1
|
Nakagawa Y, Fujii M, Ito N, Ojika M, Akase D, Aida M, Kinoshita T, Sakurai Y, Yasuda J, Igarashi Y, Ito Y. Molecular basis of N-glycan recognition by pradimicin a and its potential as a SARS-CoV-2 entry inhibitor. Bioorg Med Chem 2024; 105:117732. [PMID: 38643719 DOI: 10.1016/j.bmc.2024.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Virus entry inhibitors are emerging as an attractive class of therapeutics for the suppression of viral transmission. Naturally occurring pradimicin A (PRM-A) has received particular attention as the first-in-class entry inhibitor that targets N-glycans present on viral surface. Despite the uniqueness of its glycan-targeted antiviral activity, there is still limited knowledge regarding how PRM-A binds to viral N-glycans. Therefore, in this study, we performed binding analysis of PRM-A with synthetic oligosaccharides that reflect the structural motifs characteristic of viral N-glycans. Binding assays and molecular modeling collectively suggest that PRM-A preferentially binds to branched oligomannose motifs of N-glycans via simultaneous recognition of two mannose residues at the non-reducing ends. We also demonstrated, for the first time, that PRM-A can effectively inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vitro. Significantly, the anti-SARS-CoV-2 effect of PRM-A is attenuated in the presence of the synthetic branched oligomannose, suggesting that the inhibition of SARS-CoV-2 infection is due to the interaction of PRM-A with the branched oligomannose-containing N-glycans. These data provide essential information needed to understand the antiviral mechanism of PRM-A and suggest that PRM-A could serve as a candidate SARS-CoV-2 entry inhibitor targeting N-glycans.
Collapse
Affiliation(s)
- Yu Nakagawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Masato Fujii
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nanaka Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Dai Akase
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Office of Research and Academia-Government-Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Takaaki Kinoshita
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Milanesi F, Roelens S, Francesconi O. Towards Biomimetic Recognition of Glycans by Synthetic Receptors. Chempluschem 2024; 89:e202300598. [PMID: 37942862 DOI: 10.1002/cplu.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Carbohydrates are abundant in Nature, where they are mostly assembled within glycans as free polysaccharides or conjugated to a variety of biological molecules such as proteins and lipids. Glycans exert several functions, including protein folding, stability, solubility, resistance to proteolysis, intracellular traffic, antigenicity, and recognition by carbohydrate-binding proteins. Interestingly, misregulation of their biosynthesis that leads to changes in glycan structures is frequently recognized as a mark of a disease state. Because of glycan ubiquity, carbohydrate binding agents (CBAs) targeting glycans can lead to a deeper understanding of their function and to the development of new diagnostic and prognostic strategies. Synthetic receptors selectively recognizing specific carbohydrates of biological interest have been developed over the past three decades. In addition to the success obtained in the effective recognition of monosaccharides, synthetic receptors recognizing more complex guests have also been developed, including di- and oligosaccharide fragments of glycans, shedding light on the structural and functional requirements necessary for an effective receptor. In this review, the most relevant achievements in molecular recognition of glycans and their fragments will be summarized, highlighting potentials and future perspectives of glycan-targeting synthetic receptors.
Collapse
Affiliation(s)
- Francesco Milanesi
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
3
|
Dashti Y, Errington J. Chemistry and biology of specialized metabolites produced by Actinomadura. Nat Prod Rep 2024; 41:370-401. [PMID: 38099919 PMCID: PMC10951976 DOI: 10.1039/d3np00047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/21/2024]
Abstract
Covering: up to the end of 2022In recent years rare Actinobacteria have become increasingly recognised as a rich source of novel bioactive metabolites. Actinomadura are Gram-positive bacteria that occupy a wide range of ecological niches. This review highlights about 230 secondary metabolites produced by Actinomadura spp., reported until the end of 2022, including their bioactivities and selected biosynthetic pathways. Notably, the bioactive compounds produced by Actinomadura spp. demonstrate a wide range of activities, including antimicrobial, antitumor and anticoccidial effects, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| | - Jeff Errington
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| |
Collapse
|
4
|
Nakagawa Y, Oya Y, Ojika M, Igarashi Y, Ito Y. Chemical modification of pradimicin A to suppress aggregation without impairing D-mannose-binding and antifungal activities. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S. Lectins and lectibodies: potential promising antiviral agents. Cell Mol Biol Lett 2022; 27:37. [PMID: 35562647 PMCID: PMC9100318 DOI: 10.1186/s11658-022-00338-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
In nature, lectins are widely dispersed proteins that selectively recognize and bind to carbohydrates and glycoconjugates via reversible bonds at specific binding sites. Many viral diseases have been treated with lectins due to their wide range of structures, specificity for carbohydrates, and ability to bind carbohydrates. Through hemagglutination assays, these proteins can be detected interacting with various carbohydrates on the surface of cells and viral envelopes. This review discusses the most robust lectins and their rationally engineered versions, such as lectibodies, as antiviral proteins. Fusion of lectin and antibody’s crystallizable fragment (Fc) of immunoglobulin G (IgG) produces a molecule called a “lectibody” that can act as a carbohydrate-targeting antibody. Lectibodies can not only bind to the surface glycoproteins via their lectins and neutralize and clear viruses or infected cells by viruses but also perform Fc-mediated antibody effector functions. These functions include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cell-mediated phagocytosis (ADCP). In addition to entering host cells, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein S1 binds to angiotensin-converting enzyme 2 (ACE2) and downregulates it and type I interferons in a way that may lead to lung disease. The SARS-CoV-2 spike protein S1 and human immunodeficiency virus (HIV) envelope are heavily glycosylated, which could make them a major target for developing vaccines, diagnostic tests, and therapeutic drugs. Lectibodies can lead to neutralization and clearance of viruses and cells infected by viruses by binding to glycans located on the envelope surface (e.g., the heavily glycosylated SARS-CoV-2 spike protein).
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Morteza Heydari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,American Association of Kidney Patients, Tampa, FL, USA
| | - Ibrahim Arman
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Arezoo Sadoughi
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parisa Sahami
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Safiyeh Aghazadeh
- Division of Biochemistry, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, 5756151818, Iran.
| |
Collapse
|
6
|
Miyanishi W, Ojika M, Akase D, Aida M, Igarashi Y, Ito Y, Nakagawa Y. d-Mannose binding, aggregation property, and antifungal activity of amide derivatives of pradimicin A. Bioorg Med Chem 2022; 55:116590. [PMID: 34973516 DOI: 10.1016/j.bmc.2021.116590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
Pradimicin A (PRM-A) and its derivatives comprise a unique family of antibiotics that show antifungal, antiviral, and antiparasitic activities through binding to d-mannose (Man)-containing glycans of pathogenic species. Despite their great potential as drug leads with an exceptional antipathogenic action, therapeutic application of PRMs has been severely limited by their tendency to form water-insoluble aggregates. Recently, we found that attachment of 2-aminoethanol to the carboxy group of PRM-A via amide linkage significantly suppressed the aggregation. Here, we prepared additional amide derivatives (2-8) of PRM-A to examine the possibility that the amide formation of PRM-A could suppress its aggregation propensity. Sedimentation assay and isothermal titration calorimetry experiment confirmed that all amide derivatives can bind Man without significant aggregation. Among them, hydroxamic acid derivative (4) showed the most potent Man-binding activity, which was suggested to be derived from the anion formation of the hydroxamic acid moiety by molecular modeling. Derivative 4 also exhibited significant antifungal activity comparable to that of PRM-A. These results collectively indicate that amide formation of PRM-A is the promising strategy to develop less aggregative derivatives, and 4 could serve as a lead compound for exploring the therapeutic application of PRM-A.
Collapse
Affiliation(s)
- Wataru Miyanishi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Dai Akase
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Office of Research and Academia-Government-Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
7
|
NAKAGAWA Y, ITO Y. Mannose-binding analysis and biological application of pradimicins. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:15-29. [PMID: 35013028 PMCID: PMC8795531 DOI: 10.2183/pjab.98.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Pradimicins (PRMs) are an exceptional family of natural products that specifically bind d-mannose (Man). In the past decade, their scientific significance has increased greatly, with the emergence of biological roles of Man-containing glycans. However, research into the use of PRMs has been severely limited by their inherent tendency to form water-insoluble aggregates. Recently, we have established a derivatization strategy to suppress PRM aggregation, providing an opportunity for practical application of PRMs in glycobiological research. This article first outlines the challenges in studying Man-binding mechanisms and structural modifications of PRMs, and then describes our approach to address them. We also present our recent attempts toward the development of PRM-based research tools.
Collapse
Affiliation(s)
- Yu NAKAGAWA
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yukishige ITO
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
8
|
Nakagawa Y, Kakihara S, Tsuzuki K, Ojika M, Igarashi Y, Ito Y. A Pradimicin-Based Staining Dye for Glycoprotein Detection. JOURNAL OF NATURAL PRODUCTS 2021; 84:2496-2501. [PMID: 34524799 DOI: 10.1021/acs.jnatprod.1c00506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pradimicin A (PRM-A) and related compounds constitute an exceptional family of natural pigments that show Ca2+-dependent recognition of d-mannose (Man). Although these compounds hold great promise as research tools in glycobiology, their practical application has been severely limited by their inherent tendency to form water-insoluble aggregates. Here, we demonstrate that the 2-hydroxyethylamide derivative (PRM-EA) of PRM-A shows little aggregation in neutral aqueous media and retains binding specificity for Man. We also show that PRM-EA stains glycoproteins in dot blot assays, whereas PRM-A fails to do so, owing to severe aggregation. Significantly, PRM-EA is sensitive to glycoproteins carrying high mannose-type and hybrid-type N-linked glycans, but not to those carrying complex-type N-linked glycans. Such staining selectivity has never been observed in conventional dyes, suggesting that PRM-EA could serve as a unique staining agent for the selective detection of glycoproteins with terminal Man residues.
Collapse
Affiliation(s)
- Yu Nakagawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shintaro Kakihara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kazue Tsuzuki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
9
|
Nakagawa Y, Yamaji F, Miyanishi W, Ojika M, Igarashi Y, Ito Y. Binding Evaluation of Pradimicins for Oligomannose Motifs from Fungal Mannans. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Fumiya Yamaji
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Wataru Miyanishi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
10
|
Nakagawa Y. Paving the Way for Practical Use of Sugar-Binding Natural Products as Lectin Mimics in Glycobiological Research. Chembiochem 2020; 21:1567-1572. [PMID: 32012428 DOI: 10.1002/cbic.201900781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 12/17/2022]
Abstract
Pradimicins (PRMs) constitute an exceptional class of natural products that show Ca2+ -dependent recognition of d-mannose (Man). In addition to therapeutic uses as antifungal drugs, the application of PRMs as lectin mimics for glycobiological research has been attracting considerable interest, since the emerging biological roles of Man-containing glycans have been highlighted. However, only a few attempts have been made to use PRMs for glycobiological purposes. The limited use of PRMs is primarily due to the early assumption that the readily modifiable carboxyl group of PRMs is involved in Ca2+ binding, and thus, not available to prepare research tools. Recently, this assumption has been disproved by structural elucidation of the Ca2+ complex of PRMs, which paves the way for designing carboxyl group modified derivatives of PRMs for research use. This article outlines studies related to Ca2+ -mediated Man binding of PRMs and discusses their application for glycobiology.
Collapse
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
11
|
|
12
|
Nakagawa Y, Doi T, Takegoshi K, Sugahara T, Akase D, Aida M, Tsuzuki K, Watanabe Y, Tomura T, Ojika M, Igarashi Y, Hashizume D, Ito Y. Molecular Basis of Mannose Recognition by Pradimicins and their Application to Microbial Cell Surface Imaging. Cell Chem Biol 2019; 26:950-959.e8. [PMID: 31031141 DOI: 10.1016/j.chembiol.2019.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/23/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
Naturally occurring pradimicins (PRMs) show specific recognition of d-mannose (d-Man) in aqueous media, which has never been achieved by artificial small molecules. Although the Ca2+-mediated dimerization of PRMs is essential for their d-Man binding, the dimeric structure has yet to be elucidated, leaving the question open as to how PRMs recognize d-Man. Thus, we herein report the structural elucidation of the dimer by a combination of X-ray crystallography and solid-state NMR spectroscopy. Coupled with our previous knowledge regarding the d-Man binding geometry of PRMs, elucidation of the dimer allowed reliable estimation of the mode of d-Man binding. Based on the binding model, we further developed an azide-functionalized PRM derivative (PRM-Azide) with d-Man binding specificity. Notably, PRM-Azide stained Candida rugosa cells having mannans on their cell surface through conjugation with the tetramethylrhodamine fluorophore. The present study provides the practical demonstration that PRMs can serve as lectin mimics for use in glycobiological studies.
Collapse
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Takashi Doi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - K Takegoshi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takahiro Sugahara
- Center for Quantum Life Sciences, and Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Dai Akase
- Center for Quantum Life Sciences, and Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Center for Quantum Life Sciences, and Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Kazue Tsuzuki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasunori Watanabe
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tomohiko Tomura
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Francesconi O, Roelens S. Biomimetic Carbohydrate‐Binding Agents (CBAs): Binding Affinities and Biological Activities. Chembiochem 2019; 20:1329-1346. [DOI: 10.1002/cbic.201800742] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry and INSTMUniversity of Florence Polo Scientifico e Tecnologico 50019 Sesto Fiorentino, Firenze Italy
| | - Stefano Roelens
- Department of Chemistry and INSTMUniversity of Florence Polo Scientifico e Tecnologico 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
14
|
Doi T, Nakagawa Y, Takegoshi K. Solid-State Nuclear Magnetic Resonance Analysis Reveals a Possible Calcium Binding Site of Pradimicin A. Biochemistry 2017; 56:468-472. [DOI: 10.1021/acs.biochem.6b01300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Takashi Doi
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa
Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yu Nakagawa
- Department
of Applied Molecular Biosciences, Graduate School of Bioagricultural
Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - K. Takegoshi
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa
Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
|
16
|
Park SH, Choi YP, Park J, Share A, Francesconi O, Nativi C, Namkung W, Sessler JL, Roelens S, Shin I. Synthetic aminopyrrolic receptors have apoptosis inducing activity. Chem Sci 2015; 6:7284-7292. [PMID: 28757987 PMCID: PMC5512143 DOI: 10.1039/c5sc03200h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/25/2015] [Indexed: 12/18/2022] Open
Abstract
We report two synthetic aminopyrrolic compounds that induce apoptotic cell death. These compounds have been previously shown to act as receptors for mannosides. The extent of receptor-induced cell death is greater in cells expressing a high level of high-mannose oligosaccharides than in cells producing lower levels of high-mannose glycans. The ability of synthetic receptors to induce cell death is attenuated in the presence of external mannosides. The present results provide support for the suggestion that the observed cell death reflects an ability of the receptors to bind mannose displayed on the cell surface. Signaling pathway studies indicate that the synthetic receptors of the present study promote JNK activation, induce Bax translocation to the mitochondria, and cause cytochrome c release from the mitochondria into the cytosol, thus promoting caspase-dependent apoptosis. Such effects are also observed in cells treated with mannose-binding ConA. The present results thus serve to highlight what may be an attractive new approach to triggering apoptosis via modes of action that differ from those normally used to promote apoptosis.
Collapse
Affiliation(s)
- Seong-Hyun Park
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , 03722 Seoul , Korea .
| | - Yoon Pyo Choi
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , 03722 Seoul , Korea .
| | - Jinhong Park
- College of Pharmacy , Yonsei Institute of Pharmaceutical Sciences , Yonsei University , 21983 Incheon , Korea
| | - Andrew Share
- Department of Chemistry , The University of Texas at Austin , 78712-1224 Austin , Texas , USA
| | - Oscar Francesconi
- Department of Chemistry and INSTM , University of Florence , Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino , Firenze , Italy
| | - Cristina Nativi
- Department of Chemistry and INSTM , University of Florence , Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino , Firenze , Italy
| | - Wan Namkung
- College of Pharmacy , Yonsei Institute of Pharmaceutical Sciences , Yonsei University , 21983 Incheon , Korea
| | - Jonathan L Sessler
- Department of Chemistry , The University of Texas at Austin , 78712-1224 Austin , Texas , USA
| | - Stefano Roelens
- Istituto di Metodologie Chimiche (IMC) , Consiglio Nazionale delle Ricerche (CNR) , Department of Chemistry and INSTM , University of Florence , Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino , Firenze , Italy
| | - Injae Shin
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , 03722 Seoul , Korea .
| |
Collapse
|
17
|
Nakagawa Y, Watanabe Y, Igarashi Y, Ito Y, Ojika M. Pradimicin A, a D-mannose-binding antibiotic, binds pyranosides of L-fucose and L-galactose in a calcium-sensitive manner. Bioorg Med Chem Lett 2015; 25:2963-6. [PMID: 26045034 DOI: 10.1016/j.bmcl.2015.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
Abstract
Pradimicin A (PRM-A) is a unique antibiotic with a lectin-like ability to bind D-mannose (D-Man) in the presence of Ca(2+) ion. Although accumulated evidences suggest that PRM-A recognizes the 2-, 3-, and 4-hydroxyl groups of D-Man, BMY-28864, an artificial PRM-A derivative, was shown not to bind L-fucose (L-Fuc) and L-galactose (lLGal), both of which share the characteristic array of the three hydroxyl groups with D-Man. To obtain a plausible explanation for this inconsistency, we performed co-precipitation experiments of PRM-A with L-Fuc, L-Gal, and their methyl pyranosides (L-Fuc-OMe, L-Gal-OMe) by taking advantage of aggregate-forming propensity of the binary [PRM-A/Ca(2+)] complex. While L-Fuc and L-Gal were hardly incorporated into the aggregate, L-Fuc-OMe and L-Gal-OMe were found to exhibit significant binding to PRM-A. However, increased Ca(2+) concentration abolished this binding, raising the possibility that poor binding of L-Fuc and L-Gal to PRM-A is attributed to their chelation with Ca(2+) ion. This possibility was partly supported by (1)H NMR analysis that detected interaction of L-Fuc and L-Gal with Ca(2+) ion in aqueous solution. These results collectively indicate that PRM-A binds pyranosides of L-Fuc and L-Gal when Ca(2+) concentration is not excessive to trap these sugars by chelation but sufficient to form the [PRM-A/Ca(2+)] complex.
Collapse
Affiliation(s)
- Yu Nakagawa
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Yasunori Watanabe
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Japan Science and Technology Agency, ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Ojika
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
18
|
Francesconi O, Nativi C, Gabrielli G, De Simone I, Noppen S, Balzarini J, Liekens S, Roelens S. Antiviral Activity of Synthetic Aminopyrrolic Carbohydrate Binding Agents: Targeting the Glycans of Viral gp120 to Inhibit HIV Entry. Chemistry 2015; 21:10089-93. [DOI: 10.1002/chem.201501030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 01/18/2023]
|
19
|
Enomoto M, Igarashi Y, Sasaki M, Shimizu H. A mannose-recognizable chemosensor using gold nanoparticles functionalized with pradimicin, a nonpeptidic mannose-binding natural product. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Genetic evidence for the involvement of glycosyltransferase PdmQ and PdmS in biosynthesis of pradimicin from Actinomadura hibisca. Microbiol Res 2015; 174:9-16. [DOI: 10.1016/j.micres.2015.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/06/2015] [Accepted: 02/23/2015] [Indexed: 11/18/2022]
|
21
|
Napan K, Zhang S, Morgan W, Anderson T, Takemoto JY, Zhan J. Synergistic actions of tailoring enzymes in pradimicin biosynthesis. Chembiochem 2014; 15:2289-96. [PMID: 25155298 PMCID: PMC4214279 DOI: 10.1002/cbic.201402306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 11/07/2022]
Abstract
Three key tailoring enzymes in pradimicin biosynthesis: PdmJ, PdmW, and PdmN, were investigated. PdmW was characterized as the C-6 hydroxylase by structural characterization of the corresponding product, 6-hydroxy-G-2A. The efficiencies of the C-5 and C-6 hydroxylations, catalyzed respectively by PdmJ and PdmW, were low when they were expressed individually with the early biosynthetic enzymes that form G-2A. When these two cytochrome P450 enzymes were co-expressed, a dihydroxylated product, 5,6-dihydroxy-G-2A, was efficiently produced, indicating that these two enzymes work synergistically in pradimicin biosynthesis. Heterologously expressed PdmN in Streptomyces coelicolor CH999 converted G-2A to JX137a by ligating a unit of D-alanine to the carboxyl group. PdmN has relaxed substrate specificity toward both amino acid donors and acceptors. Through combinatorial biosynthesis, a series of new pradimicin analogues were produced.
Collapse
Affiliation(s)
- Kandy Napan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, Fax: 435-797-1248
| | - Shuwei Zhang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, Fax: 435-797-1248
| | - Whitney Morgan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, Fax: 435-797-1248
| | - Thomas Anderson
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322
| | - Jon Y. Takemoto
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, Fax: 435-797-1248
| |
Collapse
|
22
|
Vila-Viçosa D, Francesconi O, Machuqueiro M. Why a diaminopyrrolic tripodal receptor binds mannosides in acetonitrile but not in water? Beilstein J Org Chem 2014; 10:1513-23. [PMID: 25161708 PMCID: PMC4142876 DOI: 10.3762/bjoc.10.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022] Open
Abstract
Intermolecular interactions involving carbohydrates and their natural receptors play important roles in several biological processes. The development of synthetic receptors is very useful to study these recognition processes. Recently, it was synthetized a diaminopyrrolic tripodal receptor that is selective for mannosides, which are obtained from mannose, a sugar with significant relevance in living systems. However, this receptor is significantly more active in acetonitrile than in water. In this work, we performed several molecular dynamics and constant-pH molecular dynamics simulations in acetonitrile and water to evaluate the conformational space of the receptor and to understand the molecular detail of the receptor–mannoside interaction. The protonation states sampled by the receptor show that the positive charges are always as distant as possible in order to avoid large intramolecular repulsions. Moreover, the conformational space of the receptor is very similar in water above pH 4.0 and in acetonitrile. From the simulations with the mannoside, we observe that the interactions are more specific in acetonitrile (mainly hydrogen bonds) than in water (mainly hydrophobic). Our results suggest that the readiness of the receptor to bind mannoside is not significantly affected in water (above pH 4.0). Probably, the hydrogen bond network that is formed in acetonitrile (which is weaker in water) is the main reason for the higher activity in this solvent. This work also presents a new implementation of the stochastic titration constant-pH molecular dynamics method to a synthetic receptor of sugars and attests its ability to describe the protonation/conformation coupling in these molecules.
Collapse
Affiliation(s)
- Diogo Vila-Viçosa
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Oscar Francesconi
- Dipartimento di Chimica, Università di Firenze, Polo Scientifico e Tecnológico, 50019 Sesto Fiorentino, Firenze, Italy
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
23
|
Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta Gen Subj 2014; 1850:186-235. [PMID: 24685397 DOI: 10.1016/j.bbagen.2014.03.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The most demanding challenge in research on molecular aspects within the flow of biological information is posed by the complex carbohydrates (glycan part of cellular glycoconjugates). How the 'message' encoded in carbohydrate 'letters' is 'read' and 'translated' can only be unraveled by interdisciplinary efforts. SCOPE OF REVIEW This review provides a didactic step-by-step survey of the concept of the sugar code and the way strategic combination of experimental approaches characterizes structure-function relationships, with resources for teaching. MAJOR CONCLUSIONS The unsurpassed coding capacity of glycans is an ideal platform for generating a broad range of molecular 'messages'. Structural and functional analyses of complex carbohydrates have been made possible by advances in chemical synthesis, rendering production of oligosaccharides, glycoclusters and neoglycoconjugates possible. This availability facilitates to test the glycans as ligands for natural sugar receptors (lectins). Their interaction is a means to turn sugar-encoded information into cellular effects. Glycan/lectin structures and their spatial modes of presentation underlie the exquisite specificity of the endogenous lectins in counterreceptor selection, that is, to home in on certain cellular glycoproteins or glycolipids. GENERAL SIGNIFICANCE Understanding how sugar-encoded 'messages' are 'read' and 'translated' by lectins provides insights into fundamental mechanisms of life, with potential for medical applications.
Collapse
Affiliation(s)
- Dolores Solís
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 07110 Bunyola, Mallorca, Illes Baleares, Spain.
| | - Nicolai V Bovin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, 117871 GSP-7, V-437, Moscow, Russian Federation.
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Karel Smetana
- Charles University, 1st Faculty of Medicine, Institute of Anatomy, U nemocnice 3, 128 00 Prague 2, Czech Republic.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany.
| |
Collapse
|
24
|
Nakagawa Y, Doi T, Taketani T, Takegoshi K, Igarashi Y, Ito Y. Mannose-Binding Geometry of Pradimicin A. Chemistry 2013; 19:10516-25. [DOI: 10.1002/chem.201301368] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Indexed: 11/12/2022]
|
25
|
Abstract
Lectins are proteins of non-immune origin that bind specific carbohydrates without chemical modification. Coupled with the emerging biological and pathological significance of carbohydrates, lectins have become extensively used as research tools in glycobiology. However, lectin-based drug development has been impeded by high manufacturing costs, low chemical stability, and the potential risk of initiating an unfavorable immune response. As alternatives to lectins, non-protein small molecules having carbohydrate-binding properties (lectin mimics) are currently attracting a great deal of attention because of their ease of preparation and chemical modification. Lectin mimics of synthetic origin are divided roughly into two groups, boronic acid-dependent and boronic acid-independent lectin mimics. This article outlines their representative architectures and carbohydrate-binding properties, and discusses their therapeutic potential by reviewing recent attempts to develop antiviral and antimicrobial agents using their architectures. We also focus on the naturally occurring lectin mimics, pradimicins and benanomicins. They are the only class of non-protein natural products having a C-type lectin-like ability to recognize d-mannopyranosides in the presence of Ca2 + ions. Their molecular basis of carbohydrate recognition and therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Yu Nakagawa
- Synthetic Cellular Chemistry Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | | |
Collapse
|
26
|
Rieth S, Miner MR, Chang CM, Hurlocker B, Braunschweig AB. Saccharide receptor achieves concentration dependent mannoside selectivity through two distinct cooperative binding pathways. Chem Sci 2013. [DOI: 10.1039/c2sc20873c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Shahzad-ul-Hussan S, Ghirlando R, Dogo-Isonagie CI, Igarashi Y, Balzarini J, Bewley CA. Characterization and carbohydrate specificity of pradimicin S. J Am Chem Soc 2012; 134:12346-9. [PMID: 22788706 DOI: 10.1021/ja303860m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The pradimicin family of antibiotics is attracting attention due to its anti-infective properties and as a model for understanding the requirements for carbohydrate recognition by small molecules. Members of the pradimicin family are unique among natural products in their ability to bind sugars in a Ca(2+)-dependent manner, but the oligomerization to insoluble aggregates that occurs upon Ca(2+) binding has prevented detailed characterization of their carbohydrate specificity and biologically relevant form. Here we take advantage of the water solubility of pradimicin S (PRM-S), a sulfated glucose-containing analogue of pradimicin A (PRM-A), to show by NMR spectroscopy and analytical ultracentrifugation that at biologically relevant concentrations, PRM-S binds Ca(2+) to form a tetrameric species that selectively binds and engulfs the trisaccharide Manα1-3(Manα1-6)Man over mannose or mannobiose. In functional HIV-1 entry assays, IC(50) values of 2-4 μM for PRM-S corrrelate with the concentrations at which oligomerization occurs as well as the affinities with which PRM-S binds the HIV surface envelope glycoprotein gp120. Together these data reveal the biologically active form of PRM-S, provide an explanation for previous speculations that PRM-A may contain a second mannose binding site, and expand our understanding of the characteristics that can engender a small molecule with the ability to function as a carbohydrate receptor.
Collapse
Affiliation(s)
- Syed Shahzad-ul-Hussan
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | | | | | | | |
Collapse
|
28
|
Zilke L, Hall DG. Synthetic Studies Towards the Core Tricyclic Ring System of Pradimicin A. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2012. [DOI: 10.1039/c1np90052h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Nakagawa Y, Ito Y. Carbohydrate-Binding Molecules with Non-Peptidic Skeletons. TRENDS GLYCOSCI GLYC 2012. [DOI: 10.4052/tigg.24.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Nakagawa Y, Doi T, Takegoshi K, Igarashi Y, Ito Y. Solid-state NMR analysis of calcium and d-mannose binding of BMY-28864, a water-soluble analogue of pradimicin A. Bioorg Med Chem Lett 2012; 22:1040-3. [DOI: 10.1016/j.bmcl.2011.11.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 11/17/2022]
|