1
|
Zhang Z, Blum JE, Guo R, Kloxin CJ, Saven JG, Pochan DJ. Liquid Crystal Behavior of Uniform Short Rods Made from Computationally Designed Parallel Coiled Coil Building Blocks. ACS Macro Lett 2024; 13:1591-1597. [PMID: 39508488 DOI: 10.1021/acsmacrolett.4c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Parallel, homotetrameric coiled coils were computationally designed using 29 amino acid peptides. These parallel coiled coils, called "bundlemers", have C2 symmetry, with all N-termini displayed from one end of the nanoparticle and all C-termini from the opposite end. This anisotropic display of the peptide termini allowed for the functionalization of two sets of nanoparticles with either maleimide or thiol functionality at the N-terminal region of the constituent peptides. The thiol-Michael conjugation reaction between the N-terminal end of complementary bundlemer nanoparticles formed monodisperse, rigid bundlemer dimer, called "dibundlemer", rods. The constituent, individual bundlemer nanoparticles were characterized with small-angle X-ray scattering (SAXS), Förster resonance energy transfer (FRET), and circular dichroism (CD) spectroscopy to confirm the parallel assembly of the coiled coils, consistent with the computational design. The dibundlemer rods were characterized with SAXS to reveal the uniform dibundlemer nature of the rods. Optical birefringence is observed in concentrated samples of the rods, with polarized optical microscopy (POM) revealing a nematic liquid crystalline behavior.
Collapse
Affiliation(s)
- Zihan Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jacquelyn E Blum
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rui Guo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Wu C, Bagnani M, Jin T, Yuan Y, Mezzenga R. Cholesteric Tactoids with Tunable Helical Pitch Assembled by Lysozyme Amyloid Fibrils. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305839. [PMID: 38312104 DOI: 10.1002/smll.202305839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/22/2023] [Indexed: 02/06/2024]
Abstract
Amyloid fibrils are biological rod-like particles showing liquid-liquid crystalline phase separation into cholesteric phases through a complex behavior of nucleation, growth, and order-order transitions. Yet, controlling the self-assembly of amyloids into liquid crystals, and particularly the resulting helical periodicity, remains challenging. Here, a novel cholesteric system is introduced and characterized based on hen egg white lysozyme (HEWL) amyloid fibrils and the results rationalized via a combination of experiments and theoretical scaling arguments. Specifically, the transition behaviors are elucidated from homogenous nematic, bipolar nematic to cholesteric tactoids following the classic Onsager model and the free energy functional model from Frank-Oseen elasticity theory. Additionally, the critical effects of pH and ionic strength on these order-order-transitions, as well as on the shape and helical pitch of the cholesteric tactoids are demonstrated. It is found that a small increase in pH from 2.0 to 2.8 results in a 34% decrease in pitch, while, on the contrary, increasing ionic strength from 0 to 10 mm leads to a 39% increase in pitch. The present study provides an approach to obtain controllable chiral nematic structures from HEWL amyloid fibrils, and may contribute further to the application of protein-based liquid crystals in pitch-sensitive biosensors or biomimetic architectures.
Collapse
Affiliation(s)
- Chao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
| | - Tonghui Jin
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
| | - Ye Yuan
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
- Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, Zurich, 8093, Switzerland
| |
Collapse
|
3
|
Park SM, Yoon DK. Evaporation-induced self-assembly of liquid crystal biopolymers. MATERIALS HORIZONS 2024; 11:1843-1866. [PMID: 38375871 DOI: 10.1039/d3mh01585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Evaporation-induced self-assembly (EISA) is a process that has gained significant attention in recent years due to its fundamental science and potential applications in materials science and nanotechnology. This technique involves controlled drying of a solution or dispersion of materials, forming structures with specific shapes and sizes. In particular, liquid crystal (LC) biopolymers have emerged as promising candidates for EISA due to their highly ordered structures and biocompatible properties after deposition. This review provides an overview of recent progress in the EISA of LC biopolymers, including DNA, nanocellulose, viruses, and other biopolymers. The underlying self-assembly mechanisms, the effects of different processing conditions, and the potential applications of the resulting structures are discussed.
Collapse
Affiliation(s)
- Soon Mo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Tao H, Rigoni C, Li H, Koistinen A, Timonen JVI, Zhou J, Kontturi E, Rojas OJ, Chu G. Thermodynamically controlled multiphase separation of heterogeneous liquid crystal colloids. Nat Commun 2023; 14:5277. [PMID: 37644027 PMCID: PMC10465492 DOI: 10.1038/s41467-023-41054-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Phase separation is a universal physical transition process whereby a homogeneous mixture splits into two distinct compartments that are driven by the component activity, elasticity, or compositions. In the current work, we develop a series of heterogeneous colloidal suspensions that exhibit both liquid-liquid phase separation of semiflexible binary polymers and liquid crystal phase separation of rigid, rod-like nanocellulose particles. The phase behavior of the multicomponent mixture is controlled by the trade-off between thermodynamics and kinetics during the two transition processes, displaying cholesteric self-assembly of nanocellulose within or across the compartmented aqueous phases. Upon thermodynamic control, two-, three-, and four-phase coexistence behaviors with rich liquid crystal stackings are realized. Among which, each relevant multiphase separation kinetics shows fundamentally different paths governed by nucleation and growth of polymer droplets and nanocellulose tactoids. Furthermore, a coupled multiphase transition can be realized by tuning the composition and the equilibrium temperature, which results in thermotropic behavior of polymers within a lyotropic liquid crystal matrix. Finally, upon drying, the multicomponent mixture undergoes a hierarchical self-assembly of nanocellulose and polymers into stratified cholesteric films, exhibiting compartmentalized polymer distribution and anisotropic microporous structure.
Collapse
Affiliation(s)
- Han Tao
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Vuorimiehentie 1, 02510, Espoo, Finland
| | - Carlo Rigoni
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 02150, Espoo, Finland
| | - Hailong Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Antti Koistinen
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Vuorimiehentie 1, 02510, Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 02150, Espoo, Finland
| | - Jiancheng Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Vuorimiehentie 1, 02510, Espoo, Finland.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Vuorimiehentie 1, 02510, Espoo, Finland.
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Guang Chu
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Vuorimiehentie 1, 02510, Espoo, Finland.
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
5
|
Žganec M, Taler Verčič A, Muševič I, Škarabot M, Žerovnik E. Amyloid Fibrils of Stefin B Show Anisotropic Properties. Int J Mol Sci 2023; 24:ijms24043737. [PMID: 36835149 PMCID: PMC9962164 DOI: 10.3390/ijms24043737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Human stefin B, a member of the cystatin family of cysteine protease inhibitors, tends to form amyloid fibrils under relatively mild conditions, which is why it is used as a model protein to study amyloid fibrillation. Here, we show for the first time that bundles of amyloid fibrils, i.e., helically twisted ribbons, formed by human stefin B exhibit birefringence. This physical property is commonly observed in amyloid fibrils when stained with Congo red. However, we show that the fibrils arrange in regular anisotropic arrays and no staining is required. They share this property with anisotropic protein crystals, structured protein arrays such as tubulin and myosin, and other anisotropic elongated materials, such as textile fibres and liquid crystals. In certain macroscopic arrangements of amyloid fibrils, not only birefringence is observed, but also enhanced emission of intrinsic fluorescence, implying a possibility to detect amyloid fibrils with no labels by using optical microscopy. In our case, no enhancement of intrinsic tyrosine fluorescence was observed at 303 nm; instead, an additional fluorescence emission peak appeared at 425 to 430 nm. We believe that both phenomena, birefringence and fluorescence emission in the deep blue, should be further explored with this and other amyloidogenic proteins. This may allow the development of label-free detection methods for amyloid fibrils of different origins.
Collapse
Affiliation(s)
- Matjaž Žganec
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Ajda Taler Verčič
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Igor Muševič
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Department of Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Miha Škarabot
- Department of Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
6
|
Kamada A, Herneke A, Lopez-Sanchez P, Harder C, Ornithopoulou E, Wu Q, Wei X, Schwartzkopf M, Müller-Buschbaum P, Roth SV, Hedenqvist MS, Langton M, Lendel C. Hierarchical propagation of structural features in protein nanomaterials. NANOSCALE 2022; 14:2502-2510. [PMID: 35103743 DOI: 10.1039/d1nr05571b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural high-performance materials have inspired the exploration of novel materials from protein building blocks. The ability of proteins to self-organize into amyloid-like nanofibrils has opened an avenue to new materials by hierarchical assembly processes. As the mechanisms by which proteins form nanofibrils are becoming clear, the challenge now is to understand how the nanofibrils can be designed to form larger structures with defined order. We here report the spontaneous and reproducible formation of ordered microstructure in solution cast films from whey protein nanofibrils. The structural features are directly connected to the nanostructure of the protein fibrils, which is itself determined by the molecular structure of the building blocks. Hence, a hierarchical assembly process ranging over more than six orders of magnitude in size is described. The fibril length distribution is found to be the main determinant of the microstructure and the assembly process originates in restricted capillary flow induced by the solvent evaporation. We demonstrate that the structural features can be switched on and off by controlling the length distribution or the evaporation rate without losing the functional properties of the protein nanofibrils.
Collapse
Affiliation(s)
- Ayaka Kamada
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden.
| | - Anja Herneke
- Department of Molecular Sciences, SLU, Swedish University of Agricultural Sciences, BioCentrum, Almas allé 5, SE-756 61, Uppsala, Sweden
| | - Patricia Lopez-Sanchez
- Department of Molecular Sciences, SLU, Swedish University of Agricultural Sciences, BioCentrum, Almas allé 5, SE-756 61, Uppsala, Sweden
| | - Constantin Harder
- Deutsches Elektronen-Synchrotron, Notkestr. 85, D-22607 Hamburg, Germany
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Eirini Ornithopoulou
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden.
| | - Qiong Wu
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Xinfeng Wei
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | | | - Peter Müller-Buschbaum
- Heinz Maier-Leibniz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße. 1, D-85748 Garching, Germany
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron, Notkestr. 85, D-22607 Hamburg, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Mikael S Hedenqvist
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Maud Langton
- Department of Molecular Sciences, SLU, Swedish University of Agricultural Sciences, BioCentrum, Almas allé 5, SE-756 61, Uppsala, Sweden
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
7
|
Yuan Y, Almohammadi H, Probst J, Mezzenga R. Plasmonic Amyloid Tactoids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106155. [PMID: 34658087 PMCID: PMC11468577 DOI: 10.1002/adma.202106155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Despite their link to neurodegenerative diseases, amyloids of natural and synthetic sources can also serve as building blocks for functional materials, while possessing intrinsic photonic properties. Here, it is demonstrated that orientationally ordered amyloid fibrils exhibit polarization-dependent fluorescence, and can mechanically align rod-shaped plasmonic nanoparticles codispersed with them. The coupling between the photonic fibrils in liquid crystalline phases and the plasmonic effect of the nanoparticles leads to selective activation of plasmonic extinctions as well as enhanced fluorescence from the hybrid material. These findings are consistent with numerical simulations of the near-field plasmonic enhancement around the nanoparticles. The study provides an approach to synthesize the intrinsic photonic and mechanical properties of amyloid into functional hybrid materials, and may help improve the detection of amyloid deposits based on their enhanced intrinsic luminescence.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
| | - Hamed Almohammadi
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
| | - Julie Probst
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8093Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
- Department of MaterialsETH ZürichZürich8093Switzerland
| |
Collapse
|
8
|
Galzitskaya OV, Selivanova OM, Gorbunova EY, Mustaeva LG, Azev VN, Surin AK. Mechanism of Amyloid Gel Formation by Several Short Amyloidogenic Peptides. NANOMATERIALS 2021; 11:nano11113129. [PMID: 34835893 PMCID: PMC8621528 DOI: 10.3390/nano11113129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
Under certain conditions, many proteins/peptides are capable of self-assembly into various supramolecular formations: fibrils, films, amyloid gels. Such formations can be associated with pathological phenomena, for example, with various neurodegenerative diseases in humans (Alzheimer’s, Parkinson’s and others), or perform various functions in the body, both in humans and in representatives of other domains of life. Recently, more and more data have appeared confirming the ability of many known and, probably, not yet studied proteins/peptides, to self-assemble into quaternary structures. Fibrils, biofilms and amyloid gels are promising objects for the developing field of research of nanobiotechnology. To develop methods for obtaining nanobiomaterials with desired properties, it is necessary to study the mechanism of such structure formation, as well as the influence of various factors on this process. In this work, we present the results of a study of the structure of biogels formed by four 10-membered amyloidogenic peptides: the VDSWNVLVAG peptide (AspNB) and its analogue VESWNVLVAG (GluNB), which are amyloidogenic fragments of the glucantransferase Bgl2p protein from a yeast cell wall, and amyloidogenic peptides Aβ(31–40), Aβ(33–42) from the Aβ(1–42) peptide. Based on the analysis of the data, we propose a possible mechanism for the formation of amyloid gels with these peptides.
Collapse
Affiliation(s)
- Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (O.M.S.); (A.K.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: ; Tel.: +7-903-675-0156
| | - Olga M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (O.M.S.); (A.K.S.)
| | - Elena Y. Gorbunova
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.G.); (L.G.M.); (V.N.A.)
| | - Leila G. Mustaeva
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.G.); (L.G.M.); (V.N.A.)
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.G.); (L.G.M.); (V.N.A.)
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (O.M.S.); (A.K.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.G.); (L.G.M.); (V.N.A.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| |
Collapse
|
9
|
Balasco N, Diaferia C, Morelli G, Vitagliano L, Accardo A. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Front Bioeng Biotechnol 2021; 9:641372. [PMID: 33748087 PMCID: PMC7966729 DOI: 10.3389/fbioe.2021.641372] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
The discovery that the polypeptide chain has a remarkable and intrinsic propensity to form amyloid-like aggregates endowed with an extraordinary stability is one of the most relevant breakthroughs of the last decades in both protein/peptide chemistry and structural biology. This observation has fundamental implications, as the formation of these assemblies is systematically associated with the insurgence of severe neurodegenerative diseases. Although the ability of proteins to form aggregates rich in cross-β structure has been highlighted by recent studies of structural biology, the determination of the underlying atomic models has required immense efforts and inventiveness. Interestingly, the progressive molecular and structural characterization of these assemblies has opened new perspectives in apparently unrelated fields. Indeed, the self-assembling through the cross-β structure has been exploited to generate innovative biomaterials endowed with promising mechanical and spectroscopic properties. Therefore, this structural motif has become the fil rouge connecting these diversified research areas. In the present review, we report a chronological recapitulation, also performing a survey of the structural content of the Protein Data Bank, of the milestones achieved over the years in the characterization of cross-β assemblies involved in the insurgence of neurodegenerative diseases. A particular emphasis is given to the very recent successful elucidation of amyloid-like aggregates characterized by remarkable molecular and structural complexities. We also review the state of the art of the structural characterization of cross-β based biomaterials by highlighting the benefits of the osmosis of information between these two research areas. Finally, we underline the new promising perspectives that recent successful characterizations of disease-related amyloid-like assemblies can open in the biomaterial field.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
10
|
Wei Z, Wu S, Xia J, Shao P, Sun P, Xiang N. Enhanced Antibacterial Activity of Hen Egg-White Lysozyme against Staphylococcus aureus and Escherichia coli due to Protein Fibrillation. Biomacromolecules 2021; 22:890-897. [PMID: 33464041 DOI: 10.1021/acs.biomac.0c01599] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibacterial agents with broad-spectrum antibacterial properties have always been in large demand. Lysozyme, a common and inexpensive protein, is widely used in food safety and biomedical applications for antibacterial purposes. However, many pathogens are lysozyme-resistant or insensitive. In this research, we investigated the antibacterial activities and mechanism of oligomers and amyloid fibrils formed from hen egg-white lysozyme (HEWL) against Staphylococcus aureus and Escherichia coli. The HEWL fibrils showed significantly enhanced antibacterial activity against both lysozyme-resistant S. aureus and lysozyme-insensitive E. coli. The HEWL oligomers, on the other hand, did not show an obvious improvement in antibacterial activity compared to native HEWL. Our results indicated that the fibrillation of HEWL can significantly enhance antibacterial activity against both S. aureus and E. coli. The natural and inexpensive HEWL amyloid fibrils can be potentially applied to antimicrobial food packaging, animal feed, antibiotic replacement, etc.
Collapse
Affiliation(s)
- Zhengxun Wei
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China
| | - Sihong Wu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China
| | - Jiujie Xia
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research, (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, P.R. China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research, (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, P.R. China
| | - Ning Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research, (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, P.R. China
| |
Collapse
|
11
|
Ding WQ, Liu H, Qin SY, Jiang Y, Lei X, Zhang AQ. A Lyotropic Liquid Crystal from a Flexible Oligopeptide Amphiphile in Dimethyl Sulfoxide. ACS APPLIED BIO MATERIALS 2020; 3:8989-8996. [PMID: 35019575 DOI: 10.1021/acsabm.0c01231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite the rapid progress in peptide liquid crystals (LCs) due to their prominent properties, our investigation on flexible peptide-based LCs is incomplete, mainly resulted from their unclear formation mechanisms and unexploited applications in organic solvents. Here, we develop a lyotropic LC based on a flexible oligopeptide amphiphile, which aggregates into aligned cylinder-like nanostructures in dimethyl sulfoxide (DMSO). The formation mechanism of lyotropic LC in DMSO was probed by the experimental investigation and molecular dynamics simulation, indicating that the hydrogen bonding and hydrophobic and electrostatic interactions contribute to the formation of ordered nanostructures in the organic solvent. Arising from the orientational order and suitable fluidity, we exploit the application of lyotropic LC as an aligned medium to measure the residual dipolar couplings of bioactive molecules. This study not only offers the understanding of the mechanism to create LC systems without rigid aromatic groups but also expands the applications of ordered bottom-up nanomaterials in organic solvents.
Collapse
Affiliation(s)
- Wen-Qiang Ding
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Han Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Si-Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yan Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Xinxiang Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.,School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ai-Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
12
|
Zhang G, Zhang J, Wang Y, Wu Y, Li Q, Liang Y, Qi W, Rao H, Su R, He Z. Self-assembly of multifunctional hydrogels with polyoxometalates helical arrays using nematic peptide liquid crystal template. J Colloid Interface Sci 2020; 578:218-228. [DOI: 10.1016/j.jcis.2020.05.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
|
13
|
Interplay between Convective and Viscoelastic Forces Controls the Morphology of In Vitro Paclitaxel-Stabilized Microtubules. CRYSTALS 2020. [DOI: 10.3390/cryst10010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Microtubules (MTs) are self-assembling, high-aspect-ratio tubular nanostructures formed from the polymerization of tubulin protein. MTs are capable of globally assembling into optically birefringent morphologies, but there is disagreement on the mechanisms driving this behavior. We investigated the temporal evolution of paclitaxel (PTX)-stabilized MT solutions under a range of in vitro conditions. Significant morphological differences were observed in the polymerized PTX-MT solutions as a consequence of varying the orientation of the reaction vessel (vertical vs. horizontal), the type of heating source (hot plate vs. incubator), the incubation time, and the concentration of PTX (high vs. low). The most robust birefringent patterns were found only in vertically oriented cuvettes that were heated asymmetrically on a hot plate, suggesting dependence upon a convective flow, which we confirmed with a combination of optical and thermal imaging. Higher concentrations of PTX led to denser PTX-MT domain formation and brighter birefringence, due to more complete polymerization. Combining our experimental observations, we conclude that birefringent patterns arise principally through a combination of convective and viscoelastic forces, and we identify the sequence of dynamical stages through which they evolve.
Collapse
|
14
|
Zhao J, Gulan U, Horie T, Ohmura N, Han J, Yang C, Kong J, Wang S, Xu BB. Advances in Biological Liquid Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900019. [PMID: 30892830 DOI: 10.1002/smll.201900019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Biological liquid crystals, a rich set of soft materials with rod-like structures widely existing in nature, possess typical lyotropic liquid crystalline phase properties both in vitro (e.g., cellulose, peptides, and protein assemblies) and in vivo (e.g., cellular lipid membrane, packed DNA in bacteria, and aligned fibroblasts). Given the ability to undergo phase transition in response to various stimuli, numerous practices are exercised to spatially arrange biological liquid crystals. Here, a fundamental understanding of interactions between rod-shaped biological building blocks and their orientational ordering across multiple length scales is addressed. Discussions are made with regard to the dependence of physical properties of nonmotile objects on the first-order phase transition and the coexistence of multi-phases in passive liquid crystalline systems. This work also focuses on how the applied physical stimuli drives the reorganization of constituent passive particles for a new steady-state alignment. A number of recent progresses in the dynamics behaviors of active liquid crystals are presented, and particular attention is given to those self-propelled animate elements, like the formation of motile topological defects, active turbulence, correlation of orientational ordering, and cellular functions. Finally, future implications and potential applications of the biological liquid crystalline materials are discussed.
Collapse
Affiliation(s)
- Jianguo Zhao
- Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou, 362200, China
- Third Institute of Physics-Biophysics, University of Göttingen, 37077, Göttingen, Germany
| | - Utku Gulan
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | - Takafumi Horie
- Department of Chemical Science and Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Naoto Ohmura
- Department of Chemical Science and Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Jun Han
- Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou, 362200, China
| | - Chao Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Steven Wang
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
15
|
Bagnani M, Nyström G, De Michele C, Mezzenga R. Amyloid Fibrils Length Controls Shape and Structure of Nematic and Cholesteric Tactoids. ACS NANO 2019; 13:591-600. [PMID: 30543398 DOI: 10.1021/acsnano.8b07557] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amyloid fibrils offer the possibility of controlling their contour length, aspect ratio, and length distribution, without affecting other structural parameters. Here we show that a fine control in the contour length distribution of β-lactoglobulin amyloid fibrils, achieved by mechanical shear stresses of different levels, translates into the organization of tactoids of different shapes and morphologies. While longer fibrils lead to highly elongated nematic tactoids in an isotropic continuous matrix, only sufficiently shortened amyloid fibrils lead to cholesteric droplets. The progressive decrease in amyloid fibrils length leads to a linear decrease of the anchoring strength and homogeneous tactoid → bipolar tactoid → cholesteric droplet transitions. Upon fibrils length increase, we first find experimentally and predict theoretically a decrease of the cholesteric pitch, before full disappearance of the cholesteric phase. The latter is understood to arise from the decrease of the energy barrier separating cholesteric and nematic phases over thermal energy for progressively longer, semiflexible fibrils.
Collapse
Affiliation(s)
- Massimo Bagnani
- Department of Health Science and Technology , ETH Zurich , Schmelzbergstrasse 9, LFO E23 Zurich 8092 , Switzerland
| | - Gustav Nyström
- Department of Health Science and Technology , ETH Zurich , Schmelzbergstrasse 9, LFO E23 Zurich 8092 , Switzerland
| | - Cristiano De Michele
- Dipartimento di Fisica , "Sapienza" Università di Roma , P.le A. Moro 2 , 00185 Roma , Italy
| | - Raffaele Mezzenga
- Department of Health Science and Technology , ETH Zurich , Schmelzbergstrasse 9, LFO E23 Zurich 8092 , Switzerland
- Department of Materials , ETH Zurich , Wolfgang-Pauli-Strasse 10 , Zurich 8093 , Switzerland
| |
Collapse
|
16
|
Han X, Lv L, Li M, You J, Wu X, Li C. Sheet-like and tubular aggregates of protein nanofibril–phosphate hybrids. Chem Commun (Camb) 2019; 55:393-396. [DOI: 10.1039/c8cc08432g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanofibrils assembled by bovine serum albumin aligned into microtubes and nanosheets upon heating and cooling its solution in phosphate buffer.
Collapse
Affiliation(s)
- Xiangsheng Han
- CAS Key Lab of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Lili Lv
- CAS Key Lab of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Mingjie Li
- CAS Key Lab of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Jun You
- CAS Key Lab of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Xiaochen Wu
- CAS Key Lab of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Chaoxu Li
- CAS Key Lab of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| |
Collapse
|
17
|
Nyström G, Mezzenga R. Liquid crystalline filamentous biological colloids: Analogies and differences. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Liu S, Zheng C, Ye Z, Blanc B, Zhi X, Shi L, Zhang Z. Filamentous Viruses Grafted with Thermoresponsive Block Polymers: Liquid Crystal Behaviors of a Rodlike Colloidal Model with “True” Attractive Interactions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shuaiyu Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Chunxiong Zheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Zihan Ye
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Baptiste Blanc
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Xueli Zhi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| |
Collapse
|
19
|
Mason TO, Shimanovich U. Fibrous Protein Self-Assembly in Biomimetic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706462. [PMID: 29883013 DOI: 10.1002/adma.201706462] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/28/2018] [Indexed: 05/22/2023]
Abstract
Protein self-assembly processes, by which polypeptides interact and independently form multimeric structures, lead to a wide array of different endpoints. Structures formed range from highly ordered molecular crystals to amorphous aggregates. Order arises in the system from a balance between many low-energy processes occurring due to a set of interactions between residues in a chain, between residues in different chains, and between solute and solvent. In Nature, self-assembling protein systems have evolved over millions of years to organize into supramolecular structures, optimized for specific functions, with this propensity determined by the sequence of their constituent amino acids, of which only 20 are encoded in DNA. The structural materials that arise from biological self-assembly can display remarkable mechanical properties, often as a result of hierarchical structure on the nano- and microscales, and much research has been devoted to mimicking and exploiting these properties for a variety of end uses. This work presents a review of a range of studies in which biological functions are effectively reproduced through the design of self-assembling fibrous protein systems.
Collapse
Affiliation(s)
- Thomas O Mason
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ulyana Shimanovich
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
20
|
Nandi I, Chall S, Chowdhury S, Mitra T, Roy SS, Chattopadhyay K. Protein Fibril-Templated Biomimetic Synthesis of Highly Fluorescent Gold Nanoclusters and Their Applications in Cysteine Sensing. ACS OMEGA 2018; 3:7703-7714. [PMID: 30221238 PMCID: PMC6130899 DOI: 10.1021/acsomega.8b01033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/27/2018] [Indexed: 05/30/2023]
Abstract
Biomimetic synthesis of multifunctional fluorescent gold nanoclusters (Au NCs) is of great demand because of their ever-increasing applications. In this study, we have used self-assembled bovine serum albumin (BSA) amyloid-like nanofibers as the bioinspired scaffold for the synthesis of Au NCs. The amyloid fibril stabilized gold nanocluster (Fib-Au NC) has been found to have appreciable enhancement of fluorescence emission and a large 25 nm red shift in its emission maxima when compared to its monomeric protein counterpart (BSA-Au NC). The underlying mechanism accountable for the fluorescence behavior and its spectral shift has been thoroughly investigated by a combined use of spectroscopic and microscopic techniques. We have subsequently demonstrated the use of Fib-Au NCs for cysteine (Cys) sensing both in vitro and inside live cells. Additionally, cellular uptake and postpermeation effect of Fib-Au NCs have also been ascertained by detailed flow cytometry analysis, viability assay, and real-time apoptotic gene expression profiling.
Collapse
Affiliation(s)
- Indrani Nandi
- Protein
Folding and Dynamics Laboratory, Structural Biology &
Bio-Informatics Division, and Metabolic Disorder Laboratory, Cell Biology
and Physiology Division, CSIR-Indian Institute
of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sayantani Chall
- Protein
Folding and Dynamics Laboratory, Structural Biology &
Bio-Informatics Division, and Metabolic Disorder Laboratory, Cell Biology
and Physiology Division, CSIR-Indian Institute
of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sourav Chowdhury
- Protein
Folding and Dynamics Laboratory, Structural Biology &
Bio-Informatics Division, and Metabolic Disorder Laboratory, Cell Biology
and Physiology Division, CSIR-Indian Institute
of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Tulika Mitra
- Protein
Folding and Dynamics Laboratory, Structural Biology &
Bio-Informatics Division, and Metabolic Disorder Laboratory, Cell Biology
and Physiology Division, CSIR-Indian Institute
of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sib Sankar Roy
- Protein
Folding and Dynamics Laboratory, Structural Biology &
Bio-Informatics Division, and Metabolic Disorder Laboratory, Cell Biology
and Physiology Division, CSIR-Indian Institute
of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Krishnananda Chattopadhyay
- Protein
Folding and Dynamics Laboratory, Structural Biology &
Bio-Informatics Division, and Metabolic Disorder Laboratory, Cell Biology
and Physiology Division, CSIR-Indian Institute
of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
21
|
Jayamani J, Shanmugam G. Diameter of the vial plays a crucial role in the amyloid fibril formation: Role of interface area between hydrophilic-hydrophobic surfaces. Int J Biol Macromol 2017; 101:290-298. [DOI: 10.1016/j.ijbiomac.2017.03.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 12/29/2022]
|
22
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 580] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
23
|
Continuous Isotropic-Nematic Transition in Amyloid Fibril Suspensions Driven by Thermophoresis. Sci Rep 2017; 7:1211. [PMID: 28450728 PMCID: PMC5430637 DOI: 10.1038/s41598-017-01287-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022] Open
Abstract
The isotropic and nematic (I + N) coexistence for rod-like colloids is a signature of the first-order thermodynamics nature of this phase transition. However, in the case of amyloid fibrils, the biphasic region is too small to be experimentally detected, due to their extremely high aspect ratio. Herein, we study the thermophoretic behaviour of fluorescently labelled β-lactoglobulin amyloid fibrils by inducing a temperature gradient across a microfluidic channel. We discover that fibrils accumulate towards the hot side of the channel at the temperature range studied, thus presenting a negative Soret coefficient. By exploiting this thermophoretic behaviour, we show that it becomes possible to induce a continuous I-N transition with the I and N phases at the extremities of the channel, starting from an initially single N phase, by generating an appropriate concentration gradient along the width of the microchannel. Accordingly, we introduce a new methodology to control liquid crystal phase transitions in anisotropic colloidal suspensions. Because the induced order-order transitions are achieved under stationary conditions, this may have important implications in both applied colloidal science, such as in separation and fractionation of colloids, as well as in fundamental soft condensed matter, by widening the accessibility of target regions in the phase diagrams.
Collapse
|
24
|
Gu J, Su Y, Liu P, Li P, Yang P. An Environmentally Benign Antimicrobial Coating Based on a Protein Supramolecular Assembly. ACS APPLIED MATERIALS & INTERFACES 2017; 9:198-210. [PMID: 27982574 DOI: 10.1021/acsami.6b13552] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of antimicrobial materials, for example, silver nanoparticles, has been a cause for concern because they often exert an adverse effect on environmental and safety during their preparation and use. In this study, we report a class of green antimicrobial coating based on a supramolecular assembly of a protein extracted from daily food, without the addition of any other hazardous agents. It is found that a self-assembled nanofilm by mere hen egg white lysozyme has durable in vitro and in vivo broad-spectrum antimicrobial efficacy against Gram-positive/negative and fungi. Such enhanced antimicrobial capability over native lysozyme is attributed to a synergistic combination of positive charge and hydrophobic amino acid residues enriched on polymeric aggregates in the lysozyme nanofilm. Accompanied with high antimicrobial activity, this protein-based PTL material simultaneously exhibits the integration of multiple functions including antifouling, antibiofilm, blood compatibility, and low cytotoxicity due to the existence of surface hydration effect. Moreover, the bioinspired adhesion mediated by the amyloid structure contained in the nanofilm induces robust transfer and self-adhesion of the material onto virtually arbitrary substrates by a simple one-step aqueous coating or solvent-free printing in 1 min, thereby allowing an ultrafast route into practical implications for surface-functionalized commodity and biomedical devices. Our results demonstrate that the application of pure proteinaceous substance may afford a cost-effective green biomaterial that has high antimicrobial activity and low environmental impact.
Collapse
Affiliation(s)
- Jin Gu
- Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Yajuan Su
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an 710049, China
| | - Peng Liu
- College of Biomedical Engineering, Chongqing University , Chongqing 400044, China
| | - Peng Li
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an 710049, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 210009, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China
| |
Collapse
|
25
|
Ranganathan S, Maji SK, Padinhateeri R. Defining a Physical Basis for Diversity in Protein Self-Assemblies Using a Minimal Model. J Am Chem Soc 2016; 138:13911-13922. [DOI: 10.1021/jacs.6b06433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Srivastav Ranganathan
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Samir K. Maji
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ranjith Padinhateeri
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
26
|
Majorosova J, Petrenko VI, Siposova K, Timko M, Tomasovicova N, Garamus VM, Koralewski M, Avdeev MV, Leszczynski B, Jurga S, Gazova Z, Hayryan S, Hu CK, Kopcansky P. On the adsorption of magnetite nanoparticles on lysozyme amyloid fibrils. Colloids Surf B Biointerfaces 2016; 146:794-800. [DOI: 10.1016/j.colsurfb.2016.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
|
27
|
Zhao J, Bolisetty S, Adamcik J, Han J, Fernández-Ronco MP, Mezzenga R. Freeze-Thaw Cycling Induced Isotropic-Nematic Coexistence of Amyloid Fibrils Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2492-2499. [PMID: 26907697 DOI: 10.1021/acs.langmuir.6b00276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amyloid fibrils are charged semiflexible assemblies with very large aspect ratio (length to diameter, L/D). Because of this large aspect ratio, the isotropic (I) and nematic (N) phase coexistence expected from the first-order thermodynamic nature of the I-N phase transition, as predicted from the Onsager's theory, is vanishingly small and, in practice, challenging to experimentally observe. In this study we present a remarkable widening of the I + N biphasic region in β-lactoglobulin fibrils suspension via freeze-thaw (F-T) cycling. The demixing behavior can be induced and controlled by a slow growth of propagation front of the ice crystals, which grow by excluding the amyloid fibrils from the crystal phase and thus concentrating them in the liquid phase. The growth of the ice crystals is accompanied by the formation of concentrated and elongated tactoid-like structure in the liquid phase. During the subsequent thawing cycling, at large tactoid domains, the mismatch in density caused by the presence of amyloid fibrils is sufficient to generate a sedimentation of the N phase at the bottom of the vial, coexisting with an I phase on the top. We reason why, despite the remarkable stability of the coexisting I and N phases observed over several weeks after F-T cycling, the biphasic region is understood to be a nonequilibrium, metastable state. Yet, the results in this study suggest that the F-T treatment is an effective approach to stabilize multiphase coexistence of liquid crystalline phases in colloidal suspensions of anisotropic particles without the need of additives, such as depleting agents, needed to modify interaction potentials.
Collapse
Affiliation(s)
| | | | | | - Jun Han
- Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences , CN-362200 Quanzhou, China
| | | | | |
Collapse
|
28
|
Stehli D, Mulaj M, Miti T, Traina J, Foley J, Muschol M. Collapsed state of polyglutamic acid results in amyloid spherulite formation. INTRINSICALLY DISORDERED PROTEINS 2015; 3:e1056905. [PMID: 28232889 DOI: 10.1080/21690707.2015.1056905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly.
Collapse
Affiliation(s)
- Daniel Stehli
- Department of Physics; University of South Florida ; Tampa, FL USA
| | - Mentor Mulaj
- Department of Physics; University of South Florida ; Tampa, FL USA
| | - Tatiana Miti
- Department of Physics; University of South Florida ; Tampa, FL USA
| | - Joshua Traina
- Department of Physics; University of South Florida ; Tampa, FL USA
| | - Joseph Foley
- Department of Physics; University of South Florida ; Tampa, FL USA
| | - Martin Muschol
- Department of Physics; University of South Florida ; Tampa, FL USA
| |
Collapse
|
29
|
Mishra R, Thakur AK. Amyloid nanospheres from polyglutamine rich peptides: assemblage through an intermolecular salt bridge interaction. Org Biomol Chem 2015; 13:4155-9. [DOI: 10.1039/c4ob02589j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyloid fiber formation by two polyglutamine peptides through a nucleation polymerization pathway. An intermolecular salt bridge between the positively charged lysine and the negatively charged glutamate induces the formation of nanospherical amyloids through a non-nucleated pathway.
Collapse
Affiliation(s)
- Rahul Mishra
- Department of Biological Sciences and Bioengineering
- Indian Institute of Technology
- Kanpur
- India
| | - Ashwani K. Thakur
- Department of Biological Sciences and Bioengineering
- Indian Institute of Technology
- Kanpur
- India
| |
Collapse
|
30
|
Žganec M, Žerovnik E. Amyloid fibrils compared to peptide nanotubes. Biochim Biophys Acta Gen Subj 2014; 1840:2944-52. [DOI: 10.1016/j.bbagen.2014.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/22/2014] [Accepted: 05/29/2014] [Indexed: 12/30/2022]
|
31
|
Tardani F, La Mesa C. Effects of single-walled carbon nanotubes on lysozyme gelation. Colloids Surf B Biointerfaces 2014; 121:165-70. [DOI: 10.1016/j.colsurfb.2014.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/26/2014] [Accepted: 06/02/2014] [Indexed: 11/15/2022]
|
32
|
Faruqui N, Bella A, Ravi J, Ray S, Lamarre B, Ryadnov MG. Differentially Instructive Extracellular Protein Micro-nets. J Am Chem Soc 2014; 136:7889-98. [DOI: 10.1021/ja411325c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Angelo Bella
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Jascindra Ravi
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Santanu Ray
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Baptiste Lamarre
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Maxim G. Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- School
of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, U.K
| |
Collapse
|
33
|
Chang D, Lam CN, Tang S, Olsen BD. Effect of polymer chemistry on globular protein–polymer block copolymer self-assembly. Polym Chem 2014. [DOI: 10.1039/c4py00448e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Changing polymer chemistry in protein–polymer conjugate block copolymers results in the formation of previously unobserved cubic phases and changes in protein–polymer interactions that create large shifts in phase transitions, providing a powerful tool for nanostructure control.
Collapse
Affiliation(s)
- Dongsook Chang
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge, USA
| | - Christopher N. Lam
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge, USA
| | - Shengchang Tang
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge, USA
| | - Bradley D. Olsen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge, USA
| |
Collapse
|
34
|
Scholten E, Moschakis T, Biliaderis CG. Biopolymer composites for engineering food structures to control product functionality. FOOD STRUCTURE-NETHERLANDS 2014. [DOI: 10.1016/j.foostr.2013.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Zhou X, Zhang Y, Zhang F, Pillai S, Liu J, Li R, Dai B, Li B, Zhang Y. Hierarchical ordering of amyloid fibrils on the mica surface. NANOSCALE 2013; 5:4816-4822. [PMID: 23613010 DOI: 10.1039/c3nr00886j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aggregation of amyloid peptides into ordered fibrils is closely associated with many neurodegenerative diseases. The surfaces of cell membranes and biomolecules are believed to play important roles in modulation of peptide aggregation under physiological conditions. Experimental studies of fibrillogenesis at the molecular level in vivo, however, are inherently challenging, and the molecular mechanisms of how surface affects the structure and ordering of amyloid fibrils still remain elusive. Herein we have investigated the aggregation behavior of insulin peptides within water films adsorbed on the mica surface. AFM measurements revealed that the structure and orientation of fibrils were significantly affected by the mica lattice and the peptide concentration. At low peptide concentration (~0.05 mg mL(-1)), there appeared a single layer of short and well oriented fibrils with a mean height of 1.6 nm. With an increase of concentration to a range of 0.2-2.0 mg mL(-1), a different type of fibrils with a mean height of 3.8 nm was present. Interestingly, when the concentration was above 2.0 mg mL(-1), the thicker fibrils exhibited two-dimensional liquid-crystal-like ordering probably caused by the combination of entropic and electrostatic forces. These results could help us gain better insight into the effects of the substrate on amyloid fibrillation.
Collapse
Affiliation(s)
- Xingfei Zhou
- Department of Physics, Ningbo University, Ningbo, 315211, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Grove TZ, Regan L, Cortajarena AL. Nanostructured functional films from engineered repeat proteins. J R Soc Interface 2013; 10:20130051. [PMID: 23594813 DOI: 10.1098/rsif.2013.0051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Fundamental advances in biotechnology, medicine, environment, electronics and energy require methods for precise control of spatial organization at the nanoscale. Assemblies that rely on highly specific biomolecular interactions are an attractive approach to form materials that display novel and useful properties. Here, we report on assembly of films from the designed, rod-shaped, superhelical, consensus tetratricopeptide repeat protein (CTPR). We have designed three peptide-binding sites into the 18 repeat CTPR to allow for further specific and non-covalent functionalization of films through binding of fluorescein labelled peptides. The fluorescence signal from the peptide ligand bound to the protein in the solid film is anisotropic, demonstrating that CTPR films can impose order on otherwise isotropic moieties. Circular dichroism measurements show that the individual protein molecules retain their secondary structure in the film, and X-ray scattering, birefringence and atomic force microscopy experiments confirm macroscopic alignment of CTPR molecules within the film. This work opens the door to the generation of innovative biomaterials with tailored structure and function.
Collapse
Affiliation(s)
- Tijana Z Grove
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
37
|
Mezzenga R, Fischer P. The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:046601. [PMID: 23455715 DOI: 10.1088/0034-4885/76/4/046601] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aggregation of proteins is of fundamental relevance in a number of daily phenomena, as important and diverse as blood coagulation, medical diseases, or cooking an egg in the kitchen. Colloidal food systems, in particular, are examples that have great significance for protein aggregation, not only for their importance and implications, which touches on everyday life, but also because they allow the limits of the colloidal science analogy to be tested in a much broader window of conditions, such as pH, ionic strength, concentration and temperature. Thus, studying the aggregation and self-assembly of proteins in foods challenges our understanding of these complex systems from both the molecular and statistical physics perspectives. Last but not least, food offers a unique playground to study the aggregation of proteins in three, two and one dimensions, that is to say, in the bulk, at air/water and oil/water interfaces and in protein fibrillation phenomena. In this review we will tackle this very ambitious task in order to discuss the current understanding of protein aggregation in the framework of foods, which is possibly one of the broadest contexts, yet is of tremendous daily relevance.
Collapse
Affiliation(s)
- Raffaele Mezzenga
- ETH Zurich, Food and Soft Materials Science, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland.
| | | |
Collapse
|
38
|
Amino acid sequence determinants in self-assembly of insulin chiral amyloid superstructures: Role of C-terminus of B-chain in association of fibrils. FEBS Lett 2013; 587:625-30. [DOI: 10.1016/j.febslet.2013.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 11/19/2022]
|
39
|
Raccosta S, Martorana V, Manno M. Thermodynamic versus conformational metastability in fibril-forming lysozyme solutions. J Phys Chem B 2012; 116:12078-87. [PMID: 22984801 DOI: 10.1021/jp303430g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of intermolecular interaction in fibril-forming protein solutions and its relation with molecular conformation is a crucial aspect for the control and inhibition of amyloid structures. Here, we study the fibril formation and the protein-protein interactions of lysozyme at acidic pH and low ionic strength. The amyloid formation occurs after a long lag time and is preceded by the formation of oligomers, which seems to be off-pathway with respect to fibrillation. By measuring the osmotic isothermal compressibility and the collective diffusion coefficient of lysozyme in solution, we observe that the monomeric solution is kept in a thermodynamically metastable state by strong electrostatic repulsion, even in denaturing conditions. The measured repulsive interaction between monomers is satisfactorily accounted for by classical polyelectrolyte theory. Further, we observe a slow conformational change involving both secondary and tertiary structure, which drives the proteins toward a more hydrophobic conformation. Denatured proteins are driven out of metastability through conformational substates, which are kinetically populated and experience a lower activation energy for fibril formation. Thus, our results highlight the role of electrostatic repulsion, which hinders the aggregation of partially denatured proteins and operates as a gatekeeper favoring the association of those monomers whose conformation is capable of forming amyloid structure.
Collapse
Affiliation(s)
- Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, via U. La Malfa 153, I-90146 Palermo, Italy
| | | | | |
Collapse
|
40
|
Bolisetty S, Harnau L, Jung JM, Mezzenga R. Gelation, Phase Behavior, and Dynamics of β-Lactoglobulin Amyloid Fibrils at Varying Concentrations and Ionic Strengths. Biomacromolecules 2012; 13:3241-52. [DOI: 10.1021/bm301005w] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sreenath Bolisetty
- ETH Zurich, Food
and Soft Materials Laboratory, Department of Health Science
and Technology, Schmelzbergstrasse 9, LFO-E22, CH-8092 Zurich, Switzerland
| | - Ludger Harnau
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstrasse 3,
70569 Stuttgart, Germany, and Institut für Theoretische und
Angewandte Physik, Universität Stuttgart, Pfaffenwaldring 57,
70569 Stuttgart, Germany
| | - Jin-mi Jung
- Department of Physics, University of Fribourg, Ch. Musée 3, CH-1700
Fribourg, Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Food
and Soft Materials Laboratory, Department of Health Science
and Technology, Schmelzbergstrasse 9, LFO-E22, CH-8092 Zurich, Switzerland
| |
Collapse
|
41
|
Chun J, Bhak G, Lee SG, Lee JH, Lee D, Char K, Paik SR. κ-Casein-Based Hierarchical Suprastructures and Their Use for Selective Temporal and Spatial Control over Neuronal Differentiation. Biomacromolecules 2012; 13:2731-8. [DOI: 10.1021/bm300692k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiyeong Chun
- School of Chemical and
Biological Engineering, Institute of Chemical Processes,
College of Engineering, Seoul National University, 599 Gwanak-Ro, Gwanak-Ku,
Seoul, Korea, 151-744
| | - Ghibom Bhak
- School of Chemical and
Biological Engineering, Institute of Chemical Processes,
College of Engineering, Seoul National University, 599 Gwanak-Ro, Gwanak-Ku,
Seoul, Korea, 151-744
| | - Sang-Gil Lee
- School of Chemical and
Biological Engineering, Institute of Chemical Processes,
College of Engineering, Seoul National University, 599 Gwanak-Ro, Gwanak-Ku,
Seoul, Korea, 151-744
| | - Ji-Hye Lee
- School of Chemical and
Biological Engineering, Institute of Chemical Processes,
College of Engineering, Seoul National University, 599 Gwanak-Ro, Gwanak-Ku,
Seoul, Korea, 151-744
| | - Daekyun Lee
- School of Chemical and
Biological Engineering, Institute of Chemical Processes,
College of Engineering, Seoul National University, 599 Gwanak-Ro, Gwanak-Ku,
Seoul, Korea, 151-744
| | - Kookheon Char
- School of Chemical and
Biological Engineering, Institute of Chemical Processes,
College of Engineering, Seoul National University, 599 Gwanak-Ro, Gwanak-Ku,
Seoul, Korea, 151-744
| | - Seung R. Paik
- School of Chemical and
Biological Engineering, Institute of Chemical Processes,
College of Engineering, Seoul National University, 599 Gwanak-Ro, Gwanak-Ku,
Seoul, Korea, 151-744
| |
Collapse
|
42
|
Affiliation(s)
- Jozef Adamcik
- Food & Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zürich, LFO23, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Raffaele Mezzenga
- Food & Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zürich, LFO23, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
43
|
Castro CE, Dong J, Boyce MC, Lindquist S, Lang MJ. Physical properties of polymorphic yeast prion amyloid fibers. Biophys J 2011; 101:439-48. [PMID: 21767497 DOI: 10.1016/j.bpj.2011.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/17/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022] Open
Abstract
Amyloid fibers play important roles in many human diseases and natural biological processes and have immense potential as novel nanomaterials. We explore the physical properties of polymorphic amyloid fibers formed by yeast prion protein Sup35. Amyloid fibers that conferred distinct prion phenotypes ([PSI(+)]), strong (S) versus weak (W) nonsense suppression, displayed different physical properties. Both S[PSI(+)] and W[PSI(+)] fibers contained structural inhomogeneities, specifically local regions of static curvature in S[PSI(+)] fibers and kinks and self-cross-linking in W[PSI(+)] fibers. Force-extension experiments with optical tweezers revealed persistence lengths of 1.5 μm and 3.3 μm and axial stiffness of 5600 pN and 9100 pN for S[PSI(+)] and W[PSI(+)] fibers, respectively. Thermal fluctuation analysis confirmed the twofold difference in persistence length between S[PSI(+)] and W[PSI(+)] fibers and revealed a torsional stiffness of kinks and cross-links of ~100-200 pN·nm/rad.
Collapse
Affiliation(s)
- Carlos E Castro
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
44
|
Babenko V, Harada T, Yagi H, Goto Y, Kuroda R, Dzwolak W. Chiral superstructures of insulin amyloid fibrils. Chirality 2011; 23:638-46. [DOI: 10.1002/chir.20996] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/09/2011] [Indexed: 01/11/2023]
|
45
|
Rodríguez-Pérez JC, Hamley IW, Squires AM. Infrared Linear Dichroism Spectroscopy on Amyloid Fibrils Aligned by Molecular Combing. Biomacromolecules 2011; 12:1810-21. [DOI: 10.1021/bm200167n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Reading, RG6 6AD, United Kingdom
| | - Adam M. Squires
- Department of Chemistry, University of Reading, Reading, RG6 6AD, United Kingdom
| |
Collapse
|
46
|
Paparcone R, Cranford SW, Buehler MJ. Self-folding and aggregation of amyloid nanofibrils. NANOSCALE 2011; 3:1748-1755. [PMID: 21347488 DOI: 10.1039/c0nr00840k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Amyloids are highly organized protein filaments, rich in β-sheet secondary structures that self-assemble to form dense plaques in brain tissues affected by severe neurodegenerative disorders (e.g. Alzheimer's Disease). Identified as natural functional materials in bacteria, in addition to their remarkable mechanical properties, amyloids have also been proposed as a platform for novel biomaterials in nanotechnology applications including nanowires, liquid crystals, scaffolds and thin films. Despite recent progress in understanding amyloid structure and behavior, the latent self-assembly mechanism and the underlying adhesion forces that drive the aggregation process remain poorly understood. On the basis of previous full atomistic simulations, here we report a simple coarse-grain model to analyze the competition between adhesive forces and elastic deformation of amyloid fibrils. We use simple model system to investigate self-assembly mechanisms of fibrils, focused on the formation of self-folded nanorackets and nanorings, and thereby address a critical issue in linking the biochemical (Angstrom) to micrometre scales relevant for larger-scale states of functional amyloid materials. We investigate the effect of varying the interfibril adhesion energy on the structure and stability of self-folded nanorackets and nanorings and demonstrate that these aggregated amyloid fibrils are stable in such states even when the fibril-fibril interaction is relatively weak, given that the constituting amyloid fibril length exceeds a critical fibril length-scale of several hundred nanometres. We further present a simple approach to directly determine the interfibril adhesion strength from geometric measures. In addition to providing insight into the physics of aggregation of amyloid fibrils our model enables the analysis of large-scale amyloid plaques and presents a new method for the estimation and engineering of the adhesive forces responsible of the self-assembly process of amyloid nanostructures, filling a gap that previously existed between full atomistic simulations of primarily ultra-short fibrils and much larger micrometre-scale amyloid aggregates. Via direct simulation of large-scale amyloid aggregates consisting of hundreds of fibrils we demonstrate that the fibril length has a profound impact on their structure and mechanical properties, where the critical fibril length-scale derived from our analysis of self-folded nanorackets and nanorings defines the structure of amyloid aggregates. A multi-scale modeling approach as used here, bridging the scales from Angstroms to micrometres, opens a wide range of possible nanotechnology applications by presenting a holistic framework that balances mechanical properties of individual fibrils, hierarchical self-assembly, and the adhesive forces determining their stability to facilitate the design of de novo amyloid materials.
Collapse
Affiliation(s)
- Raffaella Paparcone
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Room 1-235A&B, Cambridge, MA, USA
| | | | | |
Collapse
|
47
|
Swaminathan R, Ravi VK, Kumar S, Kumar MVS, Chandra N. Lysozyme: a model protein for amyloid research. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:63-111. [PMID: 21846563 DOI: 10.1016/b978-0-12-386483-3.00003-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ever since lysozyme was discovered by Fleming in 1922, this protein has emerged as a model for investigations on protein structure and function. Over the years, several high-resolution structures have yielded a wealth of structural data on this protein. Extensive studies on folding of lysozyme have shown how different regions of this protein dynamically interact with one another. Data is also available from numerous biotechnological studies wherein lysozyme has been employed as a model protein for recovering active recombinant protein from inclusion bodies using small molecules like l-arginine. A variety of conditions have been developed in vitro to induce fibrillation in hen lysozyme. They include (a) acidic pH at elevated temperature, (b) concentrated solutions of ethanol, (c) moderate concentrations of guanidinium hydrochloride at moderate temperature, and (d) alkaline pH at room temperature. This review aims to bring together similarities and differences in aggregation mechanisms, morphology of aggregates, and related issues that arise using the different conditions mentioned above to improve our understanding. The alkaline pH condition (pH 12.2), discovered and studied extensively in our lab, shall receive special attention. More than a decade ago, it was revealed that mutations in human lysozyme can cause accumulation of large quantities of amyloid in liver, kidney, and other regions of gastrointestinal tract. Understanding the mechanism of lysozyme aggregation will probably have therapeutic implications for the treatment of systemic nonneuropathic amyloidosis. Numerous studies have begun to focus attention on inhibition of lysozyme aggregation using antibody or small molecules. The enzymatic activity of lysozyme presents a convenient handle to quantify the native population of lysozyme in a sample where aggregation has been inhibited. The rich information available on lysozyme coupled with the multiple conditions that have been successful in inducing/inhibiting its aggregation in vitro makes lysozyme an ideal model protein to investigate amyloidogenesis.
Collapse
Affiliation(s)
- Rajaram Swaminathan
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | | | | | | | | |
Collapse
|
48
|
Wójcik S, Babenko V, Dzwolak W. Insulin amyloid superstructures as templates for surface enhanced Raman scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:18303-18307. [PMID: 21038855 DOI: 10.1021/la103433g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nanostructuring of noble metal surfaces with biomorphic and biological templates facilitates a variety of applications of surface enhanced Raman scattering (SERS). Here we show that the newly reported insulin amyloid superstructures may be employed as stable nanoscaffolds for metallic Au films providing an effective substrate for SERS on covalently bound molecules of 4-mercaptobenzoic acid (4-MBA). The vortex-aligned insulin fibrils are capable of templating nanopatterns in sputtered Au layers without overlapping the SERS spectra of 4-MBA with vibrational bands stemming from the protein. This holds true regardless of whether the incident laser beam is directly backscattered from the 4-MBA layer, or after passage through the insulin amyloid layer.
Collapse
Affiliation(s)
- Sławomir Wójcik
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | | | | |
Collapse
|
49
|
Dzwolak W. Vortex-induced chiral bifurcation in aggregating insulin. Chirality 2010; 22 Suppl 1:E154-60. [DOI: 10.1002/chir.20896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 05/03/2010] [Indexed: 11/06/2022]
|
50
|
Knowles TPJ, Oppenheim TW, Buell AK, Chirgadze DY, Welland ME. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. NATURE NANOTECHNOLOGY 2010; 5:204-7. [PMID: 20190750 PMCID: PMC4612398 DOI: 10.1038/nnano.2010.26] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/27/2010] [Indexed: 05/05/2023]
Abstract
In nature, sophisticated functional materials are created through hierarchical self-assembly of simple nanoscale motifs. In the laboratory, much progress has been made in the controlled assembly of molecules into one-, two- and three-dimensional artificial nanostructures, but bridging from the nanoscale to the macroscale to create useful macroscopic materials remains a challenge. Here we show a scalable self-assembly approach to making free-standing films from amyloid protein fibrils. The films were well ordered and highly rigid, with a Young's modulus of up to 5-7 GPa, which is comparable to the highest values for proteinaceous materials found in nature. We show that the self-organizing protein scaffolds can align otherwise unstructured components (such as fluorophores) within the macroscopic films. Multiscale self-assembly that relies on highly specific biomolecular interactions is an attractive path for realizing new multifunctional materials built from the bottom up.
Collapse
Affiliation(s)
- Tuomas P. J. Knowles
- Nanoscience Centre, J J Thomson Avenue, University of Cambridge, Cambridge CB3 0FF, UK
| | - Tomas W. Oppenheim
- Nanoscience Centre, J J Thomson Avenue, University of Cambridge, Cambridge CB3 0FF, UK
| | - Alexander K. Buell
- Nanoscience Centre, J J Thomson Avenue, University of Cambridge, Cambridge CB3 0FF, UK
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1GA, UK
| | - Mark E. Welland
- Nanoscience Centre, J J Thomson Avenue, University of Cambridge, Cambridge CB3 0FF, UK
| |
Collapse
|