1
|
Ju H, Cheng L, Li M, Mei K, He S, Jia C, Guo X. Single-Molecule Electrical Profiling of Peptides and Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401877. [PMID: 38639403 PMCID: PMC11267281 DOI: 10.1002/advs.202401877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Indexed: 04/20/2024]
Abstract
In recent decades, there has been a significant increase in the application of single-molecule electrical analysis platforms in studying proteins and peptides. These advanced analysis methods have the potential for deep investigation of enzymatic working mechanisms and accurate monitoring of dynamic changes in protein configurations, which are often challenging to achieve in ensemble measurements. In this work, the prominent research progress in peptide and protein-related studies are surveyed using electronic devices with single-molecule/single-event sensitivity, including single-molecule junctions, single-molecule field-effect transistors, and nanopores. In particular, the successful commercial application of nanopores in DNA sequencing has made it one of the most promising techniques in protein sequencing at the single-molecule level. From single peptides to protein complexes, the correlation between their electrical characteristics, structures, and biological functions is gradually being established. This enables to distinguish different molecular configurations of these biomacromolecules through real-time electrical monitoring of their life activities, significantly improving the understanding of the mechanisms underlying various life processes.
Collapse
Affiliation(s)
- Hongyu Ju
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Li Cheng
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Mengmeng Li
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Kunrong Mei
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Suhang He
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Chuancheng Jia
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Xuefeng Guo
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
2
|
Chu J, Romero A, Taulbee J, Aran K. Development of Single Molecule Techniques for Sensing and Manipulation of CRISPR and Polymerase Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300328. [PMID: 37226388 PMCID: PMC10524706 DOI: 10.1002/smll.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Indexed: 05/26/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and polymerases are powerful enzymes and their diverse applications in genomics, proteomics, and transcriptomics have revolutionized the biotechnology industry today. CRISPR has been widely adopted for genomic editing applications and Polymerases can efficiently amplify genomic transcripts via polymerase chain reaction (PCR). Further investigations into these enzymes can reveal specific details about their mechanisms that greatly expand their use. Single-molecule techniques are an effective way to probe enzymatic mechanisms because they may resolve intermediary conformations and states with greater detail than ensemble or bulk biosensing techniques. This review discusses various techniques for sensing and manipulation of single biomolecules that can help facilitate and expedite these discoveries. Each platform is categorized as optical, mechanical, or electronic. The methods, operating principles, outputs, and utility of each technique are briefly introduced, followed by a discussion of their applications to monitor and control CRISPR and Polymerases at the single molecule level, and closing with a brief overview of their limitations and future prospects.
Collapse
Affiliation(s)
- Josephine Chu
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Andres Romero
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Jeffrey Taulbee
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea, San Diego, CA, 92121, USA
- University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
3
|
Wang H, Boghossian AA. Covalent conjugation of proteins onto fluorescent single-walled carbon nanotubes for biological and medical applications. MATERIALS ADVANCES 2023; 4:823-834. [PMID: 36761250 PMCID: PMC9900427 DOI: 10.1039/d2ma00714b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 05/20/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have optical properties that are conducive for biological applications such as sensing, delivery, and imaging. These applications necessitate the immobilization of macromolecules that can serve as therapeutic drugs, molecular templates, or modulators of surface interactions. Although previous studies have focused on non-covalent immobilization strategies, recent advances have introduced covalent functional handles that can preserve or even enhance the SWCNT optical properties. This review presents an overview of covalent sidewall modifications of SWCNTs, with a focus on the latest generation of "sp3 defect" modifications. We summarize and compare the reaction conditions and the reported products of these sp3 chemistries. We further review the underlying photophysics governing SWCNT fluorescence and apply these principles to the fluorescence emitted from these covalently modified SWCNTs. Finally, we provide an outlook on additional chemistries that could be applied to covalently conjugate proteins to these chemically modified, fluorescent SWCNTs. We review the advantages of these approaches, emerging opportunities for further improvement, as well as their implications for enabling new technologies.
Collapse
Affiliation(s)
- Hanxuan Wang
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| | - Ardemis A Boghossian
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| |
Collapse
|
4
|
Santermans S, Hellings G, Heyns M, Van Roy W, Martens K. Unraveling the impact of nano-scaling on silicon field-effect transistors for the detection of single-molecules. NANOSCALE 2023; 15:2354-2368. [PMID: 36644797 DOI: 10.1039/d2nr05267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrolyte-gated silicon field-effect transistors (FETs) capable of detecting single molecules could enable high-throughput molecular sensing chips to advance, for example, genomics or proteomics. For solid-gated silicon FETs it is well-known that nano-scaled devices become sensitive to single elementary charges near the silicon-oxide interface. However, in electrolyte-gated FETs, electrolyte screening strongly reduces sensitivity to charges near the gate oxide. The question arises whether nano-scaling electrolyte-gated FETs can entail a sufficiently large signal-to-noise ratio (SNR) for the detection of single molecules. We enhanced a technology computer-aided design tool with electrolyte screening models to calculate the impact of the FET geometry on the single-molecule signal and FET noise. Our continuum FET model shows that a sufficiently large single-molecule SNR is only obtained when nano-scaling all FET channel dimensions. Moreover, we show that the expected scaling trend of the single-molecule SNR breaks down and no longer results in improvements for geometries approaching the decananometer size. This is the characteristic size of the FET channel region modulated by a typical molecule. For gate lengths below 50 nm, the overlap of the modulated region with the highly conductive junctions leads to saturation of the SNR. For cross-sections below 10-30 nm, SNR degrades due to the overlap of the modulated region with the convex FET corners where a larger local gate capacitance reduces charge sensitivity. In our study, assuming a commercial solid-state FET noise amplitude, we find that a suspended nanowire FET architecture with 35 nm length and 5 × 10 nm2 cross-section results in the highest SNR of about 10 for a 15-base DNA oligo in a 15 mM electrolyte. In contrast with typical silicon nanowire FET sensors which possess micron-scale gate lengths, we find it to be key that all channel dimensions are scaled down to the decananometer range.
Collapse
Affiliation(s)
- Sybren Santermans
- imec, Kapeldreef 75, 3001 Leuven, Belgium.
- Department of Materials Engineering, University of Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | | | - Marc Heyns
- imec, Kapeldreef 75, 3001 Leuven, Belgium.
- Department of Materials Engineering, University of Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | | | | |
Collapse
|
5
|
Jang SS, Dubnik S, Hon J, Hellenkamp B, Lynall DG, Shepard KL, Nuckolls C, Gonzalez RL. Characterizing the Conformational Free-Energy Landscape of RNA Stem-Loops Using Single-Molecule Field-Effect Transistors. J Am Chem Soc 2023; 145:402-412. [PMID: 36547391 PMCID: PMC10025942 DOI: 10.1021/jacs.2c10218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have developed and used single-molecule field-effect transistors (smFETs) to characterize the conformational free-energy landscape of RNA stem-loops. Stem-loops are one of the most common RNA structural motifs and serve as building blocks for the formation of complex RNA structures. Given their prevalence and integral role in RNA folding, the kinetics of stem-loop (un)folding has been extensively characterized using both experimental and computational approaches. Interestingly, these studies have reported vastly disparate timescales of (un)folding, which has been interpreted as evidence that (un)folding of even simple stem-loops occurs on a highly rugged conformational energy landscape. Because smFETs do not rely on fluorophore reporters of conformation or mechanical (un)folding forces, they provide a unique approach that has allowed us to directly monitor tens of thousands of (un)folding events of individual stem-loops at a 200 μs time resolution. Our results show that under our experimental conditions, stem-loops (un)fold over a 1-200 ms timescale during which they transition between ensembles of unfolded and folded conformations, the latter of which is composed of at least two sub-populations. The 1-200 ms timescale of (un)folding we observe here indicates that smFETs report on complete (un)folding trajectories in which unfolded conformations of the RNA spend long periods of time wandering the free-energy landscape before sampling one of several misfolded conformations or the natively folded conformation. Our findings highlight the extremely rugged landscape on which even the simplest RNA structural elements fold and demonstrate that smFETs are a unique and powerful approach for characterizing the conformational free-energy of RNA.
Collapse
Affiliation(s)
- Sukjin S. Jang
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Sarah Dubnik
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Jason Hon
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Björn Hellenkamp
- Department of Electrical Engineering, Columbia University, 3000 Broadway, New York, 10027, USA
| | - David G. Lynall
- Department of Electrical Engineering, Columbia University, 3000 Broadway, New York, 10027, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, 3000 Broadway, New York, 10027, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| |
Collapse
|
6
|
Hall DA, Ananthapadmanabhan N, Choi C, Zheng L, Pan PP, Von Jutrzenka C, Nguyen T, Rizo J, Weinstein M, Lobaton R, Sinha P, Sauerbrey T, Sigala C, Bailey K, Mudondo PJ, Chaudhuri AR, Severi S, Fuller CW, Tour JM, Jin S, Mola PW, Merriman B. A Scalable CMOS Molecular Electronics Chip for Single-Molecule Biosensing. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1030-1043. [PMID: 36191107 DOI: 10.1109/tbcas.2022.3211420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This work reports the first CMOS molecular electronics chip. It is configured as a biosensor, where the primary sensing element is a single molecule "molecular wire" consisting of a ∼100 GΩ, 25 nm long alpha-helical peptide integrated into a current monitoring circuit. The engineered peptide contains a central conjugation site for attachment of various probe molecules, such as DNA, proteins, enzymes, or antibodies, which program the biosensor to detect interactions with a specific target molecule. The current through the molecular wire under a dc applied voltage is monitored with millisecond temporal resolution. The detected signals are millisecond-scale, picoampere current pulses generated by each transient probe-target molecular interaction. Implemented in a 0.18 μm CMOS technology, 16k sensors are arrayed with a 20 μm pitch and read out at a 1 kHz frame rate. The resulting biosensor chip provides direct, real-time observation of the single-molecule interaction kinetics, unlike classical biosensors that measure ensemble averages of such events. This molecular electronics chip provides a platform for putting molecular biosensing "on-chip" to bring the power of semiconductor chips to diverse applications in biological research, diagnostics, sequencing, proteomics, drug discovery, and environmental monitoring.
Collapse
|
7
|
Turvey MW, Gabriel KN, Lee W, Taulbee JJ, Kim JK, Chen S, Lau CJ, Kattan RE, Pham JT, Majumdar S, Garcia D, Weiss GA, Collins PG. Single-molecule Taq DNA polymerase dynamics. SCIENCE ADVANCES 2022; 8:eabl3522. [PMID: 35275726 PMCID: PMC8916733 DOI: 10.1126/sciadv.abl3522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Taq DNA polymerase functions at elevated temperatures with fast conformational dynamics-regimes previously inaccessible to mechanistic, single-molecule studies. Here, single-walled carbon nanotube transistors recorded the motions of Taq molecules processing matched or mismatched template-deoxynucleotide triphosphate pairs from 22° to 85°C. By using four enzyme orientations, the whole-enzyme closures of nucleotide incorporations were distinguished from more rapid, 20-μs closures of Taq's fingers domain testing complementarity and orientation. On average, one transient closure was observed for every nucleotide binding event; even complementary substrate pairs averaged five transient closures between each catalytic incorporation at 72°C. The rate and duration of the transient closures and the catalytic events had almost no temperature dependence, leaving all of Taq's temperature sensitivity to its rate-determining open state.
Collapse
Affiliation(s)
- Mackenzie W. Turvey
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Kristin N. Gabriel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Wonbae Lee
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Jeffrey J. Taulbee
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Joshua K. Kim
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | - Silu Chen
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | - Calvin J. Lau
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Rebecca E. Kattan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Jenifer T. Pham
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | - Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | | | - Gregory A. Weiss
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-3958, USA
| | - Philip G. Collins
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| |
Collapse
|
8
|
Millar DP. Conformational Dynamics of DNA Polymerases Revealed at the Single-Molecule Level. Front Mol Biosci 2022; 9:826593. [PMID: 35281261 PMCID: PMC8913937 DOI: 10.3389/fmolb.2022.826593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 12/25/2022] Open
Abstract
DNA polymerases are intrinsically dynamic macromolecular machines. The purpose of this review is to describe the single-molecule Förster resonance energy transfer (smFRET) methods that are used to probe the conformational dynamics of DNA polymerases, focusing on E. coli DNA polymerase I. The studies reviewed here reveal the conformational dynamics underpinning the nucleotide selection, proofreading and 5′ nuclease activities of Pol I. Moreover, the mechanisms revealed for Pol I are likely employed across the DNA polymerase family. smFRET methods have also been used to examine other aspects of DNA polymerase activity.
Collapse
|
9
|
Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity. Proc Natl Acad Sci U S A 2022; 119:2112812119. [PMID: 35074874 PMCID: PMC8812571 DOI: 10.1073/pnas.2112812119] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Detection of molecular interactions is the foundation for many important biotechnology applications in society and industry, such as drug discovery, diagnostics, and DNA sequencing. This report describes a broadly applicable platform for detecting molecular interactions at the single-molecule scale, in real-time, label-free, and potentially highly multiplexable fashion, using single-molecule sensors on a highly scalable semiconductor sensor array chip. Such chips are both practically manufacturable in the near term, and have a durable long-term scaling roadmap, thus providing an ideal way to bring the power of modern chip technology to the broad area of biosensing. This work also realizes a 50-year-old scientific vision of integrating single molecules into electronic chips to achieve the ultimate miniaturization of electronics. For nearly 50 years, the vision of using single molecules in circuits has been seen as providing the ultimate miniaturization of electronic chips. An advanced example of such a molecular electronics chip is presented here, with the important distinction that the molecular circuit elements play the role of general-purpose single-molecule sensors. The device consists of a semiconductor chip with a scalable array architecture. Each array element contains a synthetic molecular wire assembled to span nanoelectrodes in a current monitoring circuit. A central conjugation site is used to attach a single probe molecule that defines the target of the sensor. The chip digitizes the resulting picoamp-scale current-versus-time readout from each sensor element of the array at a rate of 1,000 frames per second. This provides detailed electrical signatures of the single-molecule interactions between the probe and targets present in a solution-phase test sample. This platform is used to measure the interaction kinetics of single molecules, without the use of labels, in a massively parallel fashion. To demonstrate broad applicability, examples are shown for probe molecule binding, including DNA oligos, aptamers, antibodies, and antigens, and the activity of enzymes relevant to diagnostics and sequencing, including a CRISPR/Cas enzyme binding a target DNA, and a DNA polymerase enzyme incorporating nucleotides as it copies a DNA template. All of these applications are accomplished with high sensitivity and resolution, on a manufacturable, scalable, all-electronic semiconductor chip device, thereby bringing the power of modern chips to these diverse areas of biosensing.
Collapse
|
10
|
Rolling-circle and strand-displacement mechanisms for non-enzymatic RNA replication at the time of the origin of life. J Theor Biol 2021; 527:110822. [PMID: 34214567 DOI: 10.1016/j.jtbi.2021.110822] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
It is likely that RNA replication began non-enzymatically, and that polymerases were later selected to speed up the process. We consider replication mechanisms in modern viruses and ask which of these is possible non-enzymatically, using mathematical models and experimental data found in the literature to estimate rates of RNA synthesis and replication. Replication via alternating plus and minus strands is found in some single-stranded RNA viruses. However, if this occurred non-enzymatically it would lead to double-stranded RNA that would not separate. With some form of environmental cycling, such as temperature, salinity, or pH cycling, double-stranded RNA can be melted to form single-stranded RNA, although re-annealing of existing strands would then occur much faster than synthesis of new strands. We show that re-annealing blocks this form of replication at a very low concentration of strands. Other kinds of viruses synthesize linear double strands from single strands and then make new single strands from double strands via strand-displacement. This does not require environmental cycling and is not blocked by re-annealing. However, under non-enzymatic conditions, if strand-displacement occurs from a linear template, we expect the incomplete new strand to be almost always displaced by the tail end of the old strand through toehold-mediated displacement. A third kind of replication in viruses and viroids is rolling-circle replication which occurs via strand-displacement on a circular template. Rolling-circle replication does not require environmental cycling and is not prevented by toehold-mediated displacement. Rolling-circle replication is therefore expected to occur non-enzymatically and is a likely starting point for the evolution of polymerase-catalysed replication.
Collapse
|
11
|
Miclotte G, Martens K, Fostier J. Computational assessment of the feasibility of protonation-based protein sequencing. PLoS One 2020; 15:e0238625. [PMID: 32915813 PMCID: PMC7485799 DOI: 10.1371/journal.pone.0238625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/20/2020] [Indexed: 02/05/2023] Open
Abstract
Recent advances in DNA sequencing methods revolutionized biology by providing highly accurate reads, with high throughput or high read length. These read data are being used in many biological and medical applications. Modern DNA sequencing methods have no equivalent in protein sequencing, severely limiting the widespread application of protein data. Recently, several optical protein sequencing methods have been proposed that rely on the fluorescent labeling of amino acids. Here, we introduce the reprotonation-deprotonation protein sequencing method. Unlike other methods, this proposed technique relies on the measurement of an electrical signal and requires no fluorescent labeling. In reprotonation-deprotonation protein sequencing, the terminal amino acid is identified through its unique protonation signal, and by repeatedly cleaving the terminal amino acids one-by-one, each amino acid in the peptide is measured. By means of simulations, we show that, given a reference database of known proteins, reprotonation-deprotonation sequencing has the potential to correctly identify proteins in a sample. Our simulations provide target values for the signal-to-noise ratios that sensor devices need to attain in order to detect reprotonation-deprotonation events, as well as suitable pH values and required measurement times per amino acid. For instance, an SNR of 10 is required for a 61.71% proteome recovery rate with 100 ms measurement time per amino acid.
Collapse
Affiliation(s)
| | | | - Jan Fostier
- IDLab, Ghent University-Imec, Ghent, Belgium
| |
Collapse
|
12
|
Richardson MB, Gabriel KN, Garcia JA, Ashby SN, Dyer RP, Kim JK, Lau CJ, Hong J, Le Tourneau RJ, Sen S, Narel DL, Katz BB, Ziller JW, Majumdar S, Collins PG, Weiss GA. Pyrocinchonimides Conjugate to Amine Groups on Proteins via Imide Transfer. Bioconjug Chem 2020; 31:1449-1462. [PMID: 32302483 DOI: 10.1021/acs.bioconjchem.0c00143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in bioconjugation, the ability to link biomolecules to each other, small molecules, surfaces, and more, can spur the development of advanced materials and therapeutics. We have discovered that pyrocinchonimide, the dimethylated analogue of maleimide, undergoes a surprising transformation with biomolecules. The reaction targets amines and involves an imide transfer, which has not been previously reported for bioconjugation purposes. Despite their similarity to maleimides, pyrocinchonimides do not react with free thiols. Though both lysine residues and the N-termini of proteins can receive the transferred imide, the reaction also exhibits a marked preference for certain amines that cannot solely be ascribed to solvent accessibility. This property is peculiar among amine-targeting reactions and can reduce combinatorial diversity when many available reactive amines are available, such as in the formation of antibody-drug conjugates. Unlike amides, the modification undergoes very slow reversion under high pH conditions. The reaction offers a thermodynamically controlled route to single or multiple modifications of proteins for a wide range of applications.
Collapse
Affiliation(s)
- Mark B Richardson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Kristin N Gabriel
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph A Garcia
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Shareen N Ashby
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Rebekah P Dyer
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joshua K Kim
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Calvin J Lau
- Department of Physics & Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - John Hong
- School of Medicine, University of California, Irvine, Irvine, California 92697, United States
| | - Ryan J Le Tourneau
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sanjana Sen
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - David L Narel
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Benjamin B Katz
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Philip G Collins
- Department of Physics & Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
13
|
Li Y, Zhao L, Yao Y, Guo X. Single-Molecule Nanotechnologies: An Evolution in Biological Dynamics Detection. ACS APPLIED BIO MATERIALS 2019; 3:68-85. [DOI: 10.1021/acsabm.9b00840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Lihua Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuan Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
14
|
Hon J, Gonzalez RL. Bayesian-Estimated Hierarchical HMMs Enable Robust Analysis of Single-Molecule Kinetic Heterogeneity. Biophys J 2019; 116:1790-1802. [PMID: 31010664 DOI: 10.1016/j.bpj.2019.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/27/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022] Open
Abstract
Single-molecule kinetic experiments allow the reaction trajectories of individual biomolecules to be directly observed, eliminating the effects of population averaging and providing a powerful approach for elucidating the kinetic mechanisms of biomolecular processes. A major challenge to the analysis and interpretation of these experiments, however, is the kinetic heterogeneity that almost universally complicates the recorded single-molecule signal versus time trajectories (i.e., signal trajectories). Such heterogeneity manifests as changes and/or differences in the transition rates that are observed within individual signal trajectories or across a population of signal trajectories. Because characterizing kinetic heterogeneity can provide critical mechanistic information, we have developed a computational method that effectively and comprehensively enables such analysis. To this end, we have developed a computational algorithm and software program, hFRET, that uses the variational approximation for Bayesian inference to estimate the parameters of a hierarchical hidden Markov model, thereby enabling robust identification and characterization of kinetic heterogeneity. Using simulated signal trajectories, we demonstrate the ability of hFRET to accurately and precisely characterize kinetic heterogeneity. In addition, we use hFRET to analyze experimentally recorded signal trajectories reporting on the conformational dynamics of ribosomal pre-translocation (PRE) complexes. The results of our analyses demonstrate that PRE complexes exhibit kinetic heterogeneity, reveal the physical origins of this heterogeneity, and allow us to expand the current model of PRE complex dynamics. The methods described here can be applied to signal trajectories generated using any type of signal and can be easily extended to the analysis of signal trajectories exhibiting more complex kinetic behaviors. Moreover, variations of our approach can be easily developed to integrate kinetic data obtained from different experimental constructs and/or from molecular dynamics simulations of a biomolecule of interest.
Collapse
Affiliation(s)
- Jason Hon
- Department of Chemistry, Columbia University, New York, New York
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, New York.
| |
Collapse
|
15
|
Bouilly D. Detecting short RNA sequences of pathogens. NATURE NANOTECHNOLOGY 2018; 13:1094-1096. [PMID: 30397283 DOI: 10.1038/s41565-018-0303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Delphine Bouilly
- Institute for Research in Immunology and Cancer (IRIC) & Department of Physics, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Wu SJ, Schuergers N, Lin KH, Gillen AJ, Corminboeuf C, Boghossian AA. Restriction Enzyme Analysis of Double-Stranded DNA on Pristine Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37386-37395. [PMID: 30277379 DOI: 10.1021/acsami.8b12287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoprobes such as single-walled carbon nanotubes (SWCNTs) are capable of label-free detection that benefits from intrinsic and photostable near-infrared fluorescence. Despite the growing number of SWCNT-based applications, uncertainty surrounding the nature of double-stranded DNA (dsDNA) immobilization on pristine SWCNTs has limited their use as optical sensors for probing DNA-protein interactions. To address this limitation, we study enzyme activity on unmodified dsDNA strands immobilized on pristine SWCNTs. Restriction enzyme activity on various dsDNA sequences was used to verify the retention of the dsDNA's native conformation on the nanotube surface and to quantitatively compare the degree of dsDNA accessibility. We report a 2.8-fold enhancement in initial enzyme activity in the presence of surfactants. Förster resonance electron transfer (FRET) analysis attributes this enhancement to increased dsDNA displacement from the SWCNT surface. Furthermore, the accessibility of native dsDNA was found to vary with DNA configuration and the spacing between the restriction site and the nanotube surface, with a minimum spacing of four base pairs (bp) from the anchoring site needed to preserve enzyme activity. Molecular dynamics (MD) simulations verify that the anchored dsDNA remains within the vicinity of the SWCNT, revealing an unprecedented bimodal displacement of the bp nearest to SWCNT surface. Together, these findings illustrate the successful immobilization of native dsDNA on pristine SWCNTs, offering a new near-infrared platform for exploring vital DNA processes.
Collapse
Affiliation(s)
- Shang-Jung Wu
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Nils Schuergers
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Kun-Han Lin
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Alice J Gillen
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Clémence Corminboeuf
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| |
Collapse
|
17
|
Fijen C, Montón Silva A, Hochkoeppler A, Hohlbein J. A single-molecule FRET sensor for monitoring DNA synthesis in real time. Phys Chem Chem Phys 2018; 19:4222-4230. [PMID: 28116374 DOI: 10.1039/c6cp05919h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a versatile DNA assay and framework for monitoring polymerization of DNA in real time and at the single-molecule level. The assay consists of an acceptor labelled DNA primer annealed to a DNA template that is labelled on its single stranded, downstream overhang with a donor fluorophore. Upon extension of the primer using a DNA polymerase, the overhang of the template alters its conformation from a random coil to the canonical structure of double stranded DNA. This conformational change increases the distance between the donor and the acceptor fluorophore and can be detected as a decrease in the Förster resonance energy transfer (FRET) efficiency between both fluorophores. Remarkably, the DNA assay does not require any modification of the DNA polymerase and albeit the simple and robust spectroscopic readout facilitates measurements even with conventional fluorimeters or stopped-flow equipment, single-molecule FRET provides additional access to parameters such as the processivity of DNA synthesis and, for one of the three DNA polymerases tested, the detection of binding and dissociation of the DNA polymerase to DNA. We furthermore demonstrate that primer extensions by a single base can be resolved.
Collapse
Affiliation(s)
- Carel Fijen
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.
| | - Alejandro Montón Silva
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands. and Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, Bologna, 40136, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, Bologna, 40136, Italy
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands. and Microspectroscopy Centre, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
18
|
Recent progress in dissecting molecular recognition by DNA polymerases with non-native substrates. Curr Opin Chem Biol 2017; 41:43-49. [PMID: 29096323 DOI: 10.1016/j.cbpa.2017.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/05/2017] [Indexed: 11/22/2022]
Abstract
DNA polymerases must discriminate the correct Watson-Crick base pair-forming deoxynucleoside triphosphate (dNTP) substrate from three other dNTPs and additional triphosphates found in the cell. The rarity of misincorporations in vivo, then, belies the high tolerance for dNTP analogs observed in vitro. Advances over the last 10 years in single-molecule fluorescence and electronic detection of dNTP analog incorporation enable exploration of the mechanism and limits to base discrimination by DNA polymerases. Such studies reveal transient motions of DNA polymerase during substrate recognition and mutagenesis in the context of erroneous dNTP incorporation that can lead to evolution and genetic disease. Further improvements in time resolution and noise reduction of single-molecule studies will uncover deeper mechanistic understanding of this critical, first step in evolution.
Collapse
|
19
|
Li J, He G, Ueno H, Jia C, Noji H, Qi C, Guo X. Direct real-time detection of single proteins using silicon nanowire-based electrical circuits. NANOSCALE 2016; 8:16172-16176. [PMID: 27714062 DOI: 10.1039/c6nr04103e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present an efficient strategy through surface functionalization to build a single silicon nanowire field-effect transistor-based biosensor that is capable of directly detecting protein adsorption/desorption at the single-event level. The step-wise signals in real-time detection of His-tag F1-ATPases demonstrate a promising electrical biosensing approach with single-molecule sensitivity, thus opening up new opportunities for studying single-molecule biophysics in broad biological systems.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China. and Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Gen He
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China. and Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Hiroshi Ueno
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan.
| | - Chuancheng Jia
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan.
| | - Chuanmin Qi
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
20
|
Kang M, Momotenko D, Page A, Perry D, Unwin PR. Frontiers in Nanoscale Electrochemical Imaging: Faster, Multifunctional, and Ultrasensitive. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7993-8008. [PMID: 27396415 DOI: 10.1021/acs.langmuir.6b01932] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A wide range of interfacial physicochemical processes, from electrochemistry to the functioning of living cells, involve spatially localized chemical fluxes that are associated with specific features of the interface. Scanning electrochemical probe microscopes (SEPMs) represent a powerful means of visualizing interfacial fluxes, and this Feature Article highlights recent developments that have radically advanced the speed, spatial resolution, functionality, and sensitivity of SEPMs. A major trend has been a coming together of SEPMs that developed independently and the use of established SEPMs in completely new ways, greatly expanding their scope and impact. The focus is on nanopipette-based SEPMs, including scanning ion conductance microscopy (SICM), scanning electrochemical cell microscopy (SECCM), and hybrid techniques thereof, particularly with scanning electrochemical microscopy (SECM). Nanopipette-based probes are made easily, quickly, and cheaply with tunable characteristics. They are reproducible and can be fully characterized. Their response can be modeled in considerable detail so that quantitative maps of chemical fluxes and other properties (e.g., local charge) can be obtained and analyzed. This article provides an overview of the use of these probes for high-speed imaging, to create movies of electrochemical processes in action, to carry out multifunctional mapping such as simultaneous topography-charge and topography-activity, and to create nanoscale electrochemical cells for the detection, trapping, and analysis of single entities, particularly individual molecules and nanoparticles (NPs). These studies provide a platform for the further application and diversification of SEPMs across a wide range of interfacial science.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Dmitry Momotenko
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Ashley Page
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - David Perry
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry CV4 7AL, United Kingdom
| |
Collapse
|
21
|
Bouilly D, Hon J, Daly NS, Trocchia S, Vernick S, Yu J, Warren S, Wu Y, Gonzalez RL, Shepard KL, Nuckolls C. Single-Molecule Reaction Chemistry in Patterned Nanowells. NANO LETTERS 2016; 16:4679-85. [PMID: 27270004 PMCID: PMC5176326 DOI: 10.1021/acs.nanolett.6b02149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A new approach to synthetic chemistry is performed in ultraminiaturized, nanofabricated reaction chambers. Using lithographically defined nanowells, we achieve single-point covalent chemistry on hundreds of individual carbon nanotube transistors, providing robust statistics and unprecedented spatial resolution in adduct position. Each device acts as a sensor to detect, in real-time and through quantized changes in conductance, single-point functionalization of the nanotube as well as consecutive chemical reactions, molecular interactions, and molecular conformational changes occurring on the resulting single-molecule probe. In particular, we use a set of sequential bioconjugation reactions to tether a single-strand of DNA to the device and record its repeated, reversible folding into a G-quadruplex structure. The stable covalent tether allows us to measure the same molecule in different solutions, revealing the characteristic increased stability of the G-quadruplex structure in the presence of potassium ions (K(+)) versus sodium ions (Na(+)). Nanowell-confined reaction chemistry on carbon nanotube devices offers a versatile method to isolate and monitor individual molecules during successive chemical reactions over an extended period of time.
Collapse
Affiliation(s)
- Delphine Bouilly
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 United
States
| | - Jason Hon
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 United
States
| | - Nathan S. Daly
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 United
States
| | - Scott Trocchia
- Department of Electrical Engineering, Columbia University, 500 W. 120th Street, New York, New York 10027 United
States
| | - Sefi Vernick
- Department of Electrical Engineering, Columbia University, 500 W. 120th Street, New York, New York 10027 United
States
| | - Jaeeun Yu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 United
States
| | - Steven Warren
- Department of Electrical Engineering, Columbia University, 500 W. 120th Street, New York, New York 10027 United
States
| | - Ying Wu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 United
States
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 United
States
- E-mail:
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, 500 W. 120th Street, New York, New York 10027 United
States
- E-mail:
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 United
States
- E-mail:
| |
Collapse
|
22
|
Gül OT, Pugliese KM, Choi Y, Sims PC, Pan D, Rajapakse AJ, Weiss GA, Collins PG. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths. BIOSENSORS-BASEL 2016; 6:bios6030029. [PMID: 27348011 PMCID: PMC5039648 DOI: 10.3390/bios6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 01/17/2023]
Abstract
As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.
Collapse
Affiliation(s)
- O Tolga Gül
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physics, Polatlı Faculty of Science and Arts, Gazi University, Polatlı 06900, Turkey
| | - Kaitlin M Pugliese
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697, USA
| | - Yongki Choi
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physics, North Dakota State University, Fargo, ND 58108, USA
| | - Patrick C Sims
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Deng Pan
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Arith J Rajapakse
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Gregory A Weiss
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697, USA.
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA 92697, USA.
| | - Philip G Collins
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
23
|
Warren SB, Vernick S, Romano E, Shepard KL. Complementary Metal-Oxide-Semiconductor Integrated Carbon Nanotube Arrays: Toward Wide-Bandwidth Single-Molecule Sensing Systems. NANO LETTERS 2016; 16:2674-9. [PMID: 26999579 PMCID: PMC5319850 DOI: 10.1021/acs.nanolett.6b00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
There is strong interest in realizing genomic molecular diagnostic platforms that are label-free, electronic, and single-molecule. One attractive transducer for such efforts is the single-molecule field-effect transistor (smFET), capable of detecting a single electronic charge and realized with a point-functionalized exposed-gate one-dimensional carbon nanotube field-effect device. In this work, smFETs are integrated directly onto a custom complementary metal-oxide-semiconductor chip, which results in an array of up to 6000 devices delivering a measurement bandwidth of 1 MHz. In a first exploitation of these high-bandwidth measurement capabilities, point functionalization through electrochemical oxidation of the devices is observed with microsecond temporal resolution, which reveals complex reaction pathways with resolvable scattering signatures. High-rate random telegraph noise is detected in certain oxidized devices, further illustrating the measurement capabilities of the platform.
Collapse
Affiliation(s)
- Steven B. Warren
- Department of Electrical Engineering, Columbia University, New York, NY 10027
| | - Sefi Vernick
- Department of Electrical Engineering, Columbia University, New York, NY 10027
| | - Ethan Romano
- Department of Electrical Engineering, Columbia University, New York, NY 10027
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
24
|
Inoue Y, Ishijima A. Local heating of molecular motors using single carbon nanotubes. Biophys Rev 2016; 8:25-32. [PMID: 28510142 DOI: 10.1007/s12551-015-0185-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022] Open
Abstract
Temperature globally affects all chemical processes and biomolecules in living cells. Elevating the temperature of an entire cell accelerates so many biomolecular reactions simultaneously that it is difficult to distinguish the various mechanisms involved. The ability to localize temperature changes to the nanometer range within a cell could provide a powerful new tool for regulating biomolecular activity at the level of individual molecules. The search for a nanoheater for biological research has prompted experiments with carbon nanotubes (CNTs), which have the highest conductivity of any known material. The adsorption of skeletal muscle myosin molecules along the length of single multi-walled CNTs (~10 μm) has allowed researchers to observe the ATP-driven sliding of fluorescently labeled actin filaments. In one study, red-laser irradiation focused on one end of a myosin-coated CNT was used to heat myosin motors locally without directly heating the surrounding water; this laser irradiation instantly accelerated the actin-filament sliding speeds from ~6 to ~12 μm/s in a reversible manner, indicating a local, real-time heating of myosin motors by approximately Δ12 K. Calculation of heat transfer using the finite element method, based on the estimated temperature along a single CNT with a diameter of 170 nm, indicated a high thermal conductivity of ~1540 Wm-1K-1 in solution, consistent with values measured in vacuum in earlier studies. Temperature distribution indicated by half-decrease distances was ~3660 nm along the length of the CNT and ~250 nm perpendicular to the length. These results suggest that single-CNT-based heating at the nanometer- or micrometer-range could be used to regulate various biomolecules in many areas of biological, physical, and chemical research.
Collapse
Affiliation(s)
- Yuichi Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Akihiko Ishijima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan. .,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
25
|
Zuccaro L, Tesauro C, Kurkina T, Fiorani P, Yu HK, Knudsen BR, Kern K, Desideri A, Balasubramanian K. Real-Time Label-Free Direct Electronic Monitoring of Topoisomerase Enzyme Binding Kinetics on Graphene. ACS NANO 2015; 9:11166-76. [PMID: 26445172 DOI: 10.1021/acsnano.5b05709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Monolayer graphene field-effect sensors operating in liquid have been widely deployed for detecting a range of analyte species often under equilibrium conditions. Here we report on the real-time detection of the binding kinetics of the essential human enzyme, topoisomerase I interacting with substrate molecules (DNA probes) that are immobilized electrochemically on to monolayer graphene strips. By monitoring the field-effect characteristics of the graphene biosensor in real-time during the enzyme-substrate interactions, we are able to decipher the surface binding constant for the cleavage reaction step of topoisomerase I activity in a label-free manner. Moreover, an appropriate design of the capture probes allows us to distinctly follow the cleavage step of topoisomerase I functioning in real-time down to picomolar concentrations. The presented results are promising for future rapid screening of drugs that are being evaluated for regulating enzyme activity.
Collapse
Affiliation(s)
- Laura Zuccaro
- Max Planck Institute for Solid State Research , D-70569 Stuttgat, Germany
- Department of Biology, University of Rome Tor Vergata , I-00133 Rome, Italy
| | - Cinzia Tesauro
- Department of Biology, University of Rome Tor Vergata , I-00133 Rome, Italy
- Department of Molecular Biology & Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Tetiana Kurkina
- Max Planck Institute for Solid State Research , D-70569 Stuttgat, Germany
| | - Paola Fiorani
- Department of Biology, University of Rome Tor Vergata , I-00133 Rome, Italy
- Institute of Translational Pharmacology , National Research Council CNR, I-00133 Rome, Italy
| | - Hak Ki Yu
- Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany
| | - Birgitta R Knudsen
- Department of Molecular Biology & Genetics, Aarhus University , DK-8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , DK-8000 Aarhus, Denmark
| | - Klaus Kern
- Max Planck Institute for Solid State Research , D-70569 Stuttgat, Germany
- Institut de Physique de la Matière Condensée, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
26
|
Pugliese KM, Gul OT, Choi Y, Olsen TJ, Sims PC, Collins PG, Weiss GA. Processive Incorporation of Deoxynucleoside Triphosphate Analogs by Single-Molecule DNA Polymerase I (Klenow Fragment) Nanocircuits. J Am Chem Soc 2015; 137:9587-94. [PMID: 26147714 DOI: 10.1021/jacs.5b02074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNA polymerases exhibit a surprising tolerance for analogs of deoxyribonucleoside triphosphates (dNTPs), despite the enzymes' highly evolved mechanisms for the specific recognition and discrimination of native dNTPs. Here, individual DNA polymerase I Klenow fragment (KF) molecules were tethered to a single-walled carbon nanotube field-effect transistor (SWCNT-FET) to investigate accommodation of dNTP analogs with single-molecule resolution. Each base incorporation accompanied a change in current with its duration defined by τclosed. Under Vmax conditions, the average time of τclosed was similar for all analog and native dNTPs (0.2 to 0.4 ms), indicating no kinetic impact on this step due to analog structure. Accordingly, the average rates of dNTP analog incorporation were largely determined by durations with no change in current defined by τopen, which includes molecular recognition of the incoming dNTP. All α-thio-dNTPs were incorporated more slowly, at 40 to 65% of the rate for the corresponding native dNTPs. During polymerization with 6-Cl-2APTP, 2-thio-dTTP, or 2-thio-dCTP, the nanocircuit uncovered an alternative conformation represented by positive current excursions that does not occur with native dNTPs. A model consistent with these results invokes rotations by the enzyme's O-helix; this motion can test the stability of nascent base pairs using nonhydrophilic interactions and is allosterically coupled to charged residues near the site of SWCNT attachment. This model with two opposing O-helix motions differs from the previous report in which all current excursions were solely attributed to global enzyme closure and covalent-bond formation. The results suggest the enzyme applies a dynamic stability-checking mechanism for each nascent base pair.
Collapse
Affiliation(s)
- Kaitlin M Pugliese
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - O Tolga Gul
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Yongki Choi
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Tivoli J Olsen
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Patrick C Sims
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Philip G Collins
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Gregory A Weiss
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
27
|
Morin JA, Cao FJ, Lázaro JM, Arias-Gonzalez JR, Valpuesta JM, Carrascosa JL, Salas M, Ibarra B. Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase. Nucleic Acids Res 2015; 43:3643-52. [PMID: 25800740 PMCID: PMC4402526 DOI: 10.1093/nar/gkv204] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/14/2015] [Accepted: 02/27/2015] [Indexed: 11/25/2022] Open
Abstract
During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (∼50 pN).
Collapse
Affiliation(s)
- José A Morin
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049 Madrid, Spain
| | - Francisco J Cao
- Departamento Física Atómica, Molecular y Nuclear, Universidad Complutense, 28040 Madrid, Spain
| | - José M Lázaro
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| | - José M Valpuesta
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - José L Carrascosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| |
Collapse
|
28
|
Inoue Y, Nagata M, Matsutaka H, Okada T, Sato MK, Ishijima A. Single carbon nanotube-based reversible regulation of biological motor activity. ACS NANO 2015; 9:3677-84. [PMID: 25767902 DOI: 10.1021/nn505607c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Because of their small size and high thermal conductivity, carbon nanotubes (CNTs) are excellent candidates for exploring heat transfer at the level of individual molecules in biological research. With a view toward examining the thermal regulation of single biomolecules, we here developed single CNTs as a new platform for observing the motile activity of myosin motors. On multiwall CNTs (diameter ∼170 nm; length ∼10 μm) coated with skeletal-muscle myosin, the ATP-driven sliding of single actin filaments was clearly observable. The normal sliding speed was ∼6 μm/s. Locally irradiating one end of the CNT with a red laser (642 nm), without directly irradiating the active myosin motors, accelerated the sliding speed to ∼12 μm/s, indicating the reversible activation of protein function on a single CNT in real time. The temperature along the CNT, which was estimated from the temperature-dependence of the sliding speed, decreased with the distance from the irradiated spot. Using these results with the finite element method, we calculated a first estimation of the thermal conductivity of multiwall CNTs in solution, as 1540 ± 260 (Wm(-1) K(-1)), which is consistent with the value estimated from the width dependency of multiwall CNTs and the length dependency of single-wall CNTs in a vacuum or air. The temporal regulation of local temperature through individual CNTs should be broadly applicable to the selective activation of various biomolecules in vitro and in vivo.
Collapse
Affiliation(s)
- Yuichi Inoue
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Mitsunori Nagata
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiroshi Matsutaka
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Takeru Okada
- ‡Institute of Fluid Science, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Masaaki K Sato
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Akihiko Ishijima
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
29
|
JØRGENSEN SUNEK, HATZAKIS NIKOSS. INSIGHTS IN ENZYME FUNCTIONAL DYNAMICS AND ACTIVITY REGULATION BY SINGLE MOLECULE STUDIES. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048013300028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The advent of advanced single molecule measurements heralded the arrival of a wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways not deducible by conventional bulk assays. They offered the direct observation and quantification of the abundance and life time of multiple states and transient intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements, thus providing unprecedented insights into complex biological processes. Here we survey the current state of the art in single-molecule fluorescence microscopy methodology for studying the mechanism of enzymatic activity and the insights on protein functional dynamics. We will initially discuss the strategies employed to date, their limitations and possible ways to overcome them, and finally how single enzyme kinetics can advance our understanding on mechanisms underlying function and regulation of proteins. [Formula: see text]Special Issue Comment: This review focuses on functional dynamics of individual enzymes and is related to the review on ion channels by Lu,44 the reviews on mathematical treatment of Flomenbom45 and Sach et al.,46 and review on FRET by Ruedas-Rama et al.41
Collapse
Affiliation(s)
- SUNE K. JØRGENSEN
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center, Biomembranes in Nanomedicine University of Copenhagen, 2100 Copenhagen, Denmark
| | - NIKOS S. HATZAKIS
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center, Biomembranes in Nanomedicine University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
30
|
Abstract
Single molecule bioelectronic circuits provide an opportunity to study chemical kinetics and kinetic variability with bond-by-bond resolution. To demonstrate this approach, we examined the catalytic activity of T4 lysozyme processing peptidoglycan substrates. Monitoring a single lysozyme molecule through changes in a circuit's conductance helped elucidate unexplored and previously invisible aspects of lysozyme's catalytic mechanism and demonstrated lysozyme to be a processive enzyme governed by 9 independent time constants. The variation of each time constant with pH or substrate crosslinking provided different insights into catalytic activity and dynamic disorder. Overall, ten lysozyme variants were synthesized and tested in single molecule circuits to dissect the transduction of chemical activity into electronic signals. Measurements show that a single amino acid with the appropriate properties is sufficient for good signal generation, proving that the single molecule circuit technique can be easily extended to other proteins.
Collapse
Affiliation(s)
- Yongki Choi
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, United States
| | - Gregory A. Weiss
- Departments of Chemistry and Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California 92697, United States
| | - Philip G. Collins
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, United States
| |
Collapse
|