1
|
Mi X, Chen ABY, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim JX, Ruetten VMS, Wang Y, Wang M, Zhang W, Zheng W, Reitman ME, Huang Y, Wang X, Li L, Deng H, Shi SH, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G. Fast, accurate, and versatile data analysis platform for the quantification of molecular spatiotemporal signals. Cell 2025:S0092-8674(25)00285-5. [PMID: 40203826 DOI: 10.1016/j.cell.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/13/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce activity quantification and analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine-learning techniques. It decomposes complex live-imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, microscopy techniques, and imaging approaches. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, as well as distinct sensorimotor signal propagation patterns in the mouse spinal cord.
Collapse
Affiliation(s)
- Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Alex Bo-Yuan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Daniela Duarte
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Erin Carey
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Charlotte R Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Philipp N Braaker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Mark Bright
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Rafael G Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Jing-Xuan Lim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Virginia M S Ruetten
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, UK
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Mengfan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Weizhan Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wei Zheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Michael E Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yongkang Huang
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Li
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - HanFei Deng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Beijing National Research Center for Information Science and Technology, Beijing 100084, China.
| |
Collapse
|
2
|
Zhang S, Li J, Cao G. SFP6 fluorescent probes for imaging SAM dynamics in living cells. Mikrochim Acta 2025; 192:180. [PMID: 39982573 DOI: 10.1007/s00604-025-07039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
A genetically encoded probe, SFP6 (S-adenosyl-L-methionine fluorescent probe), based on the principle of fluorescence resonance energy transfer (FRET) was developed. The SFP6 probe dynamically visualizes changes in S-adenosyl-L-methionine (SAM) levels in living cells with high spatiotemporal resolution. The results demonstrated that SFP6 exhibits high sensitivity to SAM, can be stably expressed in various mammalian cells, and has excellent biocompatibility. The probe accurately monitors SAM levels and detects changes caused by both endogenous and exogenous factors. In summary, we have developed a fluorescent probe that can monitor changes in SAM levels with single-cell and time resolution. Dynamic changes in SAM levels are linked to various methylation modifications in cells. Therefore, monitoring intracellular SAM concentrations offers the possibility to study physiological and biochemical processes in real-time, such as gene expression and metabolism, related to methylation modifications.
Collapse
Affiliation(s)
- Shuhui Zhang
- Henan Province Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jinghui Li
- Henan Province Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Gengsheng Cao
- Henan Province Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Tamura T, Kawano M, Hamachi I. Targeted Covalent Modification Strategies for Drugging the Undruggable Targets. Chem Rev 2025; 125:1191-1253. [PMID: 39772527 DOI: 10.1021/acs.chemrev.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The term "undruggable" refers to proteins or other biological targets that have been historically challenging to target with conventional drugs or therapeutic strategies because of their structural, functional, or dynamic properties. Drugging such undruggable targets is essential to develop new therapies for diseases where current treatment options are limited or nonexistent. Thus, investigating methods to achieve such drugging is an important challenge in medicinal chemistry. Among the numerous methodologies for drug discovery, covalent modification of therapeutic targets has emerged as a transformative strategy. The covalent attachment of diverse functional molecules to targets provides a powerful platform for creating highly potent drugs and chemical tools as well the ability to provide valuable information on the structures and dynamics of undruggable targets. In this review, we summarize recent examples of chemical methods for the covalent modification of proteins and other biomolecules for the development of new therapeutics and to overcome drug discovery challenges and highlight how such methods contribute toward the drugging of undruggable targets. In particular, we focus on the use of covalent chemistry methods for the development of covalent drugs, target identification, drug screening, artificial modulation of post-translational modifications, cancer specific chemotherapies, and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masaharu Kawano
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
4
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
5
|
Tsao KK, Imai S, Chang M, Hario S, Terai T, Campbell RE. The best of both worlds: Chemigenetic fluorescent sensors for biological imaging. Cell Chem Biol 2024; 31:1652-1664. [PMID: 39236713 PMCID: PMC11466441 DOI: 10.1016/j.chembiol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
Synthetic-based fluorescent chemosensors and protein-based fluorescent biosensors are two well-established classes of tools for visualizing and monitoring biological processes in living tissues. Chemigenetic sensors, created using a combination of both synthetic parts and protein parts, are an emerging class of tools that aims to combine the strengths, and overcome the drawbacks, of traditional chemosensors and biosensors. This review will survey the landscape of strategies used for fluorescent chemigenetic sensor design. These strategies include: attachment of synthetic elements to proteins using in vitro protein conjugation; attachment of synthetic elements to proteins using autonomous protein labeling; and translational incorporation of unnatural amino acids.
Collapse
Affiliation(s)
- Kelvin K Tsao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shosei Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michael Chang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Saaya Hario
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Robert E Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; CERVO, Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, QC G1J 2G3, Canada.
| |
Collapse
|
6
|
Boudries R, Williams H, Paquereau-Gaboreau S, Bashir S, Hojjat Jodaylami M, Chisanga M, Trudeau LÉ, Masson JF. Surface-Enhanced Raman Scattering Nanosensing and Imaging in Neuroscience. ACS NANO 2024; 18:22620-22647. [PMID: 39088751 DOI: 10.1021/acsnano.4c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Monitoring neurochemicals and imaging the molecular content of brain tissues in vitro, ex vivo, and in vivo is essential for enhancing our understanding of neurochemistry and the causes of brain disorders. This review explores the potential applications of surface-enhanced Raman scattering (SERS) nanosensors in neurosciences, where their adoption could lead to significant progress in the field. These applications encompass detecting neurotransmitters or brain disorders biomarkers in biofluids with SERS nanosensors, and imaging normal and pathological brain tissues with SERS labeling. Specific studies highlighting in vitro, ex vivo, and in vivo analysis of brain disorders using fit-for-purpose SERS nanosensors will be detailed, with an emphasis on the ability of SERS to detect clinically pertinent levels of neurochemicals. Recent advancements in designing SERS-active nanomaterials, improving experimentation in biofluids, and increasing the usage of machine learning for interpreting SERS spectra will also be discussed. Furthermore, we will address the tagging of tissues presenting pathologies with nanoparticles for SERS imaging, a burgeoning domain of neuroscience that has been demonstrated to be effective in guiding tumor removal during brain surgery. The review also explores future research applications for SERS nanosensors in neuroscience, including monitoring neurochemistry in vivo with greater penetration using surface-enhanced spatially offset Raman scattering (SESORS), near-infrared lasers, and 2-photon techniques. The article concludes by discussing the potential of SERS for investigating the effectiveness of therapies for brain disorders and for integrating conventional neurochemistry techniques with SERS sensing.
Collapse
Affiliation(s)
- Ryma Boudries
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Hannah Williams
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Soraya Paquereau-Gaboreau
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Saba Bashir
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Maryam Hojjat Jodaylami
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Malama Chisanga
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
7
|
Mi X, Chen ABY, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim JX, Ruetten VMS, Zheng W, Wang M, Reitman ME, Wang Y, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G. Fast, Accurate, and Versatile Data Analysis Platform for the Quantification of Molecular Spatiotemporal Signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592259. [PMID: 38766026 PMCID: PMC11100599 DOI: 10.1101/2024.05.02.592259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce Activity Quantification and Analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine learning techniques. It decomposes complex live imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, and imaging modalities. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, and distinct sensorimotor signal propagation patterns in the mouse spinal cord.
Collapse
Affiliation(s)
- Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
- These authors contributed equally
| | - Alex Bo-Yuan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally
| | - Daniela Duarte
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Erin Carey
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Charlotte R. Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Philipp N. Braaker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Mark Bright
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Jing-Xuan Lim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Virginia M. S. Ruetten
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, USA
| | - Wei Zheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Mengfan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Michael E. Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Kira E. Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Lead contact
| |
Collapse
|
8
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
9
|
Zhao Y, Han J, Huang J, Huang Q, Tao Y, Gu R, Li HY, Zhang Y, Zhang H, Liu H. A miniprotein receptor electrochemical biosensor chip based on quantum dots. LAB ON A CHIP 2024; 24:1875-1886. [PMID: 38372578 DOI: 10.1039/d3lc01100c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Recently protein binders have emerged as a promising substitute for antibodies due to their high specificity and low cost. Herein, we demonstrate an electrochemical biosensor chip through the electronic labelling strategy using lead sulfide (PbS) colloidal quantum dots (CQDs) and the unnatural SARS-CoV-2 spike miniprotein receptor LCB. The unnatural receptor can be utilized as a molecular probe for the construction of CQD-based electrochemical biosensor chips, through which the specific binding of LCB and the spike protein is transduced to sensor electrical signals. The biosensor exhibits a good linear response in the concentration range of 10 pg mL-1 to 1 μg mL-1 (13.94 fM to 1.394 nM) with the limit of detection (LOD) being 3.31 pg mL-1 (4.607 fM for the three-electrode system) and 9.58 fg mL-1 (0.013 fM for the HEMT device). Due to the high sensitivity of the electrochemical biosensor, it was also used to study the binding kinetics between the unnatural receptor LCB and spike protein, which has achieved comparable results as those obtained with commercial equipment. To the best of our knowledge, this is the first example of using a computationally designed miniprotein receptor based on electrochemical methods, and it is the first kinetic assay performed with an electrochemical assay alone. The miniprotein receptor electrochemical biosensor based on QDs is desirable for fabricating high-throughput, large-area, wafer-scale biochips.
Collapse
Affiliation(s)
- Yunong Zhao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Juan Han
- Department of Biotechnology, College of Life Science and Technology, MOE Key Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Jing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Qing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Yanbing Tao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Ruiqin Gu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Hua-Yao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Yang Zhang
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, MOE Key Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
10
|
Si D, Li Q, Bao Y, Zhang J, Wang L. Fluorogenic and Cell-Permeable Rhodamine Dyes for High-Contrast Live-Cell Protein Labeling in Bioimaging and Biosensing. Angew Chem Int Ed Engl 2023; 62:e202307641. [PMID: 37483077 DOI: 10.1002/anie.202307641] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
The advancement of fluorescence microscopy techniques has opened up new opportunities for visualizing proteins and unraveling their functions in living biological systems. Small-molecule organic dyes, which possess exceptional photophysical properties, small size, and high photostability, serve as powerful fluorescent reporters in protein imaging. However, achieving high-contrast live-cell labeling of target proteins with conventional organic dyes remains a considerable challenge in bioimaging and biosensing due to their inadequate cell permeability and high background signal. Over the past decade, a novel generation of fluorogenic and cell-permeable dyes has been developed, which have substantially improved live-cell protein labeling by fine-tuning the reversible equilibrium between a cell-permeable, nonfluorescent spirocyclic state (unbound) and a fluorescent zwitterion (protein-bound) of rhodamines. In this review, we present the mechanism and design strategies of these fluorogenic and cell-permeable rhodamines, as well as their applications in bioimaging and biosensing.
Collapse
Affiliation(s)
- Dongjuan Si
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| | - Quanlin Li
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| | - Yifan Bao
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| | - Jingye Zhang
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| | - Lu Wang
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| |
Collapse
|
11
|
Lamanna J, Ferro M, Spadini S, Malgaroli A. Exploiting the molecular diversity of the synapse to investigate neuronal communication: A guide through the current toolkit. Eur J Neurosci 2022; 56:6141-6161. [PMID: 36239030 PMCID: PMC10100385 DOI: 10.1111/ejn.15848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2022]
Abstract
Chemical synapses are tiny and overcrowded environments, deeply embedded inside brain tissue and enriched with thousands of protein species. Many efforts have been devoted to developing custom approaches for evaluating and modifying synaptic activity. Most of these methods are based on the engineering of one or more synaptic protein scaffolds used to target active moieties to the synaptic compartment or to manipulate synaptic functioning. In this review, we summarize the most recent methodological advances and provide a description of the involved proteins as well as the operation principle. Furthermore, we highlight their advantages and limitations in relation to studies of synaptic transmission in vitro and in vivo. Concerning the labelling methods, the most important challenge is how to extend the available approaches to the in vivo setting. On the other hand, for those methods that allow manipulation of synaptic function, this limit has been overcome using optogenetic approaches that can be more easily applied to the living brain. Finally, future applications of these methods to neuroscience, as well as new potential routes for development, are discussed.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Turro, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
12
|
Wu CC, Huang SJ, Fu TY, Lin FL, Wang XY, Tan KT. Small-Molecule Modulated Affinity-Tunable Semisynthetic Protein Switches. ACS Sens 2022; 7:2691-2700. [PMID: 36084142 DOI: 10.1021/acssensors.2c01211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Engineered protein switches have been widely applied in cell-based protein sensors and point-of-care diagnosis for the rapid and simple analysis of a wide variety of proteins, metabolites, nucleic acids, and enzymatic activities. Currently, these protein switches are based on two main types of switching mechanisms to transduce the target binding event to a quantitative signal, through a change in the optical properties of fluorescent molecules and the activation of enzymatic activities. In this paper, we introduce a new affinity-tunable protein switch strategy in which the binding of a small-molecule target with the protein activates the streptavidin-biotin interaction to generate a readout signal. In the absence of a target, the biotinylated protein switch forms a closed conformation where the biotin is positioned in close proximity to the protein, imposing a large steric hindrance to prevent the effective binding with streptavidin. In the presence of the target molecule, this steric hindrance is removed, thereby exposing the biotin for streptavidin binding to produce strong fluorescent signals. With this modular sensing concept, various sulfonamide, methotrexate, and trimethoprim drugs can be selectively detected on the cell surface of native and genetically engineered cells using different fluorescent dyes and detection techniques.
Collapse
Affiliation(s)
- Chien-Chi Wu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Shao-Jie Huang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Tsung-Yu Fu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Fang-Ling Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Xin-You Wang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| |
Collapse
|
13
|
Abstract
Neuropeptides are a diverse class of signaling molecules in metazoans. They occur in all animals with a nervous system and also in neuron-less placozoans. However, their origin has remained unclear because no neuropeptide shows deep homology across lineages, and none have been found in sponges. Here, we identify two neuropeptide precursors, phoenixin (PNX) and nesfatin, with broad evolutionary conservation. By database searches, sequence alignments, and gene-structure comparisons, we show that both precursors are present in bilaterians, cnidarians, ctenophores, and sponges. We also found PNX and a secreted nesfatin precursor homolog in the choanoflagellate Salpingoeca rosetta. PNX, in particular, is highly conserved, including its cleavage sites, suggesting that prohormone processing occurs also in choanoflagellates. In addition, based on phyletic patterns and negative pharmacological assays, we question the originally proposed GPR-173 (SREB3) as a PNX receptor. Our findings revealed that secreted neuropeptide homologs derived from longer precursors have premetazoan origins and thus evolved before neurons.
Collapse
Affiliation(s)
| | - Daniel Thiel
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| |
Collapse
|
14
|
Kumar P, Lavis LD. Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience. Annu Rev Neurosci 2022; 45:131-150. [PMID: 35226826 DOI: 10.1146/annurev-neuro-110520-030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pratik Kumar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
15
|
Dillen A, Lammertyn J. Paving the way towards continuous biosensing by implementing affinity-based nanoswitches on state-dependent readout platforms. Analyst 2022; 147:1006-1023. [DOI: 10.1039/d1an02308j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining affinity-based nanoswitches with state-dependent readout platforms allows for continuous biosensing and acquisition of real-time information about biochemical processes occurring in the environment of interest.
Collapse
Affiliation(s)
- Annelies Dillen
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| |
Collapse
|
16
|
Wilhelm J, Kühn S, Tarnawski M, Gotthard G, Tünnermann J, Tänzer T, Karpenko J, Mertes N, Xue L, Uhrig U, Reinstein J, Hiblot J, Johnsson K. Kinetic and Structural Characterization of the Self-Labeling Protein Tags HaloTag7, SNAP-tag, and CLIP-tag. Biochemistry 2021; 60:2560-2575. [PMID: 34339177 PMCID: PMC8388125 DOI: 10.1021/acs.biochem.1c00258] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Indexed: 01/16/2023]
Abstract
The self-labeling protein tags (SLPs) HaloTag7, SNAP-tag, and CLIP-tag allow the covalent labeling of fusion proteins with synthetic molecules for applications in bioimaging and biotechnology. To guide the selection of an SLP-substrate pair and provide guidelines for the design of substrates, we report a systematic and comparative study of the labeling kinetics and substrate specificities of HaloTag7, SNAP-tag, and CLIP-tag. HaloTag7 reaches almost diffusion-limited labeling rate constants with certain rhodamine substrates, which are more than 2 orders of magnitude higher than those of SNAP-tag for the corresponding substrates. SNAP-tag labeling rate constants, however, are less affected by the structure of the label than those of HaloTag7, which vary over 6 orders of magnitude for commonly employed substrates. Determining the crystal structures of HaloTag7 and SNAP-tag labeled with fluorescent substrates allowed us to rationalize their substrate preferences. We also demonstrate how these insights can be exploited to design substrates with improved labeling kinetics.
Collapse
Affiliation(s)
- Jonas Wilhelm
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Stefanie Kühn
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Miroslaw Tarnawski
- Protein
Expression and Characterization Facility, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Guillaume Gotthard
- Structural
Biology Group, European Synchrotron Radiation
Facility (ESRF), 38043 Grenoble, France
| | - Jana Tünnermann
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Timo Tänzer
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Julie Karpenko
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicole Mertes
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Lin Xue
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Ulrike Uhrig
- Chemical
Biology Core Facility, European Molecular
Biology Laboratory, 69117 Heidelberg, Germany
| | - Jochen Reinstein
- Department
of Biomolecular Mechanisms, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Julien Hiblot
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Kai Johnsson
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Sabatini BL, Tian L. Imaging Neurotransmitter and Neuromodulator Dynamics In Vivo with Genetically Encoded Indicators. Neuron 2020; 108:17-32. [PMID: 33058762 DOI: 10.1016/j.neuron.2020.09.036] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
The actions of neuromodulation are thought to mediate the ability of the mammalian brain to dynamically adjust its functional state in response to changes in the environment. Altered neurotransmitter (NT) and neuromodulator (NM) signaling is central to the pathogenesis or treatment of many human neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, depression, and addiction. To reveal the precise mechanisms by which these neurochemicals regulate healthy and diseased neural circuitry, one needs to measure their spatiotemporal dynamics in the living brain with great precision. Here, we discuss recent development, optimization, and applications of optical approaches to measure the spatial and temporal profiles of NT and NM release in the brain using genetically encoded sensors for in vivo studies.
Collapse
Affiliation(s)
- Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Lin Tian
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
18
|
Dalangin R, Kim A, Campbell RE. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int J Mol Sci 2020; 21:E6197. [PMID: 32867295 PMCID: PMC7503967 DOI: 10.3390/ijms21176197] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Neurotransmission between neurons, which can occur over the span of a few milliseconds, relies on the controlled release of small molecule neurotransmitters, many of which are amino acids. Fluorescence imaging provides the necessary speed to follow these events and has emerged as a powerful technique for investigating neurotransmission. In this review, we highlight some of the roles of the 20 canonical amino acids, GABA and β-alanine in neurotransmission. We also discuss available fluorescence-based probes for amino acids that have been shown to be compatible for live cell imaging, namely those based on synthetic dyes, nanostructures (quantum dots and nanotubes), and genetically encoded components. We aim to provide tool developers with information that may guide future engineering efforts and tool users with information regarding existing indicators to facilitate studies of amino acid dynamics.
Collapse
Affiliation(s)
- Rochelin Dalangin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Anna Kim
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Broch F, Gautier A. Illuminating Cellular Biochemistry: Fluorogenic Chemogenetic Biosensors for Biological Imaging. Chempluschem 2020; 85:1487-1497. [PMID: 32644262 DOI: 10.1002/cplu.202000413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Cellular activity is defined by the precise spatiotemporal regulation of various components, such as ions, small molecules, or proteins. Studying cell physiology consequently requires the optical recording of these processes, notably by using fluorescent biosensors. The recent development of various fluorogenic systems greatly expanded the palette of reporters to be included in these sensors design. Fluorogenic reporters consist of a protein or RNA tag that can complex either an endogenous or a synthetic fluorogenic dye (so-called fluorogen). The intrinsic nature of these tags, along with the high tunability of their cognate chromophore provide interesting features such as far-red to near-infrared emission, oxygen independence, or unprecedented color versatility. These engineered photoreceptors, self-labelling proteins, or noncovalent aptamers and protein tags were rapidly identified as promising reporters to observe biological events. This Minireview focuses on the new perspectives they offer to design unique and innovative biosensors, thus pushing the boundaries of cellular imaging.
Collapse
Affiliation(s)
- Fanny Broch
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France.,Institut Universitaire de France, France
| |
Collapse
|
20
|
Moeyaert B, Dedecker P. Genetically encoded biosensors based on innovative scaffolds. Int J Biochem Cell Biol 2020; 125:105761. [PMID: 32504671 DOI: 10.1016/j.biocel.2020.105761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
Genetically encoded biosensors are indispensable tools for visualizing the spatiotemporal dynamics of analytes or processes in living cells in vitro and in vivo. Their widespread adaptation has gone hand in hand with the development of sensors for new analytes or processes and improved functionality and robustness. In this review, we highlight some of the recent advances in genetically encoded biosensor development, with a special focus on novel and innovative scaffolds that will lead to new possibilities in the future.
Collapse
Affiliation(s)
- Benjamien Moeyaert
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium
| | - Peter Dedecker
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium.
| |
Collapse
|
21
|
Ohlendorf R, Wiśniowska A, Desai M, Barandov A, Slusarczyk AL, Li N, Jasanoff A. Target-responsive vasoactive probes for ultrasensitive molecular imaging. Nat Commun 2020; 11:2399. [PMID: 32404879 PMCID: PMC7220906 DOI: 10.1038/s41467-020-16118-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
The ability to monitor molecules volumetrically throughout the body could provide valuable biomarkers for studies of healthy function and disease, but noninvasive detection of molecular targets in living subjects often suffers from poor sensitivity or selectivity. Here we describe a family of potent imaging probes that can be activated by molecules of interest in deep tissue, providing a basis for mapping nanomolar-scale analytes without the radiation or heavy metal content associated with traditional molecular imaging agents. The probes are reversibly caged vasodilators that induce responses detectable by hemodynamic imaging; they are constructed by combining vasoactive peptides with synthetic chemical appendages and protein blocking domains. We use this architecture to create ultrasensitive biotin-responsive imaging agents, which we apply for wide-field mapping of targets in rat brains using functional magnetic resonance imaging. We also adapt the sensor design for detecting the neurotransmitter dopamine, illustrating versatility of this approach for addressing biologically important molecules.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Agata Wiśniowska
- Harvard-MIT Health Sciences & Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Ali Barandov
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Adrian L Slusarczyk
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
| |
Collapse
|
22
|
Al-Saad RZ, Kerr I, Hume AN. In Vitro Fluorescence Resonance Energy Transfer-Based Assay Used to Determine the Rab27-Effector-Binding Affinity. Assay Drug Dev Technol 2020; 18:180-194. [PMID: 32384245 DOI: 10.1089/adt.2019.960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Rab27 subfamily consists of Rab27a/b isoforms that have similar but not identical functions. Those functions include the regulation of trafficking, docking, and fusion of various lysosome-related organelles and secretory granules; such as melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes. Rab27a/b exert their specific and versatile functions by interacting with 11 effector proteins, preferentially in their GTP-bound state. In recent years, a number of studies have identified roles for Rab27 proteins and their effectors in cancer cell invasion and metastasis, immune response, inflammation, and allergic responses. These findings suggest that Rab27-effector protein interaction inhibitors could contribute to the development of effective strategies to treat these diseases. To facilitate inhibitor identification, in this study we developed a fluorescence resonance energy transfer-based protein-protein interaction assay that reports Rab27-effector interactions. Green fluorescent protein (GFP)-mouse (m) synaptotagmin-like protein (Slp)1 and GFP-mSlp2 (N-terminus Rab27-binding domains) recombinant proteins were used as donor fluorophores, whereas mCherry-human (h) Rab27a/b recombinant proteins were used as acceptor fluorophores. The in vitro binding affinity of mSlp2 to Rab27 was found to be higher compared with mSlp1 and was evidenced by the effective concentration 50 value differences (mSlp2-hRab27b = 0.15 μM < mSlp2-hRab27a = 0.2 μM < mSlp1-hRab27a = 0.32 μM < mSlp1-hRab27b = 0.33 μM). The specificity of the assay was assessed using unlabeled rat (r) Rab27a and hRab27b recombinant proteins as typical competitive inhibitors for Rab27-effector interactions and was evidenced by the inhibitory concentration 50 value differences. Accordingly, this in vitro assay can be employed in identification of candidate inhibitors of Rab27-effector interactions.
Collapse
Affiliation(s)
- Raghdan Z Al-Saad
- Division of Physiology, Pharmacology, and Neuroscience, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ian Kerr
- Division of Physiology, Pharmacology, and Neuroscience, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alistair N Hume
- Division of Physiology, Pharmacology, and Neuroscience, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
23
|
Mobed A, Hasanzadeh M, Ahmadalipour A, Fakhari A. Recent advances in the biosensing of neurotransmitters: material and method overviews towards the biomedical analysis of psychiatric disorders. ANALYTICAL METHODS 2020; 12:557-575. [DOI: 10.1039/c9ay02390a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Neurotransmitters are the most important messengers of the nervous system, and any changes in their balances and activities can cause serious neurological, psychiatric and cognitive disorders such as schizophrenia, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Ahmad Mobed
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| |
Collapse
|
24
|
Petazzi RA, Aji AK, Chiantia S. Fluorescence microscopy methods for the study of protein oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:1-41. [DOI: 10.1016/bs.pmbts.2019.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Burmeister JJ, Price DA, Pomerleau F, Huettl P, Quintero JE, Gerhardt GA. Challenges of simultaneous measurements of brain extracellular GABA and glutamate in vivo using enzyme-coated microelectrode arrays. J Neurosci Methods 2020; 329:108435. [PMID: 31600528 PMCID: PMC6924626 DOI: 10.1016/j.jneumeth.2019.108435] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Although GABA is the major inhibitory neurotransmitter in the CNS, quantifying in vivo GABA levels has been challenging. The ability to co-monitor both GABA and the major excitatory neurotransmitter, glutamate, would be a powerful tool in both research and clinical settings. NEW METHOD Ceramic-based microelectrode arrays (MEAs) were used to quantify gamma-aminobutyric acid (GABA) by employing a dual-enzyme reaction scheme including GABase and glutamate oxidase (GluOx). Glutamate was simultaneously quantified on adjacent recording sites coated with GluOx alone. Endogenous glutamate was subtracted from the combined GABA and glutamate signal to yield a pure GABA concentration. RESULTS Electrode sensitivity to GABA in conventional, stirred in vitro calibrations at pH 7.4 did not match the in vivo sensitivity due to diffusional losses. Non-stirred calibrations in agarose or stirred calibrations at pH 8.6 were used to match the in vivo GABA sensitivity. In vivo data collected in the rat brain demonstrated feasibility of the GABA/glutamate MEA including uptake of locally applied GABA, KCl-evoked GABA release and modulation of endogenous GABA with vigabatrin. COMPARISON WITH EXISTING METHODS Implantable enzyme-coated microelectrode arrays have better temporal and spatial resolution than existing off-line methods. However, interpretation of results can be complicated due to the multiple recording site and dual enzyme approach. CONCLUSIONS The initial in vitro and in vivo studies supported that the new MEA configuration may be a viable platform for combined GABA and glutamate measures in the CNS extending the previous reports to in vivo GABA detection. The challenges of this approach are emphasized.
Collapse
Affiliation(s)
- Jason J Burmeister
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - David A Price
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - François Pomerleau
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Peter Huettl
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Jorge E Quintero
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Greg A Gerhardt
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, USA.
| |
Collapse
|
26
|
Lima Neto JX, Bezerra KS, Barbosa ED, Oliveira JIN, Manzoni V, Soares-Rachetti VP, Albuquerque EL, Fulco UL. Exploring the Binding Mechanism of GABAB Receptor Agonists and Antagonists through in Silico Simulations. J Chem Inf Model 2019; 60:1005-1018. [DOI: 10.1021/acs.jcim.9b01025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- José X. Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Katyanna S. Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Emmanuel D. Barbosa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Jonas I. N. Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Vinícius Manzoni
- Instituto de Física, Universidade Federal do Alagoas, 57072-970 Maceió-AL, Brazil
| | - Vanessa P. Soares-Rachetti
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Eudenilson L. Albuquerque
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| |
Collapse
|
27
|
Xu Y, Deng M, Zhang S, Yang J, Peng L, Chu J, Zou P. Imaging Neuronal Activity with Fast and Sensitive Red-Shifted Electrochromic FRET Indicators. ACS Chem Neurosci 2019; 10:4768-4775. [PMID: 31725259 DOI: 10.1021/acschemneuro.9b00501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) allow optical recording of neuronal activities with high spatial resolution. While most existing GEVIs emit in the green range, red-shifted GEVIs are highly sought after because they would enable simultaneous stimulation and recording of neuronal activities when paired with optogenetic actuators, or two-color imaging of signaling and neuronal activities when used along with GFP-based indicators. In this study, we present several improved red-shifted GEVIs based on the electrochromic Förster resonance energy transfer (eFRET) between orange/red fluorescent proteins/dyes and rhodopsin mutants. Through structure-guided mutagenesis and cell-based sensitivity screening, we identified a mutant rhodopsin with a single mutation that exhibited more than 2-fold improvement in voltage sensitivity. Notably, this mutation has been independently discovered by Pieribone et al. ( Pieribone, V. A. et al. Nat Methods 2018 , 15 ( 12 ), 1108 - 1116 ). In cultured rat hippocampal neurons, our sensors faithfully reported action potential waveforms and subthreshold activities. We also demonstrated that this mutation could enhance the sensitivity of hybrid indicators, thus providing insights for future development.
Collapse
Affiliation(s)
- Yongxian Xu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Mengying Deng
- Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Synthetic Biology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shu Zhang
- Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Synthetic Biology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junqi Yang
- Peking-Tsinghua-NIBS Joint Graduate Program, Peking University, Beijing 100871, China
| | - Luxin Peng
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jun Chu
- Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Synthetic Biology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
28
|
Scida K, Plaxco KW, Jamieson BG. High frequency, real-time neurochemical and neuropharmacological measurements in situ in the living body. Transl Res 2019; 213:50-66. [PMID: 31361988 DOI: 10.1016/j.trsl.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
The beautiful and complex brain machinery is perfectly synchronized, and our bodies have evolved to protect it against a myriad of potential threats. Shielded physically by the skull and chemically by the blood brain barrier, the brain processes internal and external information so that we can efficiently relate to the world that surrounds us while simultaneously and unconsciously controlling our vital functions. When coupled with the brittle nature of its internal chemical and electric signals, the brain's "armor" render accessing it a challenging and delicate endeavor that has historically limited our understanding of its structural and neurochemical intricacies. In this review, we briefly summarize the advancements made over the past 10 years to decode the brain's neurochemistry and neuropharmacology in situ, at the site of interest in the brain, with special focus on what we consider game-changing emerging technologies (eg, genetically encoded indicators and electrochemical aptamer-based sensors) and the challenges these must overcome before chronic, in situ chemosensing measurements become routine.
Collapse
Affiliation(s)
- Karen Scida
- Diagnostic Biochips, Inc., Glen Burnie, Maryland
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | | |
Collapse
|
29
|
Leopold AV, Shcherbakova DM, Verkhusha VV. Fluorescent Biosensors for Neurotransmission and Neuromodulation: Engineering and Applications. Front Cell Neurosci 2019; 13:474. [PMID: 31708747 PMCID: PMC6819510 DOI: 10.3389/fncel.2019.00474] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
Understanding how neuronal activity patterns in the brain correlate with complex behavior is one of the primary goals of modern neuroscience. Chemical transmission is the major way of communication between neurons, however, traditional methods of detection of neurotransmitter and neuromodulator transients in mammalian brain lack spatiotemporal precision. Modern fluorescent biosensors for neurotransmitters and neuromodulators allow monitoring chemical transmission in vivo with millisecond precision and single cell resolution. Changes in the fluorescent biosensor brightness occur upon neurotransmitter binding and can be detected using fiber photometry, stationary microscopy and miniaturized head-mounted microscopes. Biosensors can be expressed in the animal brain using adeno-associated viral vectors, and their cell-specific expression can be achieved with Cre-recombinase expressing animals. Although initially fluorescent biosensors for chemical transmission were represented by glutamate biosensors, nowadays biosensors for GABA, acetylcholine, glycine, norepinephrine, and dopamine are available as well. In this review, we overview functioning principles of existing intensiometric and ratiometric biosensors and provide brief insight into the variety of neurotransmitter-binding proteins from bacteria, plants, and eukaryotes including G-protein coupled receptors, which may serve as neurotransmitter-binding scaffolds. We next describe a workflow for development of neurotransmitter and neuromodulator biosensors. We then discuss advanced setups for functional imaging of neurotransmitter transients in the brain of awake freely moving animals. We conclude by providing application examples of biosensors for the studies of complex behavior with the single-neuron precision.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
30
|
Sakamoto S, Yamaura K, Numata T, Harada F, Amaike K, Inoue R, Kiyonaka S, Hamachi I. Construction of a Fluorescent Screening System of Allosteric Modulators for the GABA A Receptor Using a Turn-On Probe. ACS CENTRAL SCIENCE 2019; 5:1541-1553. [PMID: 31572781 PMCID: PMC6764212 DOI: 10.1021/acscentsci.9b00539] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Indexed: 05/23/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The fast inhibitory actions of GABA are mainly mediated by GABAA receptors (GABAARs), which are widely recognized as clinically relevant drug targets. However, it remains difficult to create screening systems for drug candidates that act on GABAARs because of the existence of multiple ligand-binding sites and the delicate pentameric structures of GABAARs. We here developed the first turn-on fluorescent imaging probe for GABAARs, which can be used to quantitatively evaluate ligand-receptor interactions under live cell conditions. Using noncovalent labeling of GABAARs with this turn-on probe, a new imaging-based ligand assay system, which allows discovery of positive allosteric modulators (PAMs) for the GABAAR, was successfully constructed. Our system is applicable to high-throughput ligand screening, and we discovered new small molecules that function as PAMs for GABAARs. These results highlight the power of the use of a turn-on fluorescent probe to screen drugs for complicated membrane proteins that cannot be addressed by conventional methods.
Collapse
Affiliation(s)
- Seiji Sakamoto
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kei Yamaura
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomohiro Numata
- Department
of Physiology, School of Medicine, Fukuoka
University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Fumio Harada
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuma Amaike
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryuji Inoue
- Department
of Physiology, School of Medicine, Fukuoka
University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shigeki Kiyonaka
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| |
Collapse
|
31
|
A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat Methods 2019; 16:763-770. [DOI: 10.1038/s41592-019-0471-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
|
32
|
Beyene AG, Yang SJ, Landry MP. Review Article: Tools and trends for probing brain neurochemistry. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY. A, VACUUM, SURFACES, AND FILMS : AN OFFICIAL JOURNAL OF THE AMERICAN VACUUM SOCIETY 2019; 37:040802. [PMID: 31235991 PMCID: PMC6559927 DOI: 10.1116/1.5051047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/10/2018] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
The brain is composed of complex neuronal networks that interact on spatial and temporal scales that span several orders of magnitude. Uncovering how this circuitry gives rise to multifaceted phenomena such as perception, memory, and behavior remains one of the grand challenges in science today. A wide range of investigative methods have been developed to delve deeper into the inner workings of the brain, spanning the realms of molecular biology, genetics, chemistry, optics, and engineering, thereby forming a nexus of discovery that has accelerated our understanding of the brain. Whereas neuronal electrical excitability is a hallmark property of neurons, chemical signaling between neurons-mediated by hundreds of neurotransmitters, neuromodulators, hormones, and other signaling molecules-is equally important, but far more elusive in its regulation of brain function for motor control, learning, and behavior. To date, the brain's neurochemical state has been interrogated using classical tools borrowed from analytical chemistry, such as liquid chromatography and amperometry, and more recently, newly developed fluorescent sensors. Here, the authors review advances in the development of functional fluorescent probes that are beginning to expand their understanding of the neurochemical basis of brain function alongside device-based analytical tools that have already made extensive contributions to the field. The emphasis herein is on the paradigms of probe and device development, which follow certain design principles unique to the interrogation of brain chemistry.
Collapse
Affiliation(s)
- Abraham G Beyene
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720
| | - Sarah J Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720
| | | |
Collapse
|
33
|
Abstract
Understanding the mechanisms by which long-term synaptic plasticity is expressed remains an important objective in neuroscience. From a physiological perspective, the strength of a synapse can be considered a consequence of several parameters including the probability that a presynaptic action potential (AP) evokes the release of neurotransmitter, the mean number of quanta of transmitter released when release is evoked, and the mean amplitude of a postsynaptic response to a single quantum. Various methods have been employed to estimate these quantal parameters from electrophysiological recordings; such "quantal analysis" has been used to support competing accounts of mechanisms of expression of long-term plasticity. Because electrophysiological recordings, even with minimal presynaptic stimulation, can reflect responses arising at multiple synaptic sites, these methods are open to alternative interpretations. By combining intracellular electrical recording with optical detection of transmission at individual synapses, however, it is possible to eliminate such ambiguity. Here, we describe methods for such combined optical and electrical monitoring of synaptic transmission in brain slice preparations and illustrate how quantal analyses thereby obtained permit more definitive conclusions about the physiological changes that underlie long-term synaptic plasticity.
Collapse
Affiliation(s)
| | - Alan Fine
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
34
|
Sakamoto S, Kiyonaka S, Hamachi I. Construction of ligand assay systems by protein-based semisynthetic biosensors. Curr Opin Chem Biol 2019; 50:10-18. [PMID: 30875618 DOI: 10.1016/j.cbpa.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 01/14/2023]
Abstract
Proteins as causative agents of diseases such as cancers, diabetes and neurological disorders are attractive drug targets. For developing chemicals selectively acting on key disease-causing proteins, one useful concept is the direct conversion of such target proteins into biosensors. This approach provides ligand-binding assay systems based on protein-based biosensors, which can quantitatively evaluate interactions between the protein and a specific ligand in many environments. Site-specific chemical modifications are used widely for the creation of protein-based semisynthetic biosensors in vitro. Notably, a few bio-orthogonal approaches capable of selectively modifying drug-targets have been developed, allowing conversion of specific target proteins into semisynthetic biosensors in live cells. These biosensors can be used for quantitative drug binding analyses in native environments. In this review, we discuss recent efforts for the construction of ligand assay systems using semisynthetic protein-based biosensors and their application to quantitative analysis and high-throughput screening of small molecules for drug discovery.
Collapse
Affiliation(s)
- Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
35
|
Advances in Engineering and Application of Optogenetic Indicators for Neuroscience. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our ability to investigate the brain is limited by available technologies that can record biological processes in vivo with suitable spatiotemporal resolution. Advances in optogenetics now enable optical recording and perturbation of central physiological processes within the intact brains of model organisms. By monitoring key signaling molecules noninvasively, we can better appreciate how information is processed and integrated within intact circuits. In this review, we describe recent efforts engineering genetically-encoded fluorescence indicators to monitor neuronal activity. We summarize recent advances of sensors for calcium, potassium, voltage, and select neurotransmitters, focusing on their molecular design, properties, and current limitations. We also highlight impressive applications of these sensors in neuroscience research. We adopt the view that advances in sensor engineering will yield enduring insights on systems neuroscience. Neuroscientists are eager to adopt suitable tools for imaging neural activity in vivo, making this a golden age for engineering optogenetic indicators.
Collapse
|
36
|
Wang W, Kim CK, Ting AY. Molecular tools for imaging and recording neuronal activity. Nat Chem Biol 2019; 15:101-110. [PMID: 30659298 DOI: 10.1038/s41589-018-0207-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/20/2018] [Indexed: 11/09/2022]
Abstract
To understand how the brain relates to behavior, it is essential to record neural activity in awake, behaving animals. To achieve this goal, a large variety of genetically encoded sensors have been developed to monitor and record the series of events following neuronal firing, including action potentials, intracellular calcium rise, neurotransmitter release and immediate early gene expression. In this Review, we discuss the existing genetically encoded tools for detecting and integrating neuronal activity in animals and highlight the remaining challenges and future opportunities for molecular biologists.
Collapse
Affiliation(s)
- Wenjing Wang
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Christina K Kim
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
37
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
38
|
Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. Nat Chem Biol 2018; 14:861-869. [DOI: 10.1038/s41589-018-0108-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
|
39
|
Wang H, Jing M, Li Y. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Curr Opin Neurobiol 2018; 50:171-178. [PMID: 29627516 PMCID: PMC5984720 DOI: 10.1016/j.conb.2018.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023]
Abstract
Measuring the precise dynamics of specific neurotransmitters and neuromodulators in the brain is essential for understanding how information is transmitted and processed. Thanks to the development and optimization of various genetically encoded sensors, we are approaching the stage in which a few key neurotransmitters/neuromodulators can be imaged with high cell specificity and good signal-to-noise ratio. Here, we summarize recent progress regarding these sensors, focusing on their design principles, properties, potential applications, and current limitations. We also highlight the G protein-coupled receptor (GPCR) scaffold as a promising platform that may enable the scalable development of the next generation of sensors, enabling the rapid, sensitive, and specific detection of a large repertoire of neurotransmitters/neuromodulators in vivo at cellular or even subcellular resolution.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
40
|
Deo C, Lavis LD. Synthetic and genetically encoded fluorescent neural activity indicators. Curr Opin Neurobiol 2018; 50:101-108. [DOI: 10.1016/j.conb.2018.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/19/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
|
41
|
Sallin O, Reymond L, Gondrand C, Raith F, Koch B, Johnsson K. Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides. eLife 2018; 7:32638. [PMID: 29809136 PMCID: PMC5990361 DOI: 10.7554/elife.32638] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
We introduce a new class of semisynthetic fluorescent biosensors for the quantification of free nicotinamide adenine dinucleotide (NAD+) and ratios of reduced to oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) in live cells. Sensing is based on controlling the spatial proximity of two synthetic fluorophores by binding of NAD(P) to the protein component of the sensor. The sensors possess a large dynamic range, can be excited at long wavelengths, are pH-insensitive, have tunable response range and can be localized in different organelles. Ratios of free NADPH/NADP+ are found to be higher in mitochondria compared to those found in the nucleus and the cytosol. By recording free NADPH/NADP+ ratios in response to changes in environmental conditions, we observe how cells can react to such changes by adapting metabolic fluxes. Finally, we demonstrate how a comparison of the effect of drugs on cellular NAD(P) levels can be used to probe mechanisms of action.
Collapse
Affiliation(s)
- Olivier Sallin
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | - Luc Reymond
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland.,National Centre of Competence in Research in Chemical Biology, Lausanne, Switzerland
| | - Corentin Gondrand
- Department of Chemical Biology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Fabio Raith
- Department of Chemical Biology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Birgit Koch
- Department of Chemical Biology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Kai Johnsson
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland.,Department of Chemical Biology, Max-Planck-Institute for Medical Research, Heidelberg, Germany.,National Centre of Competence in Research in Chemical Biology, Lausanne, Switzerland
| |
Collapse
|
42
|
Wang A, Feng J, Li Y, Zou P. Beyond Fluorescent Proteins: Hybrid and Bioluminescent Indicators for Imaging Neural Activities. ACS Chem Neurosci 2018; 9:639-650. [PMID: 29482322 DOI: 10.1021/acschemneuro.7b00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Optical biosensors have been invaluable tools in neuroscience research, as they provide the ability to directly visualize neural activity in real time, with high specificity, and with exceptional spatial and temporal resolution. Notably, a majority of these sensors are based on fluorescent protein scaffolds, which offer the ability to target specific cell types or even subcellular compartments. However, fluorescent proteins are intrinsically bulky tags, often insensitive to the environment, and always require excitation light illumination. To address these limitations, there has been a proliferation of alternative sensor scaffolds developed in recent years, including hybrid sensors that combine the advantages of synthetic fluorophores and genetically encoded protein tags, as well as bioluminescent probes. While still in their early stage of development as compared with fluorescent protein-based sensors, these novel probes have offered complementary solutions to interrogate various aspects of neuronal communication, including transmitter release, changes in membrane potential, and the production of second messengers. In this Review, we discuss these important new developments with a particular focus on design strategies.
Collapse
Affiliation(s)
- Anqi Wang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
43
|
Abstract
Chemically constructed biosensors consisting of a protein scaffold and an artificial small molecule have recently been recognized as attractive analytical tools for the specific detection and real-time monitoring of various biological substances or events in cells. Conventionally, such semisynthetic biosensors have been prepared in test tubes and then introduced into cells using invasive methods. With the impressive advances seen in bioorthogonal protein conjugation methodologies, however, it is now becoming feasible to directly construct semisynthetic biosensors in living cells, providing unprecedented tools for life-science research. We discuss here recent efforts regarding the in situ construction of protein-based semisynthetic biosensors and highlight their uses in the visualization and quantification of biomolecules and events in multimolecular and crowded cellular systems.
Collapse
Affiliation(s)
- Tsuyoshi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- CREST(Core Research for Evolutional Science and Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| |
Collapse
|
44
|
Hori Y, Otomura N, Nishida A, Nishiura M, Umeno M, Suetake I, Kikuchi K. Synthetic-Molecule/Protein Hybrid Probe with Fluorogenic Switch for Live-Cell Imaging of DNA Methylation. J Am Chem Soc 2018; 140:1686-1690. [PMID: 29381073 DOI: 10.1021/jacs.7b09713] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hybrid probes consisting of synthetic molecules and proteins are powerful tools for detecting biological molecules and signals in living cells. To date, most targets of the hybrid probes have been limited to pH and small analytes. Although biomacromolecules are essential to the physiological function of cells, the hybrid-probe-based approach has been scarcely employed for live-cell detection of biomacromolecules. Here, we developed a hybrid probe with a chemical switch for live-cell imaging of methylated DNA, an important macromolecule in the repression of gene expression. Using a protein labeling technique, we created a hybrid probe containing a DNA-binding fluorogen and a methylated-DNA-binding domain. The hybrid probe enhanced fluorescence intensity upon binding to methylated DNA and successfully monitored methylated DNA during mitosis. The hybrid probe offers notable advantages absent from probes based on small molecules or fluorescent proteins and is useful for live-cell analyses of epigenetic phenomena and diseases related to DNA methylation.
Collapse
Affiliation(s)
- Yuichiro Hori
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan.,Immunology Frontier Research Center, Osaka University , Suita, Osaka 565-0871, Japan
| | - Norimichi Otomura
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Ayuko Nishida
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Miyako Nishiura
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Maho Umeno
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | - Isao Suetake
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University , Suita, Osaka 565-0871, Japan.,Center for Twin Research, Graduate School of Medicine, Osaka University , Suita, Osaka 565-0871, Japan.,College of Nutrition, Koshien University , Takaraduka, Hyogo 665-0006, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan.,Immunology Frontier Research Center, Osaka University , Suita, Osaka 565-0871, Japan
| |
Collapse
|
45
|
Ng YZ, Baldera-Aguayo PA, Cornish VW. Fluorescence Polarization Assay for Small Molecule Screening of FK506 Biosynthesized in 96-Well Microtiter Plates. Biochemistry 2017; 56:5260-5268. [PMID: 28841306 DOI: 10.1021/acs.biochem.7b00602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The fluorescence polarization (FP) assay has been widely used to study enzyme kinetics, antibody-antigen interactions, and other biological interactions. We propose that the FP assay can be adapted as a high-throughput and potentially widely applicable screen for small molecules. This is useful in metabolic engineering, which is a promising approach to synthesizing compounds of pharmaceutical, agricultural, and industrial importance using bioengineered strains. There, the development of high-yield strains is often a costly and time-consuming process. This problem can be addressed by generating and testing large mutant strain libraries. However, a current key bottleneck is the lack of high-throughput screens to detect the small molecule products. The FP assay is quantitative, sensitive, fast, and cheap. As a proof of principle, we established the FP assay to screen for FK506 (tacrolimus) produced by Streptomyces tsukubaensis, which was cultivated in 96-well plates. An ultraviolet mutagenized library of 160 colonies was screened to identify strains showing higher FK506 productivities. The FP assay has the potential to be generalized to detect a wide range of other small molecules.
Collapse
Affiliation(s)
- Yao Zong Ng
- Department of Chemistry, Columbia University in the City of New York , 550 West 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
| | - Pedro A Baldera-Aguayo
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University in the City of New York , New York, New York 10032, United States.,Department of Systems Biology, Irving Cancer Research Center, Columbia University in the City of New York , 1130 St. Nicholas Avenue, New York, New York 10032, United States
| | - Virginia W Cornish
- Department of Chemistry, Columbia University in the City of New York , 550 West 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States.,Department of Systems Biology, Irving Cancer Research Center, Columbia University in the City of New York , 1130 St. Nicholas Avenue, New York, New York 10032, United States
| |
Collapse
|
46
|
Scarabelli S, Tan KT, Griss R, Hovius R, D’Alessandro PL, Vorherr T, Johnsson K. Evaluating Cellular Drug Uptake with Fluorescent Sensor Proteins. ACS Sens 2017; 2:1191-1197. [PMID: 28766337 DOI: 10.1021/acssensors.7b00331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We are introducing a new approach to evaluate cellular uptake of drugs and drug candidates into living cells. The approach is based on converting the protein target of a given class of compounds into a fluorescent biosensor. By measuring the binding of different compounds to their cognate biosensor in live cells and comparing these values to those measured in vitro, their cellular uptake and concentrations can be ranked. We demonstrate that our strategy enables the evaluation of the cellular uptake into the cytosol of 2 classes of inhibitors using two different sensor designs; first, sensors comprising the self-labeling protein SNAP conjugated with a chemically modified inhibitor shown for inhibitors of the enzyme human carbonic anhydrase II; and a label-free sensor for inhibitors of protein-protein interactions demonstrated for the protein pair p53-HDM2.
Collapse
Affiliation(s)
- Silvia Scarabelli
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne CH-1015, Switzerland
- National Centre of Competence in Research in Chemical Biology, Lausanne, CH-1015, Switzerland
| | - Kui Thong Tan
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne CH-1015, Switzerland
- National Centre of Competence in Research in Chemical Biology, Lausanne, CH-1015, Switzerland
| | - Rudolf Griss
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne CH-1015, Switzerland
- National Centre of Competence in Research in Chemical Biology, Lausanne, CH-1015, Switzerland
| | - Ruud Hovius
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne CH-1015, Switzerland
- National Centre of Competence in Research in Chemical Biology, Lausanne, CH-1015, Switzerland
| | | | - Thomas Vorherr
- Novartis Institutes for BioMedical Research, Basel, CH-4056, Switzerland
| | - Kai Johnsson
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne CH-1015, Switzerland
- National Centre of Competence in Research in Chemical Biology, Lausanne, CH-1015, Switzerland
- Max-Planck-Institute for Medical Research, Department of Chemical
Biology, 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Tuning Selectivity of Fluorescent Carbon Nanotube-Based Neurotransmitter Sensors. SENSORS 2017; 17:s17071521. [PMID: 28657584 PMCID: PMC5539566 DOI: 10.3390/s17071521] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/24/2017] [Accepted: 06/25/2017] [Indexed: 01/12/2023]
Abstract
Detection of neurotransmitters is an analytical challenge and essential to understand neuronal networks in the brain and associated diseases. However, most methods do not provide sufficient spatial, temporal, or chemical resolution. Near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have been used as building blocks for sensors/probes that detect catecholamine neurotransmitters, including dopamine. This approach provides a high spatial and temporal resolution, but it is not understood if these sensors are able to distinguish dopamine from similar catecholamine neurotransmitters, such as epinephrine or norepinephrine. In this work, the organic phase (DNA sequence) around SWCNTs was varied to create sensors with different selectivity and sensitivity for catecholamine neurotransmitters. Most DNA-functionalized SWCNTs responded to catecholamine neurotransmitters, but both dissociation constants (Kd) and limits of detection were highly dependent on functionalization (sequence). Kd values span a range of 2.3 nM (SWCNT-(GC)15 + norepinephrine) to 9.4 μM (SWCNT-(AT)15 + dopamine) and limits of detection are mostly in the single-digit nM regime. Additionally, sensors of different SWCNT chirality show different fluorescence increases. Moreover, certain sensors (e.g., SWCNT-(GT)10) distinguish between different catecholamines, such as dopamine and norepinephrine at low concentrations (50 nM). These results show that SWCNTs functionalized with certain DNA sequences are able to discriminate between catecholamine neurotransmitters or to detect them in the presence of interfering substances of similar structure. Such sensors will be useful to measure and study neurotransmitter signaling in complex biological settings.
Collapse
|
48
|
Ramesh SA, Tyerman SD, Gilliham M, Xu B. γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci 2017; 74:1577-1603. [PMID: 27838745 PMCID: PMC11107511 DOI: 10.1007/s00018-016-2415-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/11/2023]
Abstract
The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABAA receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.
Collapse
Affiliation(s)
- Sunita A Ramesh
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stephen D Tyerman
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
49
|
Bondar A, Lazar J. The G protein G i1 exhibits basal coupling but not preassembly with G protein-coupled receptors. J Biol Chem 2017; 292:9690-9698. [PMID: 28438833 DOI: 10.1074/jbc.m116.768127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/21/2017] [Indexed: 11/06/2022] Open
Abstract
The Gi/o protein family transduces signals from a diverse group of G protein-coupled receptors (GPCRs). The observed specificity of Gi/o-GPCR coupling and the high rate of Gi/o signal transduction have been hypothesized to be enabled by the existence of stable associates between Gi/o proteins and their cognate GPCRs in the inactive state (Gi/o-GPCR preassembly). To test this hypothesis, we applied the recently developed technique of two-photon polarization microscopy (2PPM) to Gαi1 subunits labeled with fluorescent proteins and four GPCRs: the α2A-adrenergic receptor, GABAB, cannabinoid receptor type 1 (CB1R), and dopamine receptor type 2. Our experiments with non-dissociating mutants of fluorescently labeled Gαi1 subunits (exhibiting impaired dissociation from activated GPCRs) showed that 2PPM is capable of detecting GPCR-G protein interactions. 2PPM experiments with non-mutated fluorescently labeled Gαi1 subunits and α2A-adrenergic receptor, GABAB, or dopamine receptor type 2 receptors did not reveal any interaction between the Gi1 protein and the non-stimulated GPCRs. In contrast, non-stimulated CB1R exhibited an interaction with the Gi1 protein. Further experiments revealed that this interaction is caused solely by CB1R basal activity; no preassembly between CB1R and the Gi1 protein could be observed. Our results demonstrate that four diverse GPCRs do not preassemble with non-active Gi1 However, we also show that basal GPCR activity allows interactions between non-stimulated GPCRs and Gi1 (basal coupling). These findings suggest that Gi1 interacts only with active GPCRs and that the well known high speed of GPCR signal transduction does not require preassembly between G proteins and GPCRs.
Collapse
Affiliation(s)
- Alexey Bondar
- From the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 37333 Nove Hrady,
| | - Josef Lazar
- From the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 37333 Nove Hrady.,the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, and.,the Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
50
|
Kuriki Y, Komatsu T, Ycas PD, Coulup SK, Carlson EJ, Pomerantz WCK. Meeting Proceedings ICBS2016-Translating the Power of Chemical Biology to Clinical Advances. ACS Chem Biol 2017; 12:869-877. [PMID: 28303709 DOI: 10.1021/acschembio.7b00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yugo Kuriki
- Graduate School
of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School
of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Peter D. Ycas
- Department of Chemistry, University of Minnesota, 312 Smith
Hall, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Sara K. Coulup
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - Erick J. Carlson
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, 312 Smith
Hall, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| |
Collapse
|