1
|
Zhu B, Yang C, Hua S, Li K, Shang P, Li Z, Qian W, Xue S, Zhi Q, Hua Z. Decoding the Implications of Zinc in the Development and Therapy of Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412225. [PMID: 39887881 PMCID: PMC11884550 DOI: 10.1002/advs.202412225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/04/2025] [Indexed: 02/01/2025]
Abstract
Zinc plays a central role in the hematological development. Therapeutic interventions with zinc are shown to improve the health status of patients with malignancies by stimulating the immune system and reducing side effects. Despite the abnormal zinc homeostasis in leukemia, the role and mechanisms of zinc signaling in leukemia development remain poorly understood. Recently, some important breakthroughs are made in laboratory and clinical studies of zinc in leukemia, such as the role of zinc in regulating ferroptosis and the effects of zinc in immunotherapy. Zinc-based strategies are urgently needed to refine the current zinc intervention regimen for side-effect free therapy in chemotherapy-intolerant patients. This review provides a comprehensive overview of the role of zinc homeostasis in leukemia patients and focuses on the therapeutic potential of zinc signaling modulation in leukemia.
Collapse
Affiliation(s)
- Bo Zhu
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Chunhao Yang
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Siqi Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Kaiqiang Li
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Pengyou Shang
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Zhonghua Li
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Wei Qian
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Shunkang Xue
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Qi Zhi
- Department of RadiologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjing210029China
| | - Zichun Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjing210023China
- Faculty of Pharmaceutical SciencesXinxiang Medical UniversityXinxiang453003China
| |
Collapse
|
2
|
Rola M, Zielonka J, Smulik-Izydorczyk R, Pięta J, Pierzchała K, Sikora A, Michalski R. Boronate-Based Bioactive Compounds Activated by Peroxynitrite and Hydrogen Peroxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 10:100040. [PMID: 39678628 PMCID: PMC11637410 DOI: 10.1016/j.rbc.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Boronates react directly and stoichiometrically with peroxynitrite and hydrogen peroxide. For this reason, boronates have been widely used as peroxynitrite- and hydrogen peroxide-sensitive moieties in various donors of bioactive compounds. So far, numerous boronate-based prodrugs and theranostics have been developed, characterized, and used in biological research. Here, the kinetic aspects of their activation are discussed, and the potential benefits of modifying their original structure with a boronic or boronobenzyl moiety are described.
Collapse
Affiliation(s)
- Monika Rola
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
3
|
Grcic L, Leech G, Kwan K, Storr T. Targeting misfolding and aggregation of the amyloid-β peptide and mutant p53 protein using multifunctional molecules. Chem Commun (Camb) 2024; 60:1372-1388. [PMID: 38204416 DOI: 10.1039/d3cc05834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biomolecule misfolding and aggregation play a major role in human disease, spanning from neurodegeneration to cancer. Inhibition of these processes is of considerable interest, and due to the multifactorial nature of these diseases, the development of drugs that act on multiple pathways simultaneously is a promising approach. This Feature Article focuses on the development of multifunctional molecules designed to inhibit the misfolding and aggregation of the amyloid-β (Aβ) peptide in Alzheimer's disease (AD), and the mutant p53 protein in cancer. While for the former, the goal is to accelerate the removal of the Aβ peptide and associated aggregates, for the latter, the goal is reactivation via stabilization of the active folded form of mutant p53 protein and/or aggregation inhibition. Due to the similar aggregation pathway of the Aβ peptide and mutant p53 protein, a common therapeutic approach may be applicable.
Collapse
Affiliation(s)
- Lauryn Grcic
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Grace Leech
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
4
|
Seif SE, Mahmoud Z, Wardakhan WW, Abdou AM, Hassan RA. Design and synthesis of novel hexahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives as potential anticancer agents with antiangiogenic activity via VEGFR-2 inhibition, and down-regulation of PI3K/AKT/mTOR signaling pathway. Drug Dev Res 2023; 84:839-860. [PMID: 37016480 DOI: 10.1002/ddr.22058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
New thieno[2,3-d]pyrimidine derivatives were designed and synthesized. The National Cancer Institute (NCI) evaluated the synthesized novel compounds against a panel of 60 tumor cell lines for their antiproliferative activity. Compounds 6b, 6f, and 6g showed potent anticancer activity at 10 µM dose, with mean GI of 20.86%, 76.41%, and 31.49%, respectively. Compound 6f was selected for five-dose concentrations evaluation. Compound 6f scored a submicromolar range of GI50 values against 10 cancer cell lines, indicating broad-spectrum and potent antiproliferative activity. Compound 6f TGI values were recorded in the cytostatic range of 4.02-95.1 µM. In comparison to sorafenib, the tested compounds 6b, 6f, and 6g inhibited VEGFR-2 with IC50 values of 0.290 ± 0.032, 0.066 ± 0.004, and 0.16 ± 0.006 µM, correspondingly. Compound 6f significantly reduced the total VEGFR-2 expression and its phosphorylation. Additionally, 6f reduced the phosphorylation of PI3K, Akt, and mTOR pathway proteins. Moreover, the migratory potential of HUVECs was significantly reduced, after 72 h of treatment with compound 6f, resulting in disrupted wound healing patterns which verified the angiogenesis suppression properties of compound 6f. Compound 6f increased the total apoptosis percentage by 21.27-fold compared to sorafenib, which caused a 24.11-fold increase in the total apoptosis percentage. This apoptotic activity was accompanied by a 7.81-fold increase in the level of apoptotic caspase-3. Furthermore, the cell cycle analysis revealed that the target derivative 6f reduced cellular proliferation and induced an arrest in HCT-15 colon cancer cell cycle at the S phase. Molecular modeling was used to determine the binding profile and affinity of derivative 6f toward the VEGFR-2 active site.
Collapse
Affiliation(s)
| | - Zeinab Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Giza, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Chaudhari V, Bagwe-Parab S, Buttar HS, Gupta S, Vora A, Kaur G. Challenges and Opportunities of Metal Chelation Therapy in Trace Metals Overload-Induced Alzheimer's Disease. Neurotox Res 2023; 41:270-287. [PMID: 36705861 DOI: 10.1007/s12640-023-00634-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/09/2022] [Accepted: 11/26/2022] [Indexed: 01/28/2023]
Abstract
Essential trace metals like zinc (Zn), iron (Fe), and copper (Cu) play an important physiological role in the metabolomics and healthy functioning of body organs, including the brain. However, abnormal accumulation of trace metals in the brain and dyshomeostasis in the different regions of the brain have emerged as contributing factors in neuronal degeneration, Aβ aggregation, and Tau formation. The link between these essential trace metal ions and the risk of AD has been widely studied, although the conclusions have been ambiguous. Despite the absence of evidence for any clinical benefit, therapeutic chelation is still hypothesized to be a therapeutic option for AD. Furthermore, the parameters like bioavailability, ability to cross the BBB, and chelation specificity must be taken into consideration while selecting a suitable chelation therapy. The data in this review summarizes that the primary intervention in AD is brain metal homeostasis along with brain metal scavenging. This review evaluates the impact of different trace metals (Cu, Zn, Fe) on normal brain functioning and their association with neurodegeneration in AD. Also, it investigates the therapeutic potential of metal chelators in the management of AD. An extensive literature search was carried out on the "Web of Science, PubMed, Science Direct, and Google Scholar" to investigate the effect of trace elements in neurological impairment and the role of metal chelators in AD. In addition, the current review highlights the advantages and limitations of chelation therapies and the difficulties involved in developing selective metal chelation therapy in AD patients.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Siddhi Bagwe-Parab
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Harpal S Buttar
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Ottawa, Ottawa, Canada
| | - Shubhangi Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
6
|
Kassab AE. Anticancer agents incorporating the N-acylhydrazone scaffold: Progress from 2017 to present. Arch Pharm (Weinheim) 2023; 356:e2200548. [PMID: 36638264 DOI: 10.1002/ardp.202200548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023]
Abstract
The N-acylhydrazone motif has been shown to be particularly adaptable and promising in the area of medicinal chemistry and drug development, due to its significant biological and pharmacological characteristics. Moreover, N-acylhydrazones are appealing synthetic and biological tools because of their simple and straightforward synthesis. This scaffold has emerged as a fundamental building block for the synthesis of bioactive compounds. Particularly, the N-acylhydrazone scaffold served as a base for the synthesis of a number of potent anticancer agents acting via different mechanisms. An updated summary of the anticancer activity of N-acylhydrazone derivatives described in the literature (from 2017 to 2022) is provided in the current review. It discusses the structure-activity relationship (SAR) of N-acylhydrazone derivatives exhibiting anticancer potential, which could be helpful in designing and developing new derivatives as effective antiproliferative candidates in the future.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Wu W, Sung YS, Tomat E. Thiol-Reactive Arylsulfonate Masks for Phenolate Donors in Antiproliferative Iron Prochelators. Inorg Chem 2022; 61:19974-19982. [PMID: 36455205 PMCID: PMC10188280 DOI: 10.1021/acs.inorgchem.2c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Tridentate thiosemicarbazones, among several families of iron chelators, have shown promising results in anticancer drug discovery because they target the increased need for iron that characterizes malignant cells. Prochelation strategies, in which the chelator is released under specific conditions, have the potential to avoid off-target metal binding (for instance, in the bloodstream) and minimize unwanted side effects. We report a prochelation approach that employs arylsulfonate esters to mask the phenolate donor of salicylaldehyde-based chelators. The new prochelators liberate a tridentate thiosemicarbazone intracellularly upon reaction with abundant nucleophile glutathione (GSH). A 5-bromo-substituted salicylaldehyde thiosemicarbazone (STC4) was selected for the chelator unit because of its antiproliferative activity at low micromolar levels in a panel of six cancer cell lines. The arylsulfonate prochelators were assessed in vitro with respect to their stability, ability to abolish metal binding, and reactivity in the presence of GSH. Cell-based assays indicated that the arylsulfonate-masked prochelators present higher antiproliferative activities relative to the parent compound after 24 h. The activation and release of the chelator intracellularly were corroborated by assays of cytosolic iron binding and iron supplementation effects as well as cell cycle analysis. This study introduces the 1,3,4-thiadiazole sulfonate moiety to mask the phenolate donor of an iron chelator and impart good solubility and stability to prochelator constructs. The reactivity of these systems can be tuned to release the chelator at high glutathione levels, as encountered in several cancer phenotypes.
Collapse
Affiliation(s)
- Wangbin Wu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Yu-Shien Sung
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Hašková P, Applová L, Jansová H, Homola P, Franz KJ, Vávrová K, Roh J, Šimůnek T. Examination of diverse iron-chelating agents for the protection of differentiated PC12 cells against oxidative injury induced by 6-hydroxydopamine and dopamine. Sci Rep 2022; 12:9765. [PMID: 35697900 PMCID: PMC9192712 DOI: 10.1038/s41598-022-13554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Labile redox-active iron ions have been implicated in various neurodegenerative disorders, including the Parkinson's disease (PD). Iron chelation has been successfully used in clinical practice to manage iron overload in diseases such as thalassemia major; however, the use of conventional iron chelators in pathological states without systemic iron overload remains at the preclinical investigative level and is complicated by the risk of adverse outcomes due to systemic iron depletion. In this study, we examined three clinically-used chelators, namely, desferrioxamine, deferiprone and deferasirox and compared them with experimental agent salicylaldehyde isonicotinoyl hydrazone (SIH) and its boronate-masked prochelator BSIH for protection of differentiated PC12 cells against the toxicity of catecholamines 6-hydroxydopamine and dopamine and their oxidation products. All the assayed chelating agents were able to significantly reduce the catecholamine toxicity in a dose-dependent manner. Whereas hydrophilic chelator desferrioxamine exerted protection only at high and clinically unachievable concentrations, deferiprone and deferasirox significantly reduced the catecholamine neurotoxicity at concentrations that are within their plasma levels following standard dosage. SIH was the most effective iron chelator to protect the cells with the lowest own toxicity of all the assayed conventional chelators. This favorable feature was even more pronounced in prochelator BSIH that does not chelate iron unless its protective group is cleaved in disease-specific oxidative stress conditions. Hence, this study demonstrated that while iron chelation may have general neuroprotective potential against catecholamine auto-oxidation and toxicity, SIH and BSIH represent promising lead molecules and warrant further studies in more complex animal models.
Collapse
Affiliation(s)
- Pavlína Hašková
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lenka Applová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Hana Jansová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Pavel Homola
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | | | - Kateřina Vávrová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Tomáš Šimůnek
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
9
|
Ling C, Liu X, Li H, Wang X, Gu H, Wei K, Li M, Shi Y, Ben H, Zhan G, Liang C, Shen W, Li Y, Zhao J, Zhang L. Atomic-Layered Cu 5 Nanoclusters on FeS 2 with Dual Catalytic Sites for Efficient and Selective H 2 O 2 Activation. Angew Chem Int Ed Engl 2022; 61:e202200670. [PMID: 35238130 DOI: 10.1002/anie.202200670] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Regulating the distribution of reactive oxygen species generated from H2 O2 activation is the prerequisite to ensuring the efficient and safe use of H2 O2 in the chemistry and life science fields. Herein, we demonstrate that constructing a dual Cu-Fe site through the self-assembly of single-atomic-layered Cu5 nanoclusters onto a FeS2 surface achieves selective H2 O2 activation with high efficiency. Unlike its unitary Cu or Fe counterpart, the dual Cu-Fe sites residing at the perimeter zone of the Cu5 /FeS2 interface facilitate H2 O2 adsorption and barrierless decomposition into ⋅OH via forming a bridging Cu-O-O-Fe complex. The robust in situ formation of ⋅OH governed by this atomic-layered catalyst enables the effective oxidation of several refractory toxic pollutants across a broad pH range, including alachlor, sulfadimidine, p-nitrobenzoic acid, p-chlorophenol, p-chloronitrobenzene. This work highlights the concept of building a dual catalytic site in manipulating selective H2 O2 activation on the surface molecular level towards efficient environmental control and beyond.
Collapse
Affiliation(s)
- Cancan Ling
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiufan Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaobing Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Huayu Gu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Kai Wei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yanbiao Shi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.,School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Haijie Ben
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Guangming Zhan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenjuan Shen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yaling Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jincai Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.,School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
Ling C, Liu X, Li H, Wang X, Gu H, Wei K, Li M, Shi Y, Ben H, Zhan G, Liang C, Shen W, Li Y, Zhao J, Zhang L. Atomic‐Layered Cu5 Nanoclusters on FeS2 with Dual Catalytic Sites for Efficient and Selective H2O2 Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cancan Ling
- Huazhong Normal University: Central China Normal University chemistry CHINA
| | - Xiufan Liu
- Huazhong Normal University: Central China Normal University chemistry CHINA
| | - Hao Li
- Shanghai Jiaotong University: Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Xiaobing Wang
- Huazhong Normal University: Central China Normal University chemistry CHINA
| | - Huayu Gu
- Huazhong Normal University: Central China Normal University chemistry CHINA
| | - Kai Wei
- Huazhong Normal University: Central China Normal University chemistry CHINA
| | - Meiqi Li
- Huazhong Normal University: Central China Normal University chemistry CHINA
| | - Yanbiao Shi
- Shanghai Jiaotong University: Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Haijie Ben
- Huazhong Normal University: Central China Normal University chemistry CHINA
| | - Guangming Zhan
- Huazhong Normal University: Central China Normal University chemistry CHINA
| | - Chuan Liang
- Huazhong Normal University: Central China Normal University chemistry CHINA
| | - Wenjuan Shen
- Huazhong Normal University: Central China Normal University chemistry CHINA
| | - Yaling Li
- Huazhong Normal University: Central China Normal University chemistry CHINA
| | - Jincai Zhao
- Huazhong Normal University: Central China Normal University chemistry CHINA
| | - Lizhi Zhang
- Central China Normal University Chemistry Luoyu Road 152 430079 Wuhan CHINA
| |
Collapse
|
11
|
Kassab AE, Gedawy EM, Hamed MIA, Doghish AS, Hassan RA. Design, synthesis, anticancer evaluation, and molecular modelling studies of novel tolmetin derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36:922-939. [PMID: 33896327 PMCID: PMC8079033 DOI: 10.1080/14756366.2021.1901089] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
Novel tolmetin derivatives 5a-f to 8a-c were designed, synthesised, and evaluated for antiproliferative activity by NCI (USA) against a panel of 60 tumour cell lines. The cytotoxic activity of the most active tolmetin derivatives 5b and 5c was examined against HL-60, HCT-15, and UO-31 tumour cell lines. Compound 5b was found to be the most potent derivative against HL-60, HCT-15, and UO-31 cell lines with IC50 values of 10.32 ± 0.55, 6.62 ± 0.35, and 7.69 ± 0.41 µM, respectively. Molecular modelling studies of derivative 5b towards the VEGFR-2 active site were performed. Compound 5b displayed high inhibitory activity against VEGFR-2 (IC50 = 0.20 µM). It extremely reduced the HUVECs migration potential exhibiting deeply reduced wound healing patterns after 72 h. It induced apoptosis in HCT-15 cells (52.72-fold). This evidence was supported by an increase in the level of apoptotic caspases-3, -8, and -9 by 7.808-, 1.867-, and 7.622-fold, respectively. Compound 5b arrested the cell cycle in the G0/G1 phase. Furthermore, the ADME studies showed that compound 5b possessed promising pharmacokinetic properties.
Collapse
Affiliation(s)
- Asmaa E. Kassab
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
| | - Ehab M. Gedawy
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Badr University in Cairo (BUC), Badr City, Egypt
| | - Mohammed I. A. Hamed
- Faculty of Pharmacy, Department of Organic and Medicinal Chemistry, Fayoum University, Fayoum, Egypt
| | - Ahmed S. Doghish
- Faculty of Pharmacy (Boys), Department of Biochemistry, Al-Azhar University, Nasr City, Cairo, Egypt
- Faculty of Pharmacy, Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Egypt
| | - Rasha A. Hassan
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Saxon E, Peng X. Recent Advances in Hydrogen Peroxide Responsive Organoborons for Biological and Biomedical Applications. Chembiochem 2021; 23:e202100366. [PMID: 34636113 DOI: 10.1002/cbic.202100366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/10/2021] [Indexed: 12/26/2022]
Abstract
Hydrogen peroxide is the most stable reactive oxygen species generated endogenously, participating in numerous physiological processes and abnormal pathological conditions. Mounting evidence suggests that a higher level of H2 O2 exists in various disease conditions. Thus, H2 O2 functions as an ideal target for site-specific bioimaging and therapeutic targeting. The unique reactivity of organoborons with H2 O2 provides a method for developing chemoselective molecules for biological and biomedical applications. This review highlights the design and application of boron-derived molecules for H2 O2 detection, and the utility of boron moieties toward masking reactive compounds leading to the development of metal prochelators and prodrugs for selectively delivering an active species at the target sites with elevated H2 O2 levels. Additionally, the emergence of H2 O2 -responsive theranostic agents consisting of both therapeutic and diagnostic moieties in one integrated system are discussed. The purpose of this review is to provide a better understanding of the role of boron-derived molecules toward biological and pharmacological applications.
Collapse
Affiliation(s)
- Eron Saxon
- University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Xiaohua Peng
- University of Wisconsin-Milwaukee, Milwaukee, USA
| |
Collapse
|
13
|
Han GS, Domaille DW. Tuning the exchange dynamics of boronic acid hydrazones and oximes with pH and redox control. Org Biomol Chem 2021; 19:4986-4991. [PMID: 34008683 DOI: 10.1039/d1ob00191d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dynamic bonds continually form and dissociate at equilibrium. Carbonyl compounds with proximal boronic acids, including 2-formylphenylboronic acid (2-FPBA), have been reported to form highly dynamic covalent hydrazone and oxime bonds in physiological conditions, but strategies to tune the dynamics have not yet been reported. Here, we characterize the dynamics of 2-FPBA-derived hydrazones and oximes and account for both the rapid rate of formation (∼102-103 M-1 s-1) and the relatively fast rate of hydrolysis (∼10-4 s-1) at physiological pH. We further show that these substrates undergo exchange with α-nucleophiles, which can be reversibly paused and restarted with pH control. Finally, we show that oxidation of the arylboronic acid effectively abolishes the rapid dynamics, which slows the forward reaction by more than 30 000 times and increases the hydrolytic half-life from 50 minutes to 6 months at physiological pH. These results set the stage to explore these linkages in dynamic combinatorial libraries, reversible bioconjugation, and self-healing materials.
Collapse
Affiliation(s)
- Gun Su Han
- Department of Chemistry, Colorado School of Mines, Golden, CO, USA.
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
14
|
Zhao T, Guo X, Sun Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis 2021; 12:529-551. [PMID: 33815881 PMCID: PMC7990372 DOI: 10.14336/ad.2020.0912] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential component in many biological processes in the human body. It is critical for the visual phototransduction cascade in the retina. However, excess iron can be toxic. Iron accumulation and reduced efficiency of intracellular antioxidative defense systems predispose the aging retina to oxidative stress-induced cell death. Age-related macular degeneration (AMD) is characterized by retinal iron accumulation and lipid peroxidation. The mechanisms underlying AMD include oxidative stress-mediated death of retinal pigment epithelium (RPE) cells and subsequent death of retinal photoreceptors. Understanding the mechanism of the disruption of iron and redox homeostasis in the aging retina and AMD is crucial to decipher these mechanisms of cell death and AMD pathogenesis. The mechanisms of retinal cell death in AMD are an area of active investigation; previous studies have proposed several types of cell death as major mechanisms. Ferroptosis, a newly discovered programmed cell death pathway, has been associated with the pathogenesis of several neurodegenerative diseases. Ferroptosis is initiated by lipid peroxidation and is characterized by iron-dependent accumulation. In this review, we provide an overview of the mechanisms of iron accumulation and lipid peroxidation in the aging retina and AMD, with an emphasis on ferroptosis.
Collapse
Affiliation(s)
- Tantai Zhao
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
15
|
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, and the prevalence of this currently untreatable disease is expected to rise in step with increased global life expectancy. AD is a multifaceted disorder commonly characterized by extracellular amyloid–beta (Aβ) aggregates, oxidative stress, metal ion dysregulation, and intracellular neurofibrillary tangles. This review will focus on medicinal inorganic chemistry strategies to target AD, with a focus on the Aβ peptide and its relation to metal ion dysregulation and oxidative stress. Multifunctional compounds designed to target multiple disease processes have emerged as promising therapeutic options, and recent reports detailing multifunctional metal-binding compounds, as well as discrete metal complexes, will be discussed.
Collapse
Affiliation(s)
- Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
16
|
Lagoda IV, Yakunchikova EA, Drachyov IS, Grebenyuk AN, Martynenkov AA, Kuleshova LY, Kopanitsa MA, Ershov AY. Investigation of the Radioprotective Efficiency of Condensation Products of Thiol-Containing Hydrazides with Mono- and Disaccharides. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020120043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Liang Y, Sun Y, Fu X, Lin Y, Meng Z, Meng Y, Niu J, Lai Y, Sun Y. The effect of π-Conjugation on the self-assembly of micelles and controlled cargo release. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:525-532. [PMID: 32037890 DOI: 10.1080/21691401.2020.1725028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Here we presented a novel micelle self-assembled from amphiphiles with π-conjugated moieties (OEG-DPH). The π-conjugated structural integrity of the micelles enabled stable encapsulation of Nile Red (NR, model drug). The self-assembly behaviour of the amphiphiles and the release profile of NR loaded micelles were investigated. Spherical core-shell structured NR loaded micelles with low CMC of 57 μg/mL and the efficient intracellular delivery process was monitored. This research provided a way to fabricate stable polymeric micelles and develop a practical nanocarrier for therapeutics delivery.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yalin Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xiaoheng Fu
- Department of Clinical laboratory, No.971 Hospital of the People's Liberation Army Navy, Qingdao, China
| | - Yang Lin
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Zhu Meng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yanan Meng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Jiping Niu
- Department of Nursing, Henan Vocational College of Nursing, Anyang, China
| | - Yusi Lai
- Department of Marketing, Sichuan Kelun Pharmaceutical Co, Ltd, Chengdu, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Materialien mit Selektivität für oxidative Molekülspezies für die Diagnostik und Therapie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
19
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Oxidative‐Species‐Selective Materials for Diagnostic and Therapeutic Applications. Angew Chem Int Ed Engl 2020; 60:9804-9827. [DOI: 10.1002/anie.201915833] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
20
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
21
|
Astashkin AV, Utterback RD, Sung YS, Tomat E. Iron Complexes of an Antiproliferative Aroyl Hydrazone: Characterization of Three Protonation States by Electron Paramagnetic Resonance Methods. Inorg Chem 2020; 59:11377-11384. [PMID: 32799490 PMCID: PMC8223696 DOI: 10.1021/acs.inorgchem.0c01120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tridentate aroyl hydrazones are effective metal chelators in biological settings, and their activity has been investigated extensively for medicinal applications in metal overload, cancer, and neurodegenerative diseases. The aroyl hydrazone motif is found in the recently reported prochelator (AH1-S)2, which has shown antiproliferative proapoptotic activity in mammalian cancer cell lines. Intracellular reduction of this disulfide prochelator leads to the formation of mercaptobenzaldehyde benzoylhydrazone chelator AH1 and to iron sequestration, which in turn impacts cell growth. Herein, we investigate the iron coordination chemistry of AH1 to determine the structural and spectroscopic properties of the iron complexes in the solid state and in solution. A neutral iron(III) complex of 2:1 ligand-to-metal stoichiometry was isolated and characterized fully to reveal two different binding modes for the tridentate AH1 ligand. Specifically, one ligand binds in the monoanionic keto form, whereas the other ligand coordinates as a dianionic enolate. Continuous-wave electron paramagnetic resonance experiments in frozen solutions indicated that this neutral complex is one of three low-spin iron(III) complexes observed depending on the pH of the solution. Electron spin echo envelope modulation (ESEEM) experiments allowed assignment of the three species to different protonation states of the coordinated ligands. Our ESEEM analysis provides a method to distinguish the coordination of aroyl hydrazones in the keto and enolate forms, which influences both the ligand field and overall charge of the complex. As such, this type of analysis could provide valuable information in a variety of studies of iron complexes of aroyl hydrazones, ranging from the investigation of spin-crossover behavior to tracking of their distribution in biological samples.
Collapse
Affiliation(s)
- Andrei V. Astashkin
- Department of Chemistry and Biochemistry, The University of Arizona,
Tucson, AZ 85721
| | - Rachel D. Utterback
- Department of Chemistry and Biochemistry, The University of Arizona,
Tucson, AZ 85721
| | - Yu-Shien Sung
- Department of Chemistry and Biochemistry, The University of Arizona,
Tucson, AZ 85721
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona,
Tucson, AZ 85721
| |
Collapse
|
22
|
Bruemmer KJ, Crossley SWM, Chang CJ. Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem Int Ed Engl 2020; 59:13734-13762. [PMID: 31605413 PMCID: PMC7665898 DOI: 10.1002/anie.201909690] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/10/2023]
Abstract
Emerging from the origins of supramolecular chemistry and the development of selective chemical receptors that rely on lock-and-key binding, activity-based sensing (ABS)-which utilizes molecular reactivity rather than molecular recognition for analyte detection-has rapidly grown into a distinct field to investigate the production and regulation of chemical species that mediate biological signaling and stress pathways, particularly metal ions and small molecules. Chemical reactions exploit the diverse chemical reactivity of biological species to enable the development of selective and sensitive synthetic methods to decipher their contributions within complex living environments. The broad utility of this reaction-driven approach facilitates application to imaging platforms ranging from fluorescence, luminescence, photoacoustic, magnetic resonance, and positron emission tomography modalities. ABS methods are also being expanded to other fields, such as drug and materials discovery.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
23
|
Bruemmer KJ, Crossley SWM, Chang CJ. Aktivitätsbasierte Sensorik: ein synthetisch‐methodischer Ansatz für die selektive molekulare Bildgebung und darüber hinaus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin J. Bruemmer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | | | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
24
|
Chen BB, Liu ML, Huang CZ. Carbon dot-based composites for catalytic applications. GREEN CHEMISTRY 2020; 22:4034-4054. [DOI: 10.1039/d0gc01014f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
We summarize the construction methods and influencing factors of CDs-based composites and discuss their catalytic applications, including photocatalysis, chemical catalysis, peroxidase-like catalysis, Fenton-like catalysis and electrocatalysis.
Collapse
Affiliation(s)
- Bin Bin Chen
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
- School of Chemistry & Molecular Engineering
| | - Meng Li Liu
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence and Real-Time Analytical System
- Chongqing Science and Technology Bureau
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
| |
Collapse
|
25
|
Hou M, Hu W, Xiu Z, Shi Y, Hao K, Cao D, Guan Y, Yin H. Efficient enrichment of total flavonoids from Pteris ensiformis Burm. extracts by macroporous adsorption resins and in vitro evaluation of antioxidant and antiproliferative activities. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1138:121960. [PMID: 31918307 DOI: 10.1016/j.jchromb.2019.121960] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/19/2019] [Accepted: 12/26/2019] [Indexed: 01/13/2023]
Abstract
The aim of this work is to develop an efficient and economical method for the enrichment of total flavonoids from Pteris ensiformis Burm. extracts. Resin screening, adsorption kinetics, adsorption isotherms and thermodynamics were successively researched prior to the dynamic adsorption and desorption tests. NKA-II resin was chosen as the best adsorbent, and the adsorption data were best described by the pseudo-second-order kinetics model and Langmuir isotherm model. The optimum enrichment conditions were as follows: for adsorption the total flavonoids concentration, flow rate and volume of sample were 1.84 mg/mL, 2 BV/h and 5 BV, respectively, and for desorption the flavonoids-loaded NKA-II resin column was desorbed by 7 BV of 50% ethanol at a rate of 2 BV/h. The product had a 6.63-fold higher total flavonoids content than crude extracts, and the recovery yield of total flavonoids was 80.65%. Furthermore, flavonoids-enriched extracts exhibited higher in vitro scavenging activity against superoxide anion radical and hydroxyl radical than crude extracts. In addition, higher antiproliferative activity of flavonoids-enriched extracts against MCF-7 and HepG-2 cell lines was also found as compared to the crude extracts. The developed method is appropriate for large-scale enrichment of total flavonoids from Pteris ensiformis Burm. extracts in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Mengyang Hou
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Wenzhong Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Zhilong Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Yusheng Shi
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Kexin Hao
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Duo Cao
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Yuge Guan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Hanlin Yin
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
26
|
Peiró Cadahía J, Previtali V, Troelsen NS, Clausen MH. Prodrug strategies for targeted therapy triggered by reactive oxygen species. MEDCHEMCOMM 2019; 10:1531-1549. [PMID: 31673314 PMCID: PMC6786010 DOI: 10.1039/c9md00169g] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Increased levels of reactive oxygen species (ROS) have been associated with numerous pathophysiological conditions including cancer and inflammation and the ROS stimulus constitutes a potential trigger for drug delivery strategies. Over the past decade, a number of ROS-sensitive functionalities have been identified with the purpose of introducing disease-targeting properties into small molecule drugs - a prodrug strategy that offers a promising approach for increasing the selectivity and efficacy of treatments. This review will provide an overview of the ROS-responsive prodrugs developed to date. A discussion on the current progress and limitations is provided along with a reflection on the unanswered questions that need to be addressed in order to advance this novel approach to the clinic.
Collapse
Affiliation(s)
| | - Viola Previtali
- Center for Nanomedicine & Theranostics , Department of Chemistry , Technical University of Denmark , Kemitorvet 207 , DK 2800 , Kongens Lyngby , Denmark .
| | - Nikolaj S Troelsen
- Center for Nanomedicine & Theranostics , Department of Chemistry , Technical University of Denmark , Kemitorvet 207 , DK 2800 , Kongens Lyngby , Denmark .
| | - Mads H Clausen
- Center for Nanomedicine & Theranostics , Department of Chemistry , Technical University of Denmark , Kemitorvet 207 , DK 2800 , Kongens Lyngby , Denmark .
| |
Collapse
|
27
|
Meng T, Han J, Zhang P, Hu J, Fu J, Yin J. Introduction of the α-ketoamide structure: en route to develop hydrogen peroxide responsive prodrugs. Chem Sci 2019; 10:7156-7162. [PMID: 31588282 PMCID: PMC6761880 DOI: 10.1039/c9sc00910h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
New light on H2O2-activated prodrugs: the first α-ketoamide based prodrug opens up new alternatives for designing non-boron based H2O2-responsive promoieties.
Leveraging the elevated levels of hydrogen peroxide (H2O2) in cancer, inflammatory diseases and cardiovascular disorders, H2O2-activated promoieties have been widely used in drugs and biomaterials design. However, the overwhelming majority of the promoieties only share the common structure of a H2O2-responsive arylboronic acid/ester moiety with low diversity. We report here an unprecedented strategy to construct novel H2O2-responsive prodrugs based on an α-ketoamide structure. As a proof of concept, we designed and synthesized a panel of α-ketoamide based nitrogen mustard prodrugs, among which KAM-2 showed potent growth inhibitory activity and high selectivity toward cancer cells. The H2O2-trigged decomposition of KAM-2 was validated, and the DNA damaging and apoptosis promoting activity attributed to the released nitrogen mustard were demonstrated. Our work unveils α-ketoamide as a new scaffold for prodrug design and may quickly inspire future developments.
Collapse
Affiliation(s)
- Tingting Meng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ; .,School of Pharmacy , Nanjing Medical University , Nanjing 211166 , P. R. China
| | - Jing Han
- School of Chemistry & Materials Science , Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials , Jiangsu Normal University , Xuzhou 221116 , P. R. China
| | - Pengfei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ;
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ;
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ; .,School of Pharmacy , Nanjing Medical University , Nanjing 211166 , P. R. China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ;
| |
Collapse
|
28
|
Synthesis and characterization of hydrogen peroxide activated estrogen receptor beta ligands. Bioorg Med Chem 2019; 27:2075-2082. [DOI: 10.1016/j.bmc.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
|
29
|
Jansová H, Šimůnek T. Cardioprotective Potential of Iron Chelators and Prochelators. Curr Med Chem 2019; 26:288-301. [DOI: 10.2174/0929867324666170920155439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/07/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023]
Abstract
Heart is a particularly sensitive organ to iron overload and cardiomyopathy due to the excessive cardiac iron deposition causes most deaths in disorders such as beta-thalassemia major. Free or loosely bound iron ions readily cycle between ferrous and ferric states and catalyze Haber-Weiss reaction that yields highly reactive and toxic hydroxyl radicals. Treatment with iron chelators (desferrioxamine, deferiprone, and deferasirox) substantially improved cardiovascular morbidity and mortality in iron overloaded patients. Furthermore, iron chelators have been studied in various cardiovascular disorders with known or presumed oxidative stress roles (e.g., ischemia/reperfusion injury) also in patients with normal body iron contents. The pharmacodynamic and pharmacokinetic properties of these chelators are critical for effective therapy. For example, the widely clinically used but hydrophilic chelator desferrioxamine suffers from poor plasma membrane permeability, which means that high and clinically unachievable concentrations/doses must be employed to obtain cardioprotection. Therefore, small-molecular and lipophilic chelators with oral availability are more suitable for this purpose, particularly in states without systemic iron overload. Apart from agents that are already used in clinical practice, aroylhydrazone iron chelators, namely salicylaldehyde isonicotinoyl hydrazone (SIH), have provided promising results. However, the use of classical iron-chelating agents is associated with a risk of toxicity due to indiscriminate iron depletion. Recent studies have therefore focused on "masked" prochelators that have little or no affinity for iron until site-specific activation by reactive oxygen species.
Collapse
Affiliation(s)
- Hana Jansová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Prague, Czech Republic
| | - Tomáś Šimůnek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
30
|
Rana M, Sharma AK. Cu and Zn interactions with Aβ peptides: consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers. Metallomics 2019; 11:64-84. [DOI: 10.1039/c8mt00203g] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coordination chemistry of transition metal ions (Fe, Cu, Zn) with the amyloid-β (Aβ) peptides has attracted a lot of attention in recent years due to its repercussions in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry
- Central University of Rajasthan
- Ajmer 305817
- India
| | - Anuj Kumar Sharma
- Department of Chemistry
- Central University of Rajasthan
- Ajmer 305817
- India
| |
Collapse
|
31
|
Rakshit A, Khatua K, Shanbhag V, Comba P, Datta A. Cu 2+ selective chelators relieve copper-induced oxidative stress in vivo. Chem Sci 2018; 9:7916-7930. [PMID: 30450181 PMCID: PMC6202919 DOI: 10.1039/c8sc04041a] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
Copper ions are essential for biological function yet are severely detrimental when present in excess. At the molecular level, copper ions catalyze the production of hydroxyl radicals that can irreversibly alter essential bio-molecules. Hence, selective copper chelators that can remove excess copper ions and alleviate oxidative stress will help assuage copper-overload diseases. However, most currently available chelators are non-specific leading to multiple undesirable side-effects. The challenge is to build chelators that can bind to copper ions with high affinity but leave the levels of essential metal ions unaltered. Here we report the design and development of redox-state selective Cu ion chelators that have 108 times higher conditional stability constants toward Cu2+ compared to both Cu+ and other biologically relevant metal ions. This unique selectivity allows the specific removal of Cu2+ ions that would be available only under pathophysiological metal overload and oxidative stress conditions and provides access to effective removal of the aberrant redox-cycling Cu ion pool without affecting the essential non-redox cycling Cu+ labile pool. We have shown that the chelators provide distinct protection against copper-induced oxidative stress in vitro and in live cells via selective Cu2+ ion chelation. Notably, the chelators afford significant reduction in Cu-induced oxidative damage in Atp7a-/- Menkes disease model cells that have endogenously high levels of Cu ions. Finally, in vivo testing of our chelators in a live zebrafish larval model demonstrate their protective properties against copper-induced oxidative stress.
Collapse
Affiliation(s)
- Ananya Rakshit
- Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road, Colaba , Mumbai-400005 , India .
| | - Kaustav Khatua
- Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road, Colaba , Mumbai-400005 , India .
| | - Vinit Shanbhag
- Department of Biochemistry , Christopher S. Bond Life Science Center , University of Missouri , Columbia , USA
| | - Peter Comba
- Universität Heidelberg , Anorganisch-Chemisches Institut , Interdisciplinary Center for Scientific Computing , INF 270 , D-69120 Heidelberg , Germany
| | - Ankona Datta
- Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road, Colaba , Mumbai-400005 , India .
| |
Collapse
|
32
|
Wang Q, Franz KJ. Modifying aroylhydrazone prochelators for hydrolytic stability and improved cytoprotection against oxidative stress. Bioorg Med Chem 2018; 26:5962-5972. [PMID: 30429096 DOI: 10.1016/j.bmc.2018.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/26/2018] [Accepted: 11/04/2018] [Indexed: 12/22/2022]
Abstract
BSIH ((E)-N'-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)isonicotinohydrazide) is a prodrug version of the metal chelator SIH ((E)-N'-(2-hydroxybenzylidene)isonicotinohydrazide) in which a boronate group prevents metal chelation until reaction with hydrogen peroxide releases SIH, which is then available for sequestering iron(III) and inhibiting iron-catalyzed oxidative damage. While BSIH has shown promise for conditionally targeting iron sequestration in cells under oxidative stress, the yield of SIH is limited by the fact that BSIH exists in cell culture media as an equilibrium mixture with its hydrolysis products isoniazid and 2-formylphenyl boronic acid. In the current study, several BSIH analogs were evaluated for their hydrolytic stability, reaction outcomes with H2O2, and prochelator-to-chelator conversion efficiency. Notably, the para-methoxy derivative (p-OMe)BSIH ((E)-N'-(5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)isonicotinohydrazide) and the meta-, para-double substituted (MD)BSIH ((E)-N'-((6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[d][1,3]dioxol-5-yl)methylene)isonicotinohydrazide) showed 1.3- and 1.9-fold improved hydrolytic stability compared to BSIH, respectively, leading to a 22 and 50% increase in chelator released. Moreover, both prochelators were found to protect retinal pigment epithelial cells stressed with either H2O2 or paraquat insult.
Collapse
Affiliation(s)
- Qin Wang
- Duke University, Department of Chemistry, 124 Science Dr., Durham, NC 27708, USA
| | - Katherine J Franz
- Duke University, Department of Chemistry, 124 Science Dr., Durham, NC 27708, USA.
| |
Collapse
|
33
|
A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer’s and Parkinson’s diseases. Mol Divers 2018; 23:509-526. [DOI: 10.1007/s11030-018-9878-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
|
34
|
Li F, Wei A, Bu L, Long L, Chen W, Wang C, Zhao C, Wang L. Procaspase-3-activating compound 1 stabilizes hypoxia-inducible factor 1α and induces DNA damage by sequestering ferrous iron. Cell Death Dis 2018; 9:1025. [PMID: 30287840 PMCID: PMC6172261 DOI: 10.1038/s41419-018-1038-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
Procaspase-3-activating compound 1 (PAC-1) induces procaspase-3 activation via zinc chelation. However, whether PAC-1 employs other mechanisms remains unknown. Here we systematically screened for potent PAC-1 targets using 29 enhanced green fluorescent protein-labeled reporter cell lines and identified hypoxia-inducible factor 1α (HIF1α) and RAD51 pathways as PAC-1 targets. These results were verified in HepG2 cells and two other cancer cell lines. Mechanistically, PAC-1 specifically blocked HIF1α hydroxylation and upregulated HIF1α target genes. In addition, DNA damage, G1/S cell cycle arrest, and the inhibition of DNA synthesis were induced following PAC-1 administration. Interestingly, by using ferrozine-iron sequestration and iron titration assays, we uncovered the iron sequestering capacity of PAC-1. Additionally, the expression levels of iron shortage-related genes were also increased in PAC-1-treated cells, and iron (II) supplementation reversed all of the observed cellular responses. Thus, our results indicate that PAC-1 induces HIF1α stabilization and DNA damage by sequestering ferrous iron.
Collapse
Affiliation(s)
- Feifei Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Beijing Normal University, Beijing, 100875, China
| | - Aili Wei
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Beijing Normal University, Beijing, 100875, China
| | - Lijuan Bu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Long Long
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Wei Chen
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Chen Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Beijing Normal University, Beijing, 100875, China
| | - Changqi Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Beijing Normal University, Beijing, 100875, China.
| | - Lili Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|
35
|
Kassab AE, Hassan RA. Novel benzotriazole N-acylarylhydrazone hybrids: Design, synthesis, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and FAK inhibition. Bioorg Chem 2018; 80:531-544. [PMID: 30014921 DOI: 10.1016/j.bioorg.2018.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 11/29/2022]
Abstract
A series of novel benzotriazole N-acylarylhydrazone hybrids was synthesized according fragment-based design strategy. All the synthesized compounds were evaluated for their anticancer activity against 60 human tumor cell lines by NCI (USA). Five compounds: 3d, 3e, 3f, 3o and 3q exhibited significant to potent anticancer activity at low concentrations. Compound 3q showed the most prominent broad-spectrum anticancer activity against 34 tumor cell lines, with mean growth inhibition percent of 45.80%. It exerted the highest potency against colon HT-29 cell line, with cell growth inhibition 86.86%. All leukemia cell lines were highly sensitive to compound 3q. Additionally, compound 3q demonstrated lethal activity to MDA-MB-435 belonging melanoma. Compound 3e exhibited the highest anticancer activity against leukemic CCRF-CEM and HL-60(TB) cell lines, with cell growth inhibition 86.69% and 86.42%, respectively. Moreover, it exerted marked potency against ovarian OVCAR-3 cancer cell line, with cell growth inhibition 78.24%. Four compounds: 3d, 3e, 3f and 3q were further studied through determination of IC50 values against the most sensitive cancer cell lines. The four compounds exhibited highly potent anticancer activity against ovarian cancer OVCAR-3 and leukemia HL-60 (TB) cell lines, with IC50 values in nano-molar range between 25 and 130 nM. They showed 18-2.3 folds more potent anticancer activity than doxorubicin. The most prominent compound was 3e, (IC50 values 29 and 25 nM against OVCAR-3 and HL-60 (TB) cell lines, respectively), representing 10 and 18 folds more potency than doxorubicin. The anti-proliferative activity of these four compounds appeared to correlate well with their ability to inhibit FAK at nano-molar range between 44.6 and 80.75 nM. Compound 3e was a potent, inhibitor of FAK and Pyk2 activity with IC50 values of 44.6 and 70.19 nM, respectively. It was 1.6 fold less potent for Pyk2 than FAK. Additionally, it displayed inhibition in cell based assay measuring phosphorylated-FAK (IC50 = 32.72 nM). Inhibition of FAK enzyme led to a significant increase in the level of active caspase-3, compared to control (11.35 folds), accumulation of cells in pre-G1 phase and annexin-V and propidium iodide staining in addition to cell cycle arrest at G2/M phase indicating that cell death proceeded through an apoptotic mechanism.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
36
|
Naphthaldimine-based simple glucose derivative as a highly selective sensor for colorimetric detection of Cu 2+ ion in aqueous media. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Kassab AE, Gedawy EM. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity. Eur J Med Chem 2018; 150:403-418. [DOI: 10.1016/j.ejmech.2018.03.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 03/08/2018] [Indexed: 12/31/2022]
|
38
|
Akam EA, Utterback RD, Marcero JR, Dailey HA, Tomat E. Disulfide-masked iron prochelators: Effects on cell death, proliferation, and hemoglobin production. J Inorg Biochem 2018; 180:186-193. [PMID: 29324291 PMCID: PMC5956897 DOI: 10.1016/j.jinorgbio.2017.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/20/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
Abstract
The iron metabolism of malignant cells, which is altered to ensure higher acquisition and utilization, motivates the investigation of iron chelation strategies in cancer treatment. In a prochelation approach aimed at increasing intracellular specificity, disulfide reduction/activation switches are incorporated on iron-binding scaffolds resulting in intracellularly activated scavengers. Herein, this strategy is applied to several tridentate donor sets including thiosemicarbazones, aroylhydrazones and semicarbazones. The novel prochelator systems are antiproliferative in breast adenocarcinoma cell lines (MCF-7 and metastatic MDA-MB-231) and do not result in the intracellular generation of oxidative stress. Consistent with iron deprivation, the tested prochelators lead to cell-cycle arrest at the G1/S interface and induction of apoptosis. Notably, although hemoglobin-synthesizing blood cells have the highest iron need in the human body, no significant impact on hemoglobin production was observed in the MEL (murine erythroleukemia) model of differentiating erythroid cells. This study provides new information on the intracellular effects of disulfide-based prochelators and indicates aroylhydrazone (AH1-S)2 as a promising prototype of a new class of antiproliferative prochelator systems.
Collapse
Affiliation(s)
- E A Akam
- Department of Chemistry and Biochemistry, The University of Arizona, United States
| | - R D Utterback
- Department of Chemistry and Biochemistry, The University of Arizona, United States
| | - J R Marcero
- Department of Microbiology and Department of Biochemistry and Molecular Biology, University of Georgia, United States
| | - H A Dailey
- Department of Microbiology and Department of Biochemistry and Molecular Biology, University of Georgia, United States
| | - E Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, United States.
| |
Collapse
|
39
|
Needham LM, Weber J, Fyfe JWB, Kabia OM, Do DT, Klimont E, Zhang Y, Rodrigues M, Dobson CM, Ghandi S, Bohndiek SE, Snaddon TN, Lee SF. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171399. [PMID: 29515860 PMCID: PMC5830749 DOI: 10.1098/rsos.171399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/08/2018] [Indexed: 05/30/2023]
Abstract
Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.
Collapse
Affiliation(s)
- Lisa-Maria Needham
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Judith Weber
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - James W. B. Fyfe
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Omaru M. Kabia
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Dung T. Do
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Ewa Klimont
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yu Zhang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Margarida Rodrigues
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sonia Ghandi
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Thomas N. Snaddon
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Steven F. Lee
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
40
|
Howes TRL, Sallmyr A, Brooks R, Greco GE, Jones DE, Matsumoto Y, Tomkinson AE. Structure-activity relationships among DNA ligase inhibitors: Characterization of a selective uncompetitive DNA ligase I inhibitor. DNA Repair (Amst) 2017; 60:29-39. [PMID: 29078112 DOI: 10.1016/j.dnarep.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 11/28/2022]
Abstract
In human cells, there are three genes that encode DNA ligase polypeptides with distinct but overlapping functions. Previously small molecule inhibitors of human DNA ligases were identified using a structure-based approach. Three of these inhibitors, L82, a DNA ligase I (LigI)-selective inhibitor, and L67, an inhibitor of LigI and DNA ligases III (LigIII), and L189, an inhibitor of all three human DNA ligases, have related structures that are composed of two 6-member aromatic rings separated by different linkers. Here we have performed a structure-activity analysis to identify determinants of activity and selectivity. The majority of the LigI-selective inhibitors had a pyridazine ring whereas the LigI/III- and LigIII-selective inhibitors did not. In addition, the aromatic rings in LigI-selective inhibitors had either arylhydrazone or acylhydrazone, but not vinyl linkers. Among the LigI-selective inhibitors, L82-G17 exhibited increased activity against and selectivity for LigI compared with L82. Notably. L82-G17 is an uncompetitive inhibitor of the third step of the ligation reaction, phosphodiester bond formation. Cells expressing LigI were more sensitive to L82-G17 than isogenic LIG1 null cells. Furthermore, cells lacking nuclear LigIIIα, which can substitute for LigI in DNA replication, were also more sensitive to L82-G17 than isogenic parental cells. Together, our results demonstrate that L82-G17 is a LigI-selective inhibitor with utility as a probe of the catalytic activity and cellular functions of LigI and provide a framework for the future design of DNA ligase inhibitors.
Collapse
Affiliation(s)
- Timothy R L Howes
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Annahita Sallmyr
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Rhys Brooks
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - George E Greco
- Department of Chemistry, Goucher College, Baltimore, MD 21204, United States
| | - Darin E Jones
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR 72204, United States
| | - Yoshihiro Matsumoto
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States.
| |
Collapse
|
41
|
Beck MW, Derrick JS, Suh JM, Kim M, Korshavn KJ, Kerr RA, Cho WJ, Larsen SD, Ruotolo BT, Ramamoorthy A, Lim MH. Minor Structural Variations of Small Molecules Tune Regulatory Activities toward Pathological Factors in Alzheimer's Disease. ChemMedChem 2017; 12:1828-1838. [PMID: 28990338 DOI: 10.1002/cmdc.201700456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/04/2017] [Indexed: 12/12/2022]
Abstract
Chemical tools have been valuable for establishing a better understanding of the relationships between metal ion dyshomeostasis, the abnormal aggregation and accumulation of amyloid-β (Aβ), and oxidative stress in Alzheimer's disease (AD). Still, very little information is available to correlate the structures of chemical tools with specific reactivities used to uncover such relationships. Recently, slight structural variations to the framework of a chemical tool were found to drastically determine the tool's reactivities toward multiple pathological facets to various extents. Herein, we report our rational design and characterization of a structural series to illustrate the extent to which the reactivities of small molecules vary toward different targets as a result of minor structural modifications. These compounds were rationally and systematically modified based on consideration of properties, including ionization potentials and metal binding, to afford their desired reactivities with metal-free or metal-bound Aβ, reactive oxygen species (ROS), and free organic radicals. Our results show that although small molecules are structurally similar, they can interact with multiple factors associated with AD pathogenesis and alleviate their reactivities to different degrees. Together, our studies demonstrate the rational structure-directed design that can be used to develop chemical tools capable of regulating individual or interrelated pathological features in AD.
Collapse
Affiliation(s)
- Michael W Beck
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey S Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jong-Min Suh
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Mingeun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyle J Korshavn
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard A Kerr
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Woo Jong Cho
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.,Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
42
|
Wang Q, Franz KJ. The hydrolytic susceptibility of prochelator BSIH in aqueous solutions. Bioorg Med Chem Lett 2017; 27:4165-4170. [PMID: 28734582 DOI: 10.1016/j.bmcl.2017.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/06/2017] [Indexed: 01/17/2023]
Abstract
The prochelator BSIH ((E)-N'-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)isonicotinohydrazide) contains a boronate group that prevents metal coordination until reaction with peroxide releases the iron chelator SIH ((E)-N'-(2-hydroxybenzylidene)isonicotinohydrazide). BSIH exists in aqueous buffer and cell culture media in equilibrium with its hydrolysis products isoniazid and (2-formylphenyl)boronic acid (FBA). The relative concentrations of these species limit the yield of intact SIH available for targeted iron chelation. While the hydrolysis fragments are nontoxic to retinal pigment epithelial cells, these results suggest that modifications to BSIH that improve its hydrolytic stability yet maintain its low inherent cytotoxicity are desirable for creating more efficient prochelators for protection against cellular oxidative damage.
Collapse
Affiliation(s)
- Qin Wang
- Duke University, Department of Chemistry, 124 Science Dr., Durham, NC 27708, USA
| | - Katherine J Franz
- Duke University, Department of Chemistry, 124 Science Dr., Durham, NC 27708, USA.
| |
Collapse
|
43
|
Polyoxometalate-Functionalized Nanocarbon Materials for Energy Conversion, Energy Storage, and Sensor Systems. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2016.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Abstract
Metal ions are essential for a wide range of physiological processes, but they can also be toxic if not appropriately regulated by a complex network of metal trafficking proteins. Intervention in cellular metal distribution with small-molecule or peptide chelating agents has promising therapeutic potential to harness metals to fight disease. Molecular outcomes associated with forming metal-chelate interactions in situ include altering the concentration and subcellular metal distribution, inhibiting metalloenzymes, enhancing the reactivity of a metal species to elicit a favorable biological response, or passivating the reactivity of a metal species to prevent deleterious reactivity. The systemic administration of metal chelating agents, however, raises safety concerns due to the potential risks of indiscriminate extraction of metals from critical metalloproteins and inhibition of metalloenzymes. One can estimate that chelators capable of complexing metal ions with dissociation constants in the submicromolar range are thermodynamically capable of extracting metal ions from some metalloproteins and disrupting regular function. Such dissociation constants are easily attainable for multidentate chelators interacting with first-row d-block metal cations in relevant +1, + 2, and +3 oxidation states. To overcome this challenge of indiscriminate metal chelation, we have pursued a prodrug strategy for chelating agents in which the resulting "prochelator" has negligible metal binding affinity until a specific stimulus generates a favorable metal binding site. The prochelator strategy enables conditional metal chelation to occur preferentially in locations affected by disease- or therapy-associated stimuli, thereby minimizing off-target metal chelation. Our design of responsive prochelators encompasses three general approaches of activation: the "removal" approach operates by eliminating a masking group that blocks a potential metal chelation site to reveal the complete binding site under the desired conditions; the molecular "switch" approach involves a reversible conformational change between inactive and active forms of a chelator with differential metal binding affinity under specific conditions; and the "addition" approach adds a new ligand donor arm to the prochelator to constitute a complete metal chelation site. Adopting these approaches, we have created four categories of triggerable prochelators that respond to (1) reactive oxygen species, (2) light, (3) specific enzymes, and (4) biological regulatory events. This Account highlights progress from our group on building prochelators that showcase these four categories of responsive metal chelating agents for manipulating cellular metals. The creation and chemical understanding of such stimulus-responsive prochelators enables exciting applications for understanding the cell biology of metals and for developing therapies based on metal-dependent processes in a variety of diseases.
Collapse
Affiliation(s)
- Qin Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Katherine J. Franz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
45
|
Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease. Nat Commun 2016; 7:13115. [PMID: 27734843 PMCID: PMC5065625 DOI: 10.1038/ncomms13115] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal–Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs. To advance our understanding of pathological features associated with Alzheimer's disease (AD), chemical tools with distinct specificity towards AD targets would be valuable. Here the authors used a structure-mechanism-based design strategy to obtain small molecules as chemical regulators for distinct pathological factors linked to AD pathology.
Collapse
|
46
|
Hašková P, Jansová H, Bureš J, Macháček M, Jirkovská A, Franz KJ, Kovaříková P, Šimůnek T. Cardioprotective effects of iron chelator HAPI and ROS-activated boronate prochelator BHAPI against catecholamine-induced oxidative cellular injury. Toxicology 2016; 371:17-28. [PMID: 27744045 DOI: 10.1016/j.tox.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 01/08/2023]
Abstract
Catecholamines may undergo iron-promoted oxidation resulting in formation of reactive intermediates (aminochromes) capable of redox cycling and reactive oxygen species (ROS) formation. Both of them induce oxidative stress resulting in cellular damage and death. Iron chelation has been recently shown as a suitable tool of cardioprotection with considerable potential to protect cardiac cells against catecholamine-induced cardiotoxicity. However, prolonged exposure of cells to classical chelators may interfere with physiological iron homeostasis. Prochelators represent a more advanced approach to decrease oxidative injury by forming a chelating agent only under the disease-specific conditions associated with oxidative stress. Novel prochelator (lacking any iron chelating properties) BHAPI [(E)-Ń-(1-(2-((4-(4,4,5,5-tetramethyl-1,2,3-dioxoborolan-2-yl)benzyl)oxy)phenyl)ethylidene) isonicotinohydrazide] is converted by ROS to active chelator HAPI with strong iron binding capacity that efficiently inhibits iron-catalyzed hydroxyl radical generation. Our results confirmed redox activity of oxidation products of catecholamines isoprenaline and epinephrine, that were able to activate BHAPI to HAPI that chelates iron ions inside H9c2 cardiomyoblasts. Both HAPI and BHAPI were able to efficiently protect the cells against intracellular ROS formation, depletion of reduced glutathione and toxicity induced by catecholamines and their oxidation products. Hence, both HAPI and BHAPI have shown considerable potential to protect cardiac cells by both inhibition of deleterious catecholamine oxidation to reactive intermediates and prevention of ROS-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Pavlína Hašková
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czechia
| | - Hana Jansová
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czechia
| | - Jan Bureš
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czechia
| | - Miloslav Macháček
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czechia
| | - Anna Jirkovská
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czechia
| | - Katherine J Franz
- Duke University, Department of Chemistry, 124 Science Dr., Durham, NC, 22708, USA
| | - Petra Kovaříková
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czechia
| | - Tomáš Šimůnek
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czechia.
| |
Collapse
|
47
|
Thiele NA, Abboud KA, Sloan KB. Novel double prodrugs of the iron chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED): Synthesis, characterization, and investigation of activation by chemical hydrolysis and oxidation. Eur J Med Chem 2016; 118:193-207. [PMID: 27128183 DOI: 10.1016/j.ejmech.2016.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/23/2016] [Accepted: 04/13/2016] [Indexed: 11/26/2022]
Abstract
The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the protective capabilities of the prodrugs against H2O2-induced cell death.
Collapse
Affiliation(s)
- Nikki A Thiele
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA.
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Kenneth B Sloan
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
48
|
Tapeinos C, Pandit A. Physical, Chemical, and Biological Structures based on ROS-Sensitive Moieties that are Able to Respond to Oxidative Microenvironments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5553-85. [PMID: 27184711 DOI: 10.1002/adma.201505376] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/27/2015] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) (H2 O2 , OCl(-) , (•) OH, O2 (-) ) are a family of reactive molecules that are generated intracellularly and are engaged in many biological processes. In physiological concentrations, ROS act as signaling molecules to a number of metabolic pathways; however, in excess they can be harmful to living organisms. Overproduction of ROS has been related to many pathophysiological conditions and a number of studies have been reported in elucidating their mechanism in these conditions. With the aim of harnessing this role, a number of imaging tools and therapeutic compounds have been developed. Here these imaging and therapeutic tools are reviewed and particularly those structures with ROS-sensitivity based on their biomedical applications and their functional groups. There is also a brief discussion about the method of preparation as well as the mechanism of action.
Collapse
Affiliation(s)
- Christos Tapeinos
- Biosciences Building, Center for Research in Medical Devices, National University of Ireland, Galway, Galway, Ireland
| | - Abhay Pandit
- Biosciences Building, Center for Research in Medical Devices, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
49
|
Oliveri V, Vecchio G. Prochelator strategies for site-selective activation of metal chelators. J Inorg Biochem 2016; 162:31-43. [PMID: 27297691 DOI: 10.1016/j.jinorgbio.2016.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/23/2016] [Accepted: 05/13/2016] [Indexed: 02/06/2023]
Abstract
Metal dyshomeostasis has been involved in the etiology of a host of pathologies such as Wilson's, Alzheimer's, Parkinson's, Huntington's, transfusion-related iron overload diseases and cancer. Although metal chelating agents represent a necessary therapeutic strategy in metal overload diseases, long-term use of strong chelators that are not selective, can be anticipated perturbing normal physiological functions of essential metal-requiring biomolecules. In this context, the last decade has seen a growing interest in the development of molecules, referred to as "prochelators", that have little affinity for metal ions until they are activated in response to specific stimuli. Here, we present the main strategies applied to develop safe prochelators and focus on chosen examples to provide an overview of this field to date.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, 95125 Catania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, C.I.R.C.M.S.B., Unità di Ricerca di Catania, 95125 Catania, Italy.
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, 95125 Catania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, C.I.R.C.M.S.B., Unità di Ricerca di Catania, 95125 Catania, Italy
| |
Collapse
|
50
|
Derrick JS, Kerr RA, Korshavn KJ, McLane MJ, Kang J, Nam E, Ramamoorthy A, Ruotolo BT, Lim MH. Importance of the Dimethylamino Functionality on a Multifunctional Framework for Regulating Metals, Amyloid-β, and Oxidative Stress in Alzheimer's Disease. Inorg Chem 2016; 55:5000-13. [PMID: 27119456 DOI: 10.1021/acs.inorgchem.6b00525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex and multifaceted pathology of Alzheimer's disease (AD) continues to present a formidable challenge to the establishment of long-term treatment strategies. Multifunctional compounds able to modulate the reactivities of various pathological features, such as amyloid-β (Aβ) aggregation, metal ion dyshomeostasis, and oxidative stress, have emerged as a useful tactic. Recently, an incorporation approach to the rational design of multipurpose small molecules has been validated through the production of a multifunctional ligand (ML) as a potential chemical tool for AD. In order to further the development of more diverse and improved multifunctional reagents, essential pharmacophores must be identified. Herein, we report a series of aminoquinoline derivatives (AQ1-4, AQP1-4, and AQDA1-3) based on ML's framework, prepared to gain a structure-reactivity understanding of ML's multifunctionality in addition to tuning its metal binding affinity. Our structure-reactivity investigations have implicated the dimethylamino group as a key component for supplying the antiamyloidogenic characteristics of ML in both the absence and presence of metal ions. Two-dimensional NMR studies indicate that structural variations of ML could tune its interaction sites along the Aβ sequence. In addition, mass spectrometric analyses suggest that the ability of our aminoquinoline derivatives to regulate metal-induced Aβ aggregation may be influenced by their metal binding properties. Moreover, structural modifications to ML were also observed to noticeably change its metal binding affinities and metal-to-ligand stoichiometries that were shown to be linked to their antiamyloidogenic and antioxidant activities. Overall, our studies provide new insights into rational design strategies for multifunctional ligands directed at regulating metal ions, Aβ, and oxidative stress in AD and could advance the development of improved next-generation multifunctional reagents.
Collapse
Affiliation(s)
- Jeffrey S Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | | | | | | | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | | | | | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| |
Collapse
|