1
|
Pandey AK, Pain J, Singh P, Dancis A, Pain D. Mitochondrial glutaredoxin Grx5 functions as a central hub for cellular iron-sulfur cluster assembly. J Biol Chem 2025; 301:108391. [PMID: 40074084 PMCID: PMC12004709 DOI: 10.1016/j.jbc.2025.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Iron-sulfur (Fe-S) protein biogenesis in eukaryotes is mediated by two different machineries-one in the mitochondria and another in the cytoplasm. Glutaredoxin 5 (Grx5) is a component of the mitochondrial iron-sulfur cluster machinery. Here, we define the roles of Grx5 in maintaining overall mitochondrial/cellular Fe-S protein biogenesis, utilizing mitochondria and cytoplasm isolated from Saccharomyces cerevisiae cells. We previously demonstrated that isolated wild-type (WT) mitochondria themselves can synthesize new Fe-S clusters, but isolated WT cytoplasm alone cannot do so unless it is mixed with WT mitochondria. WT mitochondria generate an intermediate, called (Fe-S)int, that is exported to the cytoplasm and utilized for cytoplasmic Fe-S cluster assembly. We here show that mitochondria lacking endogenous Grx5 (Grx5↓) failed to synthesize Fe-S clusters for proteins within the organelle. Similarly, Grx5↓ mitochondria were unable to synthesize (Fe-S)int, as judged by their inability to promote Fe-S cluster biosynthesis in WT cytoplasm. Most importantly, purified Grx5 precursor protein, imported into isolated Grx5↓ mitochondria, rescued these Fe-S cluster synthesis/trafficking defects. Notably, mitochondria lacking immediate downstream components of the mitochondrial iron-sulfur cluster machinery (Isa1 or Isa2) could synthesize [2Fe-2S] but not [4Fe-4S] clusters within the organelle. Isa1↓ (or Isa2↓) mitochondria could still support Fe-S cluster biosynthesis in WT cytoplasm. These results provide evidence for Grx5 serving as a central hub for Fe-S cluster intermediate trafficking within mitochondria and export to the cytoplasm. Grx5 is conserved from yeast to humans, and deficiency or mutation causes fatal human diseases. Data as presented here will be informative for human physiology.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jayashree Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Pratibha Singh
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
2
|
Ercanbrack WS, Ramirez M, Dungan A, Gaul E, Ercanbrack SJ, Wingert RA. Frataxin deficiency and the pathology of Friedreich's Ataxia across tissues. Tissue Barriers 2025:2462357. [PMID: 39981684 DOI: 10.1080/21688370.2025.2462357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Friedreich's Ataxia (FRDA) is a neurodegenerative disease that affects a variety of different organ systems. The disease is caused by GAA repeat expansions in intron 1 of the Frataxin gene (FXN), which results in a decrease in the expression of the FXN protein. FXN is needed for the biogenesis of iron-sulfur clusters (ISC) which are required by key metabolic processes in the mitochondria. Without ISCs those processes do not occur properly. As a result, reactive oxygen species accumulate, and the mitochondria cease to function. Iron is also thought to accumulate in the cells of certain tissue types. These processes are thought to be intimately related to the pathologies affecting a myriad of tissues in FRDA. Most FRDA patients suffer from loss of motor control, cardiomyopathy, scoliosis, foot deformities, and diabetes. In this review, we discuss the known features of FRDA pathology and the current understanding about the basis of these alterations.
Collapse
Affiliation(s)
- Wesley S Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Mateo Ramirez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Austin Dungan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Ella Gaul
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sarah J Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
3
|
Cory SA, Lin CW, Patra S, Havens SM, Putnam CD, Shirzadeh M, Russell DH, Barondeau DP. Frataxin Traps Low Abundance Quaternary Structure to Stimulate Human Fe-S Cluster Biosynthesis. Biochemistry 2025; 64:903-916. [PMID: 39909887 PMCID: PMC11840927 DOI: 10.1021/acs.biochem.4c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Iron-sulfur clusters are essential protein cofactors synthesized in human mitochondria by an NFS1-ISD11-ACP-ISCU2-FXN assembly complex. Surprisingly, researchers have discovered three distinct quaternary structures for cysteine desulfurase subcomplexes, which display similar interactions between NFS1-ISD11-ACP protomeric units but dramatically different dimeric interfaces between the protomers. Although the role of these different architectures is unclear, possible functions include regulating activity and promoting the biosynthesis of distinct sulfur-containing biomolecules. Here, crystallography, native ion-mobility mass spectrometry, and chromatography methods reveal the Fe-S assembly subcomplex exists as an equilibrium mixture of these different quaternary structures. Isotope labeling and native mass spectrometry experiments show that the NFS1-ISD11-ACP complexes disassemble into protomers, which can then undergo exchange reactions and dimerize to reform native complexes. Single crystals isolated in distinct architectures have the same activity profile and activation by the Friedreich's ataxia (FRDA) protein frataxin (FXN) when rinsed and dissolved in assay buffer. These results suggest FXN functions as a "molecular lock" and shifts the equilibrium toward one of the architectures to stimulate the cysteine desulfurase activity and promote iron-sulfur cluster biosynthesis. An NFS1-designed variant similarly shifts the equilibrium and partially replaces FXN in activating the complex. We propose that eukaryotic cysteine desulfurases are unusual members of the morpheein class of enzymes that control their activity through their oligomeric state. Overall, the findings support architectural switching as a regulatory mechanism linked to FXN activation of the human Fe-S cluster biosynthetic complex and provide new opportunities for therapeutic interventions of the fatal neurodegenerative disease FRDA.
Collapse
Affiliation(s)
- Seth A. Cory
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Cheng-Wei Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Shachin Patra
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Steven M. Havens
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Christopher D. Putnam
- Department
of Medicine, University of California School
of Medicine, La Jolla, California 92093-0660, United States
| | - Mehdi Shirzadeh
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - David H. Russell
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - David P. Barondeau
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
4
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Ercanbrack WS, Dungan A, Gaul E, Ramirez M, J. DelVecchio A, Grass C, Wingert RA. Frataxin is essential for zebrafish embryogenesis and pronephros formation. Front Cell Dev Biol 2024; 12:1496244. [PMID: 39723241 PMCID: PMC11669007 DOI: 10.3389/fcell.2024.1496244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/29/2024] [Indexed: 12/28/2024] Open
Abstract
Background and objectives Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the frataxin gene (FXN) which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy. These occur due to the accumulation of reactive oxygen species (ROS) in the brain and the heart due to their high metabolic rates. Our research aims to understand how developmental processes and the kidney are impacted by a deficiency of FXN. Methods We utilized an antisense oligomer, or morpholino, to knockdown the frataxin gene (fxn) in zebrafish embryos. Knockdown was confirmed via RT-PCR, gel electrophoresis, and Sanger sequencing. To investigate phenotypes, we utilized several staining techniques including whole mount in situ hybridization, Alcian blue, and acridine orange, as well as dextran-FITC clearance assays. Results fxn deficient animals displayed otolith malformations, edema, and reduced survival. Alcian blue staining revealed craniofacial defects in fxn deficient animals, and gene expression studies showed that the pronephros, or embryonic kidney, had several morphological defects. We investigated the function of the pronephros through clearance assays and found that the renal function is disrupted in fxn deficient animals in addition to proximal tubule endocytosis. Utilizing acridine orange staining, we found that cell death is a partial contributor to these phenotypes. Discussion and conclusion This work provides new insights about how fxn deficiency impacts development and kidney morphogenesis. Additionally, this work establishes an additional model system to study FRDA.
Collapse
Affiliation(s)
- Wesley S. Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | | | | | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
6
|
Want K, D'Autréaux B. Mechanism of mitochondrial [2Fe-2S] cluster biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119811. [PMID: 39128597 DOI: 10.1016/j.bbamcr.2024.119811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Iron‑sulfur (Fe-S) clusters constitute ancient cofactors that accompany a versatile range of fundamental biological reactions across eukaryotes and prokaryotes. Several cellular pathways exist to coordinate iron acquisition and sulfur mobilization towards a scaffold protein during the tightly regulated synthesis of Fe-S clusters. The mechanism of mitochondrial eukaryotic [2Fe-2S] cluster synthesis is coordinated by the Iron-Sulfur Cluster (ISC) machinery and its aberrations herein have strong implications to the field of disease and medicine which is therefore of particular interest. Here, we describe our current knowledge on the step-by-step mechanism leading to the production of mitochondrial [2Fe-2S] clusters while highlighting the recent developments in the field alongside the challenges that are yet to be overcome.
Collapse
Affiliation(s)
- Kristian Want
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Vicente-Acosta A, Herranz-Martín S, Pazos MR, Galán-Cruz J, Amores M, Loria F, Díaz-Nido J. Glial cell activation precedes neurodegeneration in the cerebellar cortex of the YG8-800 murine model of Friedreich ataxia. Neurobiol Dis 2024; 200:106631. [PMID: 39111701 DOI: 10.1016/j.nbd.2024.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Friedreich ataxia is a hereditary neurodegenerative disorder resulting from reduced levels of the protein frataxin due to an expanded GAA repeat in the FXN gene. This deficiency causes progressive degeneration of specific neuronal populations in the cerebellum and the consequent loss of movement coordination and equilibrium, which are some of the main symptoms observed in affected individuals. Like in other neurodegenerative diseases, previous studies suggest that glial cells could be involved in the neurodegenerative process and disease progression in patients with Friedreich ataxia. In this work, we followed and characterized the progression of changes in the cerebellar cortex in the latest version of Friedreich ataxia humanized mouse model, YG8-800 (Fxnnull:YG8s(GAA)>800), which carries a human FXN transgene containing >800 GAA repeats. Comparative analyses of behavioral, histopathological, and biochemical parameters were conducted between the control strain Y47R and YG8-800 mice at different time points. Our findings revealed that YG8-800 mice exhibit an ataxic phenotype characterized by poor motor coordination, decreased body weight, cerebellar atrophy, neuronal loss, and changes in synaptic proteins. Additionally, early activation of glial cells, predominantly astrocytes and microglia, was observed preceding neuronal degeneration, as was increased expression of key proinflammatory cytokines and downregulation of neurotrophic factors. Together, our results show that the YG8-800 mouse model exhibits a stronger phenotype than previous experimental murine models, reliably recapitulating some of the features observed in humans. Accordingly, this humanized model could represent a valuable tool for studying Friedreich ataxia molecular disease mechanisms and for preclinical evaluation of possible therapies.
Collapse
Affiliation(s)
- Andrés Vicente-Acosta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Saúl Herranz-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Maria Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Jorge Galán-Cruz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Mario Amores
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Frida Loria
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain.
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Puerta de Hierro, Segovia de Arana, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 1, Majadahonda, 28222 Madrid, Spain.
| |
Collapse
|
8
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
9
|
Olivieri P, Crack JC, Lehmann A, Le Brun NE, Leimkühler S. CyaY and TusA regulate ISC- and SUF-mediated l-cysteine desulfurase activity. RSC Chem Biol 2024; 5:d4cb00225c. [PMID: 39372677 PMCID: PMC11446229 DOI: 10.1039/d4cb00225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
CyaY, the frataxin homolog of Escherichia coli, plays an important role in ISC iron-sulfur cluster assembly through interactions with the cysteine desulfurase IscS, which regulate the supply of sulfur. IscS is not exclusive for ISC Fe-S cluster assembly, as it functions as a hub for the supply of sulfur to a number of other sulfur-requiring pathways, such as for the biosynthesis of Moco and thiolated tRNAs. How the balance of sulfur supply to the various competing pathways is achieved is not fully understood, but a network of protein-protein interactions plays a key role. For example, IscU and TusA compete for binding to IscS and thus for sulfur supply to ISC and Moco/tRNA biosynthesis. Here, we show that TusA can displace CyaY from IscS and can form hetero-complexes involving IscS, CyaY and TusA. Displacement of CyaY from IscS raised the question of whether it can interact with the SUF pathway. The SUF cysteine desulfurase SufS functions as a complex with SufE. Native mass spectrometry studies showed that the SufS dimer can bind up to four SufE molecules, two at high affinity, and two at low affinity, sites. Titration of SufSE (or SufS alone) with CyaY demonstrated binding, probably at the lower affinity site in competition with SufE. Binding of CyaY dramatically reduced the activity of SufSE in vitro, and over-expression of CyaY also significantly affected total cellular desulfurase activity and Fe-S cluster assembly, with the greatest effect observed in mutant strains in which SufS was the principal desulfurase. These data point to a physiological role for CyaY in regulating the desulfurase activity of IscS and SufS and, hence, both the E.coli iron-sulfur assembly systems. They also demonstrate that TusA can displace the regulatory CyaY protein from IscS-CyaY complexes, facilitating sulfur delivery from IscS to other essential cellular processes, and increasing the likelihood of SufSE-CyaY interactions.
Collapse
Affiliation(s)
- Paolo Olivieri
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam D-14476 Potsdam Germany +49-331-977-5128 +49-331-977-5603
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy and Pharmacology, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Angelika Lehmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam D-14476 Potsdam Germany +49-331-977-5128 +49-331-977-5603
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy and Pharmacology, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam D-14476 Potsdam Germany +49-331-977-5128 +49-331-977-5603
| |
Collapse
|
10
|
Padalko V, Posnik F, Adamczyk M. Mitochondrial Aconitase and Its Contribution to the Pathogenesis of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9950. [PMID: 39337438 PMCID: PMC11431987 DOI: 10.3390/ijms25189950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This survey reviews modern ideas on the structure and functions of mitochondrial and cytosolic aconitase isoenzymes in eukaryotes. Cumulative experimental evidence about mitochondrial aconitases (Aco2) as one of the main targets of reactive oxygen and nitrogen species is generalized. The important role of Aco2 in maintenance of homeostasis of the intracellular iron pool and maintenance of the mitochondrial DNA is discussed. The role of Aco2 in the pathogenesis of some neurodegenerative diseases is highlighted. Inactivation or dysfunction of Aco2 as well as mutations found in the ACO2 gene appear to be significant factors in the development and promotion of various types of neurodegenerative diseases. A restoration of efficient mitochondrial functioning as a source of energy for the cell by targeting Aco2 seems to be one of the promising therapeutic directions to minimize progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Volodymyr Padalko
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- School of Medicine, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Filip Posnik
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Malgorzata Adamczyk
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
11
|
Olivieri P, Klabes M, Crack JC, Lehmann A, Bennett SP, Le Brun NE, Leimkühler S. Binding of IscU and TusA to different but competing sites of IscS influences the activity of IscS and directs sulfur to the respective biomolecular synthesis pathway. Microbiol Spectr 2024; 12:e0094924. [PMID: 38980029 PMCID: PMC11302665 DOI: 10.1128/spectrum.00949-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
All sulfur transfer pathways generally have in common an l-cysteine desulfurase as the initial sulfur-mobilizing enzyme, which serves as a sulfur donor for the biosynthesis of numerous sulfur-containing biomolecules in the cell. In Escherichia coli, the housekeeping l-cysteine desulfurase IscS functions as a hub for sulfur transfer through interactions with several partner proteins, which bind at different sites on IscS. So far, the interaction sites of IscU, Fdx, CyaY, and IscX involved in iron sulfur (Fe-S) cluster assembly, TusA, required for molybdenum cofactor biosynthesis and mnm5s2U34 transfer RNA (tRNA) modifications, and ThiI, involved in both the biosynthesis of thiamine and s4U8 tRNA modifications, have been mapped. Previous studies have suggested that IscS partner proteins bind only one at a time, with the exception of Fe-S cluster assembly, which involves the formation of a ternary complex involving IscS, IscU, and one of CyaY, Fdx, or IscX. Here, we show that the affinity of TusA for IscS is similar to but lower than that of IscU and that these proteins compete for binding to IscS. We show that heterocomplexes involving the IscS dimer and single IscU and TusA molecules are readily formed and that binding of both TusA and IscU to IscS affects its l-cysteine desulfurase activity. A model is proposed in which the delivery of sulfur to different sulfur-requiring pathways is controlled by sulfur acceptor protein levels, IscS-binding affinities, and acceptor protein-modulated IscS desulfurase activity.IMPORTANCEIron-sulfur clusters are evolutionarily ancient prosthetic groups. The housekeeping l-cysteine desulfurase IscS functions as a central core for sulfur transfer through interactions with several partner proteins, which bind at different sites on each IscS monomer with different affinities and partially overlapping binding sites. We show that heterocomplexes involving the IscS dimer and single IscU and TusA molecules at each site of the dimer are formed, thereby influencing the activity of IscS.
Collapse
Affiliation(s)
- Paolo Olivieri
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Moritz Klabes
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jason C. Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Angelika Lehmann
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Sophie P. Bennett
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
12
|
Pilotto F, Del Bondio A, Puccio H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells 2024; 13:319. [PMID: 38391932 PMCID: PMC10886822 DOI: 10.3390/cells13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.
Collapse
Affiliation(s)
| | | | - Hélène Puccio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| |
Collapse
|
13
|
Doni D, Cavallari E, Noguera ME, Gentili HG, Cavion F, Parisi G, Fornasari MS, Sartori G, Santos J, Bellanda M, Carbonera D, Costantini P, Bortolus M. Searching for Frataxin Function: Exploring the Analogy with Nqo15, the Frataxin-like Protein of Respiratory Complex I from Thermus thermophilus. Int J Mol Sci 2024; 25:1912. [PMID: 38339189 PMCID: PMC10855754 DOI: 10.3390/ijms25031912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Nqo15 is a subunit of respiratory complex I of the bacterium Thermus thermophilus, with strong structural similarity to human frataxin (FXN), a protein involved in the mitochondrial disease Friedreich's ataxia (FRDA). Recently, we showed that the expression of recombinant Nqo15 can ameliorate the respiratory phenotype of FRDA patients' cells, and this prompted us to further characterize both the Nqo15 solution's behavior and its potential functional overlap with FXN, using a combination of in silico and in vitro techniques. We studied the analogy of Nqo15 and FXN by performing extensive database searches based on sequence and structure. Nqo15's folding and flexibility were investigated by combining nuclear magnetic resonance (NMR), circular dichroism, and coarse-grained molecular dynamics simulations. Nqo15's iron-binding properties were studied using NMR, fluorescence, and specific assays and its desulfurase activation by biochemical assays. We found that the recombinant Nqo15 isolated from complex I is monomeric, stable, folded in solution, and highly dynamic. Nqo15 does not share the iron-binding properties of FXN or its desulfurase activation function.
Collapse
Affiliation(s)
- Davide Doni
- Department of Biology, University of Padova, 35121 Padova, Italy; (D.D.); (F.C.)
| | - Eva Cavallari
- Department of Biology, University of Padova, 35121 Padova, Italy; (D.D.); (F.C.)
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France
| | - Martin Ezequiel Noguera
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EG, Argentina; (M.E.N.); (H.G.G.); (J.S.)
- Institute of Biological Chemistry and Physical Chemistry, Dr Alejandro Paladini (UBA-CONICET), University of Buenos Aires, Junín 956, Buenos Aires 1113AAD, Argentina
- Department of Science and Technology, National University of Quilmes, Roque Saenz Peña 352, Bernal B1876BXD, Argentina; (G.P.); (M.S.F.)
| | - Hernan Gustavo Gentili
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EG, Argentina; (M.E.N.); (H.G.G.); (J.S.)
| | - Federica Cavion
- Department of Biology, University of Padova, 35121 Padova, Italy; (D.D.); (F.C.)
| | - Gustavo Parisi
- Department of Science and Technology, National University of Quilmes, Roque Saenz Peña 352, Bernal B1876BXD, Argentina; (G.P.); (M.S.F.)
| | - Maria Silvina Fornasari
- Department of Science and Technology, National University of Quilmes, Roque Saenz Peña 352, Bernal B1876BXD, Argentina; (G.P.); (M.S.F.)
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy;
| | - Javier Santos
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EG, Argentina; (M.E.N.); (H.G.G.); (J.S.)
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (M.B.); (D.C.)
- Consiglio Nazionale delle Ricerche Institute of Biomolecular Chemistry, 35131 Padova, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (M.B.); (D.C.)
| | - Paola Costantini
- Department of Biology, University of Padova, 35121 Padova, Italy; (D.D.); (F.C.)
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (M.B.); (D.C.)
| |
Collapse
|
14
|
Smith FM, Kosman DJ. Loss of filamentous actin, tight junction protein expression, and paracellular barrier integrity in frataxin-deficient human brain microvascular endothelial cells-implications for blood-brain barrier physiology in Friedreich's ataxia. Front Mol Biosci 2024; 10:1299201. [PMID: 38274097 PMCID: PMC10808331 DOI: 10.3389/fmolb.2023.1299201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Friedreich's Ataxia (FRDA) is the most prevalent inherited ataxia. FRDA results from loss of Frataxin (FXN), an essential mitochondrial iron trafficking protein. FRDA starts with an early burst of neurodegeneration of the dorsal root ganglion and cerebellar dentate nuclei, followed by progressive brain iron accumulation in the latter. End stage disease includes cardiac fibrosis that contributes to hypertrophic cardiomyopathy. The microvasculature plays an essential barrier role in both brain and heart homeostasis, thus an investigation of this tissue system in FRDA is essential to the delineation of the cellular dysfunction in this genetic disorder. Previous reports have identified cytoskeletal alterations in non-barrier forming FRDA cell models, but physiological consequences are limited. Methods: We investigated brain microvascular endothelial cell integrity in FRDA in a model of the blood-brain barrier (BBB). We have knocked down FXN in immortalized human brain microvascular endothelial cells (hBMVEC), which compose the microcapillaries of the BBB, by using shRNA. We confirmed known cellular pathophysiologies of FXN-knockdown including decreased energy metabolism, markers of oxidative stress, and increased cell size. Results: We investigated cytoskeletal architecture, identifying decreased filamentous actin and Occludin and Claudin-5 tight junction protein expression in shFXN hBMVECs. This was consistent with decreased transendothelial electrical resistance (TEER) and increased paracellular tracer flux during early barrier formation. shFXN hBMVEC start with only 67% barrier integrity of the controls, and flux a paracellular tracer at 800% of physiological levels. Discussion: We identified that insufficient FXN levels in the hBMVEC BBB model causes changes in cytoskeletal architecture and tight junction protein abundance, co-incident with increased barrier permeability. Changes in the integrity of the BBB may be related to patient brain iron accumulation, neuroinflammation, neurodegeneration, and stroke. Furthermore, our findings implicate other barrier cells, e.g., the cardiac microvasculature, loci of disease pathology in FRDA.
Collapse
Affiliation(s)
- Frances M. Smith
- Jacobs School of Medicine and Biomedical Sciences, Department of Biochemistry, The State University of New York at Buffalo, Buffalo, NY, United States
| | | |
Collapse
|
15
|
Doni D, Cavion F, Bortolus M, Baschiera E, Muccioli S, Tombesi G, d'Ettorre F, Ottaviani D, Marchesan E, Leanza L, Greggio E, Ziviani E, Russo A, Bellin M, Sartori G, Carbonera D, Salviati L, Costantini P. Human frataxin, the Friedreich ataxia deficient protein, interacts with mitochondrial respiratory chain. Cell Death Dis 2023; 14:805. [PMID: 38062036 PMCID: PMC10703789 DOI: 10.1038/s41419-023-06320-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023]
Abstract
Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease caused by an expanded GAA repeat in the first intron of the FXN gene, leading to transcriptional silencing and reduced expression of frataxin. Frataxin participates in the mitochondrial assembly of FeS clusters, redox cofactors of the respiratory complexes I, II and III. To date it is still unclear how frataxin deficiency culminates in the decrease of bioenergetics efficiency in FRDA patients' cells. We previously demonstrated that in healthy cells frataxin is closely attached to the mitochondrial cristae, which contain both the FeS cluster assembly machinery and the respiratory chain complexes, whereas in FRDA patients' cells with impaired respiration the residual frataxin is largely displaced in the matrix. To gain novel insights into the function of frataxin in the mitochondrial pathophysiology, and in the upstream metabolic defects leading to FRDA disease onset and progression, here we explored the potential interaction of frataxin with the FeS cluster-containing respiratory complexes I, II and III. Using healthy cells and different FRDA cellular models we found that frataxin interacts with these three respiratory complexes. Furthermore, by EPR spectroscopy, we observed that in mitochondria from FRDA patients' cells the decreased level of frataxin specifically affects the FeS cluster content of complex I. Remarkably, we also found that the frataxin-like protein Nqo15 from T. thermophilus complex I ameliorates the mitochondrial respiratory phenotype when expressed in FRDA patient's cells. Our data point to a structural and functional interaction of frataxin with complex I and open a perspective to explore therapeutic rationales for FRDA targeted to this respiratory complex.
Collapse
Affiliation(s)
- Davide Doni
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Federica Cavion
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, 35131, Padova, Italy
| | - Elisa Baschiera
- Clinical Genetics Unit, Department of Women's and Children Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, 35127, Padova, Italy
| | - Silvia Muccioli
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Giulia Tombesi
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | | | - Elena Marchesan
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, 35121, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Elena Ziviani
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Milena Bellin
- Department of Biology, University of Padova, 35121, Padova, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, ZA, Leiden, The Netherlands
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children Health, University of Padova, 35128, Padova, Italy.
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, 35127, Padova, Italy.
| | - Paola Costantini
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
16
|
Smith FM, Kosman DJ. Frataxin-deficient human brain microvascular endothelial cells lose polymerized actin and are paracellularly permeable -implications for blood-brain barrier integrity in Friedreich's Ataxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527936. [PMID: 36798283 PMCID: PMC9934603 DOI: 10.1101/2023.02.09.527936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background Friedreich's Ataxia (FRDA) is the most prevalent inherited ataxia; the disease results from loss of Frataxin, an essential mitochondrial iron trafficking protein. FRDA presents as neurodegeneration of the dorsal root ganglion and cerebellar dentate nuclei, followed by brain iron accumulation in the latter. End stage disease includes cardiac fibrosis that contributes to hypertrophic cardiomyopathy. The microvasculature plays an essential barrier role in both the brain and heart, thus an investigation of this tissue system in FRDA is essential to the delineation of the cellular dysfunction in this genetic disorder. Here, we investigate brain microvascular endothelial cell integrity in FRDA in a model of the blood-brain barrier (BBB). Methods We used lentiviral mediated shRNA delivery to generate a novel FRDA model in immortalized human brain microvascular endothelial cells (hBMVEC) that compose the microcapillaries of the BBB. We verified known cellular pathophysiologies of FXN knockdown including increased oxidative stress, loss of energy metabolism, and increased cell size. Furthermore, we investigated cytoskeletal architecture including the abundance and organization of filamentous actin, and barrier physiology via transendothelial electrical resistance and fluorescent tracer flux. Results shFXN hBMVEC display the known FRDA cell morbidity including increased oxidative stress, decreased energy metabolism, and an increase in cell size. We demonstrate that shFXN hBMVEC have less overall filamentous actin, and that filamentous actin is lost at the cell membrane and cortical actin ring. Consistent with loss of cytoskeletal structure and anchorage, we found decreased barrier strength and increased paracellular tracer flux in the shFXN hBMVEC transwell model. Conclusion We identified that insufficient FXN levels in the hBMVEC BBB model causes changes in cytoskeletal architecture and increased barrier permeability, cell pathologies that may be related to patient brain iron accumulation, neuroinflammation, neurodegeneration, and stroke. Our findings implicate other barrier cells, e.g., the cardiac microvasculature, likely contributory also to disease pathology in FRDA.
Collapse
Affiliation(s)
- Frances M Smith
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University of New York at Buffalo
| | - Daniel J Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University of New York at Buffalo
| |
Collapse
|
17
|
Pignataro MF, Herrera MG, Fernández NB, Aran M, Gentili HG, Battaglini F, Santos J. Selection of synthetic proteins to modulate the human frataxin function. Biotechnol Bioeng 2023; 120:409-425. [PMID: 36225115 DOI: 10.1002/bit.28263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 01/13/2023]
Abstract
Frataxin is a kinetic activator of the mitochondrial supercomplex for iron-sulfur cluster assembly. Low frataxin expression or a decrease in its functionality results in Friedreich's Ataxia (FRDA). With the aim of creating new molecular tools to study this metabolic pathway, and ultimately, to explore new therapeutic strategies, we have investigated the possibility of obtaining small proteins exhibiting a high affinity for frataxin. In this study, we applied the ribosome display approach, using human frataxin as the target. We focused on Affi_224, one of the proteins that we were able to select after five rounds of selection. We have studied the interaction between both proteins and discussed some applications of this specific molecular tutor, concerning the modulation of the supercomplex activity. Affi_224 and frataxin showed a KD value in the nanomolar range, as judged by surface plasmon resonance analysis. Most likely, it binds to the frataxin acidic ridge, as suggested by the analysis of chemical shift perturbations (nuclear magnetic resonance) and computational simulations. Affi_224 was able to increase Cys NFS1 desulfurase activation exerted by the FRDA frataxin variant G130V. Importantly, Affi_224 interacts with frataxin in a human cellular model. Our results suggest quaternary addition may be a new tool to modulate frataxin function in vivo. Nevertheless, more functional experiments under physiological conditions should be carried out to evaluate Affi_224 effectiveness in FRDA cell models.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Brenda Fernández
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín Aran
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.,Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Hernán Gustavo Gentili
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Battaglini
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET), Buenos Aires, Argentina
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
18
|
Guo J, Zhou Y, Liu D, Wang M, Wu Y, Tang D, Liu X. Mitochondria as multifaceted regulators of ferroptosis. LIFE METABOLISM 2022; 1:134-148. [PMID: 39872359 PMCID: PMC11749789 DOI: 10.1093/lifemeta/loac035] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/30/2025]
Abstract
Mitochondria are well known to be "energy factories" of the cell as they provide intracellular ATP via oxidative phosphorylation. Interestingly, they also function as a "cellular suicidal weapon store" by acting as a key mediator of various forms of regulated cell death, including apoptosis, pyroptosis, necroptosis, and ferroptosis. Ferroptosis, distinct from the other types of regulated cell death, is characterized by iron-dependent lipid peroxidation and subsequent plasma membrane rupture. Growing evidence suggests that an impaired ferroptotic response is implicated in various diseases and pathological conditions, and this impaired response is associated with dramatic changes in mitochondrial morphology and function. Mitochondria are the center of iron metabolism and energy production, leading to altered lipid peroxidation sensitivity. Although a growing number of studies have explored the inextricable link between mitochondria and ferroptosis, the role of this organelle in regulating ferroptosis remains unclear. Here, we review recent advances in our understanding of the role of mitochondria in ferroptosis and summarize the characteristics of this novel iron-based cellular suicide weapon and its arsenal. We also discuss the importance of ferroptosis in pathophysiology, including the need for further understanding of the relationship between mitochondria and ferroptosis to identify combinatorial targets that are essential for the development of successful drug discovery.
Collapse
Affiliation(s)
- Jingyi Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yunhao Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Dingfei Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Mengfei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| |
Collapse
|
19
|
Abeti R, Jasoliya M, Al-Mahdawi S, Pook M, Gonzalez-Robles C, Hui CK, Cortopassi G, Giunti P. A Drug Combination Rescues Frataxin-Dependent Neural and Cardiac Pathophysiology in FA Models. Front Mol Biosci 2022; 9:830650. [PMID: 35664670 PMCID: PMC9160322 DOI: 10.3389/fmolb.2022.830650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Friedreich’s ataxia (FA) is an inherited multisystemic neuro- and cardio-degenerative disorder. Seventy-four clinical trials are listed for FA (including past and present), but none are considered FDA/EMA-approved therapy. To date, FA therapeutic strategies have focused along two main lines using a single-drug approach: a) increasing frataxin and b) enhancing downstream pathways, including antioxidant levels and mitochondrial function. Our novel strategy employed a combinatorial approach to screen approved compounds to determine if a combination of molecules provided an additive or synergistic benefit to FA cells and/or animal models. Eight single drug molecules were administered to FA fibroblast patient cells: nicotinamide riboside, hemin, betamethasone, resveratrol, epicatechin, histone deacetylase inhibitor 109, methylene blue, and dimethyl fumarate. We measured their individual ability to induce FXN transcription and mitochondrial biogenesis in patient cells. Single-drug testing highlighted that dimethyl fumarate and resveratrol increased these two parameters. In addition, the simultaneous administration of these two drugs was the most effective in terms of FXN mRNA and mitobiogenesis increase. Interestingly, this combination also improved mitochondrial functions and reduced reactive oxygen species in neurons and cardiomyocytes. Behavioral tests in an FA mouse model treated with dimethyl fumarate and resveratrol demonstrated improved rotarod performance. Our data suggest that dimethyl fumarate is effective as a single agent, and the addition of resveratrol provides further benefit in some assays without showing toxicity. Therefore, they could be a valuable combination to counteract FA pathophysiology. Further studies will help fully understand the potential of a combined therapeutic strategy in FA pathophysiology.
Collapse
Affiliation(s)
- Rosella Abeti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL, Institute of Neurology, London, United Kingdom
- *Correspondence: Rosella Abeti, ; Paola Giunti,
| | - Mittal Jasoliya
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA, United States
| | - Sahar Al-Mahdawi
- Department of Life Sciences, Institute of Environment, Health, and Societies, College of Health and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Mark Pook
- Department of Life Sciences, Institute of Environment, Health, and Societies, College of Health and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Cristina Gonzalez-Robles
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL, Institute of Neurology, London, United Kingdom
| | - Chun Kiu Hui
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA, United States
| | - Gino Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA, United States
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL, Institute of Neurology, London, United Kingdom
- *Correspondence: Rosella Abeti, ; Paola Giunti,
| |
Collapse
|
20
|
Huichalaf C, Perfitt TL, Kuperman A, Gooch R, Kovi RC, Brenneman KA, Chen X, Hirenallur-Shanthappa D, Ma T, Assaf BT, Pardo I, Franks T, Monarski L, Cheng TW, Le K, Su C, Somanathan S, Whiteley LO, Bulawa C, Pregel MJ, Martelli A. In vivo overexpression of frataxin causes toxicity mediated by iron-sulfur cluster deficiency. Mol Ther Methods Clin Dev 2022; 24:367-378. [PMID: 35252470 PMCID: PMC8866050 DOI: 10.1016/j.omtm.2022.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
Abstract
Friedreich's ataxia is a rare disorder resulting from deficiency of frataxin, a mitochondrial protein implicated in the synthesis of iron-sulfur clusters. Preclinical studies in mice have shown that gene therapy is a promising approach to treat individuals with Friedreich's ataxia. However, a recent report provided evidence that AAVrh10-mediated overexpression of frataxin could lead to cardiotoxicity associated with mitochondrial dysfunction. While evaluating an AAV9-based frataxin gene therapy using a chicken β-actin promoter, we showed that toxic overexpression of frataxin could be reached in mouse liver and heart with doses between 1 × 1013 and 1 × 1014 vg/kg. In a mouse model of cardiac disease, these doses only corrected cardiac dysfunction partially and transiently and led to adverse findings associated with iron-sulfur cluster deficiency in liver. We demonstrated that toxicity required frataxin's primary function by using a frataxin construct bearing the N146K mutation, which impairs binding to the iron-sulfur cluster core complex. At the lowest tested dose, we observed moderate liver toxicity that was accompanied by progressive loss of transgene expression and liver regeneration. Together, our data provide insights into the toxicity of frataxin overexpression that should be considered in the development of a gene therapy approach for Friedreich's ataxia.
Collapse
Affiliation(s)
- Claudia Huichalaf
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Tyler L Perfitt
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Anna Kuperman
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Renea Gooch
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Ramesh C Kovi
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Karrie A Brenneman
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Xian Chen
- Comparative Medicine, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | | | - Tiffany Ma
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Basel T Assaf
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Ingrid Pardo
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Tania Franks
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Laura Monarski
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Ting-Wen Cheng
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Kevin Le
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Chunyan Su
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Suryanarayan Somanathan
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Laurence O Whiteley
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Christine Bulawa
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Marko J Pregel
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Alain Martelli
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Monfort B, Want K, Gervason S, D’Autréaux B. Recent Advances in the Elucidation of Frataxin Biochemical Function Open Novel Perspectives for the Treatment of Friedreich’s Ataxia. Front Neurosci 2022; 16:838335. [PMID: 35310092 PMCID: PMC8924461 DOI: 10.3389/fnins.2022.838335] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
Friedreich’s ataxia (FRDA) is the most prevalent autosomic recessive ataxia and is associated with a severe cardiac hypertrophy and less frequently diabetes. It is caused by mutations in the gene encoding frataxin (FXN), a small mitochondrial protein. The primary consequence is a defective expression of FXN, with basal protein levels decreased by 70–98%, which foremost affects the cerebellum, dorsal root ganglia, heart and liver. FXN is a mitochondrial protein involved in iron metabolism but its exact function has remained elusive and highly debated since its discovery. At the cellular level, FRDA is characterized by a general deficit in the biosynthesis of iron-sulfur (Fe-S) clusters and heme, iron accumulation and deposition in mitochondria, and sensitivity to oxidative stress. Based on these phenotypes and the proposed ability of FXN to bind iron, a role as an iron storage protein providing iron for Fe-S cluster and heme biosynthesis was initially proposed. However, this model was challenged by several other studies and it is now widely accepted that FXN functions primarily in Fe-S cluster biosynthesis, with iron accumulation, heme deficiency and oxidative stress sensitivity appearing later on as secondary defects. Nonetheless, the biochemical function of FXN in Fe-S cluster biosynthesis is still debated. Several roles have been proposed for FXN: iron chaperone, gate-keeper of detrimental Fe-S cluster biosynthesis, sulfide production stimulator and sulfur transfer accelerator. A picture is now emerging which points toward a unique function of FXN as an accelerator of a key step of sulfur transfer between two components of the Fe-S cluster biosynthetic complex. These findings should foster the development of new strategies for the treatment of FRDA. We will review here the latest discoveries on the biochemical function of frataxin and the implication for a potential therapeutic treatment of FRDA.
Collapse
|
22
|
Mitochondrial De Novo Assembly of Iron–Sulfur Clusters in Mammals: Complex Matters in a Complex That Matters. INORGANICS 2022. [DOI: 10.3390/inorganics10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Iron–sulfur clusters (Fe–S or ISC) are essential cofactors that function in a wide range of biological pathways. In mammalian cells, Fe–S biosynthesis primarily relies on mitochondria and involves a concerted group of evolutionary-conserved proteins forming the ISC pathway. In the early stage of the ISC pathway, the Fe–S core complex is required for de novo assembly of Fe–S. In humans, the Fe–S core complex comprises the cysteine desulfurase NFS1, the scaffold protein ISCU2, frataxin (FXN), the ferredoxin FDX2, and regulatory/accessory proteins ISD11 and Acyl Carrier Protein (ACP). In recent years, the field has made significant advances in unraveling the structure of the Fe–S core complex and the mechanism underlying its function. Herein, we review the key recent findings related to the Fe–S core complex and its components. We highlight some of the unanswered questions and provide a model of the Fe–S assembly within the complex. In addition, we briefly touch on the genetic diseases associated with mutations in the Fe–S core complex components.
Collapse
|
23
|
Uzarska MA, Grochowina I, Soldek J, Jelen M, Schilke B, Marszalek J, Craig EA, Dutkiewicz R. During FeS cluster biogenesis, ferredoxin and frataxin use overlapping binding sites on yeast cysteine desulfurase Nfs1. J Biol Chem 2022; 298:101570. [PMID: 35026224 PMCID: PMC8888459 DOI: 10.1016/j.jbc.2022.101570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/04/2022] [Indexed: 01/30/2023] Open
Abstract
In mitochondria, cysteine desulfurase (Nfs1) plays a central role in the biosynthesis of iron-sulfur (FeS) clusters, cofactors critical for activity of many cellular proteins. Nfs1 functions both as a sulfur donor for cluster assembly and as a binding platform for other proteins functioning in the process. These include not only the dedicated scaffold protein (Isu1) on which FeS clusters are synthesized but also accessory FeS cluster biogenesis proteins frataxin (Yfh1) and ferredoxin (Yah1). Yfh1 has been shown to activate cysteine desulfurase enzymatic activity, whereas Yah1 supplies electrons for the persulfide reduction. While Yfh1 interaction with Nfs1 is well understood, the Yah1-Nfs1 interaction is not. Here, based on the results of biochemical experiments involving purified WT and variant proteins, we report that in Saccharomyces cerevisiae, Yah1 and Yfh1 share an evolutionary conserved interaction site on Nfs1. Consistent with this notion, Yah1 and Yfh1 can each displace the other from Nfs1 but are inefficient competitors when a variant with an altered interaction site is used. Thus, the binding mode of Yah1 and Yfh1 interacting with Nfs1 in mitochondria of S. cerevisiae resembles the mutually exclusive binding of ferredoxin and frataxin with cysteine desulfurase reported for the bacterial FeS cluster assembly system. Our findings are consistent with the generally accepted scenario that the mitochondrial FeS cluster assembly system was inherited from bacterial ancestors of mitochondria.
Collapse
Affiliation(s)
- Marta A Uzarska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Igor Grochowina
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Joanna Soldek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Marcin Jelen
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Brenda Schilke
- Department of Biochemistry, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland; Department of Biochemistry, University of Wisconsin - Madison, Madison, Wisconsin, USA.
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin - Madison, Madison, Wisconsin, USA.
| | - Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
24
|
Montealegre S, Lebigot E, Debruge H, Romero N, Héron B, Gaignard P, Legendre A, Imbard A, Gobin S, Lacène E, Nusbaum P, Hubas A, Desguerre I, Servais A, Laforêt P, van Endert P, Authier FJ, Gitiaux C, de Lonlay P. FDX2 and ISCU Gene Variations Lead to Rhabdomyolysis With Distinct Severity and Iron Regulation. Neurol Genet 2022; 8:e648. [PMID: 35079622 PMCID: PMC8771665 DOI: 10.1212/nxg.0000000000000648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Background and Objectives To determine common clinical and biological traits in 2 individuals with
variants in ISCU and FDX2, displaying
severe and recurrent rhabdomyolyses and lactic acidosis. Methods We performed a clinical characterization of 2 distinct individuals with
biallelic ISCU or FDX2 variants from 2
separate families and a biological characterization with muscle and cells
from those patients. Results The individual with FDX2 variants was clinically more
affected than the individual with ISCU variants. Affected
FDX2 individual fibroblasts and myoblasts showed reduced oxygen consumption
rates and mitochondrial complex I and PDHc activities, associated with high
levels of blood FGF21. ISCU individual fibroblasts showed no oxidative
phosphorylation deficiency and moderate increase of blood FGF21 levels
relative to controls. The severity of the FDX2 individual was not due to
dysfunctional autophagy. Iron was excessively accumulated in ISCU-deficient
skeletal muscle, which was accompanied by a downregulation of
IRP1 and mitoferrin2 genes and an
upregulation of frataxin (FXN) gene expression. This
excessive iron accumulation was absent from FDX2 affected muscle and could
not be correlated with variable gene expression in muscle cells. Discussion We conclude that FDX2 and ISCU variants
result in a similar muscle phenotype, that differ in severity and skeletal
muscle iron accumulation. ISCU and FDX2 are not involved in mitochondrial
iron influx contrary to frataxin.
Collapse
Affiliation(s)
- Sebastian Montealegre
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Elise Lebigot
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Hugo Debruge
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Norma Romero
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Bénédicte Héron
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Pauline Gaignard
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Antoine Legendre
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Apolline Imbard
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Stéphanie Gobin
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Emmanuelle Lacène
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Patrick Nusbaum
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Arnaud Hubas
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Isabelle Desguerre
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Aude Servais
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Pascal Laforêt
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Peter van Endert
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - François Jérome Authier
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Cyril Gitiaux
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Pascale de Lonlay
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| |
Collapse
|
25
|
Fujishiro T, Nakamura R, Kunichika K, Takahashi Y. Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis. Biophys Physicobiol 2022; 19:1-18. [PMID: 35377584 PMCID: PMC8918507 DOI: 10.2142/biophysico.bppb-v19.0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Cysteine desulfurases are pyridoxal-5'-phosphate (PLP)-dependent enzymes that mobilize sulfur derived from the l-cysteine substrate to the partner sulfur acceptor proteins. Three cysteine desulfurases, IscS, NifS, and SufS, have been identified in ISC, NIF, and SUF/SUF-like systems for iron-sulfur (Fe-S) cluster biosynthesis, respectively. These cysteine desulfurases have been investigated over decades, providing insights into shared/distinct catalytic processes based on two types of enzymes (type I: IscS and NifS, type II: SufS). This review summarizes the insights into the structural/functional varieties of bacterial and eukaryotic cysteine desulfurases involved in Fe-S cluster biosynthetic systems. In addition, an inactive cysteine desulfurase IscS paralog, which contains pyridoxamine-5'-phosphate (PMP), instead of PLP, is also described to account for its hypothetical function in Fe-S cluster biosynthesis involving this paralog. The structural basis for cysteine desulfurase functions will be a stepping stone towards understanding the diversity and evolution of Fe-S cluster biosynthesis.
Collapse
Affiliation(s)
- Takashi Fujishiro
- Department of Biochemistry and Moecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Ryosuke Nakamura
- Department of Biochemistry and Moecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Kouhei Kunichika
- Department of Biochemistry and Moecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Yasuhiro Takahashi
- Department of Biochemistry and Moecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
26
|
Li Y, Li J, Wang J, Lynch D, Shen X, R. Corey D, Parekh D, Bhat B, Woo C, Cherry J, Napierala J, Napierala M. Targeting 3' and 5' untranslated regions with antisense oligonucleotides to stabilize frataxin mRNA and increase protein expression. Nucleic Acids Res 2021; 49:11560-11574. [PMID: 34718736 PMCID: PMC8599914 DOI: 10.1093/nar/gkab954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a severe multisystem disease caused by transcriptional repression induced by expanded GAA repeats located in intron 1 of the Frataxin (FXN) gene encoding frataxin. FRDA results from decreased levels of frataxin; thus, stabilization of the FXN mRNA already present in patient cells represents an attractive and unexplored therapeutic avenue. In this work, we pursued a novel approach based on oligonucleotide-mediated targeting of FXN mRNA ends to extend its half-life and availability as a template for translation. We demonstrated that oligonucleotides designed to bind to FXN 5' or 3' noncoding regions can increase FXN mRNA and protein levels. Simultaneous delivery of oligonucleotides targeting both ends increases efficacy of the treatment. The approach was confirmed in several FRDA fibroblast and induced pluripotent stem cell-derived neuronal progenitor lines. RNA sequencing and single-cell expression analyses confirmed oligonucleotide-mediated FXN mRNA upregulation. Mechanistically, a significant elongation of the FXN mRNA half-life without any changes in chromatin status at the FXN gene was observed upon treatment with end-targeting oligonucleotides, indicating that transcript stabilization is responsible for frataxin upregulation. These results identify a novel approach toward upregulation of steady-state mRNA levels via oligonucleotide-mediated end targeting that may be of significance to any condition resulting from transcription downregulation.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Jixue Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Jun Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - David R Lynch
- Division of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Abramson Research Center, Room 502, Philadelphia, PA 19104, USA
| | - Xiulong Shen
- Department of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R. Corey
- Department of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darshan Parekh
- Translate Bio, 29 Hartwell Avenue, Lexington, MA 02421, USA
| | | | - Caroline Woo
- Translate Bio, 29 Hartwell Avenue, Lexington, MA 02421, USA
| | | | - Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| |
Collapse
|
27
|
Petronek MS, Spitz DR, Allen BG. Iron-Sulfur Cluster Biogenesis as a Critical Target in Cancer. Antioxidants (Basel) 2021; 10:1458. [PMID: 34573089 PMCID: PMC8465902 DOI: 10.3390/antiox10091458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Cancer cells preferentially accumulate iron (Fe) relative to non-malignant cells; however, the underlying rationale remains elusive. Iron-sulfur (Fe-S) clusters are critical cofactors that aid in a wide variety of cellular functions (e.g., DNA metabolism and electron transport). In this article, we theorize that a differential need for Fe-S biogenesis in tumor versus non-malignant cells underlies the Fe-dependent cell growth demand of cancer cells to promote cell division and survival by promoting genomic stability via Fe-S containing DNA metabolic enzymes. In this review, we outline the complex Fe-S biogenesis process and its potential upregulation in cancer. We also discuss three therapeutic strategies to target Fe-S biogenesis: (i) redox manipulation, (ii) Fe chelation, and (iii) Fe mimicry.
Collapse
Affiliation(s)
- Michael S. Petronek
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242-1181, USA;
- Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242-1181, USA
| | - Douglas R. Spitz
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242-1181, USA;
- Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242-1181, USA
| | - Bryan G. Allen
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242-1181, USA;
- Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242-1181, USA
| |
Collapse
|
28
|
Dietz JV, Fox JL, Khalimonchuk O. Down the Iron Path: Mitochondrial Iron Homeostasis and Beyond. Cells 2021; 10:cells10092198. [PMID: 34571846 PMCID: PMC8468894 DOI: 10.3390/cells10092198] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cellular iron homeostasis and mitochondrial iron homeostasis are interdependent. Mitochondria must import iron to form iron–sulfur clusters and heme, and to incorporate these cofactors along with iron ions into mitochondrial proteins that support essential functions, including cellular respiration. In turn, mitochondria supply the cell with heme and enable the biogenesis of cytosolic and nuclear proteins containing iron–sulfur clusters. Impairment in cellular or mitochondrial iron homeostasis is deleterious and can result in numerous human diseases. Due to its reactivity, iron is stored and trafficked through the body, intracellularly, and within mitochondria via carefully orchestrated processes. Here, we focus on describing the processes of and components involved in mitochondrial iron trafficking and storage, as well as mitochondrial iron–sulfur cluster biogenesis and heme biosynthesis. Recent findings and the most pressing topics for future research are highlighted.
Collapse
Affiliation(s)
- Jonathan V. Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
| | - Jennifer L. Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA;
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68198, USA
- Correspondence:
| |
Collapse
|
29
|
Culley MK, Zhao J, Tai YY, Tang Y, Perk D, Negi V, Yu Q, Woodcock CSC, Handen A, Speyer G, Kim S, Lai YC, Satoh T, Watson AM, Aaraj YA, Sembrat J, Rojas M, Goncharov D, Goncharova EA, Khan OF, Anderson DG, Dahlman JE, Gurkar AU, Lafyatis R, Fayyaz AU, Redfield MM, Gladwin MT, Rabinovitch M, Gu M, Bertero T, Chan SY. Frataxin deficiency promotes endothelial senescence in pulmonary hypertension. J Clin Invest 2021; 131:136459. [PMID: 33905372 PMCID: PMC8159699 DOI: 10.1172/jci136459] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
The dynamic regulation of endothelial pathophenotypes in pulmonary hypertension (PH) remains undefined. Cellular senescence is linked to PH with intracardiac shunts; however, its regulation across PH subtypes is unknown. Since endothelial deficiency of iron-sulfur (Fe-S) clusters is pathogenic in PH, we hypothesized that a Fe-S biogenesis protein, frataxin (FXN), controls endothelial senescence. An endothelial subpopulation in rodent and patient lungs across PH subtypes exhibited reduced FXN and elevated senescence. In vitro, hypoxic and inflammatory FXN deficiency abrogated activity of endothelial Fe-S-containing polymerases, promoting replication stress, DNA damage response, and senescence. This was also observed in stem cell-derived endothelial cells from Friedreich's ataxia (FRDA), a genetic disease of FXN deficiency, ataxia, and cardiomyopathy, often with PH. In vivo, FXN deficiency-dependent senescence drove vessel inflammation, remodeling, and PH, whereas pharmacologic removal of senescent cells in Fxn-deficient rodents ameliorated PH. These data offer a model of endothelial biology in PH, where FXN deficiency generates a senescent endothelial subpopulation, promoting vascular inflammatory and proliferative signals in other cells to drive disease. These findings also establish an endothelial etiology for PH in FRDA and left heart disease and support therapeutic development of senolytic drugs, reversing effects of Fe-S deficiency across PH subtypes.
Collapse
Affiliation(s)
- Miranda K. Culley
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yi Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Dror Perk
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Qiujun Yu
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Chen-Shan C. Woodcock
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Adam Handen
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Gil Speyer
- Research Computing, Arizona State University, Tempe, Arizona, USA
| | - Seungchan Kim
- Center for Computational Systems Biology, Department of Electrical and Computer Engineering, College of Engineering, Prairie View A&M University, Prairie View, Texas, USA
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Taijyu Satoh
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Annie M.M. Watson
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John Sembrat
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Dmitry Goncharov
- Lung Center, Pulmonary Vascular Disease Program, Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis School of Medicine, Davis, California, USA
| | - Elena A. Goncharova
- Lung Center, Pulmonary Vascular Disease Program, Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis School of Medicine, Davis, California, USA
| | - Omar F. Khan
- Institute of Biomedical Engineering, Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel G. Anderson
- Department of Chemical Engineering, Institute of Medical Engineering and Science, Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James E. Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Aditi U. Gurkar
- Aging Institute, Division of Geriatric Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, GRECC VA, Pittsburgh, Pennsylvania, USA
| | - Robert Lafyatis
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ahmed U. Fayyaz
- Department of Cardiovascular Medicine and
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesotta, USA
| | | | - Mark T. Gladwin
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Thomas Bertero
- Université Côte d’Azur, CNRS, UMR7275, IPMC, Valbonne, France
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Divisions of Cardiology, Pulmonary, Allergy, and Critical Care Medicine and Rheumatology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Mohammad Sadik, Mohammad Afsar, Ramachandran R, Habib S. [Fe-S] biogenesis and unusual assembly of the ISC scaffold complex in the Plasmodium falciparum mitochondrion. Mol Microbiol 2021; 116:606-623. [PMID: 34032321 DOI: 10.1111/mmi.14735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
The malaria parasite harbors two [Fe-S] biogenesis pathways of prokaryotic origin-the SUF and ISC systems in the apicoplast and mitochondrion, respectively. While the SUF machinery has been delineated, there is little experimental evidence on the ISC pathway. We confirmed mitochondrial targeting of Plasmodium falciparum ISC proteins followed by analyses of cysteine desulfurase, scaffold, and [Fe-S]-carrier components. PfIscU functioned as the scaffold in complex with the PfIscS-PfIsd11 cysteine desulfurase and could directly assemble [4Fe-4S] without prior [2Fe-2S] formation seen in other homologs. Small angle X-ray scattering and spectral studies showed that PfIscU, a trimer, bound one [4Fe-4S]. In a deviation from reported complexes from other organisms, the P. falciparum desulfurase-scaffold complex assembled around a PfIscS tetramer instead of a dimer, resulting in a symmetric hetero-hexamer [2× (2PfIscS-2PfIsd11-2PfIscU)]. PfIscU directly transferred [4Fe-4S] to the apo-protein aconitase B thus abrogating the requirement of intermediary proteins for conversion of [2Fe-2S] to [4Fe-4S] before transfer to [4Fe-4S]-recipients. Among the putative cluster-carriers, PfIscA2 was more efficient than PfNifU-like protein; PfIscA1 primarily bound iron, suggesting its potential role as a Fe2+ carrier/donor. Our results identify the core P. falciparum ISC machinery and reveal unique features compared with those in bacteria or yeast and human mitochondria.
Collapse
Affiliation(s)
- Mohammad Sadik
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Afsar
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravishankar Ramachandran
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Habib
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
31
|
Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions. Neuronal Signal 2021; 5:NS20200093. [PMID: 34046211 PMCID: PMC8132591 DOI: 10.1042/ns20200093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Friedreich ataxia (FRDA) is a recessive disorder resulting from relative deficiency of the mitochondrial protein frataxin. Frataxin functions in the process of iron–sulfur (Fe–S) cluster synthesis. In this review, we update some of the processes downstream of frataxin deficiency that may mediate the pathophysiology. Based on cellular models, in vivo models and observations of patients, ferroptosis may play a major role in the pathogenesis of FRDA along with depletion of antioxidant reserves and abnormalities of mitochondrial biogenesis. Ongoing clinical trials with ferroptosis inhibitors and nuclear factor erythroid 2-related factor 2 (Nrf2) activators are now targeting each of the processes. In addition, better understanding of the mitochondrial events in FRDA may allow the development of improved imaging methodology for assessing the disorder. Though not technologically feasible at present, metabolic imaging approaches may provide a direct methodology to understand the mitochondrial changes occurring in FRDA and provide a methodology to monitor upcoming trials of frataxin restoration.
Collapse
|
32
|
Frempong B, Wilson RB, Schadt K, Lynch DR. The Role of Serum Levels of Neurofilament Light (NfL) Chain as a Biomarker in Friedreich Ataxia. Front Neurosci 2021; 15:653241. [PMID: 33737864 PMCID: PMC7960909 DOI: 10.3389/fnins.2021.653241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bernice Frempong
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Departments of Neurology and Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kimberly Schadt
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Departments of Neurology and Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Departments of Neurology and Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Doni D, Rigoni G, Palumbo E, Baschiera E, Peruzzo R, De Rosa E, Caicci F, Passerini L, Bettio D, Russo A, Szabò I, Soriano ME, Salviati L, Costantini P. The displacement of frataxin from the mitochondrial cristae correlates with abnormal respiratory supercomplexes formation and bioenergetic defects in cells of Friedreich ataxia patients. FASEB J 2021; 35:e21362. [PMID: 33629768 DOI: 10.1096/fj.202000524rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Friedreich ataxia (FRDA) is a neurodegenerative disease resulting from a severe decrease of frataxin (FXN). Most patients carry a GAA repeat expansion in both alleles of the FXN gene, whereas a small fraction of them are compound heterozygous for the expansion and a point mutation in the other allele. FXN is involved in the mitochondrial biogenesis of the FeS-clusters. Distinctive feature of FRDA patient cells is an impaired cellular respiration, likely due to a deficit of key redox cofactors working as electrons shuttles through the respiratory chain. However, a definite relationship between FXN levels, FeS-clusters assembly dysregulation and bioenergetics failure has not been established. In this work, we performed a comparative analysis of the mitochondrial phenotype of cell lines from FRDA patients, either homozygous for the expansion or compound heterozygotes for the G130V mutation. We found that, in healthy cells, FXN and two key proteins of the FeS-cluster assembly machinery are enriched in mitochondrial cristae, the dynamic subcompartment housing the respiratory chain. On the contrary, FXN widely redistributes to the matrix in FRDA cells with defects in respiratory supercomplexes assembly and altered respiratory function. We propose that this could be relevant for the early mitochondrial defects afflicting FRDA cells and that perturbation of mitochondrial morphodynamics could in turn be critical in terms of disease mechanisms.
Collapse
Affiliation(s)
- Davide Doni
- Department of Biology, University of Padova, Padova, Italy
| | | | - Elisa Palumbo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Elisa Baschiera
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padova, Italy
| | | | - Edith De Rosa
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Daniela Bettio
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padova, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ildiko Szabò
- Department of Biology, University of Padova, Padova, Italy
| | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padova, Italy
- Myology Center, University of Padova, Padova, Italy
| | | |
Collapse
|
34
|
Marengo M, Puglisi R, Oliaro-Bosso S, Pastore A, Adinolfi S. Enzymatic and Chemical In Vitro Reconstitution of Iron-Sulfur Cluster Proteins. Methods Mol Biol 2021; 2353:79-95. [PMID: 34292545 DOI: 10.1007/978-1-0716-1605-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron-sulfur (Fe-S) clusters are key cofactors for proteins involved in essential cellular processes such as DNA replication and repair, ribosome biogenesis, tRNA thio-modification, and co-enzyme synthesis. Fe-S clusters can assemble spontaneously from inorganic compounds, but their biogenesis requires dedicated machineries to circumvent the toxic nature of iron and sulfur. To address how these machines work, different laboratories have applied various biochemical and biophysical approaches, both in vivo and in vitro. Fe-S cluster enzymatic and chemical formation in vitro is the most efficient way to follow Fe-S cluster biogenesis in a controlled environment and investigate each component of the machinery at the molecular level. In this review, we detail and discuss an efficient protocol for an in vitro Fe-S cluster enzymatic and chemical formation, which we successfully developed to study Fe-S cluster formation. We underline the applications of this approach to the study of an essential biological system.
Collapse
Affiliation(s)
- Mauro Marengo
- Department of Pharmaceutical Technology, University of Turin, Turin, Italy
| | - Rita Puglisi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, UK
| | | | - Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, UK
| | - Salvatore Adinolfi
- Department of Pharmaceutical Technology, University of Turin, Turin, Italy.
| |
Collapse
|
35
|
Azam T, Przybyla-Toscano J, Vignols F, Couturier J, Rouhier N, Johnson MK. [4Fe-4S] cluster trafficking mediated by Arabidopsis mitochondrial ISCA and NFU proteins. J Biol Chem 2020; 295:18367-18378. [PMID: 33122194 PMCID: PMC7939391 DOI: 10.1074/jbc.ra120.015726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Numerous iron-sulfur (Fe-S) proteins with diverse functions are present in the matrix and respiratory chain complexes of mitochondria. Although [4Fe-4S] clusters are the most common type of Fe-S cluster in mitochondria, the molecular mechanism of [4Fe-4S] cluster assembly and insertion into target proteins by the mitochondrial iron-sulfur cluster (ISC) maturation system is not well-understood. Here we report a detailed characterization of two late-acting Fe-S cluster-carrier proteins from Arabidopsis thaliana, NFU4 and NFU5. Yeast two-hybrid and bimolecular fluorescence complementation studies demonstrated interaction of both the NFU4 and NFU5 proteins with the ISCA class of Fe-S carrier proteins. Recombinant NFU4 and NFU5 were purified as apo-proteins after expression in Escherichia coliIn vitro Fe-S cluster reconstitution led to the insertion of one [4Fe-4S]2+ cluster per homodimer as determined by UV-visible absorption/CD, resonance Raman and EPR spectroscopy, and analytical studies. Cluster transfer reactions, monitored by UV-visible absorption and CD spectroscopy, showed that a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer is effective in transferring [4Fe-4S]2+ clusters to both NFU4 and NFU5 with negligible back reaction. In addition, [4Fe-4S]2+ cluster-bound ISCA1a/2, NFU4, and NFU5 were all found to be effective [4Fe-4S]2+ cluster donors for maturation of the mitochondrial apo-aconitase 2 as assessed by enzyme activity measurements. The results demonstrate rapid, unidirectional, and quantitative [4Fe-4S]2+ cluster transfer from ISCA1a/2 to NFU4 or NFU5 that further delineates their respective positions in the plant ISC machinery and their contributions to the maturation of client [4Fe-4S] cluster-containing proteins.
Collapse
Affiliation(s)
- Tamanna Azam
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia, USA
| | | | - Florence Vignols
- BPMP, Université de Montpellier, INRAE, CNRS, SupAgro, Montpellier, France
| | | | | | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
36
|
Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 2020; 121:201-219. [PMID: 33370574 DOI: 10.1016/j.neubiorev.2020.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The pathological alterations that manifest during the early embryonic development due to inherited and acquired factors trigger various neurodevelopmental disorders (NDDs). Besides major NDDs, there are several rare NDDs, exhibiting specific characteristics and varying levels of severity triggered due to genetic and epigenetic anomalies. The rarity of subjects, paucity of neural tissues for detailed analysis, and the unavailability of disease-specific animal models have hampered detailed comprehension of rare NDDs, imposing heightened challenge to the medical and scientific community until a decade ago. The generation of functional neurons and glia through directed differentiation protocols for patient-derived iPSCs, CRISPR/Cas9 technology, and 3D brain organoid models have provided an excellent opportunity and vibrant resource for decoding the etiology of brain development for rare NDDs caused due to monogenic as well as polygenic disorders. The present review identifies cellular and molecular phenotypes demonstrated from patient-derived iPSCs and possible therapeutic opportunities identified for these disorders. New insights to reinforce the existing knowledge of the pathophysiology of these disorders and prospective therapeutic applications are discussed.
Collapse
Affiliation(s)
- K R Sabitha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
37
|
Abstract
Iron–sulfur (Fe–S) clusters are protein cofactors of a multitude of enzymes performing essential biological functions. Specialized multi-protein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein on which Fe–S clusters are assembled and a cysteine desulfurase that provides sulfur in the form of a persulfide. The sulfide ions are produced by reductive cleavage of the persulfide, which involves specific reductase systems. Several other components are required for Fe–S biosynthesis, including frataxin, a key protein of controversial function and accessory components for insertion of Fe–S clusters in client proteins. Fe–S cluster biosynthesis is thought to rely on concerted and carefully orchestrated processes. However, the elucidation of the mechanisms of their assembly has remained a challenging task due to the biochemical versatility of iron and sulfur and the relative instability of Fe–S clusters. Nonetheless, significant progresses have been achieved in the past years, using biochemical, spectroscopic and structural approaches with reconstituted system in vitro. In this paper, we review the most recent advances on the mechanism of assembly for the founding member of the Fe–S cluster family, the [2Fe2S] cluster that is the building block of all other Fe–S clusters. The aim is to provide a survey of the mechanisms of iron and sulfur insertion in the scaffold proteins by examining how these processes are coordinated, how sulfide is produced and how the dinuclear [2Fe2S] cluster is formed, keeping in mind the question of the physiological relevance of the reconstituted systems. We also cover the latest outcomes on the functional role of the controversial frataxin protein in Fe–S cluster biosynthesis.
Collapse
|
38
|
Pérez-Luz S, Loria F, Katsu-Jiménez Y, Oberdoerfer D, Yang OL, Lim F, Muñoz-Blanco JL, Díaz-Nido J. Altered Secretome and ROS Production in Olfactory Mucosa Stem Cells Derived from Friedreich's Ataxia Patients. Int J Mol Sci 2020; 21:ijms21186662. [PMID: 32933002 PMCID: PMC7555998 DOI: 10.3390/ijms21186662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Friedreich’s ataxia is the most common hereditary ataxia for which there is no cure or approved treatment at present. However, therapeutic developments based on the understanding of pathological mechanisms underlying the disease have advanced considerably, with the implementation of cellular models that mimic the disease playing a crucial role. Human olfactory ecto-mesenchymal stem cells represent a novel model that could prove useful due to their accessibility and neurogenic capacity. Here, we isolated and cultured these stem cells from Friedreich´s ataxia patients and healthy donors, characterizing their phenotype and describing disease-specific features such as reduced cell viability, impaired aconitase activity, increased ROS production and the release of cytokines involved in neuroinflammation. Importantly, we observed a positive effect on patient-derived cells, when frataxin levels were restored, confirming the utility of this in vitro model to study the disease. This model will improve our understanding of Friedreich´s ataxia pathogenesis and will help in developing rationally designed therapeutic strategies.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Molecular Genetics Unit, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km 2,200, 28220 Madrid, Spain
| | - Frida Loria
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Calle Budapest 1, 28922 Madrid, Spain
- Correspondence: ; Tel.: +34-911-964-594
| | - Yurika Katsu-Jiménez
- Karolinska Institutet, Department of Microbiology Tumor and Cell Biology, Solnaväjen 1, 171 77 Stockholm, Sweden;
| | - Daniel Oberdoerfer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Oscar-Li Yang
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Filip Lim
- Department of Molecular Biology, Autonomous University of Madrid, Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - José Luis Muñoz-Blanco
- Department of Neurology, Hospital Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| |
Collapse
|
39
|
Cai K, Frederick RO, Markley JL. ISCU interacts with NFU1, and ISCU[4Fe-4S] transfers its Fe-S cluster to NFU1 leading to the production of holo-NFU1. J Struct Biol 2020; 210:107491. [PMID: 32151725 PMCID: PMC7261492 DOI: 10.1016/j.jsb.2020.107491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 01/30/2023]
Abstract
NFU1 is a late-acting factor in the biogenesis of human mitochondrial iron-sulfur proteins. Mutations in NFU1 are associated with genetic diseases such as multiple mitochondrial dysfunctions syndrome 1 (MMDS1) that involve defects in mitochondrial [4Fe-4S] proteins. We present results from NMR spectroscopy, small angle X-ray scattering, size exclusion chromatography, and isothermal titration calorimetry showing that the structured conformer of human ISCU binds human NFU1. The dissociation constant determined by ITC is Kd = 1.1 ± 0.2 μM. NMR and SAXS studies led to a structural model for the complex in which the cluster binding region of ISCU interacts with two α-helices in the C-terminal domain of NFU1. In vitro experiments demonstrate that ISCU[4Fe-4S] transfers its Fe-S cluster to apo-NFU1, in the absence of a chaperone, leading to the assembly of holo-NFU1. By contrast, the cluster of ISCU[2Fe-2S] remains bound to ISCU in the presence of apo-NFU1.
Collapse
Affiliation(s)
- Kai Cai
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ronnie O Frederick
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John L Markley
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
40
|
Cronin SJF, Woolf CJ, Weiss G, Penninger JM. The Role of Iron Regulation in Immunometabolism and Immune-Related Disease. Front Mol Biosci 2019; 6:116. [PMID: 31824960 PMCID: PMC6883604 DOI: 10.3389/fmolb.2019.00116] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Immunometabolism explores how the intracellular metabolic pathways in immune cells can regulate their function under different micro-environmental and (patho-)-physiological conditions (Pearce, 2010; Buck et al., 2015; O'Neill and Pearce, 2016). In the last decade great advances have been made in studying and manipulating metabolic programs in immune cells. Immunometabolism has primarily focused on glycolysis, the TCA cycle and oxidative phosphorylation (OXPHOS) as well as free fatty acid synthesis and oxidation. These pathways are important for providing the energy needs of cell growth, membrane rigidity, cytokine production and proliferation. In this review, we will however, highlight the specific role of iron metabolism at the cellular and organismal level, as well as how the bioavailability of this metal orchestrates complex metabolic programs in immune cell homeostasis and inflammation. We will also discuss how dysregulation of iron metabolism contributes to alterations in the immune system and how these novel insights into iron regulation can be targeted to metabolically manipulate immune cell function under pathophysiological conditions, providing new therapeutic opportunities for autoimmunity and cancer.
Collapse
Affiliation(s)
- Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
| | - Guenter Weiss
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Herrera MG, Noguera ME, Sewell KE, Agudelo Suárez WA, Capece L, Klinke S, Santos J. Structure of the Human ACP-ISD11 Heterodimer. Biochemistry 2019; 58:4596-4609. [PMID: 31664822 DOI: 10.1021/acs.biochem.9b00539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the mammalian mitochondrial protein complex for iron-sulfur cluster assembly has been the focus of important studies. This is partly because of its high degree of relevance in cell metabolism and because mutations of the involved proteins are the cause of several human diseases. Cysteine desulfurase NFS1 is the key enzyme of the complex. At present, it is well-known that the active form of NFS1 is stabilized by the small protein ISD11. In this work, the structure of the human mitochondrial ACP-ISD11 heterodimer was determined at 2.0 Å resolution. ACP-ISD11 forms a cooperative unit stabilized by several ionic interactions, hydrogen bonds, and apolar interactions. The 4'-phosphopantetheine-acyl chain, which is covalently bound to ACP, interacts with several residues of ISD11, modulating together with ACP the foldability of ISD11. Recombinant human ACP-ISD11 was able to interact with the NFS1 desulfurase, thus yielding an active enzyme, and the NFS1/ACP-ISD11 core complex was activated by frataxin and ISCU proteins. Internal motions of ACP-ISD11 were studied by molecular dynamics simulations, showing the persistence of the interactions between both protein chains. The conformation of the dimer is similar to that found in the context of the (NFS1/ACP-ISD11)2 supercomplex core, which contains the Escherichia coli ACP instead of the human variant. This fact suggests a sequential mechanism for supercomplex consolidation, in which the ACP-ISD11 complex may fold independently and, after that, the NFS1 dimer would be stabilized.
Collapse
Affiliation(s)
- María Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina
| | - Martín Ezequiel Noguera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina.,Instituto de Química y Fisicoquímica Biológicas , Dr. Alejandro Paladini, Universidad de Buenos Aires, CONICET , Junín 956 , C1113AAD Buenos Aires , Argentina
| | - Karl Ellioth Sewell
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina
| | - William Armando Agudelo Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC) , Av. 50 No. 26-20 , Bogotá D.C. , Colombia.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET) , C1428EGA Buenos Aires , Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET) , C1428EGA Buenos Aires , Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir , IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM , Av. Patricias Argentinas 435 , C1405BWE Buenos Aires , Argentina
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina
| |
Collapse
|
42
|
Bellanda M, Maso L, Doni D, Bortolus M, De Rosa E, Lunardi F, Alfonsi A, Noguera ME, Herrera MG, Santos J, Carbonera D, Costantini P. Exploring iron-binding to human frataxin and to selected Friedreich ataxia mutants by means of NMR and EPR spectroscopies. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:140254. [PMID: 31344531 DOI: 10.1016/j.bbapap.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 11/23/2022]
Abstract
The neurodegenerative disease Friedreich ataxia results from a deficiency of frataxin, a mitochondrial protein. Most patients have a GAA expansion in the first intron of both alleles of frataxin gene, whereas a minority of them are heterozygous for the expansion and contain a mutation in the other allele. Frataxin has been claimed to participate in iron homeostasis and biosynthesis of FeS clusters, however its role in both pathways is not unequivocally defined. In this work we combined different advanced spectroscopic analyses to explore the iron-binding properties of human frataxin, as isolated and at the FeS clusters assembly machinery. For the first time we used EPR spectroscopy to address this key issue providing clear evidence of the formation of a complex with a low symmetry coordination of the metal ion. By 2D NMR, we confirmed that iron can be bound in both oxidation states, a controversial issue, and, in addition, we were able to point out a transient interaction of frataxin with a N-terminal 6his-tagged variant of ISCU, the scaffold protein of the FeS clusters assembly machinery. To obtain insights on structure/function relationships relevant to understand the disease molecular mechanism(s), we extended our studies to four clinical frataxin mutants. All variants showed a moderate to strong impairment in their ability to activate the FeS cluster assembly machinery in vitro, while keeping the same iron-binding features of the wild type protein. This supports the multifunctional nature of frataxin and the complex biochemical consequences of its mutations.
Collapse
Affiliation(s)
- Massimo Bellanda
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Lorenzo Maso
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Davide Doni
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Edith De Rosa
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Federica Lunardi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Arianna Alfonsi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Martín Ezequiel Noguera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA C.A.B.A., Argentina; Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini, Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD C.A.B.A., Argentina
| | - Maria Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA C.A.B.A., Argentina; Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini, Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD C.A.B.A., Argentina
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA C.A.B.A., Argentina; Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini, Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD C.A.B.A., Argentina
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy.
| | - Paola Costantini
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy.
| |
Collapse
|
43
|
Patra S, Barondeau DP. Mechanism of activation of the human cysteine desulfurase complex by frataxin. Proc Natl Acad Sci U S A 2019; 116:19421-19430. [PMID: 31511419 PMCID: PMC6765240 DOI: 10.1073/pnas.1909535116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The function of frataxin (FXN) has garnered great scientific interest since its depletion was linked to the incurable neurodegenerative disease Friedreich's ataxia (FRDA). FXN has been shown to be necessary for iron-sulfur (Fe-S) cluster biosynthesis and proper mitochondrial function. The structural and functional core of the Fe-S cluster assembly complex is a low-activity pyridoxal 5'-phosphate (PLP)-dependent cysteine desulfurase enzyme that consists of catalytic (NFS1), LYRM protein (ISD11), and acyl carrier protein (ACP) subunits. Although previous studies show that FXN stimulates the activity of this assembly complex, the mechanism of FXN activation is poorly understood. Here, we develop a radiolabeling assay and use stopped-flow kinetics to establish that FXN is functionally linked to the mobile S-transfer loop cysteine of NFS1. Our results support key roles for this essential cysteine residue in substrate binding, as a general acid to advance the Cys-quinonoid PLP intermediate, as a nucleophile to form an NFS1 persulfide, and as a sulfur delivery agent to generate a persulfide species on the Fe-S scaffold protein ISCU2. FXN specifically accelerates each of these individual steps in the mechanism. Our resulting architectural switch model explains why the human Fe-S assembly system has low inherent activity and requires activation, the connection between the functional mobile S-transfer loop cysteine and FXN binding, and why the prokaryotic system does not require a similar FXN-based activation. Together, these results provide mechanistic insights into the allosteric-activator role of FXN and suggest new strategies to replace FXN function in the treatment of FRDA.
Collapse
Affiliation(s)
- Shachin Patra
- Department of Chemistry, Texas A&M University, College Station, TX 77842
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, TX 77842
| |
Collapse
|
44
|
Synofzik M, Puccio H, Mochel F, Schöls L. Autosomal Recessive Cerebellar Ataxias: Paving the Way toward Targeted Molecular Therapies. Neuron 2019; 101:560-583. [PMID: 30790538 DOI: 10.1016/j.neuron.2019.01.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/20/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Autosomal-recessive cerebellar ataxias (ARCAs) comprise a heterogeneous group of rare degenerative and metabolic genetic diseases that share the hallmark of progressive damage of the cerebellum and its associated tracts. This Review focuses on recent translational research in ARCAs and illustrates the steps from genetic characterization to preclinical and clinical trials. The emerging common pathways underlying ARCAs include three main clusters: mitochondrial dysfunction, impaired DNA repair, and complex lipid homeostasis. Novel ARCA treatments might target common hubs in pathogenesis by modulation of gene expression, stem cell transplantation, viral gene transfer, or interventions in faulty pathways. All these translational steps are addressed in current ARCA research, leading to the expectation that novel treatments for ARCAs will be reached in the next decade.
Collapse
Affiliation(s)
- Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France; INSERM, U1258, 67404 Illkirch, France; CNRS, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Fanny Mochel
- Sorbonne Université, UPMC-Paris 6, UMR S 1127 and Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Department of Genetics and Reference Centre for Adult Neurometabolic Diseases, AP-HP, La Pitié-Salpêtriere University Hospital, Paris, France
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
45
|
Gervason S, Larkem D, Mansour AB, Botzanowski T, Müller CS, Pecqueur L, Le Pavec G, Delaunay-Moisan A, Brun O, Agramunt J, Grandas A, Fontecave M, Schünemann V, Cianférani S, Sizun C, Tolédano MB, D'Autréaux B. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nat Commun 2019; 10:3566. [PMID: 31395877 PMCID: PMC6687725 DOI: 10.1038/s41467-019-11470-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential protein cofactors whose biosynthetic defects lead to severe diseases among which is Friedreich's ataxia caused by impaired expression of frataxin (FXN). Fe-S clusters are biosynthesized on the scaffold protein ISCU, with cysteine desulfurase NFS1 providing sulfur as persulfide and ferredoxin FDX2 supplying electrons, in a process stimulated by FXN but not clearly understood. Here, we report the breakdown of this process, made possible by removing a zinc ion in ISCU that hinders iron insertion and promotes non-physiological Fe-S cluster synthesis from free sulfide in vitro. By binding zinc-free ISCU, iron drives persulfide uptake from NFS1 and allows persulfide reduction into sulfide by FDX2, thereby coordinating sulfide production with its availability to generate Fe-S clusters. FXN stimulates the whole process by accelerating persulfide transfer. We propose that this reconstitution recapitulates physiological conditions which provides a model for Fe-S cluster biosynthesis, clarifies the roles of FDX2 and FXN and may help develop Friedreich's ataxia therapies.
Collapse
Affiliation(s)
- Sylvain Gervason
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Djabir Larkem
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Amir Ben Mansour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Christina S Müller
- Fachbreich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663, Kaiserslautern, Germany
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR 8229, PSL Research University, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Gwenaelle Le Pavec
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Agnès Delaunay-Moisan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Omar Brun
- Departament de Química Orgànica i IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028, Barcelona, Spain
| | - Jordi Agramunt
- Departament de Química Orgànica i IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028, Barcelona, Spain
| | - Anna Grandas
- Departament de Química Orgànica i IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028, Barcelona, Spain
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR 8229, PSL Research University, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Volker Schünemann
- Fachbreich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663, Kaiserslautern, Germany
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190, Gif-sur-Yvette, France
| | - Michel B Tolédano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Benoit D'Autréaux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
46
|
Das D, Patra S, Bridwell-Rabb J, Barondeau DP. Mechanism of frataxin "bypass" in human iron-sulfur cluster biosynthesis with implications for Friedreich's ataxia. J Biol Chem 2019; 294:9276-9284. [PMID: 30975898 PMCID: PMC6556584 DOI: 10.1074/jbc.ra119.007716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/10/2019] [Indexed: 11/06/2022] Open
Abstract
In humans, mitochondrial iron-sulfur cluster biosynthesis is an essential biochemical process mediated by the assembly complex consisting of cysteine desulfurase (NFS1), LYR protein (ISD11), acyl-carrier protein (ACP), and the iron-sulfur cluster assembly scaffold protein (ISCU2). The protein frataxin (FXN) is an allosteric activator that binds the assembly complex and stimulates the cysteine desulfurase and iron-sulfur cluster assembly activities. FXN depletion causes loss of activity of iron-sulfur-dependent enzymes and the development of the neurodegenerative disease Friedreich's ataxia. Recently, a mutation that suppressed the loss of the FXN homolog in Saccharomyces cerevisiae was identified that encodes an amino acid substitution equivalent to the human variant ISCU2 M140I. Here, we developed iron-sulfur cluster synthesis and transfer functional assays and determined that the human ISCU2 M140I variant can substitute for FXN in accelerating the rate of iron-sulfur cluster formation on the monothiol glutaredoxin (GRX5) acceptor protein. Incorporation of both FXN and the M140I substitution had an additive effect, suggesting an acceleration of distinct steps in iron-sulfur cluster biogenesis. In contrast to the canonical role of FXN in stimulating the formation of [2Fe-2S]-ISCU2 intermediates, we found here that the M140I substitution in ISCU2 promotes the transfer of iron-sulfur clusters to GRX5. Together, these results reveal an unexpected mechanism that replaces FXN-based stimulation of the iron-sulfur cluster biosynthetic pathway and suggest new strategies to overcome the loss of cellular FXN that may be relevant to the development of therapeutics for Friedreich's ataxia.
Collapse
Affiliation(s)
- Deepika Das
- From the Department of Chemistry, Texas A & M University, College Station, Texas 77842
| | - Shachin Patra
- From the Department of Chemistry, Texas A & M University, College Station, Texas 77842
| | | | - David P Barondeau
- From the Department of Chemistry, Texas A & M University, College Station, Texas 77842
| |
Collapse
|
47
|
Fox NG, Yu X, Feng X, Bailey HJ, Martelli A, Nabhan JF, Strain-Damerell C, Bulawa C, Yue WW, Han S. Structure of the human frataxin-bound iron-sulfur cluster assembly complex provides insight into its activation mechanism. Nat Commun 2019; 10:2210. [PMID: 31101807 PMCID: PMC6525205 DOI: 10.1038/s41467-019-09989-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
The core machinery for de novo biosynthesis of iron-sulfur clusters (ISC), located in the mitochondria matrix, is a five-protein complex containing the cysteine desulfurase NFS1 that is activated by frataxin (FXN), scaffold protein ISCU, accessory protein ISD11, and acyl-carrier protein ACP. Deficiency in FXN leads to the loss-of-function neurodegenerative disorder Friedreich's ataxia (FRDA). Here the 3.2 Å resolution cryo-electron microscopy structure of the FXN-bound active human complex, containing two copies of the NFS1-ISD11-ACP-ISCU-FXN hetero-pentamer, delineates the interactions of FXN with other component proteins of the complex. FXN binds at the interface of two NFS1 and one ISCU subunits, modifying the local environment of a bound zinc ion that would otherwise inhibit NFS1 activity in complexes without FXN. Our structure reveals how FXN facilitates ISC production through stabilizing key loop conformations of NFS1 and ISCU at the protein-protein interfaces, and suggests how FRDA clinical mutations affect complex formation and FXN activation.
Collapse
Affiliation(s)
- Nicholas G Fox
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Merck & Co, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Xiaodi Yu
- Discovery Sciences, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
- SMPS, Janssen Research and Development, 1400 McKean Rd, Spring House, PA, 19477, USA
| | - Xidong Feng
- Discovery Sciences, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
| | - Henry J Bailey
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Alain Martelli
- Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| | - Joseph F Nabhan
- Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| | - Claire Strain-Damerell
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Christine Bulawa
- Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Seungil Han
- Discovery Sciences, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA.
| |
Collapse
|
48
|
Pandey AK, Pain J, Dancis A, Pain D. Mitochondria export iron-sulfur and sulfur intermediates to the cytoplasm for iron-sulfur cluster assembly and tRNA thiolation in yeast. J Biol Chem 2019; 294:9489-9502. [PMID: 31040179 DOI: 10.1074/jbc.ra119.008600] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/26/2019] [Indexed: 12/28/2022] Open
Abstract
Iron-sulfur clusters are essential cofactors of proteins. In eukaryotes, iron-sulfur cluster biogenesis requires a mitochondrial iron-sulfur cluster machinery (ISC) and a cytoplasmic iron-sulfur protein assembly machinery (CIA). Here we used mitochondria and cytoplasm isolated from yeast cells, and [35S]cysteine to detect cytoplasmic Fe-35S cluster assembly on a purified apoprotein substrate. We showed that mitochondria generate an intermediate, called (Fe-S)int, needed for cytoplasmic iron-sulfur cluster assembly. The mitochondrial biosynthesis of (Fe-S)int required ISC components such as Nfs1 cysteine desulfurase, Isu1/2 scaffold, and Ssq1 chaperone. Mitochondria then exported (Fe-S)int via the Atm1 transporter in the inner membrane, and we detected (Fe-S)int in active form. When (Fe-S)int was added to cytoplasm, CIA utilized it for iron-sulfur cluster assembly without any further help from the mitochondria. We found that both iron and sulfur for cytoplasmic iron-sulfur cluster assembly originate from the mitochondria, revealing a surprising and novel mitochondrial role. Mitochondrial (Fe-S)int export was most efficient in the presence of cytoplasm containing an apoprotein substrate, suggesting that mitochondria respond to the cytoplasmic demand for iron-sulfur cluster synthesis. Of note, the (Fe-S)int is distinct from the sulfur intermediate called Sint, which is also made and exported by mitochondria but is instead used for cytoplasmic tRNA thiolation. In summary, our findings establish a direct and vital role of mitochondria in cytoplasmic iron-sulfur cluster assembly in yeast cells.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- From the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103 and
| | - Jayashree Pain
- From the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103 and
| | - Andrew Dancis
- the Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Debkumar Pain
- From the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103 and
| |
Collapse
|
49
|
Belbellaa B, Reutenauer L, Monassier L, Puccio H. Correction of half the cardiomyocytes fully rescue Friedreich ataxia mitochondrial cardiomyopathy through cell-autonomous mechanisms. Hum Mol Genet 2019; 28:1274-1285. [PMID: 30544254 DOI: 10.1093/hmg/ddy427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2023] Open
Abstract
Friedreich ataxia (FA) is currently an incurable inherited mitochondrial neurodegenerative disease caused by reduced levels of frataxin. Cardiac failure constitutes the main cause of premature death in FA. While adeno-associated virus-mediated cardiac gene therapy was shown to fully reverse the cardiac and mitochondrial phenotype in mouse models, this was achieved at high dose of vector resulting in the transduction of almost all cardiomyocytes, a dose and biodistribution that is unlikely to be replicated in clinic. The purpose of this study was to define the minimum vector biodistribution corresponding to the therapeutic threshold, at different stages of the disease progression. Correlative analysis of vector cardiac biodistribution, survival, cardiac function and biochemical hallmarks of the disease revealed that full rescue of the cardiac function was achieved when only half of the cardiomyocytes were transduced. In addition, meaningful therapeutic effect was achieved with as little as 30% transduction coverage. This therapeutic effect was mediated through cell-autonomous mechanisms for mitochondria homeostasis, although a significant increase in survival of uncorrected neighboring cells was observed. Overall, this study identifies the biodistribution thresholds and the underlying mechanisms conditioning the success of cardiac gene therapy in Friedreich ataxia and provides guidelines for the development of the clinical administration paradigm.
Collapse
Affiliation(s)
- Brahim Belbellaa
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Laurence Reutenauer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Laurent Monassier
- Faculté de Médecine, Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Strasbourg, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
50
|
Pathak D, Srivastava AK, Gulati S, Rajeswari MR. Assessment of cell-free levels of iron and copper in patients with Friedreich's ataxia. Biometals 2019; 32:307-315. [PMID: 30874991 DOI: 10.1007/s10534-019-00186-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/07/2019] [Indexed: 02/05/2023]
Abstract
Friedreich's ataxia (FRDA), a progressive neurodegenerative disorder caused by trinucleotide (GAA) repeat expansion in frataxin (fxn) gene which results in decreased levels of frataxin protein. Insufficient frataxin levels leads to iron and copper deposits in the brain and cardiac cells. A total of hundred and twenty patients, suspected of FRDA were screened for the (GAA) repeats in the fxn gene and only confirmed patients (n = 25) were recruited in the study. The total Iron and total copper concentrations were measured in blood plasma using Nitro PAPS and Dibrom PAESA method, respectively both in patients and age, sex matched healthy controls. The iron levels mean ± SD (6.2 ± 3.8) in plasma of FRDA patients were found to be significantly decreased as compared to healthy controls mean ± SD (15.2 ± 4.2). A similar trend was observed in case of plasma copper levels in FRDA patient (8.15 ± 4.6) as compared to controls (17.5 ± 3.40). Present results clearly prove abnormal distribution of extra-cellular iron in FRDA patients, which is in accordance with the well established fact of intracellular iron overload, which is the key feature of the pathogenesis of this disease. This can be of importance in understanding the pathophysiology of the disease in association with frataxin/iron. It appears that intracellular sequestration of trace metals in FRDA patients (due to low frataxin) results in their sub-optimal levels in blood plasma (extra-cellular) an observation that can find prognostic application in clinical trials.
Collapse
Affiliation(s)
- Deepti Pathak
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Sheffali Gulati
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Moganty R Rajeswari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|