1
|
Shah A, Patel H, Kanjarpane A, Summers MF, Marchant J. Relaxation Optimized Heteronuclear Experiments for Extending the Size Limit of RNA Nuclear Magnetic Resonance. J Am Chem Soc 2025; 147:11179-11188. [PMID: 40101958 PMCID: PMC11969551 DOI: 10.1021/jacs.4c17823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
The application of NMR to large RNAs has been limited by the inability to perform heteronuclear correlation experiments essential for resolving overlapping 1H NMR signals, determining interproton distance restraints and interhelical orientations for structure calculations, and evaluating conformational dynamics. Approaches exploiting 1H-13C correlations that are routinely applied to proteins and small RNAs of ∼60 nucleotides or fewer are impractical for larger RNAs due to rapid dipolar relaxation of protons by their attached carbons. Here we report a 2H-enhanced, 1H-15N correlation approach that enables atom-specific NMR characterization of much larger RNAs. Purine H8 transverse relaxation rates are reduced ∼20-fold with ribose perdeuteration, enabling efficient magnetization transfer via two-bond 1H-15N couplings. We focus on H8-N9 correlation spectra which benefit from favorable N9 chemical shift anisotropy. Chemical shift assignment is enabled by retention of protons at the C1' position, which allow measurement of two-bond H1'-N9 and through-space H1'-H8 correlations with only a minor effect on H8 relaxation. The approach is demonstrated for the 232 nucleotide HIV-1 Rev response element, where chemical shift assignments, 15N-edited nuclear Overhauser effects, and 1H-15N residual dipolar couplings are readily obtained from sensitive, high-resolution spectra. Heteronuclear correlated NMR methods that have been essential for the study of proteins can now be extended to RNAs of at least 78 kDa.
Collapse
Affiliation(s)
- Aarsh Shah
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
| | - Heer Patel
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
| | - Arjun Kanjarpane
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
| | - Michael F. Summers
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
- Howard
Hughes Medical Institute, University of
Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
| | - Jan Marchant
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250, United States
| |
Collapse
|
2
|
Jin K, Liao YC, Cheng TC, Li X, Lee WJ, Pi F, Jasinski D, Chen LC, Phelps MA, Ho YS, Guo P. In Vitro and In Vivo Evaluation of the Pathology and Safety Aspects of Three- and Four-Way Junction RNA Nanoparticles. Mol Pharm 2024; 21:718-728. [PMID: 38214504 PMCID: PMC10976369 DOI: 10.1021/acs.molpharmaceut.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
RNA therapeutics has advanced into the third milestone in pharmaceutical drug development, following chemical and protein therapeutics. RNA itself can serve as therapeutics, carriers, regulators, or substrates in drug development. Due to RNA's motile, dynamic, and deformable properties, RNA nanoparticles have demonstrated spontaneous targeting and accumulation in cancer vasculature and fast excretion through the kidney glomerulus to urine to prevent possible interactions with healthy organs. Furthermore, the negatively charged phosphate backbone of RNA results in general repulsion from negatively charged lipid cell membranes for further avoidance of vital organs. Thus, RNA nanoparticles can spontaneously enrich tumor vasculature and efficiently enter tumor cells via specific targeting, while those not entering the tumor tissue will clear from the body quickly. These favorable parameters have led to the expectation that RNA has low or little toxicity. RNA nanoparticles have been well characterized for their anticancer efficacy; however, little detail on RNA nanoparticle pathology and safety is known. Here, we report the in vitro and in vivo assessment of the pathology and safety aspects of different RNA nanoparticles including RNA three-way junction (3WJ) harboring 2'-F modified pyrimidine, folic acid, and Survivin siRNA, as well as the RNA four-way junction (4WJ) harboring 2'-F modified pyrimidine and 24 copies of SN38. Both animal models and patient serum were investigated. In vitro studies include hemolysis, platelet aggregation, complement activation, plasma coagulation, and interferon induction. In vivo studies include hematoxylin and eosin (H&E) staining, hematological and biochemical analysis as the serum profiling, and animal organ weight study. No significant toxicity, side effect, or immune responses were detected during the extensive safety evaluations of RNA nanoparticles. These results further complement previous cancer inhibition studies and demonstrate RNA nanoparticles as an effective and safe drug delivery vehicle for future clinical translations.
Collapse
Affiliation(s)
- Kai Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan
| | - Xin Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fengmei Pi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Daniel Jasinski
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Li-Ching Chen
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
- James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Roy R, Geng A, Shi H, Merriman DK, Dethoff EA, Salmon L, Al-Hashimi HM. Kinetic Resolution of the Atomic 3D Structures Formed by Ground and Excited Conformational States in an RNA Dynamic Ensemble. J Am Chem Soc 2023; 145:22964-22978. [PMID: 37831584 DOI: 10.1021/jacs.3c04614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Knowing the 3D structures formed by the various conformations populating the RNA free-energy landscape, their relative abundance, and kinetic interconversion rates is required to obtain a quantitative and predictive understanding of how RNAs fold and function at the atomic level. While methods integrating ensemble-averaged experimental data with computational modeling are helping define the most abundant conformations in RNA ensembles, elucidating their kinetic rates of interconversion and determining the 3D structures of sparsely populated short-lived RNA excited conformational states (ESs) remains challenging. Here, we developed an approach integrating Rosetta-FARFAR RNA structure prediction with NMR residual dipolar couplings and relaxation dispersion that simultaneously determines the 3D structures formed by the ground-state (GS) and ES subensembles, their relative abundance, and kinetic rates of interconversion. The approach is demonstrated on HIV-1 TAR, whose six-nucleotide apical loop was previously shown to form a sparsely populated (∼13%) short-lived (lifetime ∼ 45 μs) ES. In the GS, the apical loop forms a broad distribution of open conformations interconverting on the pico-to-nanosecond time scale. Most residues are unpaired and preorganized to bind the Tat-superelongation protein complex. The apical loop zips up in the ES, forming a narrow distribution of closed conformations, which sequester critical residues required for protein recognition. Our work introduces an approach for determining the 3D ensemble models formed by sparsely populated RNA conformational states, provides a rare atomic view of an RNA ES, and kinetically resolves the atomic 3D structures of RNA conformational substates, interchanging on time scales spanning 6 orders of magnitude, from picoseconds to microseconds.
Collapse
Affiliation(s)
- Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Dawn K Merriman
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Elizabeth A Dethoff
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Loïc Salmon
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
4
|
Ma S, Kotar A, Hall I, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer-TRBP complex processing. Proc Natl Acad Sci U S A 2023; 120:e2300527120. [PMID: 37725636 PMCID: PMC10523476 DOI: 10.1073/pnas.2300527120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
As an essential posttranscriptional regulator of gene expression, microRNA (miRNA) levels must be strictly maintained. The biogenesis of many miRNAs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers, and interestingly, its biogenesis is not known to be regulated by protein-binding partners. Therefore, the intrinsic structural properties of the precursor element of miR-31 (pre-miR-31) can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of pre-miR-31 to investigate the role of distinct structural elements in regulating processing by the Dicer-TRBP complex. We found that the presence or absence of mismatches within the helical stem does not strongly influence Dicer-TRBP processing of the pre-miRNAs. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by the Dicer-TRBP complex. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influences processing by the Dicer-TRBP complex. Our results enrich our understanding of the active role that RNA structure plays in regulating miRNA biogenesis, which has direct implications for the control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Anita Kotar
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Scott Grote
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
5
|
Sannapureddi RKR, Mohanty MK, Salmon L, Sathyamoorthy B. Conformational Plasticity of Parallel G-Quadruplex─Implications on Duplex-Quadruplex Motifs. J Am Chem Soc 2023. [PMID: 37428641 DOI: 10.1021/jacs.3c03218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
DNA G-quadruplexes are essential motifs in molecular biology performing a wide range of functions enabled by their unique and diverse structures. In this study, we focus on the conformational plasticity of the most abundant and biologically relevant parallel G-quadruplex topology. A multipronged approach of structure survey, solution-state NMR spectroscopy, and molecular dynamics simulations unravels subtle yet essential features of the parallel G-quadruplex topology. Stark differences in flexibility are observed for the nucleotides depending upon their positioning in the tetrad planes that are intricately correlated with the conformational sampling of the propeller loop. Importantly, the terminal nucleotides in the 5'-end versus the 3'-end of the parallel quadruplex display differential dynamics that manifests their ability to accommodate a duplex on either end of the G-quadruplex. The conformational plasticity characterized in this study provides essential cues toward biomolecular processes such as small molecular binding, intermolecular quadruplex stacking, and implications on how a duplex influences the structure of a neighboring quadruplex.
Collapse
Affiliation(s)
| | - Manish Kumar Mohanty
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Loïc Salmon
- Centre de RMN à Très Hauts Champs, UMR 5082 (CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1), University of Lyon, Villeurbanne 69100, France
| | - Bharathwaj Sathyamoorthy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
6
|
Yu B, Wang X, Wang T, Iwahara J. DNA base order parameter determination without influence of chemical exchange. Methods 2023; 210:1-9. [PMID: 36596431 PMCID: PMC9898221 DOI: 10.1016/j.ymeth.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool used to investigate the dynamic properties of biological macromolecules and their complexes. NMR relaxation data can provide order parameters S2, which represent the mobility of bond vectors reorienting within a molecular frame. Determination of S2 parameters typically involves the use of transverse NMR relaxation rates. However, the accuracy in S2 determination can be diminished by elevation of the transverse relaxation rates through conformational or chemical exchange involving protonation/deprotonation or non-Watson-Crick base-pair states of nucleic acids. Here, we propose an approach for determination of S2 parameters without the influence of exchange processes. This approach utilizes transverse and longitudinal 13C chemical shift anisotropy (CSA) - dipole-dipole (DD) cross-correlation rates instead of 13C transverse relaxation rates. Anisotropy in rotational diffusion is taken into consideration. An application of this approach to nucleotide base CH groups of a uniformly 13C/15N-labeled DNA duplex is demonstrated.
Collapse
Affiliation(s)
- Binhan Yu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xi Wang
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tianzhi Wang
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
7
|
Ma S, Kotar A, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.519659. [PMID: 36711709 PMCID: PMC9881868 DOI: 10.1101/2023.01.03.519659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As an essential post-transcriptional regulator of gene expression, microRNA (miR) levels must be strictly maintained. The biogenesis of many, but not all, miRs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers and interestingly, its biogenesis is not known to be regulated by protein binding partners. Therefore, the intrinsic structural properties of pre-miR-31 can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of the precursor element of miR-31 (pre-miR-31) to investigate the role of distinct structural elements in regulating Dicer processing. We found that the presence or absence of mismatches within the helical stem do not strongly influence Dicer processing of the pre-miR. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by Dicer. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influence both Dicer binding and processing. Our results enrich our understanding of the active role that RNA structure plays in regulating Dicer processing which has direct implications for control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Anita Kotar
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Scott Grote
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Rolband L, Beasock D, Wang Y, Shu YG, Dinman JD, Schlick T, Zhou Y, Kieft JS, Chen SJ, Bussi G, Oukhaled A, Gao X, Šulc P, Binzel D, Bhullar AS, Liang C, Guo P, Afonin KA. Biomotors, viral assembly, and RNA nanobiotechnology: Current achievements and future directions. Comput Struct Biotechnol J 2022; 20:6120-6137. [PMID: 36420155 PMCID: PMC9672130 DOI: 10.1016/j.csbj.2022.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) serves to further the development of a wide variety of functional nucleic acids and other related nanotechnology platforms. To aid in the dissemination of the most recent advancements, a biennial discussion focused on biomotors, viral assembly, and RNA nanobiotechnology has been established where international experts in interdisciplinary fields such as structural biology, biophysical chemistry, nanotechnology, cell and cancer biology, and pharmacology share their latest accomplishments and future perspectives. The results summarized here highlight advancements in our understanding of viral biology and the structure-function relationship of frame-shifting elements in genomic viral RNA, improvements in the predictions of SHAPE analysis of 3D RNA structures, and the understanding of dynamic RNA structures through a variety of experimental and computational means. Additionally, recent advances in the drug delivery, vaccine design, nanopore technologies, biomotor and biomachine development, DNA packaging, RNA nanotechnology, and drug delivery are included in this critical review. We emphasize some of the novel accomplishments, major discussion topics, and present current challenges and perspectives of these emerging fields.
Collapse
Affiliation(s)
- Lewis Rolband
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Damian Beasock
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yang Wang
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | - Yao-Gen Shu
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | | | - Tamar Schlick
- New York University, Department of Chemistry and Courant Institute of Mathematical Sciences, Simons Center for Computational Physical Chemistry, New York, NY 10012, USA
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Jeffrey S. Kieft
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shi-Jie Chen
- University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | | | - Xingfa Gao
- National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Petr Šulc
- Arizona State University, Tempe, AZ, USA
| | | | | | - Chenxi Liang
- The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- The Ohio State University, Columbus, OH 43210, USA
| | - Kirill A. Afonin
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
9
|
Chiu LY, Emery A, Jain N, Sugarman A, Kendrick N, Luo L, Ford W, Swanstrom R, Tolbert BS. Encoded Conformational Dynamics of the HIV Splice Site A3 Regulatory Locus: Implications for Differential Binding of hnRNP Splicing Auxiliary Factors. J Mol Biol 2022; 434:167728. [PMID: 35870649 PMCID: PMC9945881 DOI: 10.1016/j.jmb.2022.167728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/19/2023]
Abstract
Alternative splicing of the HIV transcriptome is controlled through cis regulatory elements functioning as enhancers or silencers depending on their context and the type of host RNA binding proteins they recruit. Splice site acceptor A3 (ssA3) is one of the least used acceptor sites in the HIV transcriptome and its activity determines the levels of tat mRNA. Splice acceptor 3 is regulated by a combination of cis regulatory sequences, auxiliary splicing factors, and presumably RNA structure. The mechanisms by which these multiple regulatory components coordinate to determine the frequency in which ssA3 is utilized is poorly understood. By NMR spectroscopy and phylogenetic analysis, we show that the ssA3 regulatory locus is conformationally heterogeneous and that the sequences that encompass the locus are conserved across most HIV isolates. Despite the conformational heterogeneity, the major stem loop (A3SL1) observed in vitro folds to base pair the Polypyrimdine Tract (PPyT) to the Exon Splicing Silencer 2p (ESS2p) element and to a conserved downstream linker. The 3D structure as determined by NMR spectroscopy further reveals that the A3 consensus cleavage site is embedded within a unique stereochemical environment within the apical loop, where it is surrounded by alternating base-base interactions. Despite being described as a receptor for hnRNP H, the ESS2p element is sequestered by base pairing to the 3' end of the PPyT and within this context it cannot form a stable complex with hnRNP H. By comparison, hnRNP A1 directly binds to the A3 consensus cleavage site located within the apical loop, suggesting that it can directly modulate U2AF assembly. Sequence mutations designed to destabilize the PPyT:ESS2p helix results in an increase usage of ssA3 within HIV-infected cells, consistent with the PPyT becoming more accessible for U2AF recognition. Additional mutations introduced into the downstream ESS2 element synergize with ESS2p to cause further increases in ssA3 usage. When taken together, our work provides a unifying picture by which cis regulatory sequences, splicing auxiliary factors and RNA structure cooperate to provide stringent control over ssA3. We describe this as the pair-and-lock mechanism to restrict access of the PPyT, and posit that it operates to regulate a subset of the heterogenous structures encompassing the ssA3 regulatory locus.
Collapse
Affiliation(s)
- Liang-Yuan Chiu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States. https://twitter.com/LiangYuanChiu1
| | - Ann Emery
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Niyati Jain
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Andrew Sugarman
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States. https://twitter.com/sugarman_andrew
| | - Nashea Kendrick
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States
| | - William Ford
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Ronald Swanstrom
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, United States; Center for AIDS Research, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
10
|
Taiwo KM, Nam H, LeBlanc RM, Longhini AP, Dayie TK. Cross-correlated relaxation rates provide facile exchange signature in selectively labeled RNA. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107245. [PMID: 35908529 DOI: 10.1016/j.jmr.2022.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Gerhard Wagner has made numerous contributions to NMR spectroscopy, particularly his developments in the field of spin-relaxation stand out in directly mapping the spectral density functions of proteins. He and his group developed experimental techniques to reveal the importance of dynamics to protein biological function and drug discovery. On his 75th birthday, we take this opportunity to highlight how some of those seminal ideas developed for proteins are being extended to RNAs. The role of dynamics in the structure and function of RNA has been a major interest in drug design and therapeutics. Here we present the use of cross-correlated relaxation rates (ηxy) from anti-TROSY (R2α) and TROSY (R2β) to rapidly obtain qualitative information about the chemical exchange taking place within the bacterial and human A-site RNA system while reducing the sets of relaxation experiments required to map dynamics. We show that ηxy correlates with the order parameter which gives information on how flexible or rigid a residue is. We further show R2β/ηxy can rapidly be used to probe chemical exchange as seen from its agreement with Rex. In addition, we report the ability of R2β/ηxy to determine chemical exchange taking place within the bacterial A-site RNA during structural transitions at pH 6.2 and 6.5. Finally, comparison of the R2β/ηxy ratios indicates bacterial A-site has greater R2β/ηxy values for G19 (1.34 s-1), A20 (1.38 s-1), U23 (1.63 s-1) and C24 (1.51 s-1) than human A-site [A19 (0.76 s-1), A20 (1.01 s-1), U23 (0.74 s-1) and C24 (0.71 s-1)]. Taken together, we have shown that the chemical exchange can quickly be analyzed for RNA systems from cross-correlated relaxation rates.
Collapse
Affiliation(s)
- Kehinde M Taiwo
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| | - Hyeyeon Nam
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Regan M LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Andrew P Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Theodore K Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
11
|
Li X, Bhullar AS, Binzel DW, Guo P. The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development. Adv Drug Deliv Rev 2022; 186:114316. [PMID: 35526663 DOI: 10.1016/j.addr.2022.114316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022]
Abstract
Besides mRNA, rRNA, and tRNA, cells contain many other noncoding RNA that display critical roles in the regulation of cellular functions. Human genome sequencing revealed that the majority of non-protein-coding DNA actually codes for non-coding RNAs. The dynamic nature of RNA results in its motile and deformative behavior. These conformational transitions such as the change of base-pairing, breathing within complemented strands, and pseudoknot formation at the 2D level as well as the induced-fit and conformational capture at the 3D level are important for their biological functions including regulation, translation, and catalysis. The dynamic, motile and catalytic activity has led to a belief that RNA is the origin of life. We have recently reported that the deformative property of RNA nanoparticles enhances their penetration through the leaky blood vessel of cancers which leads to highly efficient tumor accumulation. This special deformative property also enables RNA nanoparticles to pass the glomerulus, overcoming the filtration size limit, resulting in fast renal excretion and rapid body clearance, thus low or no toxicity. The biodistribution of RNA nanoparticles can be further improved by the incorporation of ligands for cancer targeting. In addition to the favorable biodistribution profiles, RNA nanoparticles possess other properties including self-assembly, negative charge, programmability, and multivalency; making it a great material for pharmaceutical applications. The intrinsic negative charge of RNA nanoparticles decreases the toxicity of drugs by preventing nonspecific binding to the negative charged cell membrane and enhancing the solubility of hydrophobic drugs. The polyvalent property of RNA nanoparticles allows the multi-functionalization which can apply to overcome drug resistance. This review focuses on the summary of these unique properties of RNA nanoparticles, which describes the mechanism of RNA dynamic, motile and deformative properties, and elucidates and prepares to welcome the RNA therapeutics as the third milestone in pharmaceutical drug development.
Collapse
Affiliation(s)
- Xin Li
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Abhjeet S Bhullar
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, United States
| | - Daniel W Binzel
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| | - Peixuan Guo
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States; College of Medicine, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
12
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
13
|
Olenginski LT, Kasprzak WK, Bergonzo C, Shapiro BA, Dayie TK. Conformational Dynamics of the Hepatitis B Virus Pre-genomic RNA on Multiple Time Scales: Implications for Viral Replication. J Mol Biol 2022; 434:167633. [PMID: 35595167 DOI: 10.1016/j.jmb.2022.167633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/30/2022]
Abstract
Human hepatitis B virus (HBV) replication is initiated by the binding of the viral polymerase (P) to epsilon (ε), an ≈85-nucleotide (nt) cis-acting regulatory stem-loop RNA located at the 5'-end of the pre-genomic RNA (pgRNA). This interaction triggers P and pgRNA packaging and protein-primed reverse transcription and is therefore an attractive therapeutic target. Our recent nuclear magnetic resonance (NMR) structure of ε provides a useful starting point toward a detailed understanding of HBV replication, and hints at the functional importance of ε dynamics. Here, we present a detailed description of ε motions on the ps to ns and μs to ms time scales by NMR spin relaxation and relaxation dispersion, respectively. We also carried out molecular dynamics simulations to provide additional insight into ε conformational dynamics. These data outline a series of complex motions on multiple time scales within ε. Moreover, these motions occur in mostly conserved nucleotides from structural regions (i.e., priming loop, pseudo-triloop, and U43 bulge) that biochemical and mutational studies have shown to be essential for P binding, P-pgRNA packaging, protein-priming, and DNA synthesis. Taken together, our work implicates RNA dynamics as an integral feature that governs HBV replication.
Collapse
Affiliation(s)
- Lukasz T Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Wojciech K Kasprzak
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and University of Maryland, Rockville, MD 20850, USA
| | - Bruce A Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Theodore K Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
14
|
Olenginski LT, Dayie TK. Quantifying the effects of long-range 13C- 13C dipolar coupling on measured relaxation rates in RNA. JOURNAL OF BIOMOLECULAR NMR 2021; 75:203-211. [PMID: 33914223 PMCID: PMC8131303 DOI: 10.1007/s10858-021-00368-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Selective stable isotope labeling has transformed structural and dynamics analysis of RNA by NMR spectroscopy. These methods can remove 13C-13C dipolar couplings that complicate 13C relaxation analyses. While these phenomena are well documented for sites with adjacent 13C nuclei (e.g. ribose C1'), less is known about so-called isolated sites (e.g. adenosine C2). To investigate and quantify the effects of long-range (> 2 Å) 13C-13C dipolar interactions on RNA dynamics, we simulated adenosine C2 relaxation rates in uniformly [U-13C/15N]-ATP or selectively [2-13C]-ATP labeled RNAs. Our simulations predict non-negligible 13C-13C dipolar contributions from adenosine C4, C5, and C6 to C2 longitudinal (R1) relaxation rates in [U-13C/15N]-ATP labeled RNAs. Moreover, these contributions increase at higher magnetic fields and molecular weights to introduce discrepancies that exceed 50%. This will become increasingly important at GHz fields. Experimental R1 measurements in the 61 nucleotide human hepatitis B virus encapsidation signal ε RNA labeled with [U-13C/15N]-ATP or [2-13C]-ATP corroborate these simulations. Thus, in the absence of selectively labeled samples, long-range 13C-13C dipolar contributions must be explicitly taken into account when interpreting adenosine C2 R1 rates in terms of motional models for large RNAs.
Collapse
Affiliation(s)
- Lukasz T Olenginski
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Theodore K Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
15
|
Chemo-enzymatic synthesis of [2-13C, 7-15 N]-ATP for facile NMR analysis of RNA. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02667-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Nam H, Becette O, LeBlanc RM, Oh D, Case DA, Dayie TK. Deleterious effects of carbon-carbon dipolar coupling on RNA NMR dynamics. JOURNAL OF BIOMOLECULAR NMR 2020; 74:321-331. [PMID: 32363430 DOI: 10.1007/s10858-020-00315-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/18/2020] [Indexed: 06/11/2023]
Abstract
Many regulatory RNAs undergo dynamic exchanges that are crucial for their biological functions and NMR spectroscopy is a versatile tool for monitoring dynamic motions of biomolecules. Meaningful information on biomolecular dynamics requires an accurate measurement of relaxation parameters such as longitudinal (R1) rates, transverse (R2) rates and heteronuclear Overhauser effect (hNOE). However, earlier studies have shown that the large 13C-13C interactions complicate analysis of the carbon relaxation parameters. To investigate the effect of 13C-13C interactions on RNA dynamic studies, we performed relaxation measurements on various RNA samples with different labeling patterns and compared these measurements with the computational simulations. For uniformly labeled samples, contributions of the neighboring carbon to R1 measurements were observed. These contributions increased with increasing magnetic field and overall correlation time ([Formula: see text]) for R1 rates, necessitating more careful analysis for uniformly labeled large RNAs. In addition, the hNOE measurements were also affected by the adjacent carbon nuclei. Unlike R1 rates, R1ρ rates showed relatively good agreement between uniformly- and site-selectively labeled samples, suggesting no dramatic effect from their attached carbon, in agreement with previous observations. Overall, having more accurate rate measurements avoids complex analysis and will be a key for interpreting 13C relaxation rates for molecular motion that can provide valuable insights into cellular molecular recognition events.
Collapse
Affiliation(s)
- Hyeyeon Nam
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Owen Becette
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Regan M LeBlanc
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Daniel Oh
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Theodore K Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
17
|
Ganser LR, Kelly ML, Herschlag D, Al-Hashimi HM. The roles of structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol 2020; 20:474-489. [PMID: 31182864 DOI: 10.1038/s41580-019-0136-0] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNAs fold into 3D structures that range from simple helical elements to complex tertiary structures and quaternary ribonucleoprotein assemblies. The functions of many regulatory RNAs depend on how their 3D structure changes in response to a diverse array of cellular conditions. In this Review, we examine how the structural characterization of RNA as dynamic ensembles of conformations, which form with different probabilities and at different timescales, is improving our understanding of RNA function in cells. We discuss the mechanisms of gene regulation by microRNAs, riboswitches, ribozymes, post-transcriptional RNA modifications and RNA-binding proteins, and how the cellular environment and processes such as liquid-liquid phase separation may affect RNA folding and activity. The emerging RNA-ensemble-function paradigm is changing our perspective and understanding of RNA regulation, from in vitro to in vivo and from descriptive to predictive.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Megan L Kelly
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford ChEM-H Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA.,Department of Chemical Engineering, Stanford ChEM-H Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford ChEM-H Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA. .,Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
18
|
Marušič M, Schlagnitweit J, Petzold K. RNA Dynamics by NMR Spectroscopy. Chembiochem 2019; 20:2685-2710. [PMID: 30997719 PMCID: PMC6899578 DOI: 10.1002/cbic.201900072] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Indexed: 12/22/2022]
Abstract
An ever-increasing number of functional RNAs require a mechanistic understanding. RNA function relies on changes in its structure, so-called dynamics. To reveal dynamic processes and higher energy structures, new NMR methods have been developed to elucidate these dynamics in RNA with atomic resolution. In this Review, we provide an introduction to dynamics novices and an overview of methods that access most dynamic timescales, from picoseconds to hours. Examples are provided as well as insight into theory, data acquisition and analysis for these different methods. Using this broad spectrum of methodology, unprecedented detail and invisible structures have been obtained and are reviewed here. RNA, though often more complicated and therefore neglected, also provides a great system to study structural changes, as these RNA structural changes are more easily defined-Lego like-than in proteins, hence the numerous revelations of RNA excited states.
Collapse
Affiliation(s)
- Maja Marušič
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Katja Petzold
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| |
Collapse
|
19
|
Rangadurai A, Szymaski ES, Kimsey IJ, Shi H, Al-Hashimi HM. Characterizing micro-to-millisecond chemical exchange in nucleic acids using off-resonance R 1ρ relaxation dispersion. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:55-102. [PMID: 31481159 PMCID: PMC6727989 DOI: 10.1016/j.pnmrs.2019.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/10/2023]
Abstract
This review describes off-resonance R1ρ relaxation dispersion NMR methods for characterizing microsecond-to-millisecond chemical exchange in uniformly 13C/15N labeled nucleic acids in solution. The review opens with a historical account of key developments that formed the basis for modern R1ρ techniques used to study chemical exchange in biomolecules. A vector model is then used to describe the R1ρ relaxation dispersion experiment, and how the exchange contribution to relaxation varies with the amplitude and frequency offset of an applied spin-locking field, as well as the population, exchange rate, and differences in chemical shifts of two exchanging species. Mathematical treatment of chemical exchange based on the Bloch-McConnell equations is then presented and used to examine relaxation dispersion profiles for more complex exchange scenarios including three-state exchange. Pulse sequences that employ selective Hartmann-Hahn cross-polarization transfers to excite individual 13C or 15N spins are then described for measuring off-resonance R1ρ(13C) and R1ρ(15N) in uniformly 13C/15N labeled DNA and RNA samples prepared using commercially available 13C/15N labeled nucleotide triphosphates. Approaches for analyzing R1ρ data measured at a single static magnetic field to extract a full set of exchange parameters are then presented that rely on numerical integration of the Bloch-McConnell equations or the use of algebraic expressions. Methods for determining structures of nucleic acid excited states are then reviewed that rely on mutations and chemical modifications to bias conformational equilibria, as well as structure-based approaches to calculate chemical shifts. Applications of the methodology to the study of DNA and RNA conformational dynamics are reviewed and the biological significance of the exchange processes is briefly discussed.
Collapse
Affiliation(s)
- Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Eric S Szymaski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; Nymirum, 4324 S. Alston Avenue, Durham, NC 27713, USA(1)
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; Department of Chemistry, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
20
|
Kumar N, Bucher D, Kozlowski PM. Mechanistic Implications of Reductive Co–C Bond Cleavage in B12-Dependent Methylmalonyl CoA Mutase. J Phys Chem B 2019; 123:2210-2216. [PMID: 30735049 DOI: 10.1021/acs.jpcb.8b10820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Neeraj Kumar
- Computational Biology and Bioinformatics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Denis Bucher
- Molecular Modeling & Design at leadXpro Villigen, Canton of Aargau, Switzerland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
21
|
Eichhorn CD, Yang Y, Repeta L, Feigon J. Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc Natl Acad Sci U S A 2018; 115:E6457-E6466. [PMID: 29946027 PMCID: PMC6048529 DOI: 10.1073/pnas.1806276115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The La and the La-related protein (LARP) superfamily is a diverse class of RNA binding proteins involved in RNA processing, folding, and function. Larp7 binds to the abundant long noncoding 7SK RNA and is required for 7SK ribonucleoprotein (RNP) assembly and function. The 7SK RNP sequesters a pool of the positive transcription elongation factor b (P-TEFb) in an inactive state; on release, P-TEFb phosphorylates RNA Polymerase II to stimulate transcription elongation. Despite its essential role in transcription, limited structural information is available for the 7SK RNP, particularly for protein-RNA interactions. Larp7 contains an N-terminal La module that binds UUU-3'OH and a C-terminal atypical RNA recognition motif (xRRM) required for specific binding to 7SK and P-TEFb assembly. Deletion of the xRRM is linked to gastric cancer in humans. We report the 2.2-Å X-ray crystal structure of the human La-related protein group 7 (hLarp7) xRRM bound to the 7SK stem-loop 4, revealing a unique binding interface. Contributions of observed interactions to binding affinity were investigated by mutagenesis and isothermal titration calorimetry. NMR 13C spin relaxation data and comparison of free xRRM, RNA, and xRRM-RNA structures show that the xRRM is preordered to bind a flexible loop 4. Combining structures of the hLarp7 La module and the xRRM-7SK complex presented here, we propose a structural model for Larp7 binding to the 7SK 3' end and mechanism for 7SK RNP assembly. This work provides insight into how this domain contributes to 7SK recognition and assembly of the core 7SK RNP.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| | - Yuan Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| | - Lucas Repeta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| |
Collapse
|
22
|
Chen B, Longhini AP, Nußbaumer F, Kreutz C, Dinman JD, Dayie TK. CCR5 RNA Pseudoknots: Residue and Site-Specific Labeling correlate Internal Motions with microRNA Binding. Chemistry 2018; 24:5462-5468. [PMID: 29412477 PMCID: PMC7640883 DOI: 10.1002/chem.201705948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/29/2018] [Indexed: 12/31/2022]
Abstract
Conformational dynamics of RNA molecules play a critical role in governing their biological functions. Measurements of RNA dynamic behavior sheds important light on sites that interact with their binding partners or cellular stimulators. However, such measurements using solution-state NMR are difficult for large RNA molecules (>70 nt; nt=nucleotides) owing to severe spectral overlap, homonuclear 13 C scalar couplings, and line broadening. Herein, a strategic combination of solid-phase synthesis, site-specific isotopic labeled phosphoramidites, and enzymatic ligation is introduced. This approach allowed the position-specific insertion of isotopic probes into a 96 nt CCR5 RNA fragment. Accurate measurements of functional dynamics using the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion (RD) experiments enabled extraction of the exchange rates and populations of this RNA. NMR chemical shift perturbation analysis of the RNA/microRNA-1224 complex indicated that A90-C1' of the pseudoknot exhibits similar changes in chemical shift observed in the excited state. This work demonstrates the general applicability of a NMR-labeling strategy to probe functional RNA structural dynamics.
Collapse
Affiliation(s)
- Bin Chen
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Dr., College Park, MD, 20742, USA
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, 8314 Paint Branch Dr., College Park, MD, 20782, USA
| | - Andrew P Longhini
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, 8314 Paint Branch Dr., College Park, MD, 20782, USA
| | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Dr., College Park, MD, 20742, USA
| | - T Kwaku Dayie
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, 8314 Paint Branch Dr., College Park, MD, 20782, USA
| |
Collapse
|
23
|
LeBlanc RM, Longhini AP, Le Grice SF, Johnson BA, Dayie TK. Combining asymmetric 13C-labeling and isotopic filter/edit NOESY: a novel strategy for rapid and logical RNA resonance assignment. Nucleic Acids Res 2017; 45:e146. [PMID: 28934505 PMCID: PMC5766159 DOI: 10.1093/nar/gkx591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/22/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
Although ∼98% of the human genomic output is transcribed as non-protein coding RNA, <2% of the protein data bank structures comprise RNA. This huge structural disparity stems from combined difficulties of crystallizing RNA for X-ray crystallography along with extensive chemical shift overlap and broadened linewidths associated with NMR of RNA. While half of the deposited RNA structures in the PDB were solved by NMR methods, the usefulness of NMR is still limited by the high cost of sample preparation and challenges of resonance assignment. Here we propose a novel strategy for resonance assignment that combines new strategic 13C labeling technologies with filter/edit type NOESY experiments to greatly reduce spectral complexity and crowding. This new strategy allowed us to assign important non-exchangeable resonances of proton and carbon (1', 2', 2, 5, 6 and 8) nuclei using only one sample and <24 h of NMR instrument time for a 27 nt model RNA. The method was further extended to assigning a 6 nt bulge from a 61 nt viral RNA element justifying its use for a wide range RNA chemical shift resonance assignment problems.
Collapse
Affiliation(s)
- Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Andrew P. Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | - Bruce A. Johnson
- One Moon Scientific, Inc., Westfield, NJ 07090, USA
- Structural Biology Initiative, Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
24
|
Clay MC, Ganser LR, Merriman DK, Al-Hashimi HM. Resolving sugar puckers in RNA excited states exposes slow modes of repuckering dynamics. Nucleic Acids Res 2017; 45:e134. [PMID: 28609788 PMCID: PMC5737546 DOI: 10.1093/nar/gkx525] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 11/15/2022] Open
Abstract
Recent studies have shown that RNAs exist in dynamic equilibrium with short-lived low-abundance 'excited states' that form by reshuffling base pairs in and around non-canonical motifs. These conformational states are proposed to be rich in non-canonical motifs and to play roles in the folding and regulatory functions of non-coding RNAs but their structure proves difficult to characterize given their transient nature. Here, we describe an approach for determining sugar pucker conformation in RNA excited states through nuclear magnetic resonance measurements of C1΄ and C4΄ rotating frame spin relaxation (R1ρ) in uniformly 13C/15N labeled RNA samples. Application to HIV-1 TAR exposed slow modes of sugar repuckering dynamics at the μs and ms timescale accompanying transitions between non-helical (C2΄-endo) to helical (C3΄-endo) conformations during formation of two distinct excited states. In contrast, we did not obtain any evidence for slow sugar repuckering dynamics for nucleotides in a variety of structural contexts that do not undergo non-helical to helical transitions. Our results outline a route for significantly improving the conformational characterization of RNA excited states and suggest that slow modes of repuckering dynamics gated by transient changes in secondary structure are quite common in RNA.
Collapse
Affiliation(s)
- Mary C. Clay
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Laura R. Ganser
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
25
|
Walinda E, Morimoto D, Shirakawa M, Sugase K. F 1 F 2-selective NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2017; 68:41-52. [PMID: 28474302 DOI: 10.1007/s10858-017-0113-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Fourier transform NMR spectroscopy has provided unprecedented insight into the structure, interaction and dynamic motion of proteins and nucleic acids. Conventional biomolecular NMR relies on the acquisition of three-dimensional and four-dimensional (4D) data matrices to establish correlations between chemical shifts in the frequency domains F 1, F 2, F 3 and F 1, F 2, F 3, F 4 respectively. While rich in information, these datasets require a substantial amount of acquisition time, are visually highly unintuitive, require expert knowledge to process, and sample dark and bright regions of the frequency domains equally. Here, we present an alternative approach to obtain multidimensional chemical shift correlations for biomolecules. This strategy focuses on one narrow frequency range, F 1 F 2, at a time and records the resulting F 3 F 4 correlation spectrum by two-dimensional NMR. As a result, only regions of the frequency domain that contain signals in F 1 F 2 ("bright regions") are sampled. F 1 F 2 selection is achieved by Hartmann-Hahn cross-polarization using weak radio frequency fields. This approach reveals information equivalent to that of a conventional 4D experiment, while the dimensional reduction may shorten the total acquisition time and simplifies spectral processing, interpretation and comparative analysis. Potential applicability of the F 1 F 2-selective approach is illustrated by de novo assignment, structural and dynamics studies of ubiquitin and fatty-acid binding protein 4 (FABP4). Further extension of this concept may spawn new selective NMR experiments to aid studies of site-specific structural dynamics, protein-protein interactions and allosteric modulation of protein structure.
Collapse
Affiliation(s)
- Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku Yoshida Konoe-cho, Kyoto, 606-8501, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku Kyoto-Daigaku Katsura, Kyoto, 615-8510, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku Kyoto-Daigaku Katsura, Kyoto, 615-8510, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku Kyoto-Daigaku Katsura, Kyoto, 615-8510, Japan.
| |
Collapse
|
26
|
Andrałojć W, Ravera E, Salmon L, Parigi G, Al-Hashimi HM, Luchinat C. Inter-helical conformational preferences of HIV-1 TAR-RNA from maximum occurrence analysis of NMR data and molecular dynamics simulations. Phys Chem Chem Phys 2017; 18:5743-52. [PMID: 26360616 DOI: 10.1039/c5cp03993b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Detecting conformational heterogeneity in biological macromolecules is a key for the understanding of their biological function. We here provide a comparison between two independent approaches to assess conformational heterogeneity: molecular dynamics simulations, performed without inclusion of any experimental data, and maximum occurrence (MaxOcc) distribution over the topologically available conformational space. The latter only reflects the extent of the averaging and identifies regions which are most compliant with the experimentally measured NMR Residual Dipolar Couplings (RDCs). The analysis was performed for the HIV-1 TAR RNA, consisting of two helical domains connected by a flexible bulge junction, for which four sets of RDCs were available as well as an 8.2 μs all-atom molecular dynamics simulation. A sample and select approach was previously applied to extract from the molecular dynamics trajectory conformational ensembles in agreement with the four sets of RDCs. The MaxOcc analysis performed here identifies the most likely sampled region in the conformational space of the system which, strikingly, overlaps well with the structures independently sampled in the molecular dynamics calculations and even better with the RDC selected ensemble.
Collapse
Affiliation(s)
- Witold Andrałojć
- Magnetic Resonance Center "CERM", University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.
| | - Enrico Ravera
- Magnetic Resonance Center "CERM", University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy. and Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Loïc Salmon
- Department of Molecular, Cellular and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Giacomo Parigi
- Magnetic Resonance Center "CERM", University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy. and Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Department of Chemistry, Duke University School of Medicine, 307 Research Drive, Durham, North Carolina 27710, USA
| | - Claudio Luchinat
- Magnetic Resonance Center "CERM", University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy. and Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
27
|
Merriman DK, Xue Y, Yang S, Kimsey IJ, Shakya A, Clay M, Al-Hashimi HM. Shortening the HIV-1 TAR RNA Bulge by a Single Nucleotide Preserves Motional Modes over a Broad Range of Time Scales. Biochemistry 2016; 55:4445-56. [PMID: 27232530 DOI: 10.1021/acs.biochem.6b00285] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Helix-junction-helix (HJH) motifs are flexible building blocks of RNA architecture that help define the orientation and dynamics of helical domains. They are also frequently involved in adaptive recognition of proteins and small molecules and in the formation of tertiary contacts. Here, we use a battery of nuclear magnetic resonance techniques to examine how deleting a single bulge residue (C24) from the human immunodeficiency virus type 1 (HIV-1) transactivation response element (TAR) trinucleotide bulge (U23-C24-U25) affects dynamics over a broad range of time scales. Shortening the bulge has an effect on picosecond-to-nanosecond interhelical and local bulge dynamics similar to that casued by increasing the Mg(2+) and Na(+) concentration, whereby a preexisting two-state equilibrium in TAR is shifted away from a bent flexible conformation toward a coaxial conformation, in which all three bulge residues are flipped out and flexible. Surprisingly, the point deletion minimally affects microsecond-to-millisecond conformational exchange directed toward two low-populated and short-lived excited conformational states that form through reshuffling of bases pairs throughout TAR. The mutant does, however, adopt a slightly different excited conformational state on the millisecond time scale, in which U23 is intrahelical, mimicking the expected conformation of residue C24 in the excited conformational state of wild-type TAR. Thus, minor changes in HJH topology preserve motional modes in RNA occurring over the picosecond-to-millisecond time scales but alter the relative populations of the sampled states or cause subtle changes in their conformational features.
Collapse
Affiliation(s)
- Dawn K Merriman
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Yi Xue
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Shan Yang
- Baxter Health Care (Suzhou) Company, Ltd. , Suzhou, Jiang Su 215028, China
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Anisha Shakya
- Department of Chemistry and Biophysics, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Mary Clay
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Hashim M Al-Hashimi
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States.,Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| |
Collapse
|
28
|
Chemo-enzymatic labeling for rapid assignment of RNA molecules. Methods 2016; 103:11-7. [PMID: 27090003 DOI: 10.1016/j.ymeth.2016.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022] Open
Abstract
Even though Nuclear Magnetic Resonance (NMR) spectroscopy is one of the few techniques capable of determining atomic resolution structures of RNA, it is constrained by two major problems of chemical shift overlap of resonances and rapid signal loss due to line broadening. Emerging tools to tackle these problems include synthesis of atom specifically labeled or chemically modified nucleotides. Herein we review the synthesis of these nucleotides, the design and production of appropriate RNA samples, and the application and analysis of the NMR experiments that take advantage of these labels.
Collapse
|
29
|
Shakya A, Dougherty CA, Xue Y, Al-Hashimi HM, Banaszak Holl MM. Rapid Exchange Between Free and Bound States in RNA-Dendrimer Polyplexes: Implications on the Mechanism of Delivery and Release. Biomacromolecules 2016; 17:154-64. [PMID: 26595195 PMCID: PMC5070374 DOI: 10.1021/acs.biomac.5b01280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A combination of solution NMR, dynamic light scattering (DLS), and fluorescence quenching assays were employed to obtain insights into the dynamics and structural features of a polyplex system consisting of HIV-1 transactivation response element (TAR) and PEGylated generation 5 poly(amidoamine) dendrimer (G5-PEG). NMR chemical shift mapping and (13)C spin relaxation based dynamics measurements depict the polyplex system as a highly dynamic assembly where the RNA, with its local structure and dynamics preserved, rapidly exchanges (
Collapse
Affiliation(s)
- Anisha Shakya
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Casey A. Dougherty
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yi Xue
- Department of Biochemistry and Chemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Chemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
30
|
Longhini AP, LeBlanc RM, Becette O, Salguero C, Wunderlich CH, Johnson BA, D'Souza VM, Kreutz C, Dayie TK. Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations. Nucleic Acids Res 2015; 44:e52. [PMID: 26657632 PMCID: PMC4824079 DOI: 10.1093/nar/gkv1333] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/16/2015] [Indexed: 11/12/2022] Open
Abstract
Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%. We incorporated these nucleotides into RNAs with sizes ranging from 27 to 59 nucleotides using in vitro transcription: A-Site (27 nt), the iron responsive elements (29 nt), a fluoride riboswitch from Bacillus anthracis (48 nt), and a frame-shifting element from a human corona virus (59 nt). Finally, we showcase the improvement in spectral quality arising from reduced crowding and narrowed linewidths, and accurate analysis of NMR relaxation dispersion (CPMG) and TROSY-based CEST experiments to measure μs-ms time scale motions, and an improved NOESY strategy for resonance assignment. Applications of this selective labeling technology promises to reduce difficulties associated with chemical shift overlap and rapid signal decay that have made it challenging to study the structure and dynamics of large RNAs beyond the 50 nt median size found in the PDB.
Collapse
Affiliation(s)
- Andrew P Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| | - Regan M LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| | - Owen Becette
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| | - Carolina Salguero
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christoph H Wunderlich
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Bruce A Johnson
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031, USA One Moon Scientific, Inc., 839 Grant Avenue, Westfield, NJ 07090-2322, USA
| | - Victoria M D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - T Kwaku Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi
| |
Collapse
|
31
|
Zhao B, Zhang Q. Measuring Residual Dipolar Couplings in Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy. J Am Chem Soc 2015; 137:13480-3. [PMID: 26462068 DOI: 10.1021/jacs.5b09014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nucleic acids undergo structural transitions to access sparsely populated and transiently lived conformational states--or excited conformational states--that play important roles in diverse biological processes. Despite ever-increasing detection of these functionally essential states, 3D structure determination of excited states (ESs) of RNA remains elusive. This is largely due to challenges in obtaining high-resolution structural constraints in these ESs by conventional structural biology approaches. Here, we present nucleic-acid-optimized chemical exchange saturation transfer (CEST) NMR spectroscopy for measuring residual dipolar couplings (RDCs), which provide unique long-range angular constraints in ESs of nucleic acids. We demonstrate these approaches on a fluoride riboswitch, where one-bond (13)C-(1)H RDCs from both base and sugar moieties provide direct structural probes into an ES of the ligand-free riboswitch.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Biochemistry and Biophysics and ‡Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Qi Zhang
- Department of Biochemistry and Biophysics and ‡Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
32
|
Simon B, Masiewicz P, Ephrussi A, Carlomagno T. The structure of the SOLE element of oskar mRNA. RNA (NEW YORK, N.Y.) 2015; 21:1444-53. [PMID: 26089324 PMCID: PMC4509934 DOI: 10.1261/rna.049601.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 05/23/2023]
Abstract
mRNA localization by active transport is a regulated process that requires association of mRNPs with protein motors for transport along either the microtubule or the actin cytoskeleton. oskar mRNA localization at the posterior pole of the Drosophila oocyte requires a specific mRNA sequence, termed the SOLE, which comprises nucleotides of both exon 1 and exon 2 and is assembled upon splicing. The SOLE folds into a stem-loop structure. Both SOLE RNA and the exon junction complex (EJC) are required for oskar mRNA transport along the microtubules by kinesin. The SOLE RNA likely constitutes a recognition element for a yet unknown protein, which either belongs to the EJC or functions as a bridge between the EJC and the mRNA. Here, we determine the solution structure of the SOLE RNA by Nuclear Magnetic Resonance spectroscopy. We show that the SOLE forms a continuous helical structure, including a few noncanonical base pairs, capped by a pentanucleotide loop. The helix displays a widened major groove, which could accommodate a protein partner. In addition, the apical helical segment undergoes complex dynamics, with potential functional significance.
Collapse
Affiliation(s)
- Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, D-69117, Germany
| | - Pawel Masiewicz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, D-69117, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, D-69117, Germany
| | - Teresa Carlomagno
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, D-69117, Germany Helmholtz Zentrum für Infektionsforschung, Braunschweig, D-38124, Germany
| |
Collapse
|
33
|
Xue Y, Kellogg D, Kimsey IJ, Sathyamoorthy B, Stein ZW, McBrairty M, Al-Hashimi HM. Characterizing RNA Excited States Using NMR Relaxation Dispersion. Methods Enzymol 2015; 558:39-73. [PMID: 26068737 DOI: 10.1016/bs.mie.2015.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Changes in RNA secondary structure play fundamental roles in the cellular functions of a growing number of noncoding RNAs. This chapter describes NMR-based approaches for characterizing microsecond-to-millisecond changes in RNA secondary structure that are directed toward short-lived and low-populated species often referred to as "excited states." Compared to larger scale changes in RNA secondary structure, transitions toward excited states do not require assistance from chaperones, are often orders of magnitude faster, and are localized to a small number of nearby base pairs in and around noncanonical motifs. Here, we describe a procedure for characterizing RNA excited states using off-resonance R1ρ NMR relaxation dispersion utilizing low-to-high spin-lock fields (25-3000 Hz). R1ρ NMR relaxation dispersion experiments are used to measure carbon and nitrogen chemical shifts in base and sugar moieties of the excited state. The chemical shift data are then interpreted with the aid of secondary structure prediction to infer potential excited states that feature alternative secondary structures. Candidate structures are then tested by using mutations, single-atom substitutions, or by changing physiochemical conditions, such as pH and temperature, to either stabilize or destabilize the candidate excited state. The resulting chemical shifts of the mutants or under different physiochemical conditions are then compared to those of the ground and excited states. Application is illustrated with a focus on the transactivation response element from the human immune deficiency virus type 1, which exists in dynamic equilibrium with at least two distinct excited states.
Collapse
Affiliation(s)
- Yi Xue
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dawn Kellogg
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Zachary W Stein
- Biophysics Enhanced Program, University of Michigan Ann Arbor, Michigan, USA
| | - Mitchell McBrairty
- Biophysics Enhanced Program, University of Michigan Ann Arbor, Michigan, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA; Department of Chemistry, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
34
|
Mouzakis KD, Dethoff EA, Tonelli M, Al-Hashimi H, Butcher SE. Dynamic motions of the HIV-1 frameshift site RNA. Biophys J 2015; 108:644-54. [PMID: 25650931 PMCID: PMC4317556 DOI: 10.1016/j.bpj.2014.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/11/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022] Open
Abstract
The HIV-1 frameshift site (FS) plays a critical role in viral replication. During translation, the HIV-1 FS transitions from a 3-helix to a 2-helix junction RNA secondary structure. The 2-helix junction structure contains a GGA bulge, and purine-rich bulges are common motifs in RNA secondary structure. Here, we investigate the dynamics of the HIV-1 FS 2-helix junction RNA. Interhelical motions were studied under different ionic conditions using NMR order tensor analysis of residual dipolar couplings. In 150 mM potassium, the RNA adopts a 43°(±4°) interhelical bend angle (β) and displays large amplitude, anisotropic interhelical motions characterized by a 0.52(±0.04) internal generalized degree of order (GDOint) and distinct order tensor asymmetries for its two helices (η = 0.26(±0.04) and 0.5(±0.1)). These motions are effectively quenched by addition of 2 mM magnesium (GDOint = 0.87(±0.06)), which promotes a near-coaxial conformation (β = 15°(±6°)) of the two helices. Base stacking in the bulge was investigated using the fluorescent purine analog 2-aminopurine. These results indicate that magnesium stabilizes extrahelical conformations of the bulge nucleotides, thereby promoting coaxial stacking of helices. These results are highly similar to previous studies of the HIV transactivation response RNA, despite a complete lack of sequence similarity between the two RNAs. Thus, the conformational space of these RNAs is largely determined by the topology of their interhelical junctions.
Collapse
Affiliation(s)
- Kathryn D Mouzakis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Elizabeth A Dethoff
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
35
|
Torchia DA. NMR studies of dynamic biomolecular conformational ensembles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 84-85:14-32. [PMID: 25669739 PMCID: PMC4325279 DOI: 10.1016/j.pnmrs.2014.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 05/06/2023]
Abstract
Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: "Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?" This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA.
Collapse
Affiliation(s)
- Dennis A Torchia
- National Institutes of Health (NIH), 5 Memorial Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Eichhorn CD, Al-Hashimi HM. Structural dynamics of a single-stranded RNA-helix junction using NMR. RNA (NEW YORK, N.Y.) 2014; 20:782-91. [PMID: 24742933 PMCID: PMC4024633 DOI: 10.1261/rna.043711.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many regulatory RNAs contain long single strands (ssRNA) that adjoin secondary structural elements. Here, we use NMR spectroscopy to study the dynamic properties of a 12-nucleotide (nt) ssRNA tail derived from the prequeuosine riboswitch linked to the 3' end of a 48-nt hairpin. Analysis of chemical shifts, NOE connectivity, (13)C spin relaxation, and residual dipolar coupling data suggests that the first two residues (A25 and U26) in the ssRNA tail stack onto the adjacent helix and assume an ordered conformation. The following U26-A27 step marks the beginning of an A6-tract and forms an acute pivot point for substantial motions within the tail, which increase toward the terminal end. Despite substantial internal motions, the ssRNA tail adopts, on average, an A-form helical conformation that is coaxial with the helix. Our results reveal a surprising degree of structural and dynamic complexity at the ssRNA-helix junction, which involves a fine balance between order and disorder that may facilitate efficient pseudoknot formation on ligand recognition.
Collapse
Affiliation(s)
- Catherine D. Eichhorn
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
- Corresponding authorE-mail
| |
Collapse
|
37
|
Flipping of the ribosomal A-site adenines provides a basis for tRNA selection. J Mol Biol 2014; 426:3201-3213. [PMID: 24813122 DOI: 10.1016/j.jmb.2014.04.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/13/2014] [Accepted: 04/14/2014] [Indexed: 11/22/2022]
Abstract
Ribosomes control the missense error rate of ~10(-4) during translation though quantitative contributions of individual mechanistic steps of the conformational changes yet to be fully determined. Biochemical and biophysical studies led to a qualitative tRNA selection model in which ribosomal A-site residues A1492 and A1493 (A1492/3) flip out in response to cognate tRNA binding, promoting the subsequent reactions, but not in the case of near-cognate or non-cognate tRNA. However, this model was recently questioned by X-ray structures revealing conformations of extrahelical A1492/3 and domain closure of the decoding center in both cognate and near-cognate tRNA bound ribosome complexes, suggesting that the non-specific flipping of A1492/3 has no active role in tRNA selection. We explore this question by carrying out molecular dynamics simulations, aided with fluorescence and NMR experiments, to probe the free energy cost of extrahelical flipping of 1492/3 and the strain energy associated with domain conformational change. Our rigorous calculations demonstrate that the A1492/3 flipping is indeed a specific response to the binding of cognate tRNA, contributing 3kcal/mol to the specificity of tRNA selection. Furthermore, the different A-minor interactions in cognate and near-cognate complexes propagate into the conformational strain and contribute another 4kcal/mol in domain closure. The recent structure of ribosome with features of extrahelical A1492/3 and closed domain in near-cognate complex is reconciled by possible tautomerization of the wobble base pair in mRNA-tRNA. These results quantitatively rationalize other independent experimental observations and explain the ribosomal discrimination mechanism of selecting cognate versus near-cognate tRNA.
Collapse
|
38
|
Emani PS, Bardaro MF, Huang W, Aragon S, Varani G, Drobny GP. Elucidating molecular motion through structural and dynamic filters of energy-minimized conformer ensembles. J Phys Chem B 2014; 118:1726-42. [PMID: 24479561 PMCID: PMC3983377 DOI: 10.1021/jp409386t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Complex RNA structures are constructed
from helical segments connected
by flexible loops that move spontaneously and in response to binding
of small molecule ligands and proteins. Understanding the conformational
variability of RNA requires the characterization of the coupled time
evolution of interconnected flexible domains. To elucidate the collective
molecular motions and explore the conformational landscape of the
HIV-1 TAR RNA, we describe a new methodology that utilizes energy-minimized
structures generated by the program “Fragment Assembly of RNA
with Full-Atom Refinement (FARFAR)”. We apply structural filters
in the form of experimental residual dipolar couplings (RDCs) to select
a subset of discrete energy-minimized conformers and carry out principal
component analyses (PCA) to corroborate the choice of the filtered
subset. We use this subset of structures to calculate solution T1 and T1ρ relaxation times for 13C spins in multiple residues in different domains of the molecule
using two simulation protocols that we previously published. We match
the experimental T1 times to within 2% and the T1ρ times to within less than 10% for helical residues. These results
introduce a protocol to construct viable dynamic trajectories for
RNA molecules that accord well with experimental NMR data and support
the notion that the motions of the helical portions of this small
RNA can be described by a relatively small number of discrete conformations
exchanging over time scales longer than 1 μs.
Collapse
Affiliation(s)
- Prashant S Emani
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | | | | | | | | | | |
Collapse
|
39
|
Structural determinants for ligand capture by a class II preQ1 riboswitch. Proc Natl Acad Sci U S A 2014; 111:E663-71. [PMID: 24469808 DOI: 10.1073/pnas.1400126111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prequeuosine (preQ1) riboswitches are RNA regulatory elements located in the 5' UTR of genes involved in the biosynthesis and transport of preQ1, a precursor of the modified base queuosine universally found in four tRNAs. The preQ1 class II (preQ1-II) riboswitch regulates preQ1 biosynthesis at the translational level. We present the solution NMR structure and conformational dynamics of the 59 nucleotide Streptococcus pneumoniae preQ1-II riboswitch bound to preQ1. Unlike in the preQ1 class I (preQ1-I) riboswitch, divalent cations are required for high-affinity binding. The solution structure is an unusual H-type pseudoknot featuring a P4 hairpin embedded in loop 3, which forms a three-way junction with the other two stems. (13)C relaxation and residual dipolar coupling experiments revealed interhelical flexibility of P4. We found that the P4 helix and flanking adenine residues play crucial and unexpected roles in controlling pseudoknot formation and, in turn, sequestering the Shine-Dalgarno sequence. Aided by divalent cations, P4 is poised to act as a "screw cap" on preQ1 recognition to block ligand exit and stabilize the binding pocket. Comparison of preQ1-I and preQ1-II riboswitch structures reveals that whereas both form H-type pseudoknots and recognize preQ1 using one A, C, or U nucleotide from each of three loops, these nucleotides interact with preQ1 differently, with preQ1 inserting into different grooves. Our studies show that the preQ1-II riboswitch uses an unusual mechanism to harness exquisite control over queuosine metabolism.
Collapse
|
40
|
Al-Hashimi HM. NMR studies of nucleic acid dynamics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:191-204. [PMID: 24149218 PMCID: PMC3984477 DOI: 10.1016/j.jmr.2013.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/23/2013] [Indexed: 05/12/2023]
Abstract
Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.
Collapse
Affiliation(s)
- Hashim M Al-Hashimi
- Department of Chemistry & Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
41
|
Russo L, Maestre-Martinez M, Wolff S, Becker S, Griesinger C. Interdomain dynamics explored by paramagnetic NMR. J Am Chem Soc 2013; 135:17111-20. [PMID: 24111622 DOI: 10.1021/ja408143f] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An ensemble-based approach is presented to explore the conformational space sampled by a multidomain protein showing moderate interdomain dynamics in terms of translational and rotational motions. The strategy was applied on a complex of calmodulin (CaM) with the IQ-recognition motif from the voltage-gated calcium channel Ca(v)1.2 (IQ), which adopts three different interdomain orientations in the crystal. The N60D mutant of calmodulin was used to collect pseudocontact shifts and paramagnetically induced residual dipolar couplings for six different lanthanide ions. Then, starting from the crystal structure, pools of conformations were generated by free MD. We found the three crystal conformations in solution, but four additional MD-derived conformations had to be included into the ensemble to fulfill all the paramagnetic data and cross-validate optimally against unused paramagnetic data. Alternative approaches led to similar ensembles. Our "ensemble" approach is a simple and efficient tool to probe and describe the interdomain dynamics and represents a general method that can be used to provide a proper ensemble description of multidomain proteins.
Collapse
Affiliation(s)
- Luigi Russo
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
42
|
Horowitz S, Dirk LMA, Yesselman JD, Nimtz JS, Adhikari U, Mehl RA, Scheiner S, Houtz RL, Al-Hashimi HM, Trievel RC. Conservation and functional importance of carbon-oxygen hydrogen bonding in AdoMet-dependent methyltransferases. J Am Chem Soc 2013; 135:15536-48. [PMID: 24093804 DOI: 10.1021/ja407140k] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
S-adenosylmethionine (AdoMet)-based methylation is integral to metabolism and signaling. AdoMet-dependent methyltransferases belong to multiple distinct classes and share a catalytic mechanism that arose through convergent evolution; however, fundamental determinants underlying this shared methyl transfer mechanism remain undefined. A survey of high-resolution crystal structures reveals that unconventional carbon-oxygen (CH···O) hydrogen bonds coordinate the AdoMet methyl group in different methyltransferases irrespective of their class, active site structure, or cofactor binding conformation. Corroborating these observations, quantum chemistry calculations demonstrate that these charged interactions formed by the AdoMet sulfonium cation are stronger than typical CH···O hydrogen bonds. Biochemical and structural studies using a model lysine methyltransferase and an active site mutant that abolishes CH···O hydrogen bonding to AdoMet illustrate that these interactions are important for high-affinity AdoMet binding and transition-state stabilization. Further, crystallographic and NMR dynamics experiments of the wild-type enzyme demonstrate that the CH···O hydrogen bonds constrain the motion of the AdoMet methyl group, potentially facilitating its alignment during catalysis. Collectively, the experimental findings with the model methyltransferase and structural survey imply that methyl CH···O hydrogen bonding represents a convergent evolutionary feature of AdoMet-dependent methyltransferases, mediating a universal mechanism for methyl transfer.
Collapse
Affiliation(s)
- Scott Horowitz
- Howard Hughes Medical Institute , Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee J, Vogt CE, McBrairty M, Al-Hashimi HM. Influence of dimethylsulfoxide on RNA structure and ligand binding. Anal Chem 2013; 85:9692-8. [PMID: 23987474 DOI: 10.1021/ac402038t] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dimethyl sulfoxide (DMSO) is widely used as a cosolvent to solubilize hydrophobic compounds in RNA-ligand binding assays. Although it is known that high concentrations of DMSO (>75%) can significantly affect RNA structure and folding energetics, a thorough analysis of how lower concentrations (<10%) of DMSO typically used in binding assays affects RNA structure and ligand binding has not been undertaken. Here, we use NMR and 2-aminopurine fluorescence spectroscopy to examine how DMSO affects the structure, dynamics, and ligand binding properties of two flexible hairpin RNAs: the transactivation response element from HIV-1 and bacterial ribosomal A-site. In both cases, 5-10% DMSO decreased stacking interactions and increased local disorder in noncanonical residues within bulges and loops and resulted in 0.3-4-fold reduction in the measured binding affinities for different small molecules, with the greatest reduction observed for an intercalating compound that binds RNA nonspecifically. Our results suggest that, by competing for hydrophobic interactions, DMSO can have a small but significant effect on RNA structure and ligand binding. These effects should be considered when developing ligand binding assays and high throughput screens.
Collapse
Affiliation(s)
- Janghyun Lee
- Department of Chemistry and Biophysics, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
44
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
45
|
Salmon L, Bascom G, Andricioaei I, Al-Hashimi HM. A general method for constructing atomic-resolution RNA ensembles using NMR residual dipolar couplings: the basis for interhelical motions revealed. J Am Chem Soc 2013; 135:5457-66. [PMID: 23473378 DOI: 10.1021/ja400920w] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to modulate alignment and measure multiple independent sets of NMR residual dipolar couplings (RDCs) has made it possible to characterize internal motions in proteins at atomic resolution and with time scale sensitivity ranging from picoseconds up to milliseconds. The application of such methods to the study of RNA dynamics, however, remains fundamentally limited by the inability to modulate alignment and by strong couplings between internal and overall motions that complicate the quantitative interpretation of RDCs. Here, we address this problem by showing that RNA alignment can be generally modulated, in a controlled manner, by variable elongation of A-form helices and that the information contained within the measured RDCs can be extracted even in the presence of strong couplings between motions and overall alignment via structure-based prediction of alignment. Using this approach, four RDC data sets, and a broad conformational pool obtained from a 8.2 μs molecular dynamics simulation, we successfully construct and validate an atomic resolution ensemble of human immunodeficiency virus type I transactivation response element RNA. This ensemble reveals local motions in and around the bulge involving changes in stacking and hydrogen-bonding interactions, which are undetectable by traditional spin relaxation and drive global changes in interhelical orientation. This new approach broadens the scope of using RDCs in characterizing the dynamics of nucleic acids.
Collapse
Affiliation(s)
- Loïc Salmon
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
46
|
Nikolova EN, Bascom GD, Andricioaei I, Al-Hashimi HM. Probing sequence-specific DNA flexibility in a-tracts and pyrimidine-purine steps by nuclear magnetic resonance (13)C relaxation and molecular dynamics simulations. Biochemistry 2012; 51:8654-64. [PMID: 23035755 DOI: 10.1021/bi3009517] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequence-specific DNA flexibility plays a key role in a variety of cellular interactions that are critical for gene packaging, expression, and regulation, yet few studies have experimentally explored the sequence dependence of DNA dynamics that occur on biologically relevant time scales. Here, we use nuclear magnetic resonance (NMR) carbon spin relaxation combined with molecular dynamics (MD) simulations to examine the picosecond to nanosecond dynamics in a variety of dinucleotide steps as well as in varying length homopolymeric A(n)·T(n) repeats (A(n)-tracts, where n = 2, 4, or 6) that exhibit unusual structural and mechanical properties. We extend the NMR spin relaxation time scale sensitivity deeper into the nanosecond regime by using glycerol and a longer DNA duplex to slow overall tumbling. Our studies reveal a structurally unique A-tract core (for n > 3) that is uniformly rigid, flanked by junction steps that show increasing sugar flexibility with A-tract length. High sugar mobility is observed at pyrimidine residues at the A-tract junctions, which is encoded at the dinucleotide level (CA, TG, and CG steps) and increases with A-tract length. The MD simulations reproduce many of these trends, particularly the overall rigidity of A-tract base and sugar sites, and suggest that the sugar-backbone dynamics could involve transitions in sugar pucker and phosphate backbone BI ↔ BII equilibria. Our results reinforce an emerging view that sequence-specific DNA flexibility can be imprinted in dynamics occurring deep within the nanosecond time regime that is difficult to characterize experimentally at the atomic level. Such large-amplitude sequence-dependent backbone fluctuations might flag the genome for specific DNA recognition.
Collapse
Affiliation(s)
- Evgenia N Nikolova
- Department of Chemistry and Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
47
|
Bardaro MF, Varani G. Independent alignment of RNA for dynamic studies using residual dipolar couplings. JOURNAL OF BIOMOLECULAR NMR 2012; 54:69-80. [PMID: 22806132 DOI: 10.1007/s10858-012-9655-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 06/26/2012] [Indexed: 06/01/2023]
Abstract
Molecular motion and dynamics play an essential role in the biological function of many RNAs. An important source of information on biomolecular motion can be found in residual dipolar couplings which contain dynamics information over the entire ms-ps timescale. However, these methods are not fully applicable to RNA because nucleic acid molecules tend to align in a highly collinear manner in different alignment media. As a consequence, information on dynamics that can be obtained with this method is limited. In order to overcome this limitation, we have generated a chimeric RNA containing both the wild type TAR RNA, the target of our investigation of dynamics, as well as the binding site for U1A protein. When U1A protein was bound to the portion of the chimeric RNA containing its binding site, we obtained independent alignment of TAR by exploiting the physical chemical characteristics of this protein. This technique can allow the extraction of new information on RNA dynamics, which is particularly important for time scales not covered by relaxation methods where important RNA motions occur.
Collapse
Affiliation(s)
- Michael F Bardaro
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | | |
Collapse
|
48
|
Bazzi A, Zargarian L, Chaminade F, De Rocquigny H, René B, Mély Y, Fossé P, Mauffret O. Intrinsic nucleic acid dynamics modulates HIV-1 nucleocapsid protein binding to its targets. PLoS One 2012; 7:e38905. [PMID: 22745685 PMCID: PMC3380039 DOI: 10.1371/journal.pone.0038905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/14/2012] [Indexed: 11/19/2022] Open
Abstract
HIV-1 nucleocapsid protein (NC) is involved in the rearrangement of nucleic acids occurring in key steps of reverse transcription. The protein, through its two zinc fingers, interacts preferentially with unpaired guanines in single-stranded sequences. In mini-cTAR stem-loop, which corresponds to the top half of the cDNA copy of the transactivation response element of the HIV-1 genome, NC was found to exhibit a clear preference for the TGG sequence at the bottom of mini-cTAR stem. To further understand how this site was selected among several potential binding sites containing unpaired guanines, we probed the intrinsic dynamics of mini-cTAR using (13)C relaxation measurements. Results of spin relaxation time measurements have been analyzed using the model-free formalism and completed by dispersion relaxation measurements. Our data indicate that the preferentially recognized guanine in the lower part of the stem is exempt of conformational exchange and highly mobile. In contrast, the unrecognized unpaired guanines of mini-cTAR are involved in conformational exchange, probably related to transient base-pairs. These findings support the notion that NC preferentially recognizes unpaired guanines exhibiting a high degree of mobility. The ability of NC to discriminate between close sequences through their dynamic properties contributes to understanding how NC recognizes specific sites within the HIV genome.
Collapse
Affiliation(s)
- Ali Bazzi
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France
| | - Loussiné Zargarian
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France
| | - Françoise Chaminade
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France
| | - Hugues De Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, Centre National de la Recherche Scientifique Unité mixte de Recherche 7213, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Brigitte René
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, Centre National de la Recherche Scientifique Unité mixte de Recherche 7213, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Philippe Fossé
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France
| | - Olivier Mauffret
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France
| |
Collapse
|
49
|
Thakur CS, Luo Y, Chen B, Eldho NV, Dayie TK. Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR. JOURNAL OF BIOMOLECULAR NMR 2012; 52:103-14. [PMID: 22124680 PMCID: PMC3277826 DOI: 10.1007/s10858-011-9586-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 05/25/2023]
Abstract
Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1' and C5' with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg(2+) ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly (13)C/(15)N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive (13)C-(13)C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules.
Collapse
Affiliation(s)
- Chandar S. Thakur
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Yiling Luo
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Bin Chen
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Nadukkudy V. Eldho
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| |
Collapse
|
50
|
Thakur CS, Dayie TK. Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2012; 52:65-77. [PMID: 22089526 PMCID: PMC3266500 DOI: 10.1007/s10858-011-9582-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 10/10/2011] [Indexed: 05/07/2023]
Abstract
Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using Escherichia coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-(13)C]-pyruvate affords ribonucleotides with site specific labeling at C5' (~95%) and C1' (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-(13)C]-glycerol for which the ribose ring is labeled in all but the C4' carbon position, leading to multiplet splitting of the C1', C2' and C3' carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides.
Collapse
Affiliation(s)
- Chandar S. Thakur
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| |
Collapse
|