1
|
Corrêa GA, Kuźniarska-Biernacka I, Fernandes DM, Rebelo SLH. Polarized Bimetallic Site Synergy in Ionic Structures of Cu(II), Fe(III), and Mn(III) Porphyrins: Electrochemistry and Catalytic Hydrogenation of Nitroaromatics. Inorg Chem 2024. [PMID: 39546480 DOI: 10.1021/acs.inorgchem.4c03916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Binuclear catalytic sites attained in a controlled way with complementary and cooperative metal ion centers are highly relevant in the development of new or enhanced catalytic processes. Herein, binuclear sites carrying Fe(III), Cu(II), or Mn(III) metal ions with a polarized structure have been prepared using the ionic self-assembly of oppositely charged metalloporphyrins. Binary porphyrin structures (BIPOS) have been prepared based on metalloporphyrin cations carrying pyridinium or methylpyridinium groups in conjugation with metalloporphyrin anions carrying sulfonatophenyl groups. BIPOS carrying [cation/anion] tecton pairs of [Cu/Fe], [Fe/Cu], [Cu/Cu], [Fe/Fe], [Mn/Fe], [Fe/Mn], and [Mn/Mn] have been compared. Electrochemical interaction and enhanced catalytic behavior are noticeable for BIPOS [Fe/Cu], [Fe/Fe], and [Mn/Fe] carrying a Fe center and [less electronegative/more electronegative] metal ion centers in the [cation/anion] porphyrin ionic pairs. For high-performance BIPOS, cyclic voltammograms showed a greater separation of the cathodic and anodic peaks, within ΔEp = 0.095-0.125 V, and the rate constants for the catalytic reduction of 4-nitrophenol were within k = 0.380-0.535 min-1/mg of catalyst, significantly superior to the related individual metalloporphyrins. Inverse heterobimetallic [Cu/Fe] and [Fe/Mn] and the homometallic BIPOS [Cu/Cu] and [Mn/Mn] were significantly less active or inefficient. A [Fe/Cu] material could be reused in at least 5 catalytic cycles, maintaining catalytic activity; the best catalysts were also active in the reduction of nitrobenzene to aniline in mild conditions (visible light, 30 °C, 0.5 mol % catalyst), and an [Fe/Fe] catalyst showed 100% aniline yield after 2 h.
Collapse
Affiliation(s)
- Gabriela A Corrêa
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Iwona Kuźniarska-Biernacka
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Diana M Fernandes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Susana L H Rebelo
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Herrera FC, Caraballo RM, Vensaus P, Soler Illia GJAA, Hamer M. Fe-Ni porphyrin/mesoporous titania thin film electrodes: a bioinspired nanoarchitecture for photoelectrocatalysis. RSC Adv 2024; 14:15832-15839. [PMID: 38756854 PMCID: PMC11095088 DOI: 10.1039/d3ra08047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Porphyrin and porphyrinoid derivatives have been extensively studied in the assembly of catalysts and sensors, seeking biomimetic and bioinspired activity. In particular, Fe and Ni porphyrins can be used for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by immobilization of these molecular catalysts on semiconductor materials. In this study, we designed a hybrid material containing a crystalline mesoporous TiO2 thin film in which the catalytic centres are Ni-porphyrin (NiP), Fe-porphyrin (FeP), and a NiP/FeP bimetallic system to assess whether the coexistence of both metalloporphyrins improves the OER activity. The obtained photoelectrodes were physicochemically and morphologically characterized through high-resolution FE-SEM images, UV-vis and Raman spectroscopies, cyclic voltammetry, and impedance measurements. The results show a differential behavior of the mono- and bimetallic porphyrin systems, where the Fe(iii) centre in FeP may increase the acidity and lower the reduction potential of the Ni2+/3+ couple when co-deposited with NiP leading to an improved photoelectrochemical water-oxidation performance. We have validated the cooperative effect of both metal complexes within this novel system, where the μ-peroxo-bridged interaction between Fe and Ni is integrated into a supramolecular heterometallic structure of porphyrins.
Collapse
Affiliation(s)
- Facundo C Herrera
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín (INS-UNSAM)-CONICET 1650 San Martín Argentina
- Laboratorio Argentino Haces de Neutrones-CNEA Av. Gral. Paz 1499 Villa Maipú Argentina
| | - Rolando M Caraballo
- INEDES, UNLu-CONICET Av. Constitución y Ruta Nac. No. 5 (CP6700) Luján Argentina
| | - Priscila Vensaus
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín (INS-UNSAM)-CONICET 1650 San Martín Argentina
| | - Galo J A A Soler Illia
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín (INS-UNSAM)-CONICET 1650 San Martín Argentina
| | - Mariana Hamer
- Instituto de Ciencias, Universidad Nacional de General Sarmiento-CONICET Juan María Gutiérrez 1150 (CP1613) Los Polvorines Argentina
| |
Collapse
|
3
|
Opallo MW, Dusilo K, Warczak M, Kalisz J. Hydrogen Evolution, Oxygen Evolution and Oxygen Reduction at Polarizable Liquid|Liquid Interfaces. ChemElectroChem 2022. [DOI: 10.1002/celc.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marcin Wojciech Opallo
- Institute of Physical Chemistry, Polish Academy of Sciences Department of Electrode Processes Kasprzaka 44/52 01-224 Warszawa POLAND
| | - Katarzyna Dusilo
- Institute of Physical Chemistry Polish Academy of Sciences Library: Instytut Chemii Fizycznej Polskiej Akademii Nauk Biblioteka Electrode Processes POLAND
| | - Magdalena Warczak
- Institute of Physical Chemistry Polish Academy of Sciences Library: Instytut Chemii Fizycznej Polskiej Akademii Nauk Biblioteka Electrode Processes POLAND
| | - Justyna Kalisz
- University of Warsaw: Uniwersytet Warszawski Chemistry POLAND
| |
Collapse
|
4
|
Kuzmin SM, Chulovskaya SA, Dmitrieva OA, Mamardashvili NZ, Koifman OI, Parfenyuk VI. 2H-5,10,15,20-tetrakis(3-aminophenyl)porphyrin films: Electrochemical formation and catalyst property testing. J Electroanal Chem (Lausanne) 2022; 918:116476. [DOI: 10.1016/j.jelechem.2022.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Lv B, Li X, Guo K, Ma J, Wang Y, Lei H, Wang F, Jin X, Zhang Q, Zhang W, Long R, Xiong Y, Apfel UP, Cao R. Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two-Electron and Four-Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers. Angew Chem Int Ed Engl 2021; 60:12742-12746. [PMID: 33742485 DOI: 10.1002/anie.202102523] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/26/2023]
Abstract
Achieving a selective 2 e- or 4 e- oxygen reduction reaction (ORR) is critical but challenging. Herein, we report controlling ORR selectivity of Co porphyrins by tuning only steric effects. We designed Co porphyrin 1 with meso-phenyls each bearing a bulky ortho-amido group. Due to the resulted steric hinderance, 1 has four atropisomers with similar electronic structures but dissimilar steric effects. Isomers αβαβ and αααα catalyze ORR with n=2.10 and 3.75 (n is the electron number transferred per O2 ), respectively, but ααββ and αααβ show poor selectivity with n=2.89-3.10. Isomer αβαβ catalyzes 2 e- ORR by preventing a bimolecular O2 activation path, while αααα improves 4 e- ORR selectivity by improving O2 binding at its pocket, a feature confirmed by spectroscopy methods, including O K-edge near-edge X-ray absorption fine structure. This work represents an unparalleled example to improve 2 e- and 4 e- ORR by tuning only steric effects without changing molecular and electronic structures.
Collapse
Affiliation(s)
- Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jun Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Fang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
7
|
Lv B, Li X, Guo K, Ma J, Wang Y, Lei H, Wang F, Jin X, Zhang Q, Zhang W, Long R, Xiong Y, Apfel U, Cao R. Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two‐Electron and Four‐Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Jun Ma
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovative Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230026 China
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Fang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovative Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230026 China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovative Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230026 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie, Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
8
|
Rastgar S, Teixeira Santos K, Angelucci CA, Wittstock G. Catalytic Activity of Alkali Metal Cations for the Chemical Oxygen Reduction Reaction in a Biphasic Liquid System Probed by Scanning Electrochemical Microscopy. Chemistry 2020; 26:10882-10890. [PMID: 32460434 PMCID: PMC7496973 DOI: 10.1002/chem.202001967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/24/2020] [Indexed: 12/01/2022]
Abstract
Chemical reduction of dioxygen in organic solvents for the production of reactive oxygen species or the concomitant oxidation of organic substrates can be enhanced by the separation of products and educts in biphasic liquid systems. Here, the coupled electron and ion transfer processes is studied as well as reagent fluxes across the liquid|liquid interface for the chemical reduction of dioxygen by decamethylferrocene (DMFc) in a dichloroethane-based organic electrolyte forming an interface with an aqueous electrolyte containing alkali metal ions. This interface is stabilized at the orifice of a pipette, across which a Galvani potential difference is externally applied and precisely adjusted to enforce the transfer of different alkali metal ions from the aqueous to the organic electrolyte. The oxygen reduction is followed by H2 O2 detection in the aqueous phase close to the interface by a microelectrode of a scanning electrochemical microscope (SECM). The results prove a strong catalytic effect of hydrated alkali metal ions on the formation rate of H2 O2 , which varies systematically with the acidity of the transferred alkali metal ions in the organic phase.
Collapse
Affiliation(s)
- Shokoufeh Rastgar
- Carl von Ossietzky University of OldenburgChemistry Department261111OldenburgGermany
| | - Keyla Teixeira Santos
- Carl von Ossietzky University of OldenburgChemistry Department261111OldenburgGermany
- Federal University of ABCCenter for Natural and Human SciencesAv. dos Estados 500109210-580Santo André/SPBrazil
| | - Camilo Andrea Angelucci
- Federal University of ABCCenter for Natural and Human SciencesAv. dos Estados 500109210-580Santo André/SPBrazil
| | - Gunther Wittstock
- Carl von Ossietzky University of OldenburgChemistry Department261111OldenburgGermany
| |
Collapse
|
9
|
Beyene BB, Hung CH. Recent progress on metalloporphyrin-based hydrogen evolution catalysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213234] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Zhang X, Cibian M, Call A, Yamauchi K, Sakai K. Photochemical CO2 Reduction Driven by Water-Soluble Copper(I) Photosensitizer with the Catalysis Accelerated by Multi-Electron Chargeable Cobalt Porphyrin. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04023] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xian Zhang
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mihaela Cibian
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Québec, Canada
| | - Arnau Call
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosei Yamauchi
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken Sakai
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Center of Molecular Systems (CMS), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Gu C, Nie X, Jiang J, Chen Z, Dong Y, Zhang X, Liu J, Yu Z, Zhu Z, Liu J, Liu X, Shao Y. Mechanistic Study of Oxygen Reduction at Liquid/Liquid Interfaces by Hybrid Ultramicroelectrodes and Mass Spectrometry. J Am Chem Soc 2019; 141:13212-13221. [PMID: 31353892 DOI: 10.1021/jacs.9b06299] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton-coupled electron transfer (PCET) reactions at various interfaces (liquid/membrane, solid/electrolyte, liquid/liquid) lie at the heart of many processes in biology and chemistry. Mechanistic study can provide profound understanding of PCET and rational design of new systems. However, most mechanisms of PCET reactions at a liquid/liquid interface have been proposed based on electrochemical and spectroscopic data, which lack direct evidence for possible intermediates. Moreover, a liquid/liquid interface as one type of soft interface is dynamic, making the investigation of interfacial reactions very challenging. Herein a novel electrochemistry method coupled to mass spectrometry (EC-MS) was introduced for in situ study of the oxygen reduction reaction (ORR) by ferrocene (Fc) under catalysis from cobalt tetraphenylporphine (CoTPP) at liquid/liquid interfaces. The key units are two types of gel hybrid ultramicroelectrodes (agar-gel/organic hybrid ultramicroelectrodes and water/PVC-gel hybrid ultramicroelectrodes), which were made based on dual micro- or nanopipettes. A solidified liquid/liquid interface can be formed at the tip of these pipettes, and it serves as both an electrochemical cell and a nanospray emitter for mass spectrometry. We demonstrated that the solidified L/L interfaces were very similar to typical L/L interfaces. Key CoTPP intermediates of the ORR at the liquid/liquid interfaces were identified for the first time, and the four-electron oxygen reduction pathway predominated, which provides valuable insights into the mechanism of the ORR. Theoretical simulation has further supported the possibility of formation of intermediates. This type of platform is promising for in situ tracking and identifying intermediates to study complicated reactions at liquid/liquid interfaces or other soft interfaces.
Collapse
Affiliation(s)
- Chaoyue Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xin Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jiezhang Jiang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zifei Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yifan Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xin Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
12
|
Call A, Cibian M, Yamamoto K, Nakazono T, Yamauchi K, Sakai K. Highly Efficient and Selective Photocatalytic CO2 Reduction to CO in Water by a Cobalt Porphyrin Molecular Catalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04975] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Arnau Call
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| | - Mihaela Cibian
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| | - Keiya Yamamoto
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| | - Takashi Nakazono
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| | - Kosei Yamauchi
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| | - Ken Sakai
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
- Center of Molecular Systems (CMS), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Meng J, Lei H, Li X, Qi J, Zhang W, Cao R. Attaching Cobalt Corroles onto Carbon Nanotubes: Verification of Four-Electron Oxygen Reduction by Mononuclear Cobalt Complexes with Significantly Improved Efficiency. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00213] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jia Meng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
14
|
Jayachandran P, Angamuthu A, Gopalan P. Quantum Chemical Study on the Structure and Energetics of Binary Ionic Porphyrin Complexes. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Abiram Angamuthu
- Department of Physics; Karunya Institute of Technology and Sciences; Coimbatore 641114 India
| | - Praveena Gopalan
- Department of Physics; PSGR Krishnammal College for Women; Coimbatore 641004 India
| |
Collapse
|
15
|
Ye L, Fang Y, Ou Z, Xue S, Kadish KM. Cobalt Tetrabutano- and Tetrabenzotetraarylporphyrin Complexes: Effect of Substituents on the Electrochemical Properties and Catalytic Activity of Oxygen Reduction Reactions. Inorg Chem 2018; 56:13613-13626. [PMID: 29064238 DOI: 10.1021/acs.inorgchem.7b02405] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three series of cobalt tetraarylporphyrins were synthesized and characterized by electrochemistry and spectroelectrochemistry. The investigated compounds have the general formula (TpYPP)Co, butano(TpYPP)CoII, and benzo(TpYPP)CoII, where TpYPP represents the dianion of the meso-substituted porphyrin, Y is a CH3, H, or Cl substituent on the para position of the four phenyl rings, and butano and benzo are respectively the β- and β'-substituted groups on the four pyrrole rings of the compound. Each porphyrin undergoes one or two reductions depending upon the meso substituent and solvent utilized. Two irreversible reductions are observed for (TpYPP)CoII and butano(TpYPP)CoII in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate; the first leads to the formation of a highly reactive cobalt(I) porphyrin, which can then rapidly react with a solvent to give a CoIIICH2Cl as the product. Only one reversible reduction is seen for benzo(TpYPP)CoII under the same solution conditions, and the one-electron-reduction product is assigned as a cobalt(II) porphyrin π-anion radical. Three oxidations can be observed for each examined compound in CH2Cl2. The first oxidation is metal-centered for the (TpYPP)Co and benzo(TpYPP)CoII derivatives, leading to generation of a cobalt(III) porphyrin with an intact π-ring system, but this redox process is ring-centered in the case of butano(TpYPP)CoII and gives a CoII π-cation radical product. Each porphyrin was also examined as a catalyst for oxygen reduction reactions (ORRs) when adsorbed on a graphite electrode in 1.0 M HClO4. The number of electrons transferred (n) during ORRs is 2.0 for the butano(TpYPP)CoII derivatives, consistent with only H2O2 being produced as a product for the reaction with O2. However, the reduction of O2 using the cobalt benzoporphyrins as catalysts gave n values between 2.6 and 3.1 under the same solution conditions, thus producing a mixture of H2O and H2O2 as the reduction product. This result indicates that the β and β' substituents have a significant effect on the catalytic properties of the cobalt porphyrins for ORRs in acid media.
Collapse
Affiliation(s)
- Lina Ye
- School of Computer, Jilin Normal University , Siping 136000, China.,School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Zhongping Ou
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China.,Department of Chemistry, University of Houston , Houston, Texas 77204-5003, United States
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Karl M Kadish
- Department of Chemistry, University of Houston , Houston, Texas 77204-5003, United States
| |
Collapse
|
16
|
Scanlon MD, Smirnov E, Stockmann TJ, Peljo P. Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics. Chem Rev 2018; 118:3722-3751. [DOI: 10.1021/acs.chemrev.7b00595] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Micheál D. Scanlon
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Evgeny Smirnov
- Laboratoire d’Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - T. Jane Stockmann
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086, Sorbonne Paris Cité, Paris Diderot University, 15 Rue J.A. Baïf, 75013 Paris, France
| | - Pekka Peljo
- Laboratoire d’Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
17
|
Miyake Y, López-Moreno A, Yang J, Xu HJ, Desbois N, Gros CP, Komatsu N. Synthesis of flexible nanotweezers with various metals and their application in carbon nanotube extraction. NEW J CHEM 2018. [DOI: 10.1039/c8nj00147b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Flexible nanotweezers including Co(ii) dispersed single-walled carbon nanotubes in methanol.
Collapse
Affiliation(s)
- Yuya Miyake
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto 606-8501
- Japan
| | | | - Jian Yang
- Université de Bourgogne-Franche Comté
- ICMUB (UMR UB-CNRS 6302)
- 21078 Dijon Cedex
- France
- College of Chemical Engineering
| | - Hai-Jun Xu
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Nicolas Desbois
- Université de Bourgogne-Franche Comté
- ICMUB (UMR UB-CNRS 6302)
- 21078 Dijon Cedex
- France
| | - Claude P. Gros
- Université de Bourgogne-Franche Comté
- ICMUB (UMR UB-CNRS 6302)
- 21078 Dijon Cedex
- France
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto 606-8501
- Japan
| |
Collapse
|
18
|
Borders B, Adinehnia M, Rosenkrantz N, van Zijll M, Hipps KW, Mazur U. Photoconductive behavior of binary porphyrin crystalline assemblies. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism of photoconductivity in a crystalline photoconductor synthesized from 1:1 ratio of meso-tetra(4-pyridyl)porphyrin (TPyP) and meso-tetra(4-sulfonatophenyl)porphyrin (TSPP) ionic tectons was examined. The rod-like crystals of TPyP:TSPP insulate in the dark but become photoconducting on illumination and a portion of the photoinduced current persists after the laser light is turned off. This persistent photoconductivity (PPC) is investigated as a function of laser illumination wavelength, laser power, and sample temperature. The primary charge carriers in the TPyP:TSPP upon photoexcitation are electrons and the charge recombination mechanism follows monomolecular kinetics. The number of electrons contributing to the photocurrent is directly proportional to the number of photons absorbed thus, the mechanisms of the photoconductivity resulting from excitations within the Soret band and the Q-band are the same. The PPC is interpreted to be the result of the formation of photoinduced metastable defects that allow for Miller–Abrahams-like hopping conductivity. The TPyP:TSPP has an incommensurately modulated crystal lattice and its proposed model structure is based on both ionic and neutral porphyrin tectons. The thermogravimetric analysis shows that the porphyrin crystals undergo dehydration on heating (˜50 ∘C) by losing water molecules located in the crystalline channels. Temperature dependent XRD indicates that dehydration causes irreversible changes to the crystal structure. The loss of crystallinity observed with heating the TPyP:TSPP crystals above 90 ∘C causes approximately 25% loss in photoconductivity but has little effect on the lifetime associated with the persistent photoconductivity.
Collapse
Affiliation(s)
- Bryan Borders
- Washington State University, Department of Chemistry and Materials Science and Engineering Program, PO Box 644630, Pullman, WA 99164-4630, USA
| | - Morteza Adinehnia
- Washington State University, Department of Chemistry and Materials Science and Engineering Program, PO Box 644630, Pullman, WA 99164-4630, USA
| | - Naomi Rosenkrantz
- Washington State University, Department of Chemistry and Materials Science and Engineering Program, PO Box 644630, Pullman, WA 99164-4630, USA
| | - Marshall van Zijll
- University of California, Davis, Department of Physics, One Shields Avenue, Davis, CA 95616, USA
| | - K. W. Hipps
- Washington State University, Department of Chemistry and Materials Science and Engineering Program, PO Box 644630, Pullman, WA 99164-4630, USA
| | - Ursula Mazur
- Washington State University, Department of Chemistry and Materials Science and Engineering Program, PO Box 644630, Pullman, WA 99164-4630, USA
| |
Collapse
|
19
|
Peljo P, Scanlon MD, Olaya AJ, Rivier L, Smirnov E, Girault HH. Redox Electrocatalysis of Floating Nanoparticles: Determining Electrocatalytic Properties without the Influence of Solid Supports. J Phys Chem Lett 2017; 8:3564-3575. [PMID: 28707892 DOI: 10.1021/acs.jpclett.7b00685] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Redox electrocatalysis (catalysis of electron-transfer reactions by floating conductive particles) is discussed from the point-of-view of Fermi level equilibration, and an overall theoretical framework is given. Examples of redox electrocatalysis in solution, in bipolar configuration, and at liquid-liquid interfaces are provided, highlighting that bipolar and liquid-liquid interfacial systems allow the study of the electrocatalytic properties of particles without effects from the support, but only liquid-liquid interfaces allow measurement of the electrocatalytic current directly. Additionally, photoinduced redox electrocatalysis will be of interest, for example, to achieve water splitting.
Collapse
Affiliation(s)
- Pekka Peljo
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Micheál D Scanlon
- Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL) , Limerick V94 T9PX, Ireland
| | - Astrid J Olaya
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Lucie Rivier
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Evgeny Smirnov
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
20
|
Jiang X, Gros CP, Chang Y, Desbois N, Zeng L, Cui Y, Kadish KM. Tetracationic and Tetraanionic Manganese Porphyrins: Electrochemical and Spectroelectrochemical Characterization. Inorg Chem 2017; 56:8045-8057. [DOI: 10.1021/acs.inorgchem.7b00732] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoqin Jiang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Claude P. Gros
- ICMUB (UMR
CNRS 6302), Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Yi Chang
- ICMUB (UMR
CNRS 6302), Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Nicolas Desbois
- ICMUB (UMR
CNRS 6302), Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Lihan Zeng
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Yan Cui
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
21
|
Lang P, Matlachowski C, Schwalbe M. The Importance of Temperature Control for the Synthesis of Fluorinated Phenanthroline-Extended Porphyrins and the Evaluation of Their Photocatalytic CO2
Reduction Ability. ChemistrySelect 2017. [DOI: 10.1002/slct.201700907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philipp Lang
- Department of Chemistry; Humboldt Universität zu Berlin; Brook-Taylor-Str. 2
| | | | - Matthias Schwalbe
- Department of Chemistry; Humboldt Universität zu Berlin; Brook-Taylor-Str. 2
| |
Collapse
|
22
|
Mase K, Aoi S, Ohkubo K, Fukuzumi S. Catalytic reduction of proton, oxygen and carbon dioxide with cobalt macrocyclic complexes. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616300111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The conversion of solar energy into chemical energy by the reduction of small molecules provides a promising solution for the effective energy storage and transport. In this manuscript, we have highlighted our recent researches on the catalysis of cobalt-macrocycle complexes for the reduction of O2, proton and CO2. We have successfully clarified the reaction mechanisms of catalytic O2 reduction with cobalt phthalocyanine (Co[Formula: see text](Pc)) and cobalt chlorin (Co[Formula: see text](Ch)) based on detailed kinetic study under homogeneous conditions. The presence of proton-accepting moieties on these macrocyclic ligands enhances the electron-accepting ability, leading to the efficient catalytic two-electron reduction of O2 to produce hydrogen peroxide (H2O[Formula: see text] with high stability and less overpotential in acidic solutions. When Co[Formula: see text](Ch) is adsorbed on multi-walled carbon nanotubes (MWCNTs) and employed as an electrocatalyst, CO2 was successfully reduced to form CO with a Faradaic efficiency of 89% at an applied potential of -1.1 V vs. NHE in an aqueous solution. Finally, photocatalytic H2 evolution was attained from ascorbic acid with Co[Formula: see text](Ch) as a catalyst and [Ru(bpy)3][Formula: see text] (bpy [Formula: see text] 2,2[Formula: see text]-bipyridine) as a photocatalyst via a one-photon two-electron process.
Collapse
Affiliation(s)
- Kentaro Mase
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shoko Aoi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Division of Innovative Research for Drug Design, Institute of Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
- Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-0073, Japan
| |
Collapse
|
23
|
Zhang W, Lai W, Cao R. Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chem Rev 2016; 117:3717-3797. [PMID: 28222601 DOI: 10.1021/acs.chemrev.6b00299] [Citation(s) in RCA: 730] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Globally increasing energy demands and environmental concerns related to the use of fossil fuels have stimulated extensive research to identify new energy systems and economies that are sustainable, clean, low cost, and environmentally benign. Hydrogen generation from solar-driven water splitting is a promising strategy to store solar energy in chemical bonds. The subsequent combustion of hydrogen in fuel cells produces electric energy, and the only exhaust is water. These two reactions compose an ideal process to provide clean and sustainable energy. In such a process, a hydrogen evolution reaction (HER), an oxygen evolution reaction (OER) during water splitting, and an oxygen reduction reaction (ORR) as a fuel cell cathodic reaction are key steps that affect the efficiency of the overall energy conversion. Catalysts play key roles in this process by improving the kinetics of these reactions. Porphyrin-based and corrole-based systems are versatile and can efficiently catalyze the ORR, OER, and HER. Because of the significance of energy-related small molecule activation, this review covers recent progress in hydrogen evolution, oxygen evolution, and oxygen reduction reactions catalyzed by porphyrins and corroles.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Wenzhen Lai
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China.,Department of Chemistry, Renmin University of China , Beijing 100872, China
| |
Collapse
|
24
|
|
25
|
|
26
|
Smirnov E, Peljo P, Scanlon MD, Gumy F, Girault HH. Self-healing gold mirrors and filters at liquid-liquid interfaces. NANOSCALE 2016; 8:7723-7737. [PMID: 27001646 DOI: 10.1039/c6nr00371k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of "floating islands" of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance.
Collapse
Affiliation(s)
- Evgeny Smirnov
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Rue de l'Industrie 17, CH-1951 Sion, Switzerland.
| | - Pekka Peljo
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Rue de l'Industrie 17, CH-1951 Sion, Switzerland.
| | - Micheál D Scanlon
- Department of Chemistry, the Tyndall National Institute and the Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| | - Frederic Gumy
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Rue de l'Industrie 17, CH-1951 Sion, Switzerland.
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Rue de l'Industrie 17, CH-1951 Sion, Switzerland.
| |
Collapse
|
27
|
Smirnov E, Peljo P, Scanlon MD, Girault HH. Gold Nanofilm Redox Catalysis for Oxygen Reduction at Soft Interfaces. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.10.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Investigation of Interfacial Consecutive Electron Transfer and Redox Behaviors of Zinc-tetraarylporphyrins. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Fan Y, Huang Y, Jiang Y, Ning X, Wang X, Shan D, Lu X. Comparative study on the interfacial electron transfer of zinc porphyrins with meso-π-extension at a 2 n pattern. J Colloid Interface Sci 2016; 462:100-9. [DOI: 10.1016/j.jcis.2015.09.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 11/25/2022]
|
30
|
Jia H, Sun Z, Jiang D, Yang S, Du P. An iron porphyrin-based conjugated network wrapped around carbon nanotubes as a noble-metal-free electrocatalyst for efficient oxygen reduction reaction. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00198f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study reported the first system of Fe-porphyrin conjugated network on carbon nanotubes for ORR, which exhibited excellent performance with high catalytic activity, robust stability, and good methanol tolerance.
Collapse
Affiliation(s)
- Hongxing Jia
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- University of Science and Technology of China
| | - Zijun Sun
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- University of Science and Technology of China
| | - Daochuan Jiang
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- University of Science and Technology of China
| | - Shangfeng Yang
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- University of Science and Technology of China
| | - Pingwu Du
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- University of Science and Technology of China
| |
Collapse
|
31
|
Zhou M, Yu Y, Blanchard PY, Mirkin MV. Surface Patterning Using Diazonium Ink Filled Nanopipette. Anal Chem 2015; 87:10956-62. [DOI: 10.1021/acs.analchem.5b02784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Min Zhou
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Yun Yu
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Pierre-Yves Blanchard
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Michael V. Mirkin
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| |
Collapse
|
32
|
Oxygen Reduction at the Liquid-Liquid Interface: Bipolar Electrochemistry through Adsorbed Graphene Layers. ChemElectroChem 2015. [DOI: 10.1002/celc.201500343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Characterization of local electrocatalytical activity of nanosheet-structured ZnCo 2 O 4 /carbon nanotubes composite for oxygen reduction reaction with scanning electrochemical microscopy. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.08.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Mase K, Ohkubo K, Xue Z, Yamada H, Fukuzumi S. Catalytic two-electron reduction of dioxygen catalysed by metal-free [14]triphyrin(2.1.1). Chem Sci 2015; 6:6496-6504. [PMID: 30090268 PMCID: PMC6054055 DOI: 10.1039/c5sc02465j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/02/2015] [Indexed: 02/01/2023] Open
Abstract
The catalytic two-electron reduction of dioxygen (O2) by octamethylferrocene (Me8Fc) occurs with a metal-free triphyrin (HTrip) in the presence of perchloric acid (HClO4) in benzonitrile (PhCN) at 298 K to yield Me8Fc+ and H2O2. Detailed kinetic analysis has revealed that the catalytic two-electron reduction of O2 by Me8Fc with HTrip proceeds via proton-coupled electron transfer from Me8Fc to HTrip to produce H3Trip˙+, followed by a second electron transfer from Me8Fc to H3Trip˙+ to produce H3Trip, which is oxidized by O2via formation of the H3Trip/O2 complex to yield H2O2. The rate-determining step in the catalytic cycle is hydrogen atom transfer from H3Trip to O2 in the H3Trip/O2 complex to produce the radical pair (H3Trip˙+ HO2˙) as an intermediate, which was detected as a triplet EPR signal with fine-structure by the EPR measurements at low temperature. The distance between the two unpaired electrons in the radical pair was determined to be 4.9 Å from the zero-field splitting constant (D).
Collapse
Affiliation(s)
- Kentaro Mase
- Department of Material and Life Science , Graduate School of Engineering , ALCA and SENTAN , Japan Science and Technology Agency (JST) , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - Kei Ohkubo
- Department of Material and Life Science , Graduate School of Engineering , ALCA and SENTAN , Japan Science and Technology Agency (JST) , Osaka University , Suita , Osaka 565-0871 , Japan . .,Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Zhaoli Xue
- Graduate School of Materials Science , Nara Institute of Science and Technology , CREST , Japan Science and Technology Agency (JST) , Ikoma , Nara 630-0192 , Japan .
| | - Hiroko Yamada
- Graduate School of Materials Science , Nara Institute of Science and Technology , CREST , Japan Science and Technology Agency (JST) , Ikoma , Nara 630-0192 , Japan .
| | - Shunichi Fukuzumi
- Department of Material and Life Science , Graduate School of Engineering , ALCA and SENTAN , Japan Science and Technology Agency (JST) , Osaka University , Suita , Osaka 565-0871 , Japan . .,Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea.,Faculty of Science and Engineering , ALCA , SENTAN , Japan Science and Technology Agency (JST) , Meijo University , Nagoya , Aichi 468-0073 , Japan
| |
Collapse
|
35
|
Cobalt Corrole on Carbon Nanotube as a Synergistic Catalyst for Oxygen Reduction Reaction in Acid Media. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Gennari M, Brazzolotto D, Pécaut J, Cherrier MV, Pollock CJ, DeBeer S, Retegan M, Pantazis DA, Neese F, Rouzières M, Clérac R, Duboc C. Dioxygen Activation and Catalytic Reduction to Hydrogen Peroxide by a Thiolate-Bridged Dimanganese(II) Complex with a Pendant Thiol. J Am Chem Soc 2015; 137:8644-53. [DOI: 10.1021/jacs.5b04917] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Marcello Gennari
- CNRS
UMR 5250, DCM, Université Grenoble Alpes, F-38000 Grenoble, France
| | | | - Jacques Pécaut
- INAC-SCIB, Université Grenoble Alpes, F-38000 Grenoble, France
- Reconnaissance Ionique et Chimie de Coordination, CEA, INAC-SCIB, F-38000 Grenoble, France
| | - Mickael V. Cherrier
- Metalloproteins
Unit, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS
UMR 5075, Université Grenoble Alpes, 41 rue Horowitz, 38027 Grenoble Cedex 1, France
- Université de Lyon, F-69622 Lyon, France
- Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
- CNRS,
UMR 5086 Bases Moléculaires et Structurales de Systèmes
Infectieux, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, F-69367 Lyon, France
| | - Christopher J. Pollock
- Max-Planck-Institut für Chemische Energie Konversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max-Planck-Institut für Chemische Energie Konversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Marius Retegan
- Max-Planck-Institut für Chemische Energie Konversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Chemische Energie Konversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Chemische Energie Konversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Mathieu Rouzières
- CNRS, CRPP, UPR 8641, F-33600 Pessac, France
- CRPP,
UPR 8641, Université Bordeaux, F-33600 Pessac, France
| | - Rodolphe Clérac
- CNRS, CRPP, UPR 8641, F-33600 Pessac, France
- CRPP,
UPR 8641, Université Bordeaux, F-33600 Pessac, France
| | - Carole Duboc
- CNRS
UMR 5250, DCM, Université Grenoble Alpes, F-38000 Grenoble, France
| |
Collapse
|
37
|
Smirnov E, Peljo P, Scanlon MD, Girault HH. Interfacial Redox Catalysis on Gold Nanofilms at Soft Interfaces. ACS NANO 2015; 9:6565-6575. [PMID: 26039934 DOI: 10.1021/acsnano.5b02547] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Soft or "liquid-liquid" interfaces were functionalized by roughly half a monolayer of mirror-like nanofilms of gold nanoparticles using a precise interfacial microinjection method. The surface coverage of the nanofilm was characterized by ion transfer voltammetry. These gold nanoparticle films represent an ideal model system for studying both the thermodynamic and kinetic aspects of interfacial redox catalysis. The electric polarization of these soft interfaces is easily controllable, and thus the Fermi level of the electrons in the interfacial gold nanoparticle film can be easily manipulated. Here, we study interfacial redox catalysis between two redox couples located in adjacent immiscible phases and highlight the catalytic properties of a gold nanoparticle film toward heterogeneous electron transfer reactions.
Collapse
Affiliation(s)
- Evgeny Smirnov
- †Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Pekka Peljo
- †Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Micheál D Scanlon
- †Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
- ‡Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland
| | - Hubert H Girault
- †Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Jung J, Liu S, Ohkubo K, Abu-Omar MM, Fukuzumi S. Catalytic two-electron reduction of dioxygen by ferrocene derivatives with manganese(V) corroles. Inorg Chem 2015; 54:4285-91. [PMID: 25867007 DOI: 10.1021/ic503012s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electron transfer from octamethylferrocene (Me8Fc) to the manganese(V) imidocorrole complex (tpfc)Mn(V)(NAr) [tpfc = 5,10,15-tris(pentafluorophenyl)corrole; Ar = 2,6-Cl2C6H3] proceeds efficiently to give an octamethylferrocenium ion (Me8Fc(+)) and [(tpfc)Mn(IV)(NAr)](-) in acetonitrile (MeCN) at 298 K. Upon the addition of trifluoroacetic acid (TFA), further reduction of [(tpfc)Mn(IV)(NAr)](-) by Me8Fc gives (tpfc)Mn(III) and ArNH2 in deaerated MeCN. TFA also results in hydrolysis of (tpfc)Mn(V)(NAr) with residual water to produce a protonated manganese(V) oxocorrole complex ([(tpfc)Mn(V)(OH)](+)) in deaerated MeCN. [(tpfc)Mn(V)(OH)](+) is rapidly reduced by 2 equiv of Me8Fc in the presence of TFA to give (tpfc)Mn(III) in deaerated MeCN. In the presence of dioxygen (O2), (tpfc)Mn(III) catalyzes the two-electron reduction of O2 by Me8Fc with TFA in MeCN to produce H2O2 and Me8Fc(+). The rate of formation of Me8Fc(+) in the catalytic reduction of O2 follows zeroth-order kinetics with respect to the concentrations of Me8Fc and TFA, whereas the rate increases linearly with increasing concentrations of (tpfc)Mn(V)(NAr) and O2. These kinetic dependencies are consistent with the rate-determining step being electron transfer from (tpfc)Mn(III) to O2, followed by further proton-coupled electron transfer from Me8Fc to produce H2O2 and [(tpfc)Mn(IV)](+). Rapid electron transfer from Me8Fc to [(tpfc)Mn(IV)](+) regenerates (tpfc)Mn(III), completing the catalytic cycle. Thus, catalytic two-electron reduction of O2 by Me8Fc with (tpfc)Mn(V)(NAr) as a catalyst precursor proceeds via a Mn(III)/Mn(IV) redox cycle.
Collapse
Affiliation(s)
- Jieun Jung
- †Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.,‡Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Shuo Liu
- §Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kei Ohkubo
- †Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan
| | - Mahdi M Abu-Omar
- §Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Shunichi Fukuzumi
- †Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.,‡Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea.,∥Faculty of Science and Engineering, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-0073, Japan
| |
Collapse
|
39
|
Girek B, Sliwa W. Hybrids of cationic porphyrins with nanocarbons. J INCL PHENOM MACRO 2015; 82:283-300. [PMID: 26167127 PMCID: PMC4491362 DOI: 10.1007/s10847-015-0485-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/13/2015] [Indexed: 01/09/2023]
Abstract
In the review hybrids of cationic porphyrins (i.e. porphyrins functionalized by quaternary pyridinium groups) with nanocarbons such as fullerenes, carbon nanotubes and graphene are described. Selected examples of these species are characterized in regard of their properties and possible applications.
Collapse
Affiliation(s)
- Beata Girek
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| | - Wanda Sliwa
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| |
Collapse
|
40
|
Mase K, Ohkubo K, Fukuzumi S. Much Enhanced Catalytic Reactivity of Cobalt Chlorin Derivatives on Two-Electron Reduction of Dioxygen to Produce Hydrogen Peroxide. Inorg Chem 2015; 54:1808-15. [DOI: 10.1021/ic502678k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kentaro Mase
- Department of Material and Life Science, Graduate School of Engineering,
ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Department of Material and Life Science, Graduate School of Engineering,
ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering,
ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
41
|
Matlachowski C, Schwalbe M. Photochemical CO2-reduction catalyzed by mono- and dinuclear phenanthroline-extended tetramesityl porphyrin complexes. Dalton Trans 2015; 44:6480-9. [DOI: 10.1039/c4dt03846k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of CO2 into CO is catalyzed by mono- and dinuclear phenanthroline-extended porphyrin complexes. The influence of the central metal center in the porphyrin cavity as well as of an attached ruthenium fragment at the phenanthroline moiety was investigated in wavelength-dependent photolysis experiments.
Collapse
Affiliation(s)
| | - Matthias Schwalbe
- Institute of Chemistry
- Humboldt-Universität zu Berlin
- 12489 Berlin
- Germany
| |
Collapse
|
42
|
Beyene BB, Mane SB, Hung CH. Highly efficient electrocatalytic hydrogen evolution from neutral aqueous solution by a water-soluble anionic cobalt(ii) porphyrin. Chem Commun (Camb) 2015; 51:15067-70. [DOI: 10.1039/c5cc05582b] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CoTPPS is an efficient electrocatalyst for H2 generation from neutral phosphate buffer solution. It features quantitative Faradaic efficiency with a TOF of ∼1.83 s−1 and a TON of 1.9 × 104 mol of H2 per mole of catalyst at an applied potential of −1.29 V (vs. SHE).
Collapse
Affiliation(s)
- Belete B. Beyene
- Institute of Chemistry
- Academia Sinica
- Taipei-11529
- Republic of China
- Department of Chemistry
| | - Sandeep B. Mane
- Institute of Chemistry
- Academia Sinica
- Taipei-11529
- Republic of China
| | - Chen-Hsiung Hung
- Institute of Chemistry
- Academia Sinica
- Taipei-11529
- Republic of China
| |
Collapse
|
43
|
Kinetic differentiation of bulk/interfacial oxygen reduction mechanisms at/near liquid/liquid interfaces using scanning electrochemical microscopy. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Rodgers AN, Booth SG, Dryfe RA. Particle deposition and catalysis at the interface between two immiscible electrolyte solutions (ITIES): A mini-review. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
45
|
Liu S, Mase K, Bougher C, Hicks SD, Abu-Omar MM, Fukuzumi S. High-valent chromium-oxo complex acting as an efficient catalyst precursor for selective two-electron reduction of dioxygen by a ferrocene derivative. Inorg Chem 2014; 53:7780-8. [PMID: 24988040 DOI: 10.1021/ic5013457] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Efficient catalytic two-electron reduction of dioxygen (O2) by octamethylferrocene (Me8Fc) produced hydrogen peroxide (H2O2) using a high-valent chromium(V)-oxo corrole complex, [(tpfc)Cr(V)(O)] (tpfc = tris(pentafluorophenyl)corrole) as a catalyst precursor in the presence of trifluoroacetic acid (TFA) in acetonitrile (MeCN). The facile two-electron reduction of [(tpfc)Cr(V)(O)] by 2 equiv of Me8Fc in the presence of excess TFA produced the corresponding chromium(III) corrole [(tpfc)Cr(III)(OH2)] via fast electron transfer from Me8Fc to [(tpfc)Cr(V)(O)] followed by double protonation of [(tpfc)Cr(IV)(O)](-) and facile second-electron transfer from Me8Fc. The rate-determining step in the catalytic two-electron reduction of O2 by Me8Fc in the presence of excess TFA is inner-sphere electron transfer from [(tpfc)Cr(III)(OH2)] to O2 to produce the chromium(IV) superoxo species [(tpfc)Cr(IV)(O2(•-))], followed by fast proton-coupled electron transfer reduction of [(tpfc)Cr(IV)(O2(•-))] by Me8Fc to yield H2O2, accompanied by regeneration of [(tpfc)Cr(III)(OH2)]. Thus, although the catalytic two-electron reduction of O2 by Me8Fc was started by [(tpfc)Cr(V)(O)], no regeneration of [(tpfc)Cr(V)(O)] was observed in the presence of excess TFA, regardless of the tetragonal chromium complex being to the left of the oxo wall. In the presence of a stoichiometric amount of TFA, however, disproportionation of [(tfpc)Cr(IV)(O)](-) occurred via the protonated species [(tpfc)Cr(IV)(OH)] to produce [(tpfc)Cr(III)(OH2)] and [(tpfc)Cr(V)(O)].
Collapse
Affiliation(s)
- Shuo Liu
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | | | | | | | | | | |
Collapse
|
46
|
Hijazi I, Bourgeteau T, Cornut R, Morozan A, Filoramo A, Leroy J, Derycke V, Jousselme B, Campidelli S. Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction. J Am Chem Soc 2014; 136:6348-54. [PMID: 24717022 DOI: 10.1021/ja500984k] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of innovative techniques for the functionalization of carbon nanotubes that preserve their exceptional quality, while robustly enriching their properties, is a central issue for their integration in applications. In this work, we describe the formation of a covalent network of porphyrins around MWNT surfaces. The approach is based on the adsorption of cobalt(II) meso-tetraethynylporphyrins on the nanotube sidewalls followed by the dimerization of the triple bonds via Hay-coupling; during the reaction, the nanotube acts as a template for the formation of the polymeric layer. The material shows an increased stability resulting from the cooperative effect of the multiple π-stacking interactions between the porphyrins and the nanotube and by the covalent links between the porphyrins. The nanotube hybrids were fully characterized and tested as the supported catalyst for the oxygen reduction reaction (ORR) in a series of electrochemical measurements under acidic conditions. Compared to similar systems in which monomeric porphyrins are simply physisorbed, MWNT-CoP hybrids showed a higher ORR activity associated with a number of exchanged electrons close to four, corresponding to the complete reduction of oxygen into water.
Collapse
Affiliation(s)
- Ismail Hijazi
- CEA Saclay, IRAMIS, NIMBE , Laboratoire d'Innovation en Chimie des Surfaces et Nanosciences (LICSEN) , F-91191 Gif sur Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jacobsen JL, Berget PE, Varela MC, Vu T, Schore NE, Martin KE, Shelnutt JA, Santos LM, Medforth CJ. Synthesis and nanostructures of 5,10,15,20-tetrakis(4-piperidyl)porphyrin. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.09.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Oxygen reduction with tetrathiafulvalene at liquid/liquid interfaces catalyzed by 5,10,15,20-tetraphenylporphyrin. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Gründer Y, Fabian MD, Booth SG, Plana D, Fermín DJ, Hill PI, Dryfe RA. Solids at the liquid–liquid interface: Electrocatalysis with pre-formed nanoparticles. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.185] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Ge P, Olaya AJ, Scanlon MD, Hatay Patir I, Vrubel H, Girault HH. Photoinduced Biphasic Hydrogen Evolution: Decamethylosmocene as a Light-Driven Electron Donor. Chemphyschem 2013; 14:2308-16. [DOI: 10.1002/cphc.201300122] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Indexed: 12/19/2022]
|