a reversible one. The hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) and Molecular Dynamics (MD) simulations were used to explore the mechanism of the reaction inhibition of cruzain by K777 and Neq0682. The calculated free energy profiles show that the Cys25 nucleophilic attack and His162 proton transfer occur in a single step for a reversible inhibitor and two steps for an irreversible covalent inhibitor. The hybrid QM/MM calculated free energies for the inhibition reaction correspond to -26.7 and -5.9 kcal mol-1 for K777 and Neq0682 at the MP2/MM level, respectively. These results indicate that the ΔG of the reaction is very negative for the process involving K777, consequently, the covalent adduct cannot revert to a noncovalent protein-ligand complex, and its binding tends to be irreversible. Overall, the present study provides insights into a covalent inhibition mechanism of cysteine proteases.
Collapse
Affiliation(s)
- José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos. Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa 01, CEP 66075-110, Belém, Pará, Brazil
| | - Lorenzo Cianni
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| | - Deborah Araujo
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| | - Pedro Henrique Jatai Batista
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| | - Daniela de Vita
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| | - Fabiana Rosini
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| | - Andrei Leitão
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos. Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa 01, CEP 66075-110, Belém, Pará, Brazil
| | - Carlos A Montanari
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| |
Collapse
|
25
|
Dynamical Behavior of β-Lactamases and Penicillin- Binding Proteins in Different Functional States and Its Potential Role in Evolution. ENTROPY 2019. [PMCID: PMC7514474 DOI: 10.3390/e21111130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
β-Lactamases are enzymes produced by bacteria to hydrolyze β-lactam-based antibiotics, and pose serious threat to public health through related antibiotic resistance. Class A β-lactamases are structurally and functionally related to penicillin-binding proteins (PBPs). Despite the extensive studies of the structures, catalytic mechanisms and dynamics of both β-lactamases and PBPs, the potentially different dynamical behaviors of these proteins in different functional states still remain elusive in general. In this study, four evolutionarily related proteins, including TEM-1 and TOHO-1 as class A β-lactamases, PBP-A and DD-transpeptidase as two PBPs, are subjected to molecular dynamics simulations and various analyses to characterize their dynamical behaviors in different functional states. Penicillin G and its ring opening product serve as common ligands for these four proteins of interest. The dynamic analyses of overall structures, the active sites with penicillin G, and three catalytically important residues commonly shared by all four proteins reveal unexpected cross similarities between Class A β-lactamases and PBPs. These findings shed light on both the hidden relations among dynamical behaviors of these proteins and the functional and evolutionary relations among class A β-lactamases and PBPs.
Collapse
|
26
|
Akher FB, Farrokhzadeh A, Ravenscroft N, Kuttel MM. A Mechanistic Study of a Potent and Selective Epidermal Growth Factor Receptor Inhibitor against the L858R/T790M Resistance Mutation. Biochemistry 2019; 58:4246-4259. [PMID: 31589411 DOI: 10.1021/acs.biochem.9b00710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covalent targeting is a promising strategy for increasing the potency and selectivity of potential drug candidates. This therapeutic approach was recently reported for the epidermal growth factor receptor (EGFR), wherein a covalent binder, 20g [N-(3-{7-[2-methoxy-4-(4-methylpiperazin-1-yl)phenylamino]-3,4-dihydro-3-isopropyl-2,4-dioxopyrimido[4,5-d]pyrimidin-1(2H)-yl}phenyl)acrylamide], demonstrated significant selectivity and inhibitory activity toward the EGFR L858R/T790M double mutant (EGFRDM) relative to the EGFR wild-type form (EGFRWT). The enhanced therapeutic potency of 20g against EGFRDM is 263 times greater than that against EGFRWT, which necessitates a rational explanation for the underlying selective and inhibitory mechanisms. In this work, we investigate the differential binding modes of 20g with EGFRWT and EGFRDM using molecular dynamics simulations coupled with free energy calculations and further identify key residues involved in the selective targeting, binding, and inhibitory mechanisms mediated by 20g. We find that systematic orientational and conformational changes in the α-loop, p-loop, active loop, and αC-helix are responsible for the disparate binding mechanisms and inhibitory prowess of 20g with respect to EGFRWT and EGFRDM. The calculated binding free energies show good correlation with the experimental biological activity. The total binding free energy difference between EGFRWT-20g and EGFRDM-20g is -11.47 kcal/mol, implying that 20g binds more strongly to EGFRDM. This enhanced binding affinity of 20g for EGFRDM is a result of a large increase in the van der Waals and electrostatic interactions with three critical residues (Met790, Gln791, and Met793) that are chiefly responsible for the high-affinity interactions mediated by 20g with EGFRDM relative to EGFRWT.
Collapse
Affiliation(s)
- Farideh Badichi Akher
- Department of Computer Science , University of Cape Town , Cape Town 7701 , South Africa.,Department of Chemistry , University of Cape Town , Cape Town 7701 , South Africa
| | - Abdolkarim Farrokhzadeh
- School of Chemistry and Physics , University of KwaZulu-Natal , Private Bag X01 , Pietermaritzburg 3209 , South Africa
| | - Neil Ravenscroft
- Department of Chemistry , University of Cape Town , Cape Town 7701 , South Africa
| | - Michelle M Kuttel
- Department of Computer Science , University of Cape Town , Cape Town 7701 , South Africa
| |
Collapse
|
27
|
Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol 2019; 431:3472-3500. [PMID: 30959050 PMCID: PMC6723624 DOI: 10.1016/j.jmb.2019.04.002] [Citation(s) in RCA: 540] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Abstract
The β-lactams retain a central place in the antibacterial armamentarium. In Gram-negative bacteria, β-lactamase enzymes that hydrolyze the amide bond of the four-membered β-lactam ring are the primary resistance mechanism, with multiple enzymes disseminating on mobile genetic elements across opportunistic pathogens such as Enterobacteriaceae (e.g., Escherichia coli) and non-fermenting organisms (e.g., Pseudomonas aeruginosa). β-Lactamases divide into four classes; the active-site serine β-lactamases (classes A, C and D) and the zinc-dependent or metallo-β-lactamases (MBLs; class B). Here we review recent advances in mechanistic understanding of each class, focusing upon how growing numbers of crystal structures, in particular for β-lactam complexes, and methods such as neutron diffraction and molecular simulations, have improved understanding of the biochemistry of β-lactam breakdown. A second focus is β-lactamase interactions with carbapenems, as carbapenem-resistant bacteria are of grave clinical concern and carbapenem-hydrolyzing enzymes such as KPC (class A) NDM (class B) and OXA-48 (class D) are proliferating worldwide. An overview is provided of the changing landscape of β-lactamase inhibitors, exemplified by the introduction to the clinic of combinations of β-lactams with diazabicyclooctanone and cyclic boronate serine β-lactamase inhibitors, and of progress and strategies toward clinically useful MBL inhibitors. Despite the long history of β-lactamase research, we contend that issues including continuing unresolved questions around mechanism; opportunities afforded by new technologies such as serial femtosecond crystallography; the need for new inhibitors, particularly for MBLs; the likely impact of new β-lactam:inhibitor combinations and the continuing clinical importance of β-lactams mean that this remains a rewarding research area.
Collapse
Affiliation(s)
- Catherine L Tooke
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Eilis C Bragginton
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Charlotte K Colenso
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Viivi H A Hirvonen
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Yuiko Takebayashi
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
28
|
Cheng YY, Liu YJ. Luciferin Regeneration in Firefly Bioluminescence via Proton-Transfer-Facilitated Hydrolysis, Condensation and Chiral Inversion. Chemphyschem 2019; 20:1719-1727. [PMID: 31090243 DOI: 10.1002/cphc.201900306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/07/2019] [Indexed: 01/06/2023]
Abstract
Firefly bioluminescence is produced via luciferin enzymatic reactions in luciferase. Luciferin has to be unceasingly replenished to maintain bioluminescence. How is the luciferin reproduced after it has been exhausted? In the early 1970s, Okada proposed the hypothesis that the oxyluciferin produced by the previous bioluminescent reaction could be converted into new luciferin for the next bioluminescent reaction. To some extent, this hypothesis was evidenced by several detected intermediates. However, the detailed process and mechanism of luciferin regeneration remained largely unknown. For the first time, we investigated the entire process of luciferin regeneration in firefly bioluminescence by density functional theory calculations. This theoretical study suggests that luciferin regeneration consists of three sequential steps: the oxyluciferin produced from the last bioluminescent reaction generates 2-cyano-6-hydroxybenzothiazole (CHBT) in the luciferin regenerating enzyme (LRE) via a hydrolysis reaction; CHBT combines with L-cysteine in vivo to form L-luciferin via a condensation reaction; and L-luciferin inverts into D-luciferin in luciferase and thioesterase. The presently proposed mechanism not only supports the sporadic evidence from previous experiments but also clearly describes the complete process of luciferin regeneration. This work is of great significance for understanding the long-term flashing of fireflies without an in vitro energy supply.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
29
|
Shurina BA, Page RC. Influence of substrates and inhibitors on the structure of Klebsiella pneumoniae carbapenemase-2. Exp Biol Med (Maywood) 2019; 244:1596-1604. [PMID: 31161945 DOI: 10.1177/1535370219854322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hydrolysis of last resort carbapenem antibiotics by Klebsiella pneumoniae carbapenemase-2 (KPC-2) presents a significant danger to global health. Combined with horizontal gene transfer, the emergence KPC-2 threatens to quickly expand carbapenemase activity to ever increasing numbers of pathogens. Our understanding of KPC-2 has greatly increased over the past decade thanks, in great part, to 20 crystal structures solved by groups around the world. These include apo KPC-2 structures, along with structures featuring a library of 10 different inhibitors representing diverse structural and functional classes. Herein we focus on cataloging the available KPC-2 structures and presenting a discussion of key aspects of each structure and important relationships between structures. Although the available structures do not provide information on dynamic motions with KPC-2, and the family of structures indicates small conformational changes across a wide array of bound inhibitors, substrates, and products, the structures provide a strong foundation for additional studies in the coming years to discover new KPC-2 inhibitors. Impact statement The work herein is important to the field as it provides a clear and succinct accounting of available KPC-2 structures. The work advances the field by collecting and analyzing differences and similarities across the available structures. This work features new analyses and interpretations of the existing structures which will impact the field in a positive way by making structural insights more widely available among the beta-lactamase community.
Collapse
Affiliation(s)
- Ben A Shurina
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
30
|
Marion A, Gokcan H, Monard G. Semi-Empirical Born-Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package. J Chem Inf Model 2019; 59:206-214. [PMID: 30433776 DOI: 10.1021/acs.jcim.8b00605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide & conquer (D&C) method, it is possible to quickly evaluate the energy of systems containing hundreds to thousands of atoms. We here present our implementation in the Amber biomolecular package of a SEBOMD module that provides a way to run semi-empirical Born-Oppenheimer molecular dynamics. At each step of a SEBOMD, a fully converged self-consistent field (SCF) calculation is performed to obtain the semiempirical quantum potential energy of a molecular system encaged or not in periodic boundary conditions. We describe the implementation and the features of our SEBOMD implementation. We show the requirements to conserve the total energy in NVE simulations, and how to accelerate SCF convergence through density matrix extrapolation. Specific ways of handling periodic boundary conditions using mechanical embedding or electrostatic embedding through a tailored quantum Ewald summation is developed. The parallel performance of SEBOMD simulations using the D&C scheme are presented for liquid water systems of various sizes, and a comparison between the traditional full diagonalization scheme and the D&C approach for the reproduction of the structure of liquid water illustrates the potentiality of SEBOMD to simulate molecular systems containing several hundreds of atoms for hundreds of picoseconds with a quantum mechanical potential in a reasonable amount of CPU time.
Collapse
Affiliation(s)
- Antoine Marion
- Université de Lorraine, CNRS, LPCT , F-54000 Nancy , France.,Department of Chemistry , Middle East Technical University , 06800 , Ankara , Turkey
| | - Hatice Gokcan
- Université de Lorraine, CNRS, LPCT , F-54000 Nancy , France.,Department of Chemistry , University of North Texas , Denton , Texas 76201 , United States
| | - Gerald Monard
- Université de Lorraine, CNRS, LPCT , F-54000 Nancy , France
| |
Collapse
|
31
|
Defining the architecture of KPC-2 Carbapenemase: identifying allosteric networks to fight antibiotics resistance. Sci Rep 2018; 8:12916. [PMID: 30150677 PMCID: PMC6110804 DOI: 10.1038/s41598-018-31176-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/13/2018] [Indexed: 11/08/2022] Open
Abstract
The rise of multi-drug resistance in bacterial pathogens is one of the grand challenges facing medical science. A major concern is the speed of development of β-lactamase-mediated resistance in Gram-negative species, thus putting at risk the efficacy of the most recently approved antibiotics and inhibitors, including carbapenems and avibactam, respectively. New strategies to overcome resistance are urgently required, which will ultimately be facilitated by a deeper understanding of the mechanisms that regulate the function of β-lactamases such as the Klebsiella Pneumoniae carbapenemases (KPCs). Using enhanced sampling computational methods together with site-directed mutagenesis, we report the identification of two “hydrophobic networks” in the KPC-2 enzyme, the integrity of which has been found to be essential for protein stability and corresponding resistance. Present throughout the structure, these networks are responsible for the structural integrity and allosteric signaling. Disruption of the networks leads to a loss of the KPC-2 mediated resistance phenotype, resulting in restored susceptibility to different classes of β-lactam antibiotics including carbapenems and cephalosporins. The ”hydrophobic networks” were found to be highly conserved among class-A β-lactamases, which implies their suitability for exploitation as a potential target for therapeutic intervention.
Collapse
|
32
|
Fritz RA, Alzate-Morales JH, Spencer J, Mulholland AJ, van der Kamp MW. Multiscale Simulations of Clavulanate Inhibition Identify the Reactive Complex in Class A β-Lactamases and Predict the Efficiency of Inhibition. Biochemistry 2018; 57:3560-3563. [PMID: 29812917 DOI: 10.1021/acs.biochem.8b00480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Clavulanate is used as an effective drug in combination with β-lactam antibiotics to treat infections of some antibiotic resistant bacteria. Here, we perform combined quantum mechanics/molecular mechanics simulations of several covalent complexes of clavulanate with class A β-lactamases KPC-2 and TEM-1. Simulations of the deacylation reactions identify the decarboxylated trans-enamine complex as being responsible for inhibition. Further, the obtained free energy barriers discriminate clinically relevant inhibition (TEM-1) from less effective inhibition (KPC-2).
Collapse
Affiliation(s)
- Rubén A Fritz
- Center for Bioinformatics and Molecular Simulations, Faculty of Engineering , University of Talca , Talca , Chile
| | - Jans H Alzate-Morales
- Center for Bioinformatics and Molecular Simulations, Faculty of Engineering , University of Talca , Talca , Chile
| | - James Spencer
- School of Cellular and Molecular Medicine , University of Bristol , University Walk , Bristol BS8 1TD , U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
- School of Biochemistry , University of Bristol , University Walk , Bristol BS8 1TD , U.K
| |
Collapse
|
33
|
Petrović D, Risso VA, Kamerlin SCL, Sanchez-Ruiz JM. Conformational dynamics and enzyme evolution. J R Soc Interface 2018; 15:20180330. [PMID: 30021929 PMCID: PMC6073641 DOI: 10.1098/rsif.2018.0330] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
Enzymes are dynamic entities, and their dynamic properties are clearly linked to their biological function. It follows that dynamics ought to play an essential role in enzyme evolution. Indeed, a link between conformational diversity and the emergence of new enzyme functionalities has been recognized for many years. However, it is only recently that state-of-the-art computational and experimental approaches are revealing the crucial molecular details of this link. Specifically, evolutionary trajectories leading to functional optimization for a given host environment or to the emergence of a new function typically involve enriching catalytically competent conformations and/or the freezing out of non-competent conformations of an enzyme. In some cases, these evolutionary changes are achieved through distant mutations that shift the protein ensemble towards productive conformations. Multifunctional intermediates in evolutionary trajectories are probably multi-conformational, i.e. able to switch between different overall conformations, each competent for a given function. Conformational diversity can assist the emergence of a completely new active site through a single mutation by facilitating transition-state binding. We propose that this mechanism may have played a role in the emergence of enzymes at the primordial, progenote stage, where it was plausibly promoted by high environmental temperatures and the possibility of additional phenotypic mutations.
Collapse
Affiliation(s)
- Dušan Petrović
- Department of Chemistry, BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | | | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| |
Collapse
|
34
|
Lence E, van der Kamp MW, González-Bello C, Mulholland AJ. QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes. Org Biomol Chem 2018; 16:4443-4455. [PMID: 29767194 PMCID: PMC6011038 DOI: 10.1039/c8ob00066b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/18/2018] [Indexed: 11/29/2022]
Abstract
Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.
Collapse
Affiliation(s)
- Emilio Lence
- Centre for Computational Chemistry
, School of Chemistry
, University of Bristol
,
Cantock's Close
, BS8 1TS Bristol
, UK
.
; Tel: +44 (0)117 9289097
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
, Departamento de Química Orgánica
, Universidade de Santiago de Compostela
,
Jenaro de la Fuente s/n
, 15782 Santiago de Compostela
, Spain
.
; Tel: +34 881 815726
| | - Marc W. van der Kamp
- Centre for Computational Chemistry
, School of Chemistry
, University of Bristol
,
Cantock's Close
, BS8 1TS Bristol
, UK
.
; Tel: +44 (0)117 9289097
- School of Biochemistry
, University of Bristol
, University Walk
,
BS8 1TD Bristol
, UK
.
; Tel: +44 (0)117 3312147
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
, Departamento de Química Orgánica
, Universidade de Santiago de Compostela
,
Jenaro de la Fuente s/n
, 15782 Santiago de Compostela
, Spain
.
; Tel: +34 881 815726
| | - Adrian J. Mulholland
- Centre for Computational Chemistry
, School of Chemistry
, University of Bristol
,
Cantock's Close
, BS8 1TS Bristol
, UK
.
; Tel: +44 (0)117 9289097
| |
Collapse
|
35
|
Langan PS, Vandavasi VG, Cooper CJ, Weiss KL, Ginell SL, Parks JM, Coates L. Substrate Binding Induces Conformational Changes in a Class A β-lactamase That Prime It for Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia S. Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Venu Gopal Vandavasi
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Connor J. Cooper
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephan L. Ginell
- Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Jerry M. Parks
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
36
|
Saravanan M, Ramachandran B, Barabadi H. The prevalence and drug resistance pattern of extended spectrum β–lactamases (ESBLs) producing Enterobacteriaceae in Africa. Microb Pathog 2018; 114:180-192. [DOI: 10.1016/j.micpath.2017.11.061] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
37
|
QM/MM modeling of the hydrolysis and transfructosylation reactions of fructosyltransferase from Aspergillus japonicas, an enzyme that produces prebiotic fructooligosaccharide. J Mol Graph Model 2018; 79:175-184. [DOI: 10.1016/j.jmgm.2017.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 11/24/2022]
|
38
|
Lewandowski EM, Lethbridge KG, Sanishvili R, Skiba J, Kowalski K, Chen Y. Mechanisms of proton relay and product release by Class A β-lactamase at ultrahigh resolution. FEBS J 2017; 285:87-100. [PMID: 29095570 DOI: 10.1111/febs.14315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/15/2017] [Accepted: 10/28/2017] [Indexed: 01/25/2023]
Abstract
The β-lactam antibiotics inhibit penicillin-binding proteins (PBPs) by forming a stable, covalent, acyl-enzyme complex. During the evolution from PBPs to Class A β-lactamases, the β-lactamases acquired Glu166 to activate a catalytic water and cleave the acyl-enzyme bond. Here we present three product complex crystal structures of CTX-M-14 Class A β-lactamase with a ruthenocene-conjugated penicillin-a 0.85 Å resolution structure of E166A mutant complexed with the penilloate product, a 1.30 Å resolution complex structure of the same mutant with the penicilloate product, and a 1.18 Å resolution complex structure of S70G mutant with a penicilloate product epimer-shedding light on the catalytic mechanisms and product inhibition of PBPs and Class A β-lactamases. The E166A-penilloate complex captured the hydrogen bonding network following the protonation of the leaving group and, for the first time, unambiguously show that the ring nitrogen donates a proton to Ser130, which in turn donates a proton to Lys73. These observations indicate that in the absence of Glu166, the equivalent lysine would be neutral in PBPs and therefore capable of serving as the general base to activate the catalytic serine. Together with previous results, this structure suggests a common proton relay network shared by Class A β-lactamases and PBPs, from the catalytic serine to the lysine, and ultimately to the ring nitrogen. Additionally, the E166A-penicilloate complex reveals previously unseen conformational changes of key catalytic residues during the release of the product, and is the first structure to capture the hydrolyzed product in the presence of an unmutated catalytic serine. DATABASE Structural data are available in the PDB database under the accession numbers 5TOP, 5TOY, and 5VLE.
Collapse
Affiliation(s)
- Eric M Lewandowski
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Kathryn G Lethbridge
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Ruslan Sanishvili
- GMCA@APS, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, IL, USA
| | - Joanna Skiba
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
39
|
Latallo MJ, Cortina GA, Faham S, Nakamoto RK, Kasson PM. Predicting allosteric mutants that increase activity of a major antibiotic resistance enzyme. Chem Sci 2017; 8:6484-6492. [PMID: 28989673 PMCID: PMC5628580 DOI: 10.1039/c7sc02676e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022] Open
Abstract
Allosteric mutations increasing kcat in a beta lactamase act by changing conformational ensembles of active-site residues identified by machine learning.
The CTX-M family of beta lactamases mediate broad-spectrum antibiotic resistance and are present in the majority of drug-resistant Gram-negative bacterial infections worldwide. Allosteric mutations that increase catalytic rates of these drug resistance enzymes have been identified in clinical isolates but are challenging to predict prospectively. We have used molecular dynamics simulations to predict allosteric mutants increasing CTX-M9 drug resistance, experimentally testing top mutants using multiple antibiotics. Purified enzymes show an increase in catalytic rate and efficiency, while mutant crystal structures show no detectable changes from wild-type CTX-M9. We hypothesize that increased drug resistance results from changes in the conformational ensemble of an acyl intermediate in hydrolysis. Machine-learning analyses on the three top mutants identify changes to the binding-pocket conformational ensemble by which these allosteric mutations transmit their effect. These findings show how molecular simulation can predict how allosteric mutations alter active-site conformational equilibria to increase catalytic rates and thus resistance against common clinically used antibiotics.
Collapse
Affiliation(s)
- M J Latallo
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - G A Cortina
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA . .,Department of Biomedical Engineering , University of Virginia , USA
| | - S Faham
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - R K Nakamoto
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - P M Kasson
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA . .,Department of Biomedical Engineering , University of Virginia , USA.,Science for Life Laboratory , Department of Cell and Molecular Biology , Uppsala University , Sweden
| |
Collapse
|
40
|
Bhattacharjee N, Field MJ, Simorre JP, Arthur M, Bougault CM. Hybrid Potential Simulation of the Acylation of Enterococcus faecium l,d-Transpeptidase by Carbapenems. J Phys Chem B 2016; 120:4767-81. [DOI: 10.1021/acs.jpcb.6b02836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholus Bhattacharjee
- DYNAMO/DYNAMOP,
UMR 5075, Université Grenoble 1, CNRS, CEA, Institut de Biologie
Structurale, 71 Avenue des Martyrs,
CS 10090, 38044 Grenoble Cedex 9, France
| | - Martin J. Field
- DYNAMO/DYNAMOP,
UMR 5075, Université Grenoble 1, CNRS, CEA, Institut de Biologie
Structurale, 71 Avenue des Martyrs,
CS 10090, 38044 Grenoble Cedex 9, France
| | - Jean-Pierre Simorre
- RMN, UMR 5075,
Université Grenoble 1, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France
| | - Michel Arthur
- Centre de Recherche
des Cordeliers, Equipe 12, UMR S 872, Université Pierre et
Marie Curie-Paris 6, INSERM, Université Paris Descartes, Sorbonne
Paris Cité, 15 rue de l’Ecole
de Médecine, 75006 Paris, France
| | - Catherine M. Bougault
- RMN, UMR 5075,
Université Grenoble 1, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France
| |
Collapse
|
41
|
Lizana I, Jaña GA, Delgado EJ. New Insights on the Reaction Pathway Leading to Lactyl-ThDP: A Theoretical Approach. J Chem Inf Model 2015. [DOI: 10.1021/acs.jcim.5b00197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ignacio Lizana
- Computational
Chemistry Group, Faculty of Chemical Sciences, Universidad de Concepción, Concepción, Chile
| | - Gonzalo A. Jaña
- Departamento
de Ciencias Químicas, Facultad de Ciencias Exactas, Sede Concepción, Universidad Andrés Bello, Concepción, Chile
| | - Eduardo J. Delgado
- Computational
Chemistry Group, Faculty of Chemical Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
42
|
Barbault F, Maurel F. Simulation with quantum mechanics/molecular mechanics for drug discovery. Expert Opin Drug Discov 2015; 10:1047-57. [DOI: 10.1517/17460441.2015.1076389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Capoferri L, Lodola A, Rivara S, Mor M. Quantum mechanics/molecular mechanics modeling of covalent addition between EGFR-cysteine 797 and N-(4-anilinoquinazolin-6-yl) acrylamide. J Chem Inf Model 2015; 55:589-99. [PMID: 25658136 DOI: 10.1021/ci500720e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Irreversible epidermal growth factor receptor (EGFR) inhibitors can circumvent resistance to first-generation ATP-competitive inhibitors in the treatment of nonsmall-cell lung cancer. They covalently bind a noncatalytic cysteine (Cys797) at the surface of EGFR active site by an acrylamide warhead. Herein, we used a hybrid quantum mechanics/molecular mechanics (QM/MM) potential in combination with umbrella sampling in the path-collective variable space to investigate the mechanism of alkylation of Cys797 by the prototypical covalent inhibitor N-(4-anilinoquinazolin-6-yl) acrylamide. Calculations show that Cys797 reacts with the acrylamide group of the inhibitor through a direct addition mechanism, with Asp800 acting as a general base/general acid in distinct steps of the reaction. The obtained reaction free energy is negative (ΔA = -12 kcal/mol) consistent with the spontaneous and irreversible alkylation of Cys797 by N-(4-anilinoquinazolin-6-yl) acrylamide. Our calculations identify desolvation of Cys797 thiolate anion as a key step of the alkylation process, indicating that changes in the intrinsic reactivity of the acrylamide would have only a minor impact on the inhibitor potency.
Collapse
Affiliation(s)
- Luigi Capoferri
- Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze 27/A, I-43124, Parma, Italy
| | - Alessio Lodola
- Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze 27/A, I-43124, Parma, Italy
| | - Silvia Rivara
- Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze 27/A, I-43124, Parma, Italy
| | - Marco Mor
- Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze 27/A, I-43124, Parma, Italy
| |
Collapse
|
44
|
Paasche A, Zipper A, Schäfer S, Ziebuhr J, Schirmeister T, Engels B. Evidence for substrate binding-induced zwitterion formation in the catalytic Cys-His dyad of the SARS-CoV main protease. Biochemistry 2014; 53:5930-46. [PMID: 25196915 DOI: 10.1021/bi400604t] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The coronavirus main protease (M(pro)) represents an attractive drug target for antiviral therapy of coronavirus (CoV) infections, including severe acute respiratory syndrome (SARS). The SARS-CoV M(pro) and related CoV proteases have several distinct features, such as an uncharged Cys-His catalytic dyad embedded in a chymotrypsin-like protease fold, that clearly separate these enzymes from archetypical cysteine proteases. To further characterize the catalytic system of CoV main proteases and to obtain information about improved inhibitors, we performed comprehensive simulations of the proton-transfer reactions in the SARS-CoV M(pro) active site that lead to the Cys(-)/His(+) zwitterionic state required for efficient proteolytic activity. Our simulations, comprising the free enzyme as well as substrate-enzyme and inhibitor-enzyme complexes, lead us to predict that zwitterion formation is fostered by substrate binding but not inhibitor binding. This indicates that M(pro) employs a substrate-induced catalytic mechanism that further enhances its substrate specificity. Our computational data are in line with available experimental results, such as X-ray geometries, measured pKa values, mutagenesis experiments, and the measured differences between the kinetic parameters of substrates and inhibitors. The data also provide an atomistic picture of the formerly postulated electrostatic trigger involved in SARS-CoV M(pro) activity. Finally, they provide information on how a specific microenvironment may finely tune the activity of M(pro) toward specific viral protein substrates, which is known to be required for efficient viral replication. Our simulations also indicate that the low inhibition potencies of known covalently interacting inhibitors may, at least in part, be attributed to insufficient fostering of the proton-transfer reaction. These findings suggest ways to achieve improved inhibitors.
Collapse
Affiliation(s)
- Alexander Paasche
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg , Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Sgrignani J, Grazioso G, De Amici M, Colombo G. Inactivation of TEM-1 by Avibactam (NXL-104): Insights from Quantum Mechanics/Molecular Mechanics Metadynamics Simulations. Biochemistry 2014; 53:5174-85. [DOI: 10.1021/bi500589x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jacopo Sgrignani
- Istituto di Chimica
del Riconscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milan, Italy
| | - Giovanni Grazioso
- Dipartimento
di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica “Pietro
Pratesi”, Università degli Studi di Milano, Via
Mangiagalli 25, 20133, Milan, Italy
| | - Marco De Amici
- Dipartimento
di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica “Pietro
Pratesi”, Università degli Studi di Milano, Via
Mangiagalli 25, 20133, Milan, Italy
| | - Giorgio Colombo
- Istituto di Chimica
del Riconscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milan, Italy
| |
Collapse
|
46
|
Grigorenko BL, Khrenova MG, Nilov DK, Nemukhin AV, Švedas VK. Catalytic Cycle of Penicillin Acylase from Escherichia coli: QM/MM Modeling of Chemical Transformations in the Enzyme Active Site upon Penicillin G Hydrolysis. ACS Catal 2014. [DOI: 10.1021/cs5002898] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Bella L. Grigorenko
- Chemistry
Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119991, Russia
| | - Maria G. Khrenova
- Chemistry
Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Dmitry K. Nilov
- Belozersky
Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Alexander V. Nemukhin
- Chemistry
Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119991, Russia
| | - Vytas K. Švedas
- Belozersky
Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Faculty
of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73 Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
47
|
Hargis JC, White JK, Chen Y, Woodcock HL. Can molecular dynamics and QM/MM solve the penicillin binding protein protonation puzzle? J Chem Inf Model 2014; 54:1412-24. [PMID: 24697903 PMCID: PMC4036751 DOI: 10.1021/ci5000517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Benzylpenicillin, a member of the
β-lactam antibiotic class, has been widely used to combat bacterial
infections since 1947. The general mechanism is well-known: a serine
protease enzyme (i.e., DD-peptidase) forms a long lasting intermediate
with the lactam ring of the antibiotic known as acylation, effectively
preventing biosynthesis of the bacterial cell wall. Despite this overall
mechanistic understanding, many details of binding and catalysis are
unclear. Specifically, there is ongoing debate about active site protonation
states and the role of general acids/bases in the reaction. Herein,
a unique combination of MD simulations, QM/MM minimizations, and QM/MM
orbital analyses is combined with systematic variation of active site
residue protonation states. Critical interactions that maximize the
stability of the bound inhibitor are examined and used as metrics.
This approach was validated by examining cefoxitin interactions in
the CTX-M β-lactamase from E. coli and compared to an ultra high-resolution (0.88 Å) crystal structure.
Upon confirming the approach used, an investigation of the preacylated Streptomyces R61 active site with bound benzylpenicillin
was performed, varying the protonation states of His298 and Lys65.
We concluded that protonated His298 and deprotonated Lys65 are most
likely to exist in the R61 active site.
Collapse
Affiliation(s)
- Jacqueline C Hargis
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | |
Collapse
|
48
|
Kamiya K, Baba T, Boero M, Matsui T, Negoro S, Shigeta Y. Nylon-Oligomer Hydrolase Promoting Cleavage Reactions in Unnatural Amide Compounds. J Phys Chem Lett 2014; 5:1210-1216. [PMID: 26274473 DOI: 10.1021/jz500323y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The active site of 6-aminohexanoate-dimer hydrolase, a nylon-6 byproduct-degrading enzyme with a β-lactamase fold, possesses a Ser112/Lys115/Tyr215 catalytic triad similar to the one of penicillin-recognizing family of serine-reactive hydrolases but includes a unique Tyr170 residue. By using a reactive quantum mechanics/molecular mechanics (QM/MM) approach, we work out its catalytic mechanism and related functional/structural specificities. At variance with other peptidases, we show that the involvement of Tyr170 in the enzyme-substrate interactions is responsible for a structural variation in the substrate-binding state. The acylation via a tetrahedral intermediate is the rate-limiting step, with a free-energy barrier of ∼21 kcal/mol, driven by the catalytic triad Ser112, Lys115, and Tyr215, acting as a nucleophile, general base, and general acid, respectively. The functional interaction of Tyr170 with this triad leads to an efficient disruption of the tetrahedral intermediate, promoting a conformational change of the substrate favorable for proton donation from the general acid.
Collapse
Affiliation(s)
- Katsumasa Kamiya
- †Center for Basic Education and Integrated Learning, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Takeshi Baba
- ‡Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Mauro Boero
- §Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS and University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Toru Matsui
- ∥RIKEN, Advanced Institute for Computational Science, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Seiji Negoro
- ⊥Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Yasuteru Shigeta
- ‡Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- #CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
49
|
Zhang X, Ouyang S, Kong X, Liang Z, Lu J, Zhu K, Zhao D, Zheng M, Jiang H, Liu X, Marmorstein R, Luo C. Catalytic mechanism of histone acetyltransferase p300: from the proton transfer to acetylation reaction. J Phys Chem B 2014; 118:2009-19. [PMID: 24521098 DOI: 10.1021/jp409778e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The transcriptional coactivator and histone acetyltransferase (HAT) p300 acetylates the four core histones and other transcription factors to regulate a plethora of fundamental biological processes including cell growth, development, oncogenesis and apoptosis. Recent structural and biochemical studies on the p300 HAT domain revealed a Theorell-Chance, or "hit-and-run", catalytic mechanism. Nonetheless, the chemical mechanism of the entire reaction process including the proton transfer (PT) scheme and consequent acetylation reaction route remains unclear. In this study, a combined computational strategy consisting of molecular modeling, molecular dynamic (MD) simulation, and quantum mechanics/molecular mechanics (QM/MM) simulation was applied to elucidate these important issues. An initial p300/H3/Ac-CoA complex structure was modeled and optimized using a 100 ns MD simulation. Residues that play important roles in substrate binding and the acetylation reaction were comprehensively investigated. For the first time, these studies reveal a plausible PT scheme consisting of Y1394, D1507, and a conserved crystallographic water molecule, with all components of the scheme being stable during the MD simulation and the energy barrier low for PT to occur. The two-dimensional potential energy surface for the nucleophilic attack process was also calculated. The comparison of potential energies for two possible elimination half-reaction mechanisms revealed that Y1467 reprotonates the coenzyme-A leaving group to form product. This study provides new insights into the detailed catalytic mechanism of p300 and has important implications for the discovery of novel small molecule regulators for p300.
Collapse
Affiliation(s)
- Xinlei Zhang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University , Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sánchez L, Jaña GA, Delgado EJ. A QM/MM study on the reaction pathway leading to 2-Aceto-2-hydroxybutyrate in the catalytic cycle of AHAS. J Comput Chem 2014; 35:488-94. [DOI: 10.1002/jcc.23523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/30/2013] [Accepted: 12/15/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Leslie Sánchez
- Computational Biological Chemistry Group, Faculty of Chemical Sciences; Universidad de Concepción; Concepción
| | - Gonzalo A. Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Sede Concepción; Universidad Andrés Bello; Concepcion
| | - Eduardo J. Delgado
- Computational Biological Chemistry Group, Faculty of Chemical Sciences; Universidad de Concepción; Concepción
| |
Collapse
|