1
|
Transue WJ, Snyder RA, Caranto JD, Kurtz DM, Solomon EI. Particle Swarm Fitting of Spin Hamiltonians: Magnetic Circular Dichroism of Reduced and NO-Bound Flavodiiron Protein. Inorg Chem 2022; 61:16520-16527. [PMID: 36223761 PMCID: PMC9942269 DOI: 10.1021/acs.inorgchem.2c02234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A particle swarm optimization (PSO) algorithm is described for the fitting of ground-state spin Hamiltonian parameters from variable-temperature/variable-field (VTVH) magnetic circular dichroism (MCD) data. This PSO algorithm is employed to define the ground state of two catalytic intermediates from a flavodiiron protein (FDP), a class of enzymes with nitric oxide reductase activity. The bimetallic iron active site of this enzyme proceeds through a biferrous intermediate and a mixed ferrous-{FeNO}7 intermediate during the catalytic cycle, and the MCD spectra of these intermediates are presented and analyzed. The fits of the spin Hamiltonians are shown to provide important geometric and electronic insight into these species that is compared and contrasted with previous reports.
Collapse
Affiliation(s)
| | - Rae Ana Snyder
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jonathan D. Caranto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Donald M. Kurtz
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | | |
Collapse
|
2
|
Rajbongshi J, Das DK, Mazumdar S. Spectroscopic and electrochemical studies of the pH-Induced transition in the CuA centre from Thermus thermophilus. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Electrochemical Characterization of an Engineered Red Copper Protein Featuring an Unprecedented Entropic Control of the Reduction Potential. Bioelectrochemistry 2022; 146:108095. [DOI: 10.1016/j.bioelechem.2022.108095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
|
4
|
Vilbert AC, Liu Y, Dai H, Lu Y. Recent advances in tuning redox properties of electron transfer centers in metalloenzymes catalyzing oxygen reduction reaction and H 2 oxidation important for fuel cells design. CURRENT OPINION IN ELECTROCHEMISTRY 2021; 30:100780. [PMID: 34435160 PMCID: PMC8382256 DOI: 10.1016/j.coelec.2021.100780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Current fuel-cell catalysts for oxygen reduction reaction (ORR) and H2 oxidation use precious metals and, for ORR, require high overpotentials. In contrast, metalloenzymes perform their respective reaction at low overpotentials using earth-abundant metals, making metalloenzymes ideal candidates for inspiring electrocatalytic design. Critical to the success of these enzymes are redox-active metal centers surrounding the enzyme active sites that ensure fast electron transfer (ET) to or away from the active site, by tuning the catalytic potential of the reaction as observed in multicopper oxidases but also in dictating the catalytic bias of the reaction as realized in hydrogenases. This review summarizes recent advances in studying these ET centers in multicopper oxidases and heme-copper oxidases that perform ORR and hydrogenases in carrying out H2 oxidation. Insights gained from understanding how the reduction potential of the ET centers effects reactivity at the active site in both the enzymes and their models are provided.
Collapse
Affiliation(s)
| | - Yiwei Liu
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huiguang Dai
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Mishra S, Bhandari A, Singh D, Gupta R, Olmstead MM, Patra AK. Bis(μ-thiolato)-dicopper Containing Fully Spin Delocalized Mixed Valence Copper-Sulfur Clusters and Their Electronic Structural Properties with Relevance to the Cu A Site. Inorg Chem 2021; 60:5779-5790. [PMID: 33829770 DOI: 10.1021/acs.inorgchem.1c00075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With aromatic and aliphatic thiol-S donor Schiff base ligands, the copper-sulfur clusters, [(L1)8CuI6CuII2](ClO4)2·DMF·0.5CH3OH (1) and [(L2)12CuI5CuII11(μ4-S)(μ4-O)6](ClO4)·4H2O, respectively, have been reported ( Chem. Commun. 2017, 53, 3334); HL1/HL2 are 2-(((3-methylthiophen-2-yl)methylene)amino)benzene/ethanethiol). Complex 1 comprises a wheel shaped Cu8S8 framework, made up of interlinked Cu2{μ-S(R)}2 units. To understand the properties with relevance to the CuA site and to check whether self-assembly generates similar type clusters to 1, three complexes, [(L3)8CuI6CuII2](ClO4)2·(C2H5)2O·2.5H2O (2), [(L3Cl)8CuI6CuII2](ClO4)2·1.25(C2H5)2O·1.25CH3OH·2H2O (3), and [(L3CF3)8CuI6CuII2](ClO4)2·2(C2H5)2O·H2O (4) have been synthesized with supporting ligands HL3X (HL3 = 2-((furan-2-ylmethylene)amino)benzenethiol when X = -H; X = -Cl or -CF3 para to thiol-S are HL3Cl and HL3CF3 ligands, respectively). The X-ray structures of 3 and 4 feature a similar Cu8S8 architecture to 1. The spectroscopic properties and the X-ray structures revealed that 2-4 are fully spin delocalized mixed valence (MV) of class-III type clusters. The structural parameters of the N2Cu2{μ-S(R)}2 units of 3 and 4 closely resemble those of the MV binuclear CuA site. With the aid of UV-vis-NIR, EPR, and spectroelectrochemical studies, the electronic properties of these complexes have been described in comparison with the MV model complexes and CuA site.
Collapse
Affiliation(s)
- Saikat Mishra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209, India
| | - Anirban Bhandari
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209, India
| | - Devender Singh
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Marilyn M Olmstead
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Apurba K Patra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209, India
| |
Collapse
|
6
|
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020; 120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Morgada MN, Llases ME, Giannini E, Castro MA, Alzari PM, Murgida DH, Lisa MN, Vila AJ. Unexpected electron spin density on the axial methionine ligand in Cu A suggests its involvement in electron pathways. Chem Commun (Camb) 2020; 56:1223-1226. [PMID: 31897463 DOI: 10.1039/c9cc08883k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CuA center is a paradigm for the study of long-range biological electron transfer. This metal center is an essential cofactor for terminal oxidases like cytochrome c oxidase, the enzymatic complex responsible for cellular respiration in eukaryotes and in most bacteria. CuA acts as an electron hub by transferring electrons from reduced cytochrome c to the catalytic site of the enzyme where dioxygen reduction takes place. Different electron transfer pathways have been proposed involving a weak axial methionine ligand residue, conserved in all CuA sites. This hypothesis has been challenged by theoretical calculations indicating the lack of electron spin density in this ligand. Here we report an NMR study with selectively labeled methionine in a native CuA. NMR spectroscopy discloses the presence of net electron spin density in the methionine axial ligand in the two alternative ground states of this metal center. Similar spin delocalization observed on two second sphere mutants further supports this evidence. These data provide a novel view of the electronic structure of CuA centers and support previously neglected electron transfer pathways.
Collapse
Affiliation(s)
- Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, Rosario 2000, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Morgada MN, Emiliani F, Chacón KN, Álvarez-Paggi D, Murgida DH, Blackburn NJ, Abriata LA, Vila AJ. pH-Induced Binding of the Axial Ligand in an Engineered Cu A Site Favors the π u State. Inorg Chem 2019; 58:15687-15691. [DOI: 10.1021/acs.inorgchem.9b01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marcos N. Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda,
Predio CONICET Rosario, 2000 Rosario, Argentina
| | - Florencia Emiliani
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda,
Predio CONICET Rosario, 2000 Rosario, Argentina
| | - Kelly N. Chacón
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| | - Damián Álvarez-Paggi
- INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Buenos Aires, Argentina
| | - Daniel H. Murgida
- INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Buenos Aires, Argentina
| | - Ninian J. Blackburn
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| | - Luciano A. Abriata
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda,
Predio CONICET Rosario, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda,
Predio CONICET Rosario, 2000 Rosario, Argentina
| |
Collapse
|
9
|
Ross MO, Fisher OS, Morgada MN, Krzyaniak MD, Wasielewski MR, Vila AJ, Hoffman BM, Rosenzweig AC. Formation and Electronic Structure of an Atypical Cu A Site. J Am Chem Soc 2019; 141:4678-4686. [PMID: 30807125 PMCID: PMC6953997 DOI: 10.1021/jacs.8b13610] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PmoD, a recently discovered protein from methane-oxidizing bacteria, forms a homodimer with a dicopper CuA center at the dimer interface. Although the optical and electron paramagnetic resonance (EPR) spectroscopic signatures of the PmoD CuA bear similarities to those of canonical CuA sites, there are also some puzzling differences. Here we have characterized the rapid formation (seconds) and slow decay (hours) of this homodimeric CuA site to two mononuclear Cu2+ sites, as well as its electronic and geometric structure, using stopped-flow optical and advanced paramagnetic resonance spectroscopies. PmoD CuA formation occurs rapidly and involves a short-lived intermediate with a λmax of 360 nm. Unlike other CuA sites, the PmoD CuA is unstable, decaying to two type 2 Cu2+ centers. Surprisingly, NMR data indicate that the PmoD CuA has a pure σu* ground state rather than the typical equilibrium between σu* and πu of all other CuA proteins. EPR, ENDOR, ESEEM, and HYSCORE data indicate the presence of two histidine and two cysteine ligands coordinating the CuA core in a highly symmetrical fashion. This report significantly expands the diversity and understanding of known CuA sites.
Collapse
Affiliation(s)
- Matthew O. Ross
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Oriana S. Fisher
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Marcos N. Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Matthew D. Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Brian M. Hoffman
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Amy C. Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| |
Collapse
|
10
|
Zitare UA, Szuster J, Santalla MC, Llases ME, Morgada MN, Vila AJ, Murgida DH. Fine Tuning of Functional Features of the Cu A Site by Loop-Directed Mutagenesis. Inorg Chem 2019; 58:2149-2157. [PMID: 30644741 DOI: 10.1021/acs.inorgchem.8b03244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report the spectroscopic and electrochemical characterization of three novel chimeric CuA proteins in which either one or the three loops surrounding the metal ions in the Thermus thermophilus protein have been replaced by homologous human and plant sequences while preserving the set of coordinating amino acids. These conservative modifications mimic basic differences between CuA sites from different organisms and allow for fine tuning the energy gap between alternative electronic ground states of CuA.. This results in a systematic modulation of thermodynamic and kinetic electron transfer (ET) parameters and in the selection of one of two possible redox-active molecular orbitals, which differ in the ET reorganization energy by a factor of 2. Moreover, the ET mechanism is found to be frictionally controlled, and the modifications introduced into the different chimeras do not affect the frictional activation parameter.
Collapse
Affiliation(s)
- Ulises A Zitare
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE) , Universidad de Buenos Aires and CONICET, 1428 Buenos Aires , Argentina
| | - Jonathan Szuster
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE) , Universidad de Buenos Aires and CONICET, 1428 Buenos Aires , Argentina
| | - María C Santalla
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE) , Universidad de Buenos Aires and CONICET, 1428 Buenos Aires , Argentina
| | - María E Llases
- Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas , Instituto de Biología Molecular y Celular de Rosario (IBR) , Universidad Nacional de Rosario and CONICET, 2000 Rosario , Argentina
| | - Marcos N Morgada
- Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas , Instituto de Biología Molecular y Celular de Rosario (IBR) , Universidad Nacional de Rosario and CONICET, 2000 Rosario , Argentina
| | - Alejandro J Vila
- Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas , Instituto de Biología Molecular y Celular de Rosario (IBR) , Universidad Nacional de Rosario and CONICET, 2000 Rosario , Argentina
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE) , Universidad de Buenos Aires and CONICET, 1428 Buenos Aires , Argentina
| |
Collapse
|
11
|
Leguto AJ, Smith MA, Morgada MN, Zitare UA, Murgida DH, Lancaster KM, Vila AJ. Dramatic Electronic Perturbations of Cu A Centers via Subtle Geometric Changes. J Am Chem Soc 2019; 141:1373-1381. [PMID: 30582893 DOI: 10.1021/jacs.8b12335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CuA is a binuclear copper site acting as electron entry port in terminal heme-copper oxidases. In the oxidized form, CuA is a mixed valence pair whose electronic structure can be described using a potential energy surface with two minima, σu* and πu, that are variably populated at room temperature. We report that mutations in the first and second coordination spheres of the binuclear metallocofactor can be combined in an additive manner to tune the energy gap and, thus, the relative populations of the two lowest-lying states. A series of designed mutants span σu*/πu energy gaps ranging from 900 to 13 cm-1. The smallest gap corresponds to a variant with an effectively degenerate ground state. All engineered sites preserve the mixed-valence character of this metal center and the electron transfer functionality. An increase of the Cu-Cu distance less than 0.06 Å modifies the σu*/πu energy gap by almost 2 orders of magnitude, with longer distances eliciting a larger population of the πu state. This scenario offers a stark contrast to synthetic systems, as model compounds require a lengthening of 0.5 Å in the Cu-Cu distance to stabilize the πu state. These findings show that the tight control of the protein environment allows drastic perturbations in the electronic structure of CuA sites with minor geometric changes.
Collapse
Affiliation(s)
- Alcides J Leguto
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario and CONICET , 2000 Rosario , Argentina
| | - Meghan A Smith
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario and CONICET , 2000 Rosario , Argentina
| | - Ulises A Zitare
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires and CONICET , 1428 Buenos Aires , Argentina
| | - Daniel H Murgida
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires and CONICET , 1428 Buenos Aires , Argentina
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario and CONICET , 2000 Rosario , Argentina
| |
Collapse
|
12
|
Maji RC, Das PP, Bhandari A, Mishra S, Maji M, Ghiassi KB, Olmstead MM, Patra AK. Mixed valence copper-sulfur clusters of highest nuclearity: a Cu 8 wheel and a Cu 16 nanoball. Chem Commun (Camb) 2018; 53:3334-3337. [PMID: 27966706 DOI: 10.1039/c6cc08301c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fully spin delocalized mixed valence copper-sulfur clusters, 1 and 2, supported by μ4-sulfido and NSthiol donor ligands are synthesized and characterized. Wheel shaped 1 consists of Cu2S2 units. The unprecedented nanoball 2 can be described as S@Cu4(tetrahedron)@O6(octahedron)@Cu12S12(cage) consisting of both Cu2S2 and (μ4-S)Cu4 units. The Cu2S2 and (μ4-S)Cu4 units resemble biological CuA and CuZ sites respectively.
Collapse
Affiliation(s)
- Ram Chandra Maji
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713 209, West Bengal, India.
| | - Partha Pratim Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Anirban Bhandari
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713 209, West Bengal, India.
| | - Saikat Mishra
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713 209, West Bengal, India.
| | - Milan Maji
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713 209, West Bengal, India.
| | - Kamran B Ghiassi
- Department of Chemistry, University of California Davis, CA 95616, USA
| | | | - Apurba K Patra
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713 209, West Bengal, India.
| |
Collapse
|
13
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
14
|
Alvarez-Paggi D, Zitare UA, Szuster J, Morgada MN, Leguto AJ, Vila AJ, Murgida DH. Tuning of Enthalpic/Entropic Parameters of a Protein Redox Center through Manipulation of the Electronic Partition Function. J Am Chem Soc 2017; 139:9803-9806. [PMID: 28662578 DOI: 10.1021/jacs.7b05199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Manipulation of the partition function (Q) of the redox center CuA from cytochrome c oxidase is attained by tuning the accessibility of a low lying alternative electronic ground state and by perturbation of the electrostatic potential through point mutations, loop engineering and pH variation. We report clear correlations of the entropic and enthalpic contributions to redox potentials with Q and with the identity and hydrophobicity of the weak axial ligand, respectively.
Collapse
Affiliation(s)
- Damian Alvarez-Paggi
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET ,1428 Buenos Aires, Argentina
| | - Ulises A Zitare
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET ,1428 Buenos Aires, Argentina
| | - Jonathan Szuster
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET ,1428 Buenos Aires, Argentina
| | - Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and CONICET , 2000 Rosario, Argentina
| | - Alcides J Leguto
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and CONICET , 2000 Rosario, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and CONICET , 2000 Rosario, Argentina
| | - Daniel H Murgida
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET ,1428 Buenos Aires, Argentina
| |
Collapse
|
15
|
Lee R, Tan D, Liu C, Li H, Guo H, Shyue JJ, Huang KW. DFT mechanistic study of the selective terminal C–H activation of n -pentane with a tungsten allyl nitrosyl complex. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2016.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Witte M, Grimm-Lebsanft B, Goos A, Binder S, Rübhausen M, Bernard M, Neuba A, Gorelsky S, Gerstmann U, Henkel G, Gero Schmidt W, Herres-Pawlis S. Optical response of the Cu2 S2 diamond core in Cu2II(NGuaS)2 Cl2. J Comput Chem 2016; 37:2181-92. [PMID: 27362786 DOI: 10.1002/jcc.24439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/25/2023]
Abstract
Density functional theory (DFT) and time-dependent DFT calculations are presented for the dicopper thiolate complex Cu2 (NGuaS)2 Cl2 [NGuaS=2-(1,1,3,3-tetramethylguanidino) benzenethiolate] with a special focus on the bonding mechanism of the Cu2 S2 Cl2 core and the spectroscopic response. This complex is relevant for the understanding of dicopper redox centers, for example, the CuA center. Its UV/Vis absorption is theoretically studied and found to be similar to other structural CuA models. The spectrum can be roughly divided in the known regions of metal d-d absorptions and metal to ligand charge transfer regions. Nevertheless the chloride ions play an important role as electron donors, with the thiolate groups as electron acceptors. The bonding mechanism is dissected by means of charge decomposition analysis which reveals the large covalency of the Cu2 S2 diamond core mediated between Cu dz2 and S-S π and π* orbitals forming Cu-S σ bonds. Measured resonant Raman spectra are shown for 360- and 720-nm excitation wavelength and interpreted using the calculated vibrational eigenmodes and frequencies. The calculations help to rationalize the varying resonant behavior at different optical excitations. Especially the phenylene rings are only resonant for 720 nm. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthias Witte
- Lehrstuhl Für Bioanorganische Chemie, Fachgruppe Chemie, RWTH Aachen University, Landoltweg 1, Aachen, 52074, Germany
| | - Benjamin Grimm-Lebsanft
- Institut für Nanostruktur- und Festkörperphysik and Center for Free Electron Laser Science, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Arne Goos
- Institut für Nanostruktur- und Festkörperphysik and Center for Free Electron Laser Science, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Stephan Binder
- Institut für Nanostruktur- und Festkörperphysik and Center for Free Electron Laser Science, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Michael Rübhausen
- Institut für Nanostruktur- und Festkörperphysik and Center for Free Electron Laser Science, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Martin Bernard
- Lehrstuhl Für Anorganische Chemie, Universität Paderborn, Warburger Str. 100, Paderborn, 33098, Germany
| | - Adam Neuba
- Lehrstuhl Für Anorganische Chemie, Universität Paderborn, Warburger Str. 100, Paderborn, 33098, Germany
| | - Serge Gorelsky
- Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Uwe Gerstmann
- Lehrstuhl Für Theoretische Physik, Universität Paderborn, Warburger Str. 100, Paderborn, 33098, Germany
| | - Gerald Henkel
- Lehrstuhl Für Anorganische Chemie, Universität Paderborn, Warburger Str. 100, Paderborn, 33098, Germany
| | - Wolf Gero Schmidt
- Lehrstuhl Für Theoretische Physik, Universität Paderborn, Warburger Str. 100, Paderborn, 33098, Germany
| | - Sonja Herres-Pawlis
- Lehrstuhl Für Bioanorganische Chemie, Fachgruppe Chemie, RWTH Aachen University, Landoltweg 1, Aachen, 52074, Germany
| |
Collapse
|
17
|
Witte M, Gerstmann U, Neuba A, Henkel G, Schmidt WG. Density functional theory of the CuA
-like Cu2
S2
diamond core in Cu
2II(NGuaS)2
Cl2. J Comput Chem 2016; 37:1005-18. [DOI: 10.1002/jcc.24289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 11/07/2022]
Affiliation(s)
- M. Witte
- Department of Physics, Lehrstuhl Für Theoretische Materialphysik, Universität Paderborn; Paderborn 33098 Germany
| | - U. Gerstmann
- Department of Physics, Lehrstuhl Für Theoretische Materialphysik, Universität Paderborn; Paderborn 33098 Germany
| | - A. Neuba
- Department of Chemistry, Lehrstuhl Für Anorganische Chemie, Universität Paderborn; Paderborn 33098 Germany
| | - G. Henkel
- Department of Chemistry, Lehrstuhl Für Anorganische Chemie, Universität Paderborn; Paderborn 33098 Germany
| | - W. G. Schmidt
- Department of Physics, Lehrstuhl Für Theoretische Materialphysik, Universität Paderborn; Paderborn 33098 Germany
| |
Collapse
|
18
|
Pérez-Henarejos SA, Alcaraz LA, Donaire A. Blue Copper Proteins: A rigid machine for efficient electron transfer, a flexible device for metal uptake. Arch Biochem Biophys 2015; 584:134-48. [DOI: 10.1016/j.abb.2015.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
|
19
|
Zitare U, Alvarez-Paggi D, Morgada MN, Abriata LA, Vila AJ, Murgida DH. Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in CuASites of Cytochrome cOxidase. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Zitare U, Alvarez-Paggi D, Morgada MN, Abriata LA, Vila AJ, Murgida DH. Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu(A) Sites of Cytochrome c Oxidase. Angew Chem Int Ed Engl 2015; 54:9555-9. [PMID: 26118421 DOI: 10.1002/anie.201504188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 11/06/2022]
Abstract
The Cu(A) site of cytochrome c oxidase is a redox hub that participates in rapid electron transfer at low driving forces with two redox cofactors in nearly perpendicular orientations. Spectroscopic and electrochemical characterizations performed on first and second-sphere mutants have allowed us to experimentally detect the reversible switching between two alternative electronic states that confer different directionalities to the redox reaction. Specifically, the M160H variant of a native Cu(A) shows a reversible pH transition that allows to functionally probe both states in the same protein species. Alternation between states exerts a dramatic impact on the kinetic redox parameters, thereby suggesting this effect as the mechanism underlying the efficiency and directionality of Cu(A) electron transfer in vivo. These findings may also prove useful for the development of molecular electronics.
Collapse
Affiliation(s)
- Ulises Zitare
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET (Argentina)
| | - Damián Alvarez-Paggi
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET (Argentina)
| | - Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and CONICET (Argentina)
| | - Luciano A Abriata
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and CONICET (Argentina)
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and CONICET (Argentina)
| | - Daniel H Murgida
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET (Argentina).
| |
Collapse
|
21
|
Morgada MN, Abriata LA, Zitare U, Alvarez-Paggi D, Murgida DH, Vila AJ. Control of the Electronic Ground State on an Electron-Transfer Copper Site by Second-Sphere Perturbations. Angew Chem Int Ed Engl 2014; 53:6188-92. [DOI: 10.1002/anie.201402083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/24/2014] [Indexed: 01/07/2023]
|
22
|
Morgada MN, Abriata LA, Zitare U, Alvarez-Paggi D, Murgida DH, Vila AJ. Control of the Electronic Ground State on an Electron-Transfer Copper Site by Second-Sphere Perturbations. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1219] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
24
|
Alvarez-Paggi D, Zitare U, Murgida DH. The role of protein dynamics and thermal fluctuations in regulating cytochrome c/cytochrome c oxidase electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1196-207. [PMID: 24502917 DOI: 10.1016/j.bbabio.2014.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 01/06/2023]
Abstract
In this overview we present recent combined electrochemical, spectroelectrochemical, spectroscopic and computational studies from our group on the electron transfer reactions of cytochrome c and of the primary electron acceptor of cytochrome c oxidase, the CuA site, in biomimetic complexes. Based on these results, we discuss how protein dynamics and thermal fluctuations may impact on protein ET reactions, comment on the possible physiological relevance of these results, and finally propose a regulatory mechanism that may operate in the Cyt/CcO electron transfer reaction in vivo. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Damian Alvarez-Paggi
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, pab. 2, piso 3, C1428EHA Buenos Aires, Argentina
| | - Ulises Zitare
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, pab. 2, piso 3, C1428EHA Buenos Aires, Argentina
| | - Daniel H Murgida
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, pab. 2, piso 3, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
25
|
Abriata LA, Vila AJ, Dal Peraro M. Molecular dynamics simulations of apocupredoxins: insights into the formation and stabilization of copper sites under entatic control. J Biol Inorg Chem 2014; 19:565-75. [PMID: 24477946 DOI: 10.1007/s00775-014-1108-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
Cupredoxins perform copper-mediated long-range electron transfer (ET) in biological systems. Their copper-binding sites have evolved to force copper ions into ET-competent systems with decreased reorganization energy, increased reduction potential, and a distinct electronic structure compared with those of non-ET-competent copper complexes. The entatic or rack-induced state hypothesis explains these special properties in terms of the strain that the protein matrix exerts on the metal ions. This idea is supported by X-ray structures of apocupredoxins displaying "closed" arrangements of the copper ligands like those observed in the holoproteins; however, it implies completely buried copper-binding atoms, conflicting with the notion that they must be exposed for copper loading. On the other hand, a recent work based on NMR showed that the copper-binding regions of apocupredoxins are flexible in solution. We have explored five cupredoxins in their "closed" apo forms through molecular dynamics simulations. We observed that prearranged ligand conformations are not stable as the X-ray data suggest, although they do form part of the dynamic landscape of the apoproteins. This translates into variable flexibility of the copper-binding regions within a rigid fold, accompanied by fluctuations of the hydrogen bonds around the copper ligands. Major conformations with solvent-exposed copper-binding atoms could allow initial binding of the copper ions. An eventual subsequent incursion to the closed state would result in binding of the remaining ligands, trapping the closed conformation thanks to the additional binding energy and the fastening of noncovalent interactions that make up the rack.
Collapse
Affiliation(s)
- Luciano A Abriata
- Laboratory of Biomolecular Modeling, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,
| | | | | |
Collapse
|
26
|
Alvarez-Paggi D, Abriata LA, Murgida DH, Vila AJ. Native Cu(A) redox sites are largely resilient to pH variations within a physiological range. Chem Commun (Camb) 2013; 49:5381-3. [PMID: 23652317 DOI: 10.1039/c3cc40457a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies on engineered CuA centres have shown that one of the histidine ligands is protonated and dissociated from the metal site at physiological pH values, thus suggesting a role in regulating proton-coupled electron transfer of cytochrome c oxidases in vivo. Here we report that for native CuA such protonation does not take place at physiologically relevant pH values and, furthermore, no significant changes in the spectroscopic and redox properties of the metal site occur at low pH.
Collapse
Affiliation(s)
- Damián Alvarez-Paggi
- INQUIMAE-CONICET and Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. 2, C1428EHA Buenos Aires, Argentina
| | | | | | | |
Collapse
|
27
|
Axial interactions in the mixed-valent CuA active site and role of the axial methionine in electron transfer. Proc Natl Acad Sci U S A 2013; 110:14658-63. [PMID: 23964128 DOI: 10.1073/pnas.1314242110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Within Cu-containing electron transfer active sites, the role of the axial ligand in type 1 sites is well defined, yet its role in the binuclear mixed-valent CuA sites is less clear. Recently, the mutation of the axial Met to Leu in a CuA site engineered into azurin (CuA Az) was found to have a limited effect on E(0) relative to this mutation in blue copper (BC). Detailed low-temperature absorption and magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance studies on CuA Az (WT) and its M123X (X = Q, L, H) axial ligand variants indicated stronger axial ligation in M123L/H. Spectroscopically validated density functional theory calculations show that the smaller ΔE(0) is attributed to H2O coordination to the Cu center in the M123L mutant in CuA but not in the equivalent BC variant. The comparable stabilization energy of the oxidized over the reduced state in CuA and BC (CuA ∼ 180 mV; BC ∼ 250 mV) indicates that the S(Met) influences E(0) similarly in both. Electron delocalization over two Cu centers in CuA was found to minimize the Jahn-Teller distortion induced by the axial Met ligand and lower the inner-sphere reorganization energy. The Cu-S(Met) bond in oxidized CuA is weak (5.2 kcal/mol) but energetically similar to that of BC, which demonstrates that the protein matrix also serves an entatic role in keeping the Met bound to the active site to tune down E(0) while maintaining a low reorganization energy required for rapid electron transfer under physiological conditions.
Collapse
|
28
|
Alternative ground states enable pathway switching in biological electron transfer. Proc Natl Acad Sci U S A 2012; 109:17348-53. [PMID: 23054836 DOI: 10.1073/pnas.1204251109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant Cu(A) redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or "invisible" electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein-protein interactions and membrane potential may optimize and regulate electron-proton energy transduction.
Collapse
|
29
|
Abriata LA. Analysis of copper-ligand bond lengths in X-ray structures of different types of copper sites in proteins. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1223-31. [PMID: 22948924 DOI: 10.1107/s0907444912026054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022]
Abstract
An updated picture of the ligand sets and copper-ligand atom bond lengths in proteins is presented which takes advantage of (i) the approximately twofold increase in the number of entries for copper-containing proteins in the PDB since the last study of this kind, especially benefiting from the recent incorporation of the structures of proteins involved in copper homeostasis, and (ii) a preliminary classification of copper sites based on their structural, electronic and functional features. This classification allowed the calculation of reliable target copper-ligand distances for several bonds that were not available in previous work and that are in good agreement with EXAFS data and the known chemistry of these sites. The analysis presented here further disclosed an artifactual dependence of the average of the reported Cu-NHis bond lengths on structure resolution, highlighting the importance of taking this into account when computing target distances even from high-resolution structures. Finally, a relationship between the two Cu-O distances in bidentate carboxylates is disclosed, similar to that reported previously for other metal ions.
Collapse
Affiliation(s)
- Luciano A Abriata
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
30
|
Lucas MF, Rousseau DL, Guallar V. Electron transfer pathways in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:1305-13. [PMID: 21419097 PMCID: PMC3132828 DOI: 10.1016/j.bbabio.2011.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/08/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
Mixed quantum mechanical/molecular mechanics calculations were used to explore the electron pathway of the terminal electron transfer enzyme, cytochrome c oxidase. This enzyme catalyzes the reduction of molecular oxygen to water in a multiple step process. Density functional calculations on the three redox centers allowed for the characterization of the electron transfer mechanism, following the sequence Cu(A)→heme a→heme a(3). This process is largely affected by the presence of positive charges, confirming the possibility of a proton coupled electron transfer. An extensive mapping of all residues involved in the electron transfer, between the Cu(A) center (donor) and the O(2) reduction site heme a(3)-Cu(B) (receptor), was obtained by selectively activating/deactivating different quantum regions. The method employed, called QM/MM e-pathway, allowed the identification of key residues along the possible electron transfer paths, consistent with experimental data. In particular, the role of arginines 481 and 482 appears crucial in the Cu(A)→heme a and in the heme a→heme a(3) electron transfer processes. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Collapse
Affiliation(s)
- M. Fátima Lucas
- ICREA, Life Science Program. Barcelona Supercomputing Center, Jordi Girona, 29, Barcelona, 08028, Spain
| | - Denis L. Rousseau
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Victor Guallar
- ICREA, Life Science Program. Barcelona Supercomputing Center, Jordi Girona, 29, Barcelona, 08028, Spain
| |
Collapse
|
31
|
A theoretical investigation of the functional role of the axial methionine ligand of the Cu(A) site in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1314-27. [PMID: 21745457 DOI: 10.1016/j.bbabio.2011.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/29/2011] [Accepted: 06/22/2011] [Indexed: 11/20/2022]
Abstract
The functional roles of the amino acid residues of the Cu(A) site in bovine cytochrome c oxidase (CcO) were investigated by utilizing hybrid quantum mechanics (QM)/molecular mechanics (MM) calculations. The energy levels of the molecular orbitals (MOs) involving Cu d(zx) orbitals unexpectedly increased, as compared with those found previously with a simplified model system lacking the axial Met residue (i.e., Cu(2)S(2)N(2)). This elevation of MO energies stemmed from the formation of the anti-bonding orbitals, which are generated by hybridization between the d(zx) orbitals of Cu ions and the p-orbitals of the S and O atoms of the axial ligands. To clarify the roles of the axial Met ligand, the inner-sphere reorganization energies of the Cu(A) site were computed, with the Met residue assigned to either the QM or MM region. The reorganization energy slightly increased when the Met residue was excluded from the QM region. The existing experimental data and the present structural modeling study also suggested that the axial Met residue moderately increased the redox potential of the Cu(A) site. Thus, the role of the Met may be to regulate the electron transfer rate through the fine modulation of the electronic structure of the Cu(A) "platform", created by two Cys/His residues coordinated to the Cu ions. This regulation would provide the optimum redox potential/reorganization energy of the Cu(A) site, and thereby facilitate the subsequent cooperative reactions, such as the proton pump and the enzymatic activity, of CcO. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Collapse
|
32
|
Gennari M, Pécaut J, DeBeer S, Neese F, Collomb MN, Duboc C. A Fully Delocalized Mixed-Valence Bis-μ(Thiolato) Dicopper Complex: A Structural and Functional Model of the Biological CuA Center. Angew Chem Int Ed Engl 2011; 50:5662-6. [DOI: 10.1002/anie.201100605] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Indexed: 11/06/2022]
|
33
|
Gennari M, Pécaut J, DeBeer S, Neese F, Collomb MN, Duboc C. A Fully Delocalized Mixed-Valence Bis-μ(Thiolato) Dicopper Complex: A Structural and Functional Model of the Biological CuA Center. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Spasyuk DM, Gorelsky SI, van der Est A, Zargarian D. Characterization of divalent and trivalent species generated in the chemical and electrochemical oxidation of a dimeric pincer complex of nickel. Inorg Chem 2011; 50:2661-74. [PMID: 21322580 DOI: 10.1021/ic1025894] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The electrolytic and chemical oxidation of the dimeric pincer complex [κ(P),κ(C),κ(N),μ(N)-(2,6-(i-Pr(2)POC(6)H(3)CH(2)NBn)Ni](2) (1; Bn = CH(2)Ph) has been investigated by various analytic techniques. Cyclic voltammetry measurements have shown that 1 undergoes a quasi-reversible, one electron, Ni-based redox process (ΔE(0)(1/2) = -0.07 V vs Cp(2)Fe/[Cp(2)Fe](+)), and spectroelectrochemical measurements conducted on the product of the electrolytic oxidation, [1](+•), have shown multiple low-energy electronic transitions in the range of 10,000-15,000 cm(-1). Computational studies using Density Functional Theory (B3LYP) have corroborated the experimentally obtained structure of 1, provided the electronic structure description, and helped interpret the experimentally obtained absorption spectra for 1 and [1](+·). These calculations indicate that the radical cation [1](+·) is a dimeric, mixed-valent species (class III) wherein most of the spin density is delocalized over the two nickel centers (Ni(+2.5)(2)N(2)), but some spin density is also present over the two nitrogen atoms (Ni(2+)(2)N(2)·). Examination of alternative structures for open shell species generated from 1 has shown that the spin density distribution is highly sensitive toward changes in the ligand environment of the Ni ions. NMR, UV-vis, electron paramagnetic resonance (EPR), and single crystal X-ray diffraction analyses have shown that chemical oxidation of 1 with N-Bromosuccinimide (NBS) follows a complex process that gives multiple products, including the monomeric trivalent species κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH═NBn)}NiBr(2) (2). These studies also indicate that oxidation of 1 with 1 equiv of NBS gives an unstable, paramagnetic intermediate that decomposes to a number of divalent species, including succinimide and the monomeric divalent complexes κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH═NBn)}NiBr (3) and κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH(2)N(H)Bn)}NiBr(2) (4); a second equivalent of NBS then oxidizes 3 and 4 to 2 and other unidentified products. The divalent complex 3 was synthesized independently and shown to react with NBS or bromine to form its trivalent homologue 2. The new complexes 2 and 3 have been characterized fully.
Collapse
Affiliation(s)
- Denis M Spasyuk
- Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
35
|
A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica. J Biol Inorg Chem 2010; 15:967-76. [DOI: 10.1007/s00775-010-0658-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/04/2010] [Indexed: 10/19/2022]
|
36
|
Savelieff MG, Lu Y. CuA centers and their biosynthetic models in azurin. J Biol Inorg Chem 2010; 15:461-83. [DOI: 10.1007/s00775-010-0625-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 01/20/2010] [Indexed: 11/28/2022]
|
37
|
Hadt RG, Nemykin VN. Exploring the ground and excited state potential energy landscapes of the mixed-valence biferrocenium complex. Inorg Chem 2009; 48:3982-92. [PMID: 19344155 DOI: 10.1021/ic801801m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density functional theory (DFT) and time-dependent DFT (TDDFT) have been used to explore the potential energy landscapes in the class II (in Robin and Day classification) mixed-valence biferrocenium mono-cation (BF(+)) in an effort to evaluate factors affecting optical and thermal intramolecular electron transfer rates. Both energy- and spectroscopy-based benchmarks were used to explore the adiabatic potential energy surfaces (PESs) of the mixed-valence BF(+) cation along with the optimization of appropriate ground-, excited-, and transition-state geometries. The calculation of Mossbauer isomer shifts and quadrupole splittings, UV-vis excitation energies, and the electronic coupling matrix element, H(ab), corroborate the PES analyses. The adiabatic electron transfer pathway is also analyzed with respect to several possible vibronic coordinates. The degree of the electronic coupling between iron sites, the value of H(ab), and the nature of the electron transfer pathway correlate with the amount of Hartree-Fock exchange involved in the DFT calculation with hybrid (approximately 20% of Hartree-Fock exchange) methods providing the best agreement between theory and experiment. DFT (B3LYP) predicted values of H(ab) (839, 1085, and 1265 cm(-1)) depend on the computational method and are in good agreement with experimental data.
Collapse
Affiliation(s)
- Ryan G Hadt
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | | |
Collapse
|
38
|
Abriata LA, Ledesma GN, Pierattelli R, Vila AJ. Electronic structure of the ground and excited states of the Cu(A) site by NMR spectroscopy. J Am Chem Soc 2009; 131:1939-46. [PMID: 19146411 PMCID: PMC2642605 DOI: 10.1021/ja8079669] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic properties of Thermus thermophilus Cu(A) in the oxidized form were studied by (1)H and (13)C NMR spectroscopy. All of the (1)H and (13)C resonances from cysteine and imidazole ligands were observed and assigned in a sequence-specific fashion. The detection of net electron spin density on a peptide moiety is attributed to the presence of a H-bond to a coordinating sulfur atom. This hydrogen bond is conserved in all natural Cu(A) variants and plays an important role for maintaining the electronic structure of the metal site, rendering the two Cys ligands nonequivalent. The anomalous temperature dependence of the chemical shifts is explained by the presence of a low-lying excited state located about 600 cm(-1) above the ground state. The room-temperature shifts can be described as the thermal average of a sigma(u)* ground state and a pi(u) excited state. These results provide a detailed description of the electronic structure of the Cu(A) site at atomic resolution in solution at physiologically relevant temperature.
Collapse
Affiliation(s)
- Luciano A Abriata
- IBR (Instituto de Biologia Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531, Argentina
| | | | | | | |
Collapse
|
39
|
Moura I, Pauleta SR, Moura JJG. Enzymatic activity mastered by altering metal coordination spheres. J Biol Inorg Chem 2008; 13:1185-95. [PMID: 18719950 DOI: 10.1007/s00775-008-0414-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 08/01/2008] [Indexed: 11/24/2022]
Abstract
Metalloenzymes control enzymatic activity by changing the characteristics of the metal centers where catalysis takes place. The conversion between inactive and active states can be tuned by altering the coordination number of the metal site, and in some cases by an associated conformational change. These processes will be illustrated using heme proteins (cytochrome c nitrite reductase, cytochrome c peroxidase and cytochrome cd1 nitrite reductase), non-heme proteins (superoxide reductase and [NiFe]-hydrogenase), and copper proteins (nitrite and nitrous oxide reductases) as examples. These examples catalyze electron transfer reactions that include atom transfer, abstraction and insertion.
Collapse
Affiliation(s)
- Isabel Moura
- REQUIMTE, Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | | | | |
Collapse
|
40
|
Xie X, Gorelsky SI, Sarangi R, Garner DK, Hwang HJ, Hodgson KO, Hedman B, Lu Y, Solomon EI. Perturbations to the geometric and electronic structure of the CuA site: factors that influence delocalization and their contributions to electron transfer. J Am Chem Soc 2008; 130:5194-205. [PMID: 18348522 DOI: 10.1021/ja7102668] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using a combination of electronic spectroscopies and DFT calculations, the effect of pH perturbation on the geometric and electronic structure of the CuA site has been defined. Descriptions are developed for high pH (pH = 7) and low pH (pH = 4) forms of CuA azurin and its H120A mutant which address the discrepancies concerning the extent of delocalization indicated by multifrequency EPR and ENDOR data (J. Am. Chem. Soc. 2005, 127, 7274; Biophys. J. 2002, 82, 2758). Our resonance Raman and MCD spectra demonstrate that the low pH and H120A mutant forms are essentially identical and are the perturbed forms of the completely delocalized high pH CuA site. However, in going from high pH to low pH, a seven-line hyperfine coupling pattern associated with complete delocalization of the electron (S = 1/2) over two Cu coppers (I(Cu) = 3/2) changes into a four-line pattern reflecting apparent localization. DFT calculations show that the unpaired electron is delocalized in the low pH form and reveal that its four-line hyperfine pattern results from the large EPR spectral effects of approximately 1% 4s orbital contribution of one Cu to the ground-state spin wave function upon protonative loss of its His ligand. The contribution of the Cu-Cu interaction to electron delocalization in this low symmetry protein site is evaluated, and the possible functional significance of the pH-dependent transition in regulating proton-coupled electron transfer in cytochrome c oxidase is discussed.
Collapse
Affiliation(s)
- Xiangjin Xie
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Solomon EI, Xie X, Dey A. Mixed valent sites in biological electron transfer. Chem Soc Rev 2008; 37:623-38. [DOI: 10.1039/b714577m] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Extended charge decomposition analysis and its application for the investigation of electronic relaxation. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0270-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|