1
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
2
|
Deactivatable Bisubstrate Inhibitors of Protein Kinases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196689. [PMID: 36235226 PMCID: PMC9573699 DOI: 10.3390/molecules27196689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
Bivalent ligands, including bisubstrate inhibitors, are conjugates of pharmacophores, which simultaneously target two binding sites of the biomolecule. Such structures offer attainable means for the development of compounds whose ability to bind to the biological target could be modulated by an external trigger. In the present work, two deactivatable bisubstrate inhibitors of basophilic protein kinases (PKs) were constructed by conjugating the pharmacophores via linkers that could be cleaved in response to external stimuli. The inhibitor ARC-2121 incorporated a photocleavable nitrodibenzofuran-comprising β-amino acid residue in the structure of the linker. The pharmacophores of the other deactivatable inhibitor ARC-2194 were conjugated via reduction-cleavable disulfide bond. The disassembly of the inhibitors was monitored by HPLC-MS. The affinity and inhibitory potency of the inhibitors toward cAMP-dependent PK (PKAcα) were established by an equilibrium competitive displacement assay and enzyme activity assay, respectively. The deactivatable inhibitors possessed remarkably high 1-2-picomolar affinity toward PKAcα. Irradiation of ARC-2121 with 365 nm UV radiation led to reaction products possessing a 30-fold reduced affinity. The chemical reduction of ARC-2194 resulted in the decrease of affinity of over four orders of magnitude. The deactivatable inhibitors of PKs are valuable tools for the temporal inhibition or capture of these pharmacologically important enzymes.
Collapse
|
3
|
Feng Z, Ducos B, Scerbo P, Aujard I, Jullien L, Bensimon D. The Development and Application of Opto-Chemical Tools in the Zebrafish. Molecules 2022; 27:6231. [PMID: 36234767 PMCID: PMC9572478 DOI: 10.3390/molecules27196231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
The zebrafish is one of the most widely adopted animal models in both basic and translational research. This popularity of the zebrafish results from several advantages such as a high degree of similarity to the human genome, the ease of genetic and chemical perturbations, external fertilization with high fecundity, transparent and fast-developing embryos, and relatively low cost-effective maintenance. In particular, body translucency is a unique feature of zebrafish that is not adequately obtained with other vertebrate organisms. The animal's distinctive optical clarity and small size therefore make it a successful model for optical modulation and observation. Furthermore, the convenience of microinjection and high embryonic permeability readily allow for efficient delivery of large and small molecules into live animals. Finally, the numerous number of siblings obtained from a single pair of animals offers large replicates and improved statistical analysis of the results. In this review, we describe the development of opto-chemical tools based on various strategies that control biological activities with unprecedented spatiotemporal resolution. We also discuss the reported applications of these tools in zebrafish and highlight the current challenges and future possibilities of opto-chemical approaches, particularly at the single cell level.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Bertrand Ducos
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- High Throughput qPCR Core Facility, Ecole Normale Supérieure, Paris Sciences Letters University, 46 Rue d’Ulm, 75005 Paris, France
| | - Pierluigi Scerbo
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Isabelle Aujard
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - Ludovic Jullien
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - David Bensimon
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Chen TH, Garnir K, Chen CY, Jian CB, Gao HD, Cheng B, Tseng MC, Moucheron C, Kirsch-De Mesmaeker A, Lee HM. A Toolkit for Engineering Proteins in Living Cells: Peptide with a Tryptophan-Selective Ru-TAP Complex to Regioselectively Photolabel Specific Proteins. J Am Chem Soc 2022; 144:18117-18125. [PMID: 36135325 DOI: 10.1021/jacs.2c08342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a chemical approach to crosslink functionally versatile bioeffectors (such as peptides) to native proteins of interest (POI) directly inside a living cell is a useful toolbox for chemical biologists. However, this goal has not been reached due to unsatisfactory chemoselectivity, regioselectivity, and protein selectivity in protein labeling within living cells. Herein, we report the proof of concept of a cytocompatible and highly selective photolabeling strategy using a tryptophan-specific Ru-TAP complex as a photocrosslinker. Aside from the high selectivity, the photolabeling is blue light-driven by a photoinduced electron transfer (PeT) and allows the bioeffector to bear an additional UV-responsive unit. The two different photosensitivities are demonstrated by blue light-photocrosslinking a UV-sensitive peptide to POI. Our visible light photolabeling can generate photocaged proteins for subsequent activity manipulation by UV light. Cytoskeletal dynamics regulation is demonstrated in living cells via the unprecedented POI photomanipulation and proves that our methodology opens a new avenue to endogenous protein modification.
Collapse
Affiliation(s)
- Tzu-Ho Chen
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kevin Garnir
- Laboratoire de Chimie Organique et Photochimie CP160/08, Université libre de Bruxelles, 50 Av. Franklin D. Roosevelt, 1050 Brussels, Belgium
| | - Chong-Yan Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Bang Jian
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Hua-De Gao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Bill Cheng
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie CP160/08, Université libre de Bruxelles, 50 Av. Franklin D. Roosevelt, 1050 Brussels, Belgium
| | - Andrée Kirsch-De Mesmaeker
- Laboratoire de Chimie Organique et Photochimie CP160/08, Université libre de Bruxelles, 50 Av. Franklin D. Roosevelt, 1050 Brussels, Belgium
| | - Hsien-Ming Lee
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
5
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
6
|
Mangubat-Medina AE, Ball ZT. Triggering biological processes: methods and applications of photocaged peptides and proteins. Chem Soc Rev 2021; 50:10403-10421. [PMID: 34320043 DOI: 10.1039/d0cs01434f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There has been a significant push in recent years to deploy fundamental knowledge and methods of photochemistry toward biological ends. Photoreactive groups have enabled chemists to activate biological function using the concept of photocaging. By granting spatiotemporal control over protein activation, these photocaging methods are fundamental in understanding biological processes. Peptides and proteins are an important group of photocaging targets that present conceptual and technical challenges, requiring precise chemoselectivity in complex polyfunctional environments. This review focuses on recent advances in photocaging techniques and methodologies, as well as their use in living systems. Photocaging methods include genetic and chemical approaches that require a deep understanding of structure-function relationships based on subtle changes in primary structure. Successful implementation of these ideas can shed light on important spatiotemporal aspects of living systems.
Collapse
Affiliation(s)
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
7
|
Abstract
A growing theme in chemistry is the joining of multiple organic molecular building blocks to create functional molecules. Diverse derivatizable structures—here termed “scaffolds” comprised of “hubs”—provide the foundation for systematic covalent organization of a rich variety of building blocks. This review encompasses 30 tri- or tetra-armed molecular hubs (e.g., triazine, lysine, arenes, dyes) that are used directly or in combination to give linear, cyclic, or branched scaffolds. Each scaffold is categorized by graph theory into one of 31 trees to express the molecular connectivity and overall architecture. Rational chemistry with exacting numbers of derivatizable sites is emphasized. The incorporation of water-solubilization motifs, robust or self-immolative linkers, enzymatically cleavable groups and functional appendages affords immense (and often late-stage) diversification of the scaffolds. Altogether, 107 target molecules are reviewed along with 19 syntheses to illustrate the distinctive chemistries for creating and derivatizing scaffolds. The review covers the history of the field up through 2020, briefly touching on statistically derivatized carriers employed in immunology as counterpoints to the rationally assembled and derivatized scaffolds here, although most citations are from the past two decades. The scaffolds are used widely in fields ranging from pure chemistry to artificial photosynthesis and biomedical sciences.
Collapse
|
8
|
Moulton KR, Sadiki A, Koleva BN, Ombelets LJ, Tran TH, Liu S, Wang B, Chen H, Micheloni E, Beuning PJ, O’Doherty GA, Zhou ZS. Site-Specific Reversible Protein and Peptide Modification: Transglutaminase-Catalyzed Glutamine Conjugation and Bioorthogonal Light-Mediated Removal. Bioconjug Chem 2019; 30:1617-1621. [DOI: 10.1021/acs.bioconjchem.9b00145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Fleming CL, Grøtli M, Andréasson J. On‐Command Regulation of Kinase Activity using Photonic Stimuli. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201800253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Cassandra L. Fleming
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg SE-41296 Göteborg Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg SE-41296 Göteborg Sweden
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Chemistry and BiochemistryChalmers University of Technology SE-41296 Göteborg Sweden
| |
Collapse
|
10
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
11
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201700171] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Taylor Courtney
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yuta Naro
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
12
|
Tang S, Wan Z, Gao Y, Zheng JS, Wang J, Si YY, Chen X, Qi H, Liu L, Liu W. Total chemical synthesis of photoactivatable proteins for light-controlled manipulation of antigen-antibody interactions. Chem Sci 2016; 7:1891-1895. [PMID: 29899912 PMCID: PMC5965250 DOI: 10.1039/c5sc03404c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/19/2015] [Indexed: 01/23/2023] Open
Abstract
We report the chemical synthesis of the first photo-activatable protein antigen that can be used to study antigen-antibody interaction mediated responses in B cells. This strategy facilitated fine tuning of the caged protein antigen to optimize its bioactivity and photochemical properties. One optimal molecule, HEL-K96NPE, was totally inert to hen egg lysozyme (HEL)-specific B cells and could only restore its antigenicity upon photoactivation. Combined with real time live cell imaging, the utility of HEL-K96NPE was demonstrated as a proof of concept to quantify B cell synapse formation and calcium influx responses at the single cell level.
Collapse
Affiliation(s)
- Shan Tang
- Tsinghua-Peking Center for Life Sciences , Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Department of Chemistry , Tsinghua University , Beijing 100084 , China .
| | - Zhengpeng Wan
- MOE Key Laboratory of Protein Science , Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , School of Life Sciences , Tsinghua University , Beijing , 100084 , China .
| | - Yiren Gao
- MOE Key Laboratory of Protein Science , Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , School of Life Sciences , Tsinghua University , Beijing , 100084 , China .
| | - Ji-Shen Zheng
- High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei , 230031 , China
| | - Jing Wang
- MOE Key Laboratory of Protein Science , Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , School of Life Sciences , Tsinghua University , Beijing , 100084 , China .
| | - Yan-Yan Si
- Tsinghua-Peking Center for Life Sciences , Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Department of Chemistry , Tsinghua University , Beijing 100084 , China .
| | - Xin Chen
- Laboratory of Dynamic Immunobiology , School of Medicine , Tsinghua University , Beijing , 100084 , China
| | - Hai Qi
- Laboratory of Dynamic Immunobiology , School of Medicine , Tsinghua University , Beijing , 100084 , China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences , Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Department of Chemistry , Tsinghua University , Beijing 100084 , China .
| | - Wanli Liu
- MOE Key Laboratory of Protein Science , Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , School of Life Sciences , Tsinghua University , Beijing , 100084 , China .
| |
Collapse
|
13
|
Li H, Fan X, Chen X. Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4500-4507. [PMID: 26859435 DOI: 10.1021/acsami.6b00323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Light-responsive proteins have been delivered into the cells for controlling intracellular events with high spatial and temporal resolution. However, the choice of wavelength is limited to the UV and visible range; activation of proteins inside the cells using near-infrared (NIR) light, which has better tissue penetration and biocompatibility, remains elusive. Here, we report the development of a single-walled carbon nanotube (SWCNT)-based bifunctional system that enables protein intracellular delivery, followed by NIR activation of the delivered proteins inside the cells. Proteins of interest are conjugated onto SWCNTs via a streptavidin-desthiobiotin (SA-DTB) linkage, where the protein activity is blocked. SWCNTs serve as both a nanocarrier for carrying proteins into the cells and subsequently a NIR sensitizer to photothermally cleave the linkage and release the proteins. The released proteins become active and exert their functions inside the cells. We demonstrated this strategy by intracellular delivery and NIR-triggered nuclear translocation of enhanced green fluorescent protein, and by intracellular delivery and NIR-activation of a therapeutic protein, saporin, in living cells. Furthermore, we showed that proteins conjugated onto SWCNTs via the SA-DTB linkage could be delivered to the tumors, and optically released and activated by using NIR light in living mice.
Collapse
Affiliation(s)
- He Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| | - Xinqi Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
14
|
Shell TA, Lawrence DS. Vitamin B12: a tunable, long wavelength, light-responsive platform for launching therapeutic agents. Acc Chem Res 2015; 48:2866-74. [PMID: 26479305 DOI: 10.1021/acs.accounts.5b00331] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Light-responsive agents offer the promise of targeted therapy, whose benefits include (i) prolonged action at the target site, (ii) overall reduced systemic dosage, (iii) reduced adverse effects, and (iv) localized delivery of multiple agents. Although photoactivated prodrugs have been reported, these species generally require short wavelengths (<450 nm) for activation. However, maximal tissue penetrance by light occurs within the "optical window of tissue" (600-900 nm), well beyond the wavelength range of most existing photocleavable functional groups. Furthermore, since multidrug therapy holds promise for the treatment of complex diseases, from cancer to neurological disorders, controlling the action of multiple drugs via wavelength modulation would take advantage of a property that is unique to light. However, discrimination between existing photoresponsive moieties has thus far proven to be limited. We have developed a vitamin B12/light-facilitated strategy for controlling drug action using red, far-red, and NIR light. The technology is based on a light-triggered reaction displayed by a subset of B12 derivatives: alkyl-cob(III)alamins suffer photohomolysis of the C-Co(III) bond. The C-Co(III) bond is weak (<30 kcal/mol), and therefore all wavelengths absorbed by the corrin ring (330-580 nm) induce photocleavage. In addition, by appending fluorophores to the corrin ring, long wavelength light (>600 nm) is readily captured and used to separate the Co-appended ligand (e.g., a drug) from B12. Consequently, it is now feasible to preassign the wavelength of homolysis by simply installing a fluorescent antenna with the desired photophysical properties. The wavelength malleability inherent within this strategy has been used to construct photoresponsive compounds that launch different drugs by simply modulating the wavelength of illumination. In addition, these phototherapeutics have been installed on the surface and interior of cells, such as erythrocytes or neural stem cells, and released upon expoure to the appropriate wavelength. We have shown that cytotoxic agents, such as doxorubicin, anti-inflammatories, such as dexamethasone, and anti- and pro-vascular agents are readily released from cellular vehicles as biologically active agents. We have also demonstrated that the concept of "optical window of tissue" phototherapeutics is not just limited to prodrugs. For example, stem cells have received considerable attention in the area of regenerative medicine. Hydrogels serve as scaffolds for stem cell growth and differentiation. We have shown that the formation of hydrogels can be triggered, in the presence of cells, using appropriately designed alkyl-cob(III)alamins and long wavelength light. The potential applications of phototherapeutics are broad and include drug delivery for a variety of indications, tissue engineering, and surgery.
Collapse
Affiliation(s)
- Thomas A. Shell
- Department
of Chemistry, Saint Anselm College, 100 Saint Anselm Drive, Manchester, New Hampshire 03102, United States
| | - David S. Lawrence
- Department
of Chemistry, Division of Chemical Biology, and the Department of
Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Gao HD, Thanasekaran P, Chiang CW, Hong JL, Liu YC, Chang YH, Lee HM. Construction of a Near-Infrared-Activatable Enzyme Platform To Remotely Trigger Intracellular Signal Transduction Using an Upconversion Nanoparticle. ACS NANO 2015; 9:7041-7051. [PMID: 26102426 DOI: 10.1021/acsnano.5b01573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Photoactivatable (caged) bioeffectors provide a way to remotely trigger or disable biochemical pathways in living organisms at a desired time and location with a pulse of light (uncaging), but the phototoxicity of ultraviolet (UV) often limits its application. In this study, we have demonstrated the near-infrared (NIR) photoactivatable enzyme platform using protein kinase A (PKA), an important enzyme in cell biology. We successfully photoactivated PKA using NIR to phosphorylate its substrate, and this induced a downstream cellular response in living cells with high spatiotemporal resolution. In addition, this system allows NIR to selectively activate the caged enzyme immobilized on the nanoparticle surface without activating other caged proteins in the cytosol. This NIR-responsive enzyme-nanoparticle system provides an innovative approach to remote-control proteins and enzymes, which can be used by researchers who need to avoid direct UV irradiation or use UV as a secondary channel to turn on a bioeffector.
Collapse
Affiliation(s)
- Hua-De Gao
- †Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Pounraj Thanasekaran
- †Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chao-Wei Chiang
- †Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Jia-Lin Hong
- †Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yen-Chun Liu
- ‡Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1 Zhongxiao E. Road, Section 3, Taipei 10608, Taiwan
| | - Yu-Hsu Chang
- ‡Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1 Zhongxiao E. Road, Section 3, Taipei 10608, Taiwan
| | - Hsien-Ming Lee
- †Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
16
|
Friedrich F, Klehs K, Fichte MAH, Junek S, Heilemann M, Heckel A. A two-photon activatable amino acid linker for the induction of fluorescence. Chem Commun (Camb) 2015; 51:15382-5. [DOI: 10.1039/c5cc05700k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first photolabile quencher for ATTO565 is presented and the application of the new construct in super-resolution microscopy is demonstrated.
Collapse
Affiliation(s)
- Felix Friedrich
- Goethe University Frankfurt
- Institute for Organic Chemistry and Chemical Biology
- 60438 Frankfurt
- Germany
| | - Kathrin Klehs
- Goethe University Frankfurt
- Institute for Physical and Theoretical Chemistry
- 60438 Frankfurt
- Germany
| | - Manuela A. H. Fichte
- Goethe University Frankfurt
- Institute for Organic Chemistry and Chemical Biology
- 60438 Frankfurt
- Germany
| | - Stephan Junek
- Imaging facility
- Max Planck Institute for Brain Research
- 60438 Frankfurt am Main
- Germany
| | - Mike Heilemann
- Goethe University Frankfurt
- Institute for Physical and Theoretical Chemistry
- 60438 Frankfurt
- Germany
| | - Alexander Heckel
- Goethe University Frankfurt
- Institute for Organic Chemistry and Chemical Biology
- 60438 Frankfurt
- Germany
| |
Collapse
|
17
|
An Aggregation-Induced Emission Luminogen with Efficient Luminescent Mechanochromism and Optical Waveguiding Properties. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201300223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Li Q, Luo L, Yan X, Zhou W, Wang F. Ionic self-assembled fluorescent microfibres with electrochemical properties. Supramol Chem 2013. [DOI: 10.1080/10610278.2013.842646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Qiuhong Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255049, P.R. China
| | - Linlin Luo
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255049, P.R. China
| | - Xiaojie Yan
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255049, P.R. China
| | - Wenting Zhou
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255049, P.R. China
| | - Fang Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255049, P.R. China
| |
Collapse
|
19
|
Martić S, Kraatz HB. Chemical biology toolkit for exploring protein kinase catalyzed phosphorylation reactions. Chem Sci 2013. [DOI: 10.1039/c2sc20846f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
20
|
Matsuo K, Kioi Y, Yasui R, Takaoka Y, Miki T, Fujishima SH, Hamachi I. One-step construction of caged carbonic anhydrase I using a ligand-directed acyl imidazole-based protein labeling method. Chem Sci 2013. [DOI: 10.1039/c3sc50560j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Priestman MA, Shell TA, Sun L, Lee HM, Lawrence DS. Merging of confocal and caging technologies: selective three-color communication with profluorescent reporters. Angew Chem Int Ed Engl 2012; 51:7684-7. [PMID: 22740297 PMCID: PMC3523745 DOI: 10.1002/anie.201202820] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Indexed: 11/11/2022]
Abstract
Falling apart, on cue: Signaling pathways often display a profound spatiotemporal component that is best studied using light-activatable reagents. Three separate photolabile moieties that can be distinguished based upon their response to three distinct wavelengths (360, 440, and 560 nm) have been synthesized and evaluated. This tri-color system is also applied to imaging in microwells and HeLa cells (see picture).
Collapse
Affiliation(s)
- Melanie A. Priestman
- Department of Chemistry, Division of Chemical Biology and Medicinal Chemistry, and the Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, Fax: 919-962-2388
| | - Thomas A. Shell
- Department of Chemistry, Division of Chemical Biology and Medicinal Chemistry, and the Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, Fax: 919-962-2388
| | - Liang Sun
- Pharmaron-Beijing BDA, Beijing, 100176, P.R. China
| | - Hsien-Ming Lee
- Institute of Chemistry, Academia Sinica, Nankang Dist. Taipei, 115 Taiwan
| | - David S. Lawrence
- Department of Chemistry, Division of Chemical Biology and Medicinal Chemistry, and the Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, Fax: 919-962-2388
| |
Collapse
|
22
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Light-controlled tools. Angew Chem Int Ed Engl 2012; 51:8446-76. [PMID: 22829531 DOI: 10.1002/anie.201202134] [Citation(s) in RCA: 763] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Indexed: 12/21/2022]
Abstract
Spatial and temporal control over chemical and biological processes plays a key role in life, where the whole is often much more than the sum of its parts. Quite trivially, the molecules of a cell do not form a living system if they are only arranged in a random fashion. If we want to understand these relationships and especially the problems arising from malfunction, tools are necessary that allow us to design sophisticated experiments that address these questions. Highly valuable in this respect are external triggers that enable us to precisely determine where, when, and to what extent a process is started or stopped. Light is an ideal external trigger: It is highly selective and if applied correctly also harmless. It can be generated and manipulated with well-established techniques, and many ways exist to apply light to living systems--from cells to higher organisms. This Review will focus on developments over the last six years and includes discussions on the underlying technologies as well as their applications.
Collapse
Affiliation(s)
- Clara Brieke
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
23
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Lichtgesteuerte Werkzeuge. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202134] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara Brieke
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| | - Falk Rohrbach
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Gottschalk
- Buchmann‐Institut für Molekulare Lebenswissenschaften, Institut für Biochemie, Max‐von‐Laue‐Straße 15, 60438 Frankfurt/Main (Deutschland)
| | - Günter Mayer
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Heckel
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| |
Collapse
|
24
|
Priestman MA, Shell TA, Sun L, Lee HM, Lawrence DS. Merging of Confocal and Caging Technologies: Selective Three-Color Communication with Profluorescent Reporters. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Chen Z, Vohidov F, Coughlin JM, Stagg LJ, Arold ST, Ladbury JE, Ball ZT. Catalytic Protein Modification with Dirhodium Metallopeptides: Specificity in Designed and Natural Systems. J Am Chem Soc 2012; 134:10138-45. [DOI: 10.1021/ja302284p] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhen Chen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Farrukh Vohidov
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jane M. Coughlin
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Loren J. Stagg
- The University of Texas, M.D. Anderson Cancer Center, Houston, Texas
77030, United States
| | - Stefan T. Arold
- The University of Texas, M.D. Anderson Cancer Center, Houston, Texas
77030, United States
| | - John E. Ladbury
- The University of Texas, M.D. Anderson Cancer Center, Houston, Texas
77030, United States
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
26
|
Abstract
Cell migration is required for many physiological processes, including wound repair and embryogenesis, and relies on precisely orchestrated events that are regulated in a spatially and temporally controlled manner. Most traditional approaches for studying migration, such as genetic methods or the use of chemical inhibitors, do not offer insight into these important components of protein function. However, chemical tools, which respond on a more rapid time scale and in localized regions of the cell, are capable of providing more detailed, real-time information. This Review describes these recent approaches to investigate cell migration and focuses on proteins that are activated by light or small molecules, as well as fluorescent sensors of protein activity.
Collapse
Affiliation(s)
- Brenda N. Goguen
- Departments of Biology and Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Barbara Imperiali
- Departments of Biology and Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
|