1
|
Fukuda Y, Lintuluoto M, Kurihara K, Hasegawa K, Inoue T, Tamada T. Overlooked Hydrogen Bond in a Blue Copper Protein Uncovered by Neutron and Sub-Ångström Resolution X-ray Crystallography. Biochemistry 2024; 63:339-347. [PMID: 38232298 DOI: 10.1021/acs.biochem.3c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Metalloproteins play fundamental roles in organisms and are utilized as starting points for the directed evolution of artificial enzymes. Knowing the strategies of metalloproteins, by which they exquisitely tune their activities, will not only lead to an understanding of biochemical phenomena but also contribute to various applications. The blue copper protein (BCP) has been a renowned model system to understand the biology, chemistry, and physics of metalloproteins. Pseudoazurin (Paz), a blue copper protein, mediates electron transfer in the bacterial anaerobic respiratory chain. Its redox potential is finely tuned by hydrogen (H) bond networks; however, difficulty in visualizing H atom positions in the protein hinders the detailed understanding of the protein's structure-function relationship. We here used neutron and sub-ångström resolution X-ray crystallography to directly observe H atoms in Paz. The 0.86-Å-resolution X-ray structure shows that the peptide bond between Pro80 and the His81 Cu ligand deviates from the ideal planar structure. The 1.9-Å-resolution neutron structure confirms a long-overlooked H bond formed by the amide of His81 and the S atom of another Cu ligand Cys78. Quantum mechanics/molecular mechanics calculations show that this H bond increases the redox potential of the Cu site and explains the experimental results well. Our study demonstrates the potential of neutron and sub-ångström resolution X-ray crystallography to understand the chemistry of metalloproteins at atomic and quantum levels.
Collapse
Affiliation(s)
- Yohta Fukuda
- Graduate School of Pharmaceutical Science, Osaka University, Suita 565-0871, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 565-0871, Osaka, Japan
| | - Masami Lintuluoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kazuo Kurihara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Tokai 319-1106, Ibaraki, Japan
| | - Kazuya Hasegawa
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Hyogo, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Science, Osaka University, Suita 565-0871, Osaka, Japan
| | - Taro Tamada
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Chiba, Japan
- Graduate School of Science and Engineering, Chiba University, Chiba 263-8552, Chiba, Japan
| |
Collapse
|
2
|
Dedushko MA, Pikul JH, Kovacs JA. Superoxide Oxidation by a Thiolate-Ligated Iron Complex and Anion Inhibition. Inorg Chem 2021; 60:7250-7261. [PMID: 33900756 DOI: 10.1021/acs.inorgchem.1c00336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Superoxide (O2•-) is a toxic radical, generated via the adventitious reduction of dioxygen (O2), which has been implicated in a number of human disease states. Nonheme iron enzymes, superoxide reductase (SOR) and superoxide dismutase (SOD), detoxify O2•- via reduction to afford H2O2 and disproportionation to afford O2 and H2O2, respectively. The former contains a thiolate in the coordination sphere, which has been proposed to prevent O2•- oxidation to O2. The work described herein shows that, in contrast to this, oxidized thiolate-ligated [FeIII(SMe2N4(tren)(THF)]2+ (1ox-THF) is capable of oxidizing O2•- to O2. Coordinating anions, Cl- and OAc-, are shown to inhibit dioxygen evolution, implicating an inner-sphere mechanism. Previously we showed that the reduced thiolate-ligated [FeII(SMe2N4(tren))]+ (1) is capable of reducing O2•- via a proton-dependent inner-sphere mechanism involving a transient Fe(III)-OOH intermediate. A transient ferric-superoxo intermediate, [FeIII(SMe2N4(tren))(O2)]+ (3), is detected by electronic absorption spectroscopy at -130 °C in the reaction between 1ox-THF and KO2 and shown to evolve O2 upon slight warming to -115 °C. The DFT calculated O-O (1.306 Å) and Fe-O (1.943 Å) bond lengths of 3 are typical of ferric-superoxo complexes, and the time-dependent DFT calculated electronic absorption spectrum of 3 reproduces the experimental spectrum. The electronic structure of 3 is shown to consist of two antiferromagnetically coupled (Jcalc = -180 cm-1) unpaired electrons, one in a superoxo π*(O-O) orbital and the other in an antibonding π*(Fe(dyz)-S(py)) orbital.
Collapse
Affiliation(s)
- Maksym A Dedushko
- The Department of Chemistry, University of Washington: Box 351700, Seattle, Washington 98195-1700, United States
| | - Jessica H Pikul
- The Department of Chemistry, University of Washington: Box 351700, Seattle, Washington 98195-1700, United States
| | - Julie A Kovacs
- The Department of Chemistry, University of Washington: Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
3
|
Desbois A, Valton J, Moreau Y, Torelli S, Nivière V. Conformational H-bonding modulation of the iron active site cysteine ligand of superoxide reductase: absorption and resonance Raman studies. Phys Chem Chem Phys 2021; 23:4636-4645. [PMID: 33527107 DOI: 10.1039/d0cp03898a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superoxide reductases (SORs) are mononuclear non-heme iron enzymes involved in superoxide radical detoxification in some microorganisms. Their atypical active site is made of an iron atom pentacoordinated by four equatorial nitrogen atoms from histidine residues and one axial sulfur atom from a cysteinate residue, which plays a central role in catalysis. In most SORs, the residue immediately following the cysteinate ligand is an asparagine, which belongs to the second coordination sphere and is expected to have a critical influence on the properties of the active site. In this work, in order to investigate the role of this asparagine residue in the Desulfoarculus baarsii enzyme (Asn117), we carried out, in comparison with the wild-type enzyme, absorption and resonance Raman (RR) studies on a SOR mutant in which Asn117 was changed into an alanine. RR analysis was developed in order to assign the different bands using excitation in the (Cys116)-S-→ Fe3+ charge transfer band. By investigating the correlation between the (Cys116)-S-→ Fe3+ charge transfer band maximum with the frequency of each RR band in different SOR forms, we assessed the contribution of the ν(Fe-S) vibration among the different RR bands. The data showed that Asn117, by making hydrogen bond interactions with Lys74 and Tyr76, allows a rigidification of the backbone of the Cys116 ligand, as well as that of the neighboring residues Ile118 and His119. Such a structural role of Asn117 has a deep impact on the S-Fe bond. It results in a tight control of the H-bond distance between the Ile118 and His119 NH peptidic moiety with the cysteine sulfur ligand, which in turn enables fine-tuning of the S-Fe bond strength, an essential property for the SOR active site. This study illustrates the intricate roles of second coordination sphere residues to adjust the ligand to metal bond properties in the active site of metalloenzymes.
Collapse
Affiliation(s)
- Alain Desbois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
4
|
Henthorn J, Arias RJ, Koroidov S, Kroll T, Sokaras D, Bergmann U, Rees DC, DeBeer S. Localized Electronic Structure of Nitrogenase FeMoco Revealed by Selenium K-Edge High Resolution X-ray Absorption Spectroscopy. J Am Chem Soc 2019; 141:13676-13688. [PMID: 31356071 PMCID: PMC6716209 DOI: 10.1021/jacs.9b06988] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 11/28/2022]
Abstract
The size and complexity of Mo-dependent nitrogenase, a multicomponent enzyme capable of reducing dinitrogen to ammonia, have made a detailed understanding of the FeMo cofactor (FeMoco) active site electronic structure an ongoing challenge. Selective substitution of sulfur by selenium in FeMoco affords a unique probe wherein local Fe-Se interactions can be directly interrogated via high-energy resolution fluorescence detected X-ray absorption spectroscopic (HERFD XAS) and extended X-ray absorption fine structure (EXAFS) studies. These studies reveal a significant asymmetry in the electronic distribution of the FeMoco, suggesting a more localized electronic structure picture than is typically assumed for iron-sulfur clusters. Supported by experimental small molecule model data in combination with time dependent density functional theory (TDDFT) calculations, the HERFD XAS data is consistent with an assignment of Fe2/Fe6 as an antiferromagnetically coupled diferric pair. HERFD XAS and EXAFS have also been applied to Se-substituted CO-inhibited MoFe protein, demonstrating the ability of these methods to reveal electronic and structural changes that occur upon substrate binding. These results emphasize the utility of Se HERFD XAS and EXAFS for selectively probing the local electronic and geometric structure of FeMoco.
Collapse
Affiliation(s)
- Justin
T. Henthorn
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Renee J. Arias
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Sergey Koroidov
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Uwe Bergmann
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Douglas C. Rees
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Howard
Hughes Medical Institute, California Institute
of Technology, Pasadena, California 91125, United States
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der
Ruhr, Germany
| |
Collapse
|
5
|
Martins MC, Romão CV, Folgosa F, Borges PT, Frazão C, Teixeira M. How superoxide reductases and flavodiiron proteins combat oxidative stress in anaerobes. Free Radic Biol Med 2019; 140:36-60. [PMID: 30735841 DOI: 10.1016/j.freeradbiomed.2019.01.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Microbial anaerobes are exposed in the natural environment and in their hosts, even if transiently, to fluctuating concentrations of oxygen and its derived reactive species, which pose a considerable threat to their anoxygenic lifestyle. To counteract these stressful conditions, they contain a multifaceted array of detoxifying systems that, in conjugation with cellular repairing mechanisms and in close crosstalk with metal homeostasis, allow them to survive in the presence of O2 and reactive oxygen species. Some of these systems are shared with aerobes, but two families of enzymes emerged more recently that, although not restricted to anaerobes, are predominant in anaerobic microbes. These are the iron-containing superoxide reductases, and the flavodiiron proteins, endowed with O2 and/or NO reductase activities, which are the subject of this Review. A detailed account of their physicochemical, physiological and molecular mechanisms will be presented, highlighting their unique properties in allowing survival of anaerobes in oxidative stress conditions, and comparing their properties with the most well-known detoxifying systems.
Collapse
Affiliation(s)
- Maria C Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Célia V Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Filipe Folgosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
6
|
Leipzig BK, Rees JA, Kowalska JK, Theisen RM, Kavčič M, Poon PCY, Kaminsky W, DeBeer S, Bill E, Kovacs JA. How Do Ring Size and π-Donating Thiolate Ligands Affect Redox-Active, α-Imino-N-heterocycle Ligand Activation? Inorg Chem 2018; 57:1935-1949. [PMID: 29411979 PMCID: PMC8312276 DOI: 10.1021/acs.inorgchem.7b02748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable effort has been devoted to the development of first-row transition-metal catalysts containing redox-active imino-pyridine ligands that are capable of storing multiple reducing equivalents. This property allows abundant and inexpensive first-row transition metals, which favor sequential one-electron redox processes, to function as competent catalysts in the concerted two-electron reduction of substrates. Herein we report the syntheses and characterization of a series of iron complexes that contain both π-donating thiolate and π-accepting (α-imino)-N-heterocycle redox-active ligands, with progressively larger N-heterocycle rings (imidazole, pyridine, and quinoline). A cooperative interaction between these complementary redox-active ligands is shown to dictate the properties of these complexes. Unusually intense charge-transfer (CT) bands, and intraligand metrical parameters, reminiscent of a reduced (α-imino)-N-heterocycle ligand (L•-), initially suggested that the electron-donating thiolate had reduced the N-heterocycle. Sulfur K-edge X-ray absorption spectroscopic (XAS) data, however, provides evidence for direct communication, via backbonding, between the thiolate sulfur and the formally orthogonal (α-imino)-N-heterocycle ligand π*-orbitals. DFT calculations provide evidence for extensive delocalization of bonds over the sulfur, iron, and (α-imino)-N-heterocycle, and TD-DFT shows that the intense optical CT bands involve transitions between a mixed Fe/S donor, and (α-imino)-N-heterocycle π*-acceptor orbital. The energies and intensities of the optical and S K-edge pre-edge XAS transitions are shown to correlate with N-heterocycle ring size, as do the redox potentials. When the thiolate is replaced with a thioether, or when the low-spin S = 0 Fe(II) is replaced with a high-spin S = 3/2 Co(II), the N-heterocycle ligand metrical parameters and electronic structure do not change relative to the neutral L0 ligand. With respect to the development of future catalysts containing redox-active ligands, the energy cost of storing reducing equivalents is shown to be lowest when a quinoline, as opposed to imidazole or pyridine, is incorporated into the ligand backbone of the corresponding Fe complex.
Collapse
Affiliation(s)
- Benjamin K. Leipzig
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Julian A. Rees
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Joanna K. Kowalska
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D–45470 Mülheim an der Ruhr, Germany
| | - Roslyn M. Theisen
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | | | | | - Werner Kaminsky
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D–45470 Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D–45470 Mülheim an der Ruhr, Germany
| | - Julie A. Kovacs
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
7
|
David R, Jamet H, Nivière V, Moreau Y, Milet A. Iron Hydroperoxide Intermediate in Superoxide Reductase: Protonation or Dissociation First? MM Dynamics and QM/MM Metadynamics Study. J Chem Theory Comput 2017; 13:2987-3004. [DOI: 10.1021/acs.jctc.7b00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rolf David
- DCM, Univ. Grenoble Alpes, F-38000 Grenoble, France
- CNRS, DCM, F-38000, Grenoble, France
- Laboratoire
de Chimie et Biologie des Métaux, CEA/DRF/BIG/CBM/MCT, CNRS
UMR 5249, Université Grenoble Alpes, Grenoble, France
| | - Hélène Jamet
- DCM, Univ. Grenoble Alpes, F-38000 Grenoble, France
- CNRS, DCM, F-38000, Grenoble, France
| | - Vincent Nivière
- Laboratoire
de Chimie et Biologie des Métaux, CEA/DRF/BIG/CBM/BioCat, CNRS
UMR 5249, Université Grenoble Alpes, Grenoble, France
| | - Yohann Moreau
- Laboratoire
de Chimie et Biologie des Métaux, CEA/DRF/BIG/CBM/MCT, CNRS
UMR 5249, Université Grenoble Alpes, Grenoble, France
| | - Anne Milet
- DCM, Univ. Grenoble Alpes, F-38000 Grenoble, France
- CNRS, DCM, F-38000, Grenoble, France
| |
Collapse
|
8
|
Ochmann M, von Ahnen I, Cordones AA, Hussain A, Lee JH, Hong K, Adamczyk K, Vendrell O, Kim TK, Schoenlein RW, Huse N. Light-Induced Radical Formation and Isomerization of an Aromatic Thiol in Solution Followed by Time-Resolved X-ray Absorption Spectroscopy at the Sulfur K-Edge. J Am Chem Soc 2017; 139:4797-4804. [PMID: 28219243 DOI: 10.1021/jacs.6b12992] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ∼70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemical reaction pathways and transient products of sulfur-containing molecules in solution.
Collapse
Affiliation(s)
- Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free Electron Laser Science , 22761 Hamburg, Germany.,Max Planck Institute for the Structure and Dynamics of Matter , 22761 Hamburg, Germany
| | - Inga von Ahnen
- Department of Physics, University of Hamburg and Center for Free Electron Laser Science , 22761 Hamburg, Germany
| | - Amy A Cordones
- Ultrafast X-ray Science Lab, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Abid Hussain
- Department of Physics, University of Hamburg and Center for Free Electron Laser Science , 22761 Hamburg, Germany.,Max Planck Institute for the Structure and Dynamics of Matter , 22761 Hamburg, Germany
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Lab, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Kiryong Hong
- Ultrafast X-ray Science Lab, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University , Busan 46241, South Korea
| | - Katrin Adamczyk
- Department of Physics, University of Hamburg and Center for Free Electron Laser Science , 22761 Hamburg, Germany.,Max Planck Institute for the Structure and Dynamics of Matter , 22761 Hamburg, Germany
| | - Oriol Vendrell
- Center for Free-Electron Laser Science, DESY and The Hamburg Centre for Ultrafast Imaging , 22607 Hamburg, Germany
| | - Tae Kyu Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University , Busan 46241, South Korea
| | - Robert W Schoenlein
- Ultrafast X-ray Science Lab, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free Electron Laser Science , 22761 Hamburg, Germany.,Max Planck Institute for the Structure and Dynamics of Matter , 22761 Hamburg, Germany
| |
Collapse
|
9
|
Attia AAA, Cioloboc D, Lupan A, Silaghi-Dumitrescu R. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase. J Inorg Biochem 2016; 165:49-53. [PMID: 27768962 DOI: 10.1016/j.jinorgbio.2016.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/14/2016] [Accepted: 09/29/2016] [Indexed: 11/29/2022]
Abstract
The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species.
Collapse
Affiliation(s)
- Amr A A Attia
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Daniela Cioloboc
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Alexandru Lupan
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|
10
|
Abstract
CytP450s have a cysteine-bound heme cofactor that, in its as-isolated resting (oxidized) form, can be conclusively described as a ferric thiolate species. Unlike the native enzyme, most synthetic thiolate-bound ferric porphyrins are unstable in air unless the axial thiolate ligand is sterically protected. Spectroscopic investigations on a series of synthetic mimics of cytP450 indicate that a thiolate-bound ferric porphyrin coexists in organic solutions at room temperature (RT) with a thiyl-radical bound ferrous porphyrin, i.e., its valence tautomer. The ferric thiolate state is favored by greater enthalpy and is air stable. The ferrous thiyl state is favored by entropy, populates at RT, and degrades in air. These ground states can be reversibly interchanged at RT by the addition or removal of water to the apolar medium. It is concluded that hydrogen bonding and local electrostatics protect the resting oxidized cytP450 active site from degradation in air by stabilizing the ferric thiolate ground state in contrast to its synthetic analogs.
Collapse
|
11
|
Pinto AF, Romão CV, Pinto LC, Huber H, Saraiva LM, Todorovic S, Cabelli D, Teixeira M. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue. J Biol Inorg Chem 2015; 20:155-164. [PMID: 25476860 DOI: 10.1007/s00775-014-1222-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/26/2014] [Indexed: 01/12/2023]
Abstract
Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (-E23T24HVP-), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild-type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.
Collapse
Affiliation(s)
- Ana F Pinto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177, Stockholm, Sweden
| | - Célia V Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Liliana C Pinto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Harald Huber
- Lehrstuhl fuer Mikrobiologie, Universität Regensburg, 93053, Regensburg, Germany
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Diane Cabelli
- Chemistry Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal.
| |
Collapse
|
12
|
Das PK, Dey A. Resonance Raman, Electron Paramagnetic Resonance, and Density Functional Theory Calculations of a Phenolate-Bound Iron Porphyrin Complex: Electrostatic versus Covalent Contribution to Bonding. Inorg Chem 2014; 53:7361-70. [DOI: 10.1021/ic500716d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pradip Kumar Das
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Abhishek Dey
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| |
Collapse
|
13
|
Bonnot F, Tremey E, von Stetten D, Rat S, Duval S, Carpentier P, Clemancey M, Desbois A, Nivière V. Formation of High-Valent Iron-Oxo Species in Superoxide Reductase: Characterization by Resonance Raman Spectroscopy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Bonnot F, Tremey E, von Stetten D, Rat S, Duval S, Carpentier P, Clemancey M, Desbois A, Nivière V. Formation of High-Valent Iron-Oxo Species in Superoxide Reductase: Characterization by Resonance Raman Spectroscopy. Angew Chem Int Ed Engl 2014; 53:5926-30. [DOI: 10.1002/anie.201400356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/13/2014] [Indexed: 11/11/2022]
|
15
|
Harris TV, Szilagyi RK. Iron-sulfur bond covalency from electronic structure calculations for classical iron-sulfur clusters. J Comput Chem 2014; 35:540-52. [PMID: 24458434 DOI: 10.1002/jcc.23518] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/11/2013] [Accepted: 12/04/2013] [Indexed: 11/06/2022]
Abstract
The covalent character of iron-sulfur bonds is a fundamental electronic structural feature for understanding the electronic and magnetic properties and the reactivity of biological and biomimetic iron-sulfur clusters. Conceptually, bond covalency obtained from X-ray absorption spectroscopy (XAS) can be directly related to orbital compositions from electronic structure calculations, providing a standard for evaluation of density functional theoretical methods. Typically, a combination of functional and basis set that optimally reproduces experimental bond covalency is chosen, but its dependence on the population analysis method is often neglected, despite its important role in deriving theoretical bond covalency. In this study of iron tetrathiolates, and classical [2Fe-2S] and [4Fe-4S] clusters with only thiolate ligands, we find that orbital compositions can vary significantly depending on whether they are derived from frontier orbitals, spin densities, or electron sharing indexes from "Átoms in Molecules" (ÁIM) theory. The benefits and limitations of Mulliken, Minimum Basis Set Mulliken, Natural, Coefficients-Squared, Hirshfeld, and AIM population analyses are described using ab initio wave function-based (QCISD) and experimental (S K-edge XAS) bond covalency. We find that the AIM theory coupled with a triple-ζ basis set and the hybrid functional B(5%HF)P86 gives the most reasonable electronic structure for the studied Fe-S clusters.
Collapse
Affiliation(s)
- Travis V Harris
- Department of Chemistry and Biochemistry, NAI Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana, 59717
| | | |
Collapse
|
16
|
Tremey E, Bonnot F, Moreau Y, Berthomieu C, Desbois A, Favaudon V, Blondin G, Houée-Levin C, Nivière V. Hydrogen bonding to the cysteine ligand of superoxide reductase: acid–base control of the reaction intermediates. J Biol Inorg Chem 2013; 18:815-30. [DOI: 10.1007/s00775-013-1025-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/15/2013] [Indexed: 12/26/2022]
|
17
|
Fe–O versus O–O bond cleavage in reactive iron peroxide intermediates of superoxide reductase. J Biol Inorg Chem 2012; 18:95-101. [DOI: 10.1007/s00775-012-0954-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
18
|
Hadt RG, Sun N, Marshall NM, Hodgson KO, Hedman B, Lu Y, Solomon EI. Spectroscopic and DFT studies of second-sphere variants of the type 1 copper site in azurin: covalent and nonlocal electrostatic contributions to reduction potentials. J Am Chem Soc 2012; 134:16701-16. [PMID: 22985400 PMCID: PMC3506006 DOI: 10.1021/ja306438n] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reduction potentials (E(0)) of type 1 (T1) or blue copper (BC) sites in proteins and enzymes with identical first coordination spheres around the redox active copper ion can vary by ~400 mV. Here, we use a combination of low-temperature electronic absorption and magnetic circular dichroism, electron paramagnetic resonance, resonance Raman, and S K-edge X-ray absorption spectroscopies to investigate a series of second-sphere variants--F114P, N47S, and F114N in Pseudomonas aeruginosa azurin--which modulate hydrogen bonding to and protein-derived dipoles nearby the Cu-S(Cys) bond. Density functional theory calculations correlated to the experimental data allow for the fractionation of the contributions to tuning E(0) into covalent and nonlocal electrostatic components. These are found to be significant, comparable in magnitude, and additive for active H-bonds, while passive H-bonds are mostly nonlocal electrostatic in nature. For dipoles, these terms can be additive to or oppose one another. This study provides a methodology for uncoupling covalency from nonlocal electrostatics, which, when coupled to X-ray crystallographic data, distinguishes specific local interactions from more long-range protein/active interactions, while affording further insight into the second-sphere mechanisms available to the protein to tune the E(0) of electron-transfer sites in biology.
Collapse
Affiliation(s)
- Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Ning Sun
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Nicholas M. Marshall
- Department of Chemistry, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Yi Lu
- Department of Chemistry, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| |
Collapse
|
19
|
Das PK, Chatterjee S, Samanta S, Dey A. EPR, resonance Raman, and DFT calculations on thiolate- and imidazole-bound iron(III) porphyrin complexes: role of the axial ligand in tuning the electronic structure. Inorg Chem 2012; 51:10704-14. [PMID: 23013308 DOI: 10.1021/ic3016035] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Iron(III) porphyrin complexes bearing covalently attached imidazole and thiolate axial ligands are investigated using resonance Raman, electron paramagnetic resonance, and cyclic voltammetry. The thiolate ligand stabilizes a low-spin ground state in solvent-bound six-coordinate species, weakens the Fe-N(pyr) bonds, and shifts the Fe(III/II) potential more negative by ~500 mV relative to an imidazole-bound species. Density functional theory calculations reproduce the experimental observation and indicate that the covalent charge donation from thiolate to iron reduces the Z(eff) on the iron. This increases the Fe(3d) orbital energies, which changes the bonding interaction present in these complexes significantly. In particular, the increase of the Fe(3d) energies activates an iron-to-porphyrin π*-back-bonding interaction not present in the imidazole-bound complex.
Collapse
Affiliation(s)
- Pradip Kumar Das
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | | | | | | |
Collapse
|
20
|
McDonald AR, Van Heuvelen KM, Guo Y, Li F, Bominaar EL, Münck E, Que L. Characterization of a thiolato iron(III) Peroxy dianion complex. Angew Chem Int Ed Engl 2012; 51:9132-6. [PMID: 22888066 PMCID: PMC3448492 DOI: 10.1002/anie.201203602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/19/2012] [Indexed: 11/09/2022]
Abstract
Nucleophilic oxidant: The reaction between a thiolato iron(II) complex 1 and superoxide in aprotic solvent at -90 °C yields a novel thiolato iron(III) peroxide intermediate 2, which exhibits unusually high nucleophilic reactivity. Compound 2 is an isomer of the thiolato iron(II) superoxide intermediate that is invoked in the reaction between superoxide reductase and superoxide.
Collapse
Affiliation(s)
- Aidan R. McDonald
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Katherine M. Van Heuvelen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Feifei Li
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Emile L. Bominaar
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Eckard Münck
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Daly SR, Keith JM, Batista ER, Boland KS, Clark DL, Kozimor SA, Martin RL. Sulfur K-edge X-ray Absorption Spectroscopy and Time-Dependent Density Functional Theory of Dithiophosphinate Extractants: Minor Actinide Selectivity and Electronic Structure Correlations. J Am Chem Soc 2012; 134:14408-22. [DOI: 10.1021/ja303999q] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Scott R. Daly
- Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, United States
| | - Jason M. Keith
- Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, United States
| | - Enrique R. Batista
- Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, United States
| | - Kevin S. Boland
- Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, United States
| | - David L. Clark
- Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, United States
| | - Stosh A. Kozimor
- Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, United States
| | - Richard L. Martin
- Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, United States
| |
Collapse
|
22
|
McDonald AR, Van Heuvelen KM, Guo Y, Li F, Bominaar EL, Münck E, Que L. Characterization of a Thiolato Iron(III) Peroxy Dianion Complex. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Che X, Gao J, Zhang D, Liu C. How Do the Thiolate Ligand and Its Relative Position Control the Oxygen Activation in the Cysteine Dioxygenase Model? J Phys Chem A 2012; 116:5510-7. [DOI: 10.1021/jp3001515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Che
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jun Gao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengbu Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
24
|
Bonnot F, Molle T, Ménage S, Moreau Y, Duval S, Favaudon V, Houée-Levin C, Nivière V. Control of the Evolution of Iron Peroxide Intermediate in Superoxide Reductase from Desulfoarculus baarsii. Involvement of Lysine 48 in Protonation. J Am Chem Soc 2012; 134:5120-30. [DOI: 10.1021/ja209297n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Florence Bonnot
- CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux,
F-38054 Grenoble,
France
- Université de Grenoble, F-38000 Grenoble, France
- CNRS, UMR 5249, F-38054
Grenoble, France
| | - Thibaut Molle
- CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux,
F-38054 Grenoble,
France
- Université de Grenoble, F-38000 Grenoble, France
- CNRS, UMR 5249, F-38054
Grenoble, France
| | - Stéphane Ménage
- CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux,
F-38054 Grenoble,
France
- Université de Grenoble, F-38000 Grenoble, France
- CNRS, UMR 5249, F-38054
Grenoble, France
| | - Yohann Moreau
- CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux,
F-38054 Grenoble,
France
- Université de Grenoble, F-38000 Grenoble, France
- CNRS, UMR 5249, F-38054
Grenoble, France
| | - Simon Duval
- CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux,
F-38054 Grenoble,
France
- Université de Grenoble, F-38000 Grenoble, France
- CNRS, UMR 5249, F-38054
Grenoble, France
| | - Vincent Favaudon
- Institut Curie, Inserm U612, Bâtiment 110-112,
Centre Universitaire 91405
Orsay Cedex, France
| | - Chantal Houée-Levin
- Laboratoire
de Chimie Physique,
UMR8000 CNRS/Université Paris-Sud, Bâtiment 350, Centre Universitaire 91405 Orsay Cedex, France
| | - Vincent Nivière
- CEA, iRTSV, Laboratoire de Chimie et Biologie des Métaux,
F-38054 Grenoble,
France
- Université de Grenoble, F-38000 Grenoble, France
- CNRS, UMR 5249, F-38054
Grenoble, France
| |
Collapse
|
25
|
Kumar D, Sastry GN, Goldberg DP, de Visser SP. Mechanism of S-oxygenation by a cysteine dioxygenase model complex. J Phys Chem A 2011; 116:582-91. [PMID: 22091701 DOI: 10.1021/jp208230g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, we present the first computational study on a biomimetic cysteine dioxygenase model complex, [Fe(II)(LN(3)S)](+), in which LN(3)S is a tetradentate ligand with a bis(imino)pyridyl scaffold and a pendant arylthiolate group. The reaction mechanism of sulfur dioxygenation with O(2) was examined by density functional theory (DFT) methods and compared with results obtained for cysteine dioxygenase. The reaction proceeds via multistate reactivity patterns on competing singlet, triplet, and quintet spin state surfaces. The reaction mechanism is analogous to that found for cysteine dioxygenase enzymes (Kumar, D.; Thiel, W.; de Visser, S. P. J. Am. Chem. Soc. 2011, 133, 3869-3882); hence, the computations indicate that this complex can closely mimic the enzymatic process. The catalytic mechanism starts from an iron(III)-superoxo complex and the attack of the terminal oxygen atom of the superoxo group on the sulfur atom of the ligand. Subsequently, the dioxygen bond breaks to form an iron(IV)-oxo complex with a bound sulfenato group. After reorganization, the second oxygen atom is transferred to the substrate to give a sulfinic acid product. An alternative mechanism involving the direct attack of dioxygen on the sulfur, without involving any iron-oxygen intermediates, was also examined. Importantly, a significant energetic preference for dioxygen coordinating to the iron center prior to attack at sulfur was discovered and serves to elucidate the function of the metal ion in the reaction process. The computational results are in good agreement with experimental observations, and the differences and similarities of the biomimetic complex and the enzymatic cysteine dioxygenase center are highlighted.
Collapse
Affiliation(s)
- Devesh Kumar
- Molecular Modelling Group, Indian Institute of Chemical Technology, Hyderabad 500-607, India.
| | | | | | | |
Collapse
|
26
|
Villar-Acevedo G, Nam E, Fitch S, Benedict J, Freudenthal J, Kaminsky W, Kovacs JA. Influence of thiolate ligands on reductive N-O bond activation. Probing the O2(-) binding site of a biomimetic superoxide reductase analogue and examining the proton-dependent reduction of nitrite. J Am Chem Soc 2011; 133:1419-27. [PMID: 21207999 PMCID: PMC3178331 DOI: 10.1021/ja107551u] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is frequently used to probe the substrate-binding site of "spectroscopically silent" non-heme Fe(2+) sites of metalloenzymes, such as superoxide reductase (SOR). Herein we use NO to probe the superoxide binding site of our thiolate-ligated biomimetic SOR model [Fe(II)(S(Me(2))N(4)(tren))](+) (1). Like NO-bound trans-cysteinate-ligated SOR (SOR-NO), the rhombic S = 3/2 EPR signal of NO-bound cis-thiolate-ligated [Fe(S(Me(2))N(4)(tren)(NO)](+) (2; g = 4.44, 3.54, 1.97), the isotopically sensitive ν(NO)(ν((15)NO)) stretching frequency (1685(1640) cm(-1)), and the 0.05 Å decrease in Fe-S bond length are shown to be consistent with the oxidative addition of NO to Fe(II) to afford an Fe(III)-NO(-) {FeNO}(7) species containing high-spin (S = 5/2) Fe(III) antiferromagnetically coupled to NO(-) (S = 1). The cis versus trans positioning of the thiolate does not appear to influence these properties. Although it has yet to be crystallographically characterized, SOR-NO is presumed to possess a bent Fe-NO similar to that of 2 (Fe-N-O = 151.7(4)°). The N-O bond is shown to be more activated in 2 relative to N- and O-ligated {FeNO}(7) complexes, and this is attributed to the electron-donating properties of the thiolate ligand. Hydrogen-bonding to the cysteinate sulfur attenuates N-O bond activation in SOR, as shown by its higher ν(NO) frequency (1721 cm(-1)). In contrast, the ν(O-O) frequency of the SOR peroxo intermediate and its analogues is not affected by H-bonds to the cysteinate sulfur or other factors influencing the Fe-SR bond strength; these only influence the ν(Fe-O) frequency. Reactions between 1 and NO(2)(-) are shown to result in the proton-dependent heterolytic cleavage of an N-O bond. The mechanism of this reaction is proposed to involve both Fe(II)-NO(2)(-) and {FeNO}(6) intermediates similar to those implicated in the mechanism of NiR-promoted NO(2)(-) reduction.
Collapse
Affiliation(s)
| | - Elaine Nam
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Sarah Fitch
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | | | | | | | - Julie A. Kovacs
- Department of Chemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
27
|
Nam E, Alokolaro PE, Swartz RD, Gleaves MC, Pikul J, Kovacs JA. Investigation of the mechanism of formation of a thiolate-ligated Fe(III)-OOH. Inorg Chem 2011; 50:1592-602. [PMID: 21284379 DOI: 10.1021/ic101776m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinetic studies aimed at determining the most probable mechanism for the proton-dependent [Fe(II)(S(Me2)N(4)(tren))](+) (1) promoted reduction of superoxide via a thiolate-ligated hydroperoxo intermediate [Fe(III)(S(Me2)N(4)(tren))(OOH)](+) (2) are described. Rate laws are derived for three proposed mechanisms, and it is shown that they should conceivably be distinguishable by kinetics. For weak proton donors with pK(a(HA)) > pK(a(HO(2))) rates are shown to correlate with proton donor pK(a), and display first-order dependence on iron, and half-order dependence on superoxide and proton donor HA. Proton donors acidic enough to convert O(2)(-) to HO(2) (in tetrahydrofuran, THF), that is, those with pK(a(HA)) < pK(a(HO(2))), are shown to display first-order dependence on both superoxide and iron, and rates which are independent of proton donor concentration. Relative pK(a) values were determined in THF by measuring equilibrium ion pair acidity constants using established methods. Rates of hydroperoxo 2 formation displays no apparent deuterium isotope effect, and bases, such as methoxide, are shown to inhibit the formation of 2. Rate constants for p-substituted phenols are shown to correlate linearly with the Hammett substituent constants σ(-). Activation parameters ((ΔH(++) = 2.8 kcal/mol, ΔS(++) = -31 eu) are shown to be consistent with a low-barrier associative mechanism that does not involve extensive bond cleavage. Together, these data are shown to be most consistent with a mechanism involving the addition of HO(2) to 1 with concomitant oxidation of the metal ion, and reduction of superoxide (an "oxidative addition" of sorts), in the rate-determining step. Activation parameters for MeOH- (ΔH(++) = 13.2 kcal/mol and ΔS(++) = -24.3 eu), and acetic acid- (ΔH(++) = 8.3 kcal/mol and ΔS(++) = -34 eu) promoted release of H(2)O(2) to afford solvent-bound [Fe(III)(S(Me2)N(4)(tren))(OMe)](+) (3) and [Fe(III)(S(Me2)N(4)(tren))(O(H)Me)](+) (4), respectively, are shown to be more consistent with a reaction involving rate-limiting protonation of an Fe(III)-OOH, than with one involving rate-limiting O-O bond cleavage. The observed deuterium isotope effect (k(H)/k(D) = 3.1) is also consistent with this mechanism.
Collapse
Affiliation(s)
- Elaine Nam
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | | | | | | | | | | |
Collapse
|
28
|
Sun N, Liu LV, Dey A, Villar-Acevedo G, Kovacs JA, Darensbourg MY, Hodgson KO, Hedman B, Solomon EI. S K-edge X-ray absorption spectroscopy and density functional theory studies of high and low spin {FeNO}7 thiolate complexes: exchange stabilization of electron delocalization in {FeNO}7 and {FeO2}8. Inorg Chem 2011; 50:427-36. [PMID: 21158471 PMCID: PMC3130116 DOI: 10.1021/ic1006378] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
S K-edge X-ray absorption spectroscopy (XAS) is a direct experimental probe of metal ion electronic structure as the pre-edge energy reflects its oxidation state, and the energy splitting pattern of the pre-edge transitions reflects its spin state. The combination of sulfur K-edge XAS and density functional theory (DFT) calculations indicates that the electronic structures of {FeNO}(7) (S = 3/2) (S(Me2)N4(tren)Fe(NO), complex I) and {FeNO}(7) (S = 1/2) ((bme-daco)Fe(NO), complex II) are Fe(III)(S = 5/2)-NO(-)(S = 1) and Fe(III)(S = 3/2)-NO(-)(S = 1), respectively. When an axial ligand is computationally added to complex II, the electronic structure becomes Fe(II)(S = 0)-NO•(S = 1/2). These studies demonstrate how the ligand field of the Fe center defines its spin state and thus changes the electron exchange, an important factor in determining the electron distribution over {FeNO}(7) and {FeO2}(8) sites.
Collapse
Affiliation(s)
- Ning Sun
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Lei V. Liu
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Abhishek Dey
- Department of Chemistry, Stanford University, Stanford, California 94305
| | | | - Julie A. Kovacs
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | | | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, California 94025
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, California 94025
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, California 94025
| |
Collapse
|
29
|
|
30
|
Dey A, Solomon EI. Density Functional Theory Calculations on Fe-O and O-O Cleavage of Ferric Hydroperoxide Species: Role of axial ligand and spin state. Inorganica Chim Acta 2010; 363:2762-2767. [PMID: 21057606 DOI: 10.1016/j.ica.2010.03.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density Functional Theory (DFT) calculations are performed on thiolate bound hydroperoxide complexes. O-O and Fe-O cleavage reaction coordinates, relevant to the active sites of Cytocrome P450 and Superoxide Reductase enzymes, were investigated for both high and low spin states and for cis and trans orientations of the thiolate ligand with respect to the hydroperoxide ligand. The results indicate that the presence of a thiolate ligand produces significant elongation of the Fe-O bond and reduction of Fe-O vibrational frequency. While the fate of the O-O cleavage reaction is not significantly altered, the presence of a thiolate induces a heterolytic Fe-O cleavage irrespective of the spin state and orientation which is very different from results obtained with a trans ammine ligand.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India, 700032
| | | |
Collapse
|
31
|
Gale EM, Narendrapurapu BS, Simmonett AC, Schaefer HF, Harrop TC. Exploring the Effects of H-Bonding in Synthetic Analogues of Nickel Superoxide Dismutase (Ni-SOD): Experimental and Theoretical Implications for Protection of the Ni−SCys Bond. Inorg Chem 2010; 49:7080-96. [DOI: 10.1021/ic1009187] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eric M. Gale
- Department of Chemistry and Center for Computational Chemistry, University of Georgia, 1001 Cedar Street, Athens, Georgia 30602
| | - Beulah S. Narendrapurapu
- Department of Chemistry and Center for Computational Chemistry, University of Georgia, 1001 Cedar Street, Athens, Georgia 30602
| | - Andrew C. Simmonett
- Department of Chemistry and Center for Computational Chemistry, University of Georgia, 1001 Cedar Street, Athens, Georgia 30602
| | - Henry F. Schaefer
- Department of Chemistry and Center for Computational Chemistry, University of Georgia, 1001 Cedar Street, Athens, Georgia 30602
| | - Todd C. Harrop
- Department of Chemistry and Center for Computational Chemistry, University of Georgia, 1001 Cedar Street, Athens, Georgia 30602
| |
Collapse
|
32
|
Namuswe F, Hayashi T, Jiang Y, Kasper GD, Sarjeant AAN, Moënne-Loccoz P, Goldberg DP. Influence of the nitrogen donors on nonheme iron models of superoxide reductase: high-spin Fe(III)-OOR complexes. J Am Chem Soc 2010; 132:157-67. [PMID: 20000711 DOI: 10.1021/ja904818z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new five-coordinate, (N(4)S(thiolate))Fe(II) complex, containing tertiary amine donors, [Fe(II)(Me(4)[15]aneN(4))(SPh)]BPh(4) (2), was synthesized and structurally characterized as a model of the reduced active site of superoxide reductase (SOR). Reaction of 2 with tert-butyl hydroperoxide (tBuOOH) at -78 degrees C led to the generation of the alkylperoxo-iron(III) complex [Fe(III)(Me(4)[15]aneN(4))(SPh)(OOtBu)](+) (2a). The nonthiolate-ligated complex, [Fe(II)(Me(4)[15]aneN(4))(OTf)(2)] (3), was also reacted with tBuOOH and yielded the corresponding alkylperoxo complex [Fe(III)(Me(4)[15]aneN(4))(OTf)(OOtBu)](+) (3a) at an elevated temperature of -23 degrees C. These species were characterized by low-temperature UV-vis, EPR, and resonance Raman spectroscopies. Complexes 2a and 3a exhibit distinctly different spectroscopic signatures than the analogous alkylperoxo complexes [Fe(III)([15]aneN(4))(SAr)(OOR)](+), which contain secondary amine donors. Importantly, alkylation at nitrogen leads to a change from low-spin (S = 1/2) to high-spin (S = 5/2) of the iron(III) center. The resonance Raman data reveal that this change in spin state has a large effect on the nu(Fe-O) and nu(O-O) vibrations, and a comparison between 2a and the nonthiolate-ligated complex 3a shows that axial ligation has an additional significant impact on these vibrations. To our knowledge this study is the first in which the influence of a ligand trans to a peroxo moiety has been evaluated for a structurally equivalent pair of high-spin/low-spin peroxo-iron(III) complexes. The implications of spin state and thiolate ligation are discussed with regard to the functioning of SOR.
Collapse
Affiliation(s)
- Frances Namuswe
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Surawatanawong P, Tye JW, Hall MB. Density Functional Theory Applied to a Difference in Pathways Taken by the Enzymes Cytochrome P450 and Superoxide Reductase: Spin States of Ferric Hydroperoxo Intermediates and Hydrogen Bonds from Water. Inorg Chem 2009; 49:188-98. [DOI: 10.1021/ic9017272] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jesse W. Tye
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| |
Collapse
|
34
|
Dey A, Jiang Y, Ortiz de Montellano P, Hodgson KO, Hedman B, Solomon EI. S K-edge XAS and DFT calculations on cytochrome P450: covalent and ionic contributions to the cysteine-Fe bond and their contribution to reactivity. J Am Chem Soc 2009; 131:7869-78. [PMID: 19438234 DOI: 10.1021/ja901868q] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimental covalencies of the Fe-S bond for the resting low-spin and substrate-bound high-spin active site of cytochrome P450 are reported. DFT calculations on the active site indicate that one H-bonding interaction from the protein backbone is needed to reproduce the experimental values. The H-bonding to the thiolate from the backbone decreases the anisotropic pi covalency of the Fe-S bond lowering the barrier of free rotation of the exchangeable axial ligand, which is important for reactivity. The anionic axial thiolate ligand is calculated to lower the Fe(III/II) reduction potential of the active site by more than 1 V compared to a neutral imidazole ligand. About half of this derives from its covalent bonding and half from its electrostatic interaction with the oxidized Fe. This axial thiolate ligand increases the pK(a) of compound 0 (Fe(III)-hydroperoxo) favoring its protonation which promotes O-O bond heterolysis forming compound I. The reactivity of compound I is calculated to be relatively insensitive to the nature of the axial ligand due to opposing reduction potential and proton affinity contributions to the H-atom abstraction energy.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kennepohl P, Wasinger EC, DeBeer George S. X-ray spectroscopic approaches to the investigation and characterization of photochemical processes. JOURNAL OF SYNCHROTRON RADIATION 2009; 16:484-8. [PMID: 19535861 PMCID: PMC2698811 DOI: 10.1107/s0909049509021384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 06/05/2009] [Indexed: 05/27/2023]
Abstract
Despite a wealth of studies exemplifying the utility of the 2-5 keV X-ray range in speciation and electronic structure elucidation, the exploitation of this energy regime for the study of photochemical processes has not been forthcoming. Herein, a new endstation set-up for in situ photochemical soft X-ray spectroscopy in the 2-5 keV energy region at the Stanford Synchrotron Radiation Lightsource is described for continuous photolysis under anaerobic conditions at both cryogenic and ambient temperatures. Representative examples of this approach are used to demonstrate the potential information content in several fields of study, including organometallic chemistry, biochemistry and materials chemistry.
Collapse
Affiliation(s)
- Pierre Kennepohl
- The University of British Columbia, Department of Chemistry, Vancouver, BC, Canada V6T 1Z1.
| | | | | |
Collapse
|
36
|
O’Toole MG, Bennett B, Mashuta MS, Grapperhaus CA. Substrate binding preferences and pka determinations of a nitrile hydratase model complex: variable solvent coordination to [(bmmp-TASN)Fe]OTf. Inorg Chem 2009; 48:2300-8. [PMID: 19166306 PMCID: PMC2754792 DOI: 10.1021/ic802180d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The five-coordinate iron-dithiolate complex (N,N'-4,7-bis-(2'-methyl-2'-mercatopropyl)-1-thia-4,7-diazacyclononane)iron(III), [LFe]+, has been isolated as the triflate salt from reaction of the previously reported LFeCl with thallium triflate. Spectroscopic characterization confirms an S = 1/2 ground state in non-coordinating solvents with room temperature microeff = 1.78 microB and electron paramagnetic resonance (EPR) derived g-values of g1 = 2.04, g2 = 2.02 and g3 = 2.01. [LFe]+ binds a variety of coordinating solvents resulting in six-coordinate complexes [LFe-solvent]+. In acetonitrile the low-spin [LFe-NCMe]+ (g1 = 2.27, g2 = 2.18, and g3 = 1.98) is in equilibrium with [LFe]+ with a binding constant of Keq = 4.7 at room temperature. Binding of H2O, DMF, methanol, DMSO, and pyridine to [LFe]+ yields high-spin six-coordinate complexes with EPR spectra that display significant strain in the rhombic zero-field splitting term E/D. Addition of 1 equiv of triflic acid to the previously reported diiron species (LFe)2O results in the formation of [(LFe)2OH]OTf, which has been characterized by X-ray crystallography. The aqueous chemistry of [LFe]+ reveals three distinct species as a function of pH: [LFe-OH2]+, [(LFe)2OH]OTf, and (LFe)2O. The pKa values for [LFe-OH2]+ and [(LFe)2OH]OTf are 5.4 +/- 0.1 and 6.52 +/- 0.05, respectively.
Collapse
Affiliation(s)
- Martin G. O’Toole
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292
| | - Brian Bennett
- National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Mark S. Mashuta
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292
| | | |
Collapse
|
37
|
Andreini C, Bertini I, Cavallaro G, Najmanovich RJ, Thornton JM. Structural analysis of metal sites in proteins: non-heme iron sites as a case study. J Mol Biol 2009; 388:356-80. [PMID: 19265704 DOI: 10.1016/j.jmb.2009.02.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 11/24/2022]
Abstract
In metalloproteins, the protein environment modulates metal properties to achieve the required goal, which can be protein stabilization or function. The analysis of metal sites at the atomic level of detail provided by protein structures can thus be of benefit in functional and evolutionary studies of proteins. In this work, we propose a structural bioinformatics approach to the study of metalloproteins based on structural templates of metal sites that include the PDB coordinates of protein residues forming the first and the second coordination sphere of the metal. We have applied this approach to non-heme iron sites, which have been analyzed at various levels. Templates of sites located in different protein domains have been compared, showing that similar sites can be found in unrelated proteins as the result of convergent evolution. Templates of sites located in proteins of a large superfamily have been compared, showing possible mechanisms of divergent evolution of proteins to achieve different functions. Furthermore, template comparisons have been used to predict the function of uncharacterized proteins, showing that similarity searches focused on metal sites can be advantageously combined with typical whole-domain comparisons. Structural templates of metal sites, finally, may constitute the basis for a systematic classification of metalloproteins in databases.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center (CERM)-University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | |
Collapse
|
38
|
Jiang Y, Telser J, Goldberg DP. Evidence for the formation of a mononuclear ferric–hydroperoxo complex via the reaction of dioxygen with an (N4S(thiolate))iron(ii) complex. Chem Commun (Camb) 2009:6828-30. [DOI: 10.1039/b913945a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Todorovic S, Rodrigues JV, Pinto AF, Thomsen C, Hildebrandt P, Teixeira M, Murgida DH. Resonance Raman study of the superoxide reductase from Archaeoglobus fulgidus, E12 mutants and a ‘natural variant’. Phys Chem Chem Phys 2009; 11:1809-15. [DOI: 10.1039/b815489a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Namuswe F, Kasper GD, Sarjeant AAN, Hayashi T, Krest CM, Green MT, Moënne-Loccoz P, Goldberg DP. Rational tuning of the thiolate donor in model complexes of superoxide reductase: direct evidence for a trans influence in Fe(III)-OOR complexes. J Am Chem Soc 2008; 130:14189-200. [PMID: 18837497 DOI: 10.1021/ja8031828] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron peroxide species have been identified as important intermediates in a number of nonheme iron as well as heme-containing enzymes, yet there are only a few examples of such species either synthetic or biological that have been well characterized. We describe the synthesis and structural characterization of a new series of five-coordinate (N4S(thiolate))Fe(II) complexes that react with tert-butyl hydroperoxide ((t)BuOOH) or cumenyl hydroperoxide (CmOOH) to give metastable alkylperoxo-iron(III) species (N4S(thiolate)Fe(III)-OOR) at low temperature. These complexes were designed specifically to mimic the nonheme iron active site of superoxide reductase, which contains a five-coordinate iron(II) center bound by one Cys and four His residues in the active form of the protein. The structures of the Fe(II) complexes are analyzed by X-ray crystallography, and their electrochemical properties are assessed by cyclic voltammetry. For the Fe(III)-OOR species, low-temperature UV-vis spectra reveal intense peaks between 500-550 nm that are typical of peroxide to iron(III) ligand-to-metal charge-transfer (LMCT) transitions, and EPR spectroscopy shows that these alkylperoxo species are all low-spin iron(III) complexes. Identification of the vibrational modes of the Fe(III)-OOR unit comes from resonance Raman (RR) spectroscopy, which shows nu(Fe-O) modes between 600-635 cm(-1) and nu(O-O) bands near 800 cm(-1). These Fe-O stretching frequencies are significantly lower than those found in other low-spin Fe(III)-OOR complexes. Trends in the data conclusively show that this weakening of the Fe-O bond arises from a trans influence of the thiolate donor, and density functional theory (DFT) calculations support these findings. These results suggest a role for the cysteine ligand in SOR, and are discussed in light of the recent assessments of the function of the cysteine ligand in this enzyme.
Collapse
Affiliation(s)
- Frances Namuswe
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Strange RW, Feiters MC. Biological X-ray absorption spectroscopy (BioXAS): a valuable tool for the study of trace elements in the life sciences. Curr Opin Struct Biol 2008; 18:609-16. [DOI: 10.1016/j.sbi.2008.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/18/2008] [Indexed: 01/07/2023]
|
42
|
O'Toole MG, Kreso M, Kozlowski PM, Mashuta MS, Grapperhaus CA. Spin-state-dependent oxygen sensitivity of iron dithiolates: sulfur oxygenation or disulfide formation. J Biol Inorg Chem 2008; 13:1219-30. [PMID: 18633652 DOI: 10.1007/s00775-008-0405-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
The oxygen sensitivity of two related iron(III) dithiolate complexes of the ligand [4,7-bis-(2'-methyl-2'-mercatopropyl)-1-thia-4,7-diazacyclononane], (bmmp-TASN)FeCN (1) and (bmmp-TASN)FeCl (2), has been examined. Oxygen exposure of the low-spin complex 1 yields the disulfonate complex (bmmp-O6-TASN)FeCN (3) as an olive-green solid with characteristic peaks in the IR spectrum at 1262, 1221, 1111, 1021, 947, 800, and 477 cm(-1). The corresponding nickel dithiolate, (bmmp-TASN)Ni (4), yields the related disulfonato derivative, (bmmp-O6-TASN)Ni (5) upon addition of H2O2 (IR bands at 1258, 1143, 1106, 1012, 800, and 694 cm(-1). Oxygen exposure of the high-spin complex 2 results in disulfide formation and decomplexation of the metal with subsequent iron-oxo cluster formation. Complexes 1 and 2 were examined using density functional theory calculations. A natural bond order/natural localized molecular orbital covalency analysis reveals that the low-spin complex 1 contains Fe-Sthiolate bonds with calculated covalencies of 75 and 86%, while the high-spin complex 2 contains Fe-Sthiolate bonds with calculated covalencies of 11 and 40%. The results indicate the degree of covalency of the Fe-S bonds plays a major role in determining the reaction pathway associated with oxygen exposure of iron thiolates. The X-ray structures of 1, 4, and 5 are reported.
Collapse
Affiliation(s)
- Martin G O'Toole
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
X-ray absorption spectroscopy (XAS) has emerged as one of the premier tools for investigating the structure and dynamic properties of metals in cells and in metal containing biomolecules. Utilizing the high flux and broad energy range of X-rays supplied by synchrotron light sources, one can selectively excite core electronic transitions in each metal. Spectroscopic signals from these electronic transitions can be used to dissect the chemical architecture of metals in cells, in cellular components, and in biomolecules at varying degrees of structural resolution. With the development of ever-brighter X-ray sources, X-ray methods have grown into applications that can be utilized to provide both a cellular image of the relative distribution of metals throughout the cell as well as a high-resolution picture of the structure of the metal. As these techniques continue to grow in their capabilities and ease of use, so too does the demand for their application by chemists and biochemists interested in studying the structure and dynamics of metals in cells, in cellular organelles, and in metalloproteins.
Collapse
|