1
|
Nofal Z, Malakhov P, Pustovalova M, Sakr N, Leonov S. Recurring cycles of deprivation of serum and migration in confined spaces augments ganglioside SSEA-4 expression, boosting clonogenicity and cisplatin resistance in TNBC cell line. Sci Rep 2025; 15:16738. [PMID: 40369257 PMCID: PMC12078623 DOI: 10.1038/s41598-025-99828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025] Open
Abstract
The remarkable biophysical properties of metastatic migrating cells, such as their exceptional motility and deformability, enable them to migrate through physical confinements created by neighboring cells or extracellular matrix. This study explores the adaptive responses of breast cancer (BC) cell sublines derived from the highly aggressive, metastatic triple-negative MDA-MB-231 and the non-metastatic MCF7 human BC cell lines, after undergoing three rounds of confined migration (CM) stress. Our findings demonstrate that CM elicits common and cell-type specific adaptive responses in BC cell sublines. In particular, both cell sublines exhibit a similar enhancement of clonogenicity and nanoparticle (NP) uptake activity, indicating tumorigenic potential. We have, for the first time, shown that stimulation with CM induces a hybrid epithelial-to-mesenchymal transition (EMT) phenotype of MDA-MB-231 cells. This transition is characterized by a significant rise in the expression of stage-specific embryonic antigen-4 (SSEA4), alongside a substantial decline in the population of CD133+ cells and a marked reduction in Ki67 expression in the MDA-MB-231-derived subline following Cis-Platin treatment. These changes are likely associated with heightened resistance of this subline to cisplatin. In contrast, CM induces far fewer such alterations in the MCF7-derived counterpart with a notable increase of CD133+ population, which seems to be insufficient to change cell susceptibility to cisplatin exposure. This study contributes to our understanding of the adaptive mechanisms underlying metastasis and drug resistance in breast cancer, emphasizing the need for personalized approaches in cancer treatment that consider the heterogeneous responses of different cancer subtypes to environmental stresses.
Collapse
Affiliation(s)
- Zain Nofal
- Institute of Future Biophysics, Moscow Institute of Physics and Technology, MIPT, Phystech, Dolgoprudny, Russia, 141701
| | - Philipp Malakhov
- Institute of Future Biophysics, Moscow Institute of Physics and Technology, MIPT, Phystech, Dolgoprudny, Russia, 141701
| | - Margarita Pustovalova
- Institute of Future Biophysics, Moscow Institute of Physics and Technology, MIPT, Phystech, Dolgoprudny, Russia, 141701
| | - Nawar Sakr
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia, 125315
| | - Sergey Leonov
- Institute of Future Biophysics, Moscow Institute of Physics and Technology, MIPT, Phystech, Dolgoprudny, Russia, 141701.
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russia, 142290.
| |
Collapse
|
2
|
Usama M, Hsu YC, Safaei M, Chen CY, Han KH, Ho YS, Yamaguchi H, Li YC, Hung MC, Wong CH, Lin CW. Antibody-drug conjugates targeting SSEA-4 inhibits growth and migration of SSEA-4 positive breast cancer cells. Cancer Lett 2025; 611:217453. [PMID: 39798832 DOI: 10.1016/j.canlet.2025.217453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Although breast cancer treatment has evolved significantly in recent years, drug resistance remains a major challenge. To identify new targets for breast cancer, we found that stage-specific embryonic antigen 4 (SSEA-4) is expressed in all subtypes of breast cancer cell lines, and the increased expression of the associated enzymes β3GalT5 and ST3Gal2 correlates with poor recurrence-free survival (RFS) in breast cancer. We also found that SSEA-4 antibodies can be rapidly internalized into breast cancer cells, a property that makes SSEA-4 an attractive target for antibody-drug conjugates (ADCs). Furthermore, the SSEA-4 antibody conjugated to the anticancer agents showed efficacy against SSEA-4-positive breast cancer cells, including those resistant to PARP inhibitor, trastuzumab, and CDK7 inhibitor. In addition, SSEA-4 ADCs showed no efficacy in β3GalT5-knockout MDA-MB-231 cells, highlighting the essential role of SSEA-4 as the target antigen for ADCs activity. Our work shows that SSEA-4-ADCs could be a therapeutic option for breast cancers.
Collapse
Affiliation(s)
- Muhammad Usama
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 406040, Taiwan
| | - Yu-Chieh Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Mahdieh Safaei
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, 34054, Daejeon, Republic of Korea
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Cell Biology, China Medical University, Taichung, 406040, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406040, Taiwan
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chih-Wei Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
3
|
Chen NY, Lin CW, Lai TY, Wu CY, Liao PC, Hsu TL, Wong CH. Increased expression of SSEA-4 on TKI-resistant non-small cell lung cancer with EGFR-T790M mutation. Proc Natl Acad Sci U S A 2024; 121:e2313397121. [PMID: 38252815 PMCID: PMC10835044 DOI: 10.1073/pnas.2313397121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), a major life-threatening disease accounting for 85% of all lung cancer cases, has been treated with tyrosine kinase inhibitors (TKIs), but often resulted in drug resistance, and approximately 60% of TKI-resistant cases are due to acquired secondary (epithelial growth factor receptor) EGFR-T790M mutation. To identify alternative targets for TKI-resistant NSCLC with EGFR-T790M mutation, we found that the three globo-series glycosphingolipids are increasingly expressed on this type of NSCLC cell lines, and among them, the increase of stage-specific embryonic antigen-4 (SSEA-4) expression is the most significant. Compared to TKI-sensitive cell lines, SSEA-4 and the key enzyme β3GalT5 responsible for the synthesis of SSEA3 are more expressed in TKI-resistant NSCLC cell lines with EGFR-T790M mutation, and the expression levels strongly correlate with poor survival in patients with EGFR mutation. In addition, we demonstrated that a SSEA-4 targeted monoclonal antibody, especially the homogeneous glycoform with well-defined Fc glycan designed to improve effective functions, is highly effective against this subpopulation of NSCLC in cell-based and animal studies. These findings provide a direction for the prediction of tumor recurrence and treatment of TKI-resistant NSCLC with EGFR-T790M mutation.
Collapse
Affiliation(s)
- Nai-Yu Chen
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei11221, Taiwan
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung406040, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung406040, Taiwan
| | - Ting-Yen Lai
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Pei-Chi Liao
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung406040, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
4
|
Pal R, Yamazaki A, Komura N, Tanaka HN, Imamura A, Ishida H, Ando H. Convergent synthesis of functionalized derivatives of stage-specific embryonic antigens 3 & 4. Carbohydr Res 2024; 535:108990. [PMID: 38039697 DOI: 10.1016/j.carres.2023.108990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Stage-specific embryonic antigens (SSEAs) are carbohydrate markers that have diverse roles in embryonic development. However, the exact roles of SSEAs remain unclear. To obtain mechanistic insights into their roles, we aimed to develop functionalized SSEA glycan analogs via chemical synthesis. Herein, we report a convergent synthetic approach for SSEA-3 and SSEA-4 analogs using readily available versatile building blocks. A key step, namely the stereoselective glycosylation of a common tetrasaccharide acceptor, was successfully achieved using a 4-O-Bn Gal donor for SSEA-3 and a Neu-Gal donor for SSEA-4, which were previously developed by our group. The obtained SSEA-3 and SSEA-4 glycans were further functionalized with biotin and deuterated lipid for applications in biological studies. Thus, the findings of this study will facilitate further research on SSEAs.
Collapse
Affiliation(s)
- Rita Pal
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Ayano Yamazaki
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| | - Hide-Nori Tanaka
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akihiro Imamura
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hideharu Ishida
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Jin X, Yang GY. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog Lipid Res 2023; 91:101241. [PMID: 37524133 DOI: 10.1016/j.plipres.2023.101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Clinical Pharmaceutics, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Suzuki KGN, Komura N, Ando H. Recently developed glycosphingolipid probes and their dynamic behavior in cell plasma membranes as revealed by single-molecule imaging. Glycoconj J 2023; 40:305-314. [PMID: 37133616 DOI: 10.1007/s10719-023-10116-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Glycosphingolipids, including gangliosides, are representative lipid raft markers that perform a variety of physiological roles in cell membranes. However, studies aimed at revealing their dynamic behavior in living cells are rare, mostly due to a lack of suitable fluorescent probes. Recently, the ganglio-series, lacto-series, and globo-series glycosphingolipid probes, which mimic the behavior of the parental molecules in terms of partitioning to the raft fraction, were developed by conjugating hydrophilic dyes to the terminal glycans of glycosphingolipids using state-of-art entirely chemical-based synthetic techniques. High-speed, single-molecule observation of these fluorescent probes revealed that gangliosides were scarcely trapped in small domains (100 nm in diameter) for more than 5 ms in steady-state cells, suggesting that rafts including gangliosides were always moving and very small. Furthermore, dual-color, single-molecule observations clearly showed that homodimers and clusters of GPI-anchored proteins were stabilized by transiently recruiting sphingolipids, including gangliosides, to form homodimer rafts and the cluster rafts, respectively. In this review, we briefly summarize recent studies, the development of a variety of glycosphingolipid probes as well as the identification of the raft structures including gangliosides in living cells by single-molecule imaging.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| |
Collapse
|
7
|
Bolouri MR, Ghods R, Zarnani K, Vafaei S, Falak R, Zarnani AH. Human amniotic epithelial cells exert anti-cancer effects through secretion of immunomodulatory small extracellular vesicles (sEV). Cancer Cell Int 2022; 22:329. [PMID: 36307848 PMCID: PMC9616706 DOI: 10.1186/s12935-022-02755-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022] Open
Abstract
We identified here mechanism by which hAECs exert their anti-cancer effects. We showed that vaccination with live hAEC conferred effective protection against murine colon cancer and melanoma but not against breast cancer in an orthotopic cancer cell inoculation model. hAEC induced strong cross-reactive antibody response to CT26 cells, but not against B16F10 and 4T1 cells. Neither heterotopic injection of tumor cells in AEC-vaccinated mice nor vaccination with hAEC lysate conferred protection against melanoma or colon cancer. Nano-sized AEC-derived small-extracellular vesicles (sEV) (AD-sEV) induced apoptosis in CT26 cells and inhibited their proliferation. Co-administration of AD-sEV with tumor cells substantially inhibited tumor development and increased CTL responses in vaccinated mice. AD-sEV triggered the Warburg’s effect leading to Arginine consumption and cancer cell apoptosis. Our results clearly showed that it is AD-sEV but not the cross-reactive immune responses against tumor cells that mediate inhibitory effects of hAEC on cancer development. Our results highlight the potential anti-cancer effects of extracellular vesicles derived from hAEC. Anti-cancer effects of hAEC depend on cancer type. Cross-reactive humoral responses do not mediate anti-cancer effects of hAEC. Anti-cancer effects of hAECs are mainly mediated by small-extracellular vesicles (sEV). hAEC-derived sEV (AD-sEV) trigger the Warburg’s effect leading to Arginine consumption and cancer cell apoptosis. AD-sEV substantially inhibits tumor development and increases survival and CTL responses.
Collapse
|
8
|
Sigal DS, Hermel DJ, Hsu P, Pearce T. The role of Globo H and SSEA-4 in the development and progression of cancer, and their potential as therapeutic targets. Future Oncol 2021; 18:117-134. [PMID: 34734786 DOI: 10.2217/fon-2021-1110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glycans, chains of sugar molecules found conjugated to cell proteins and lipids, contribute to their growth, movement and differentiation. Aberrant glycosylation is a hallmark of several medical conditions including tumorigenesis. Glycosphingolipids (GSLs), consisting of glycans conjugated to a lipid (ceramide) core, are found in the lipid bilayer of eukaryotic cell membranes. GSLs, play an active role in cell processes. Several GSLs are expressed by human embryonic stem cells and have been found to be overexpressed in several types of cancer. In this review, we discuss the data, hypotheses and perspectives related to the GSLs Globo H and SSEA-4.
Collapse
Affiliation(s)
- Darren S Sigal
- Director, GI Oncology, Scripps Clinic & Scripps MD Anderson Cancer Center, 10710 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - David J Hermel
- Scripps Clinic & Scripps MD Anderson Cancer Center, 10710 N Torrey Pines Road, LA Jolla, CA 92037, USA
| | - Pei Hsu
- Medical Advisor, Medical Affairs & Clinical Development, OBI Pharma Inc. 7F, No. 369, Zhongxiao E Road, Nangang District, Taipei City, 115, Taiwan
| | - Tillman Pearce
- Chief Medical Officer, OBI Pharma USA Inc., 6020 Cornerstone Court W, Suite 200, San Diego, CA 92121, USA
| |
Collapse
|
9
|
Hamamura K, Hotta H, Murakumo Y, Shibuya H, Kondo Y, Furukawa K. SSEA-3 and 4 are not essential for the induction or properties of mouse iPS cells. J Oral Sci 2020; 62:393-396. [PMID: 32684574 DOI: 10.2334/josnusd.19-0513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Stage-specific embryonic antigens (SSEA-1, 3, and 4) are carbohydrate antigens that have been used as markers of embryonic stem (ES) cells. However, the roles of these antigens in the establishment and maintenance of stemness of ES and induced pluripotent stem (iPS) cells are still poorly understood. This study investigated the biological and functional significance of globo-series glycolipids such as SSEA-3 and 4 in mouse iPS cells induced from tail-tip fibroblasts (TTFs) of α1,4Gal-T-knockout mice (lacking SSEA-3 and 4). These iPS cells were induced by retroviral transduction of four factors (Oct3/4, Sox2, Klf4, and c-Myc) into TTFs, and colonies were picked up. Morphologically, the colonies resembled ES cells and were positive for alkaline phosphatase and ES cell markers. Furthermore, in vitro-differentiated induction experiments after embryoid body formation revealed that some colonies derived from α1, 4Gal-T knockout mice were able to differentiate into three germ layers. Three germ layers were also observed in teratomas from iPS cells derived from α1,4Gal-T-knockout mice. These results suggest that SSEA-3 and 4 are not essential, at least for the establishment and maintenance of stemness of mouse iPS cells.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University
| | - Hiroshi Hotta
- Department of Biochemistry II, Nagoya University Graduate School of Medicine
| | | | - Hidenobu Shibuya
- Department of Biochemistry II, Nagoya University Graduate School of Medicine
| | - Yuji Kondo
- Department of Biochemistry II, Nagoya University Graduate School of Medicine
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine.,Department of Biomedical Sciences, Chubu University College of Life and Health Sciences
| |
Collapse
|
10
|
Asano S, Pal R, Tanaka HN, Imamura A, Ishida H, Suzuki KGN, Ando H. Development of Fluorescently Labeled SSEA-3, SSEA-4, and Globo-H Glycosphingolipids for Elucidating Molecular Interactions in the Cell Membrane. Int J Mol Sci 2019; 20:ijms20246187. [PMID: 31817926 PMCID: PMC6941013 DOI: 10.3390/ijms20246187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/02/2023] Open
Abstract
Glycosphingolipids (GSLs), such as the globo-series GSLs stage-specific embryonic antigen 3 (SSEA-3), SSEA-4, and Globo-H, are specifically expressed on pluripotent stem cells and cancer cells, and are known to be associated with various biological processes such as cell recognition, cell adhesion, and signal transduction. However, the behavior and biological roles of these GSLs are still unclear. In our previous study, we observed the interactions between the lipid raft and GSLs in real-time using single-molecule imaging, where we successfully synthesized various fluorescent analogs of GSLs (e.g., GM1 and GM3). Here, we have developed fluorescent analogs of SSEA-3, SSEA-4, and Globo-H using chemical synthesis. The biophysical properties of these analogs as raft markers were examined by partitioning giant plasma membrane vesicles from RBL-2H3 cells into detergent-resistant membrane fractions and liquid-ordered/liquid-disordered phases. The results indicated that the analogs were equivalent to native-type GSLs. The analogs could be used to observe the behavior of globo-series GSLs for detailing the structure and biological roles of lipid rafts and GSL-enriched nanodomains during cell differentiation and cell malignancy.
Collapse
Affiliation(s)
- Sachi Asano
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.A.); (A.I.); (H.I.)
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Rita Pal
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Hide-Nori Tanaka
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.A.); (A.I.); (H.I.)
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akihiro Imamura
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.A.); (A.I.); (H.I.)
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Hideharu Ishida
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.A.); (A.I.); (H.I.)
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kenichi G. N. Suzuki
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.A.); (A.I.); (H.I.)
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Correspondence: (K.G.N.S.); (H.A.)
| | - Hiromune Ando
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.A.); (A.I.); (H.I.)
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Correspondence: (K.G.N.S.); (H.A.)
| |
Collapse
|
11
|
Cheng CW, Wu CY, Hsu WL, Wong CH. Programmable One-Pot Synthesis of Oligosaccharides. Biochemistry 2019; 59:3078-3088. [DOI: 10.1021/acs.biochem.9b00613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cheng-Wei Cheng
- Genomics Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Wen-Lian Hsu
- Institute of Information Science, Academia Sinica, 11529 Taipei, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 11529 Taipei, Taiwan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
12
|
't Hart IME, Li T, Wolfert MA, Wang S, Moremen KW, Boons GJ. Chemoenzymatic synthesis of the oligosaccharide moiety of the tumor-associated antigen disialosyl globopentaosylceramide. Org Biomol Chem 2019; 17:7304-7308. [PMID: 31339142 PMCID: PMC6852662 DOI: 10.1039/c9ob01368g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Disialosyl globopentaosylceramide (DSGb5) is often expressed by renal cell carcinomas. To investigate properties of DSGb5, we have prepared its oligosaccharide moiety by chemically synthesizing Gb5 which was enzymatically sialylated using the mammalian sialyltransferases ST3Gal1 and ST6GalNAc5. Glycan microarray binding studies indicate that Siglec-7 does not recognize DSGb5, and preferentially binds Neu5Acα(2,8)Neu5Ac containing glycans.
Collapse
Affiliation(s)
- Ingrid M E 't Hart
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The translation of biological glycosylation in humans to the clinical applications involves systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which could be accessed by chemical, enzymatic or other biological methods. However, the structural complexity and wide-range variations of glycans and their conjugates represent a major challenge in the synthesis of this class of biomolecules. To help navigate within many methods of oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising synthetic strategies with an eye on the therapeutically relevant targets.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States.,Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
14
|
Signaling pathway of globo-series glycosphingolipids and β1,3-galactosyltransferase V (β3GalT5) in breast cancer. Proc Natl Acad Sci U S A 2019; 116:3518-3523. [PMID: 30808745 DOI: 10.1073/pnas.1816946116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The globo-series glycosphingolipids (GSLs) SSEA3, SSEA4, and Globo-H specifically expressed on cancer cells are found to correlate with tumor progression and metastasis, but the functional roles of these GSLs and the key enzyme β1,3-galactosyltransferase V (β3GalT5) that converts Gb4 to SSEA3 remain largely unclear. Here we show that the expression of β3GalT5 significantly correlates with tumor progression and poor survival in patients, and the globo-series GSLs in breast cancer cells form a complex in membrane lipid raft with caveolin-1 (CAV1) and focal adhesion kinase (FAK) which then interact with AKT and receptor-interacting protein kinase (RIP), respectively. Knockdown of β3GalT5 disrupts the complex and induces apoptosis through dissociation of RIP from the complex to interact with the Fas death domain (FADD) and trigger the Fas-dependent pathway. This finding provides a link between SSEA3/SSEA4/Globo-H and the FAK/CAV1/AKT/RIP complex in tumor progression and apoptosis and suggests a direction for the treatment of breast cancer, as demonstrated by the combined use of antibodies against Globo-H and SSEA4.
Collapse
|
15
|
Donnenberg VS, Corselli M, Normolle DP, Meyer EM, Donnenberg AD. Flow cytometric detection of most proteins in the cell surface proteome is unaffected by trypsin treatment. Cytometry A 2018; 93:803-810. [DOI: 10.1002/cyto.a.23525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Vera S. Donnenberg
- Department of Cardiothoracic Surgery University of Pittsburgh School of Medicine Pittsburgh Pennsylvania
- UPMC Hillman Cancer Center Pittsburgh Pennsylvania
- McGowan Institute of Regenerative Medicine Pittsburgh Pennsylvania
| | | | - Daniel P. Normolle
- UPMC Hillman Cancer Center Pittsburgh Pennsylvania
- Department of Biostatistics University of Pittsburgh Graduate School of Public Health Pittsburgh Pennsylvania
| | | | - Albert D. Donnenberg
- UPMC Hillman Cancer Center Pittsburgh Pennsylvania
- McGowan Institute of Regenerative Medicine Pittsburgh Pennsylvania
- Department of Medicine University of Pittsburgh School of Medicine Pittsburgh Pennsylvania
| |
Collapse
|
16
|
Abstract
Tumor-associated gangliosides play important roles in regulation of signal transduction induced by growth-factor receptors including EGFR, FGFR, HGF and PDGFR in a specific microdomain called glycosynapse in the cancer cell membranes, and in interaction with glycan recognition molecules involved in cell adhesion and immune regulation including selectins and siglecs. As the genes involved in the synthesis and degradation of tumor-associated gangliosides were identified, biological functions became clearer from the experimental results employing forced overexpression and/or knockdown/knockout of the genes. Studies on the regulatory mechanisms for their expression also achieved great advancements. Epigenetic silencing of glycan-related genes is a dominant mechanism in glycan alteration at early stages of carcinogenesis. Development of hypoxia resistance involving activation of a transcription factor HIF, and acquisition of cancer stem cell-like characteristics through epithelial-mesenchymal transition are important mechanisms for glycan modulations in the later stages of cancer progression. In the initial stages of studies, the gangliosides which specifically appear in cancers attracted attention under the name of tumor-associated gangliosides. However, it became apparent that not only the cancer-associated gangliosides but also the normal gangliosides present in nonmalignant cells and tissues perform important biological functions, and some of them tend to disappear in cancer cells resulting in the loss of the physiological functions, and this sometimes facilitates progression of cancers.
Collapse
|
17
|
Sterner E, Peach ML, Nicklaus MC, Gildersleeve JC. Therapeutic Antibodies to Ganglioside GD2 Evolved from Highly Selective Germline Antibodies. Cell Rep 2017; 20:1681-1691. [PMID: 28813678 PMCID: PMC5572838 DOI: 10.1016/j.celrep.2017.07.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/15/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
Antibodies play a crucial role in host defense and are indispensable research tools, diagnostics, and therapeutics. Antibody generation involves binding of genomically encoded germline antibodies followed by somatic hypermutation and in vivo selection to obtain antibodies with high affinity and selectivity. Understanding this process is critical for developing monoclonal antibodies, designing effective vaccines, and understanding autoantibody formation. Prior studies have found that antibodies to haptens, peptides, and proteins evolve from polyspecific germline antibodies. The immunological evolution of antibodies to mammalian glycans has not been studied. Using glycan microarrays, protein microarrays, cell binding studies, and molecular modeling, we demonstrate that therapeutic antibodies to the tumor-associated ganglioside GD2 evolved from highly specific germline precursors. The results have important implications for developing vaccines and monoclonal antibodies that target carbohydrate antigens. In addition, they demonstrate an alternative pathway for antibody evolution within the immune system that is distinct from the polyspecific germline pathway.
Collapse
Affiliation(s)
- Eric Sterner
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
18
|
Cytotoxic protein from the mushroom Coprinus comatus possesses a unique mode for glycan binding and specificity. Proc Natl Acad Sci U S A 2017; 114:8980-8985. [PMID: 28784797 DOI: 10.1073/pnas.1706894114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycans possess significant chemical diversity; glycan binding proteins (GBPs) recognize specific glycans to translate their structures to functions in various physiological and pathological processes. Therefore, the discovery and characterization of novel GBPs and characterization of glycan-GBP interactions are significant to provide potential targets for therapeutic intervention of many diseases. Here, we report the biochemical, functional, and structural characterization of a 130-amino-acid protein, Y3, from the mushroom Coprinus comatus Biochemical studies of recombinant Y3 from a yeast expression system demonstrated the protein is a unique GBP. Additionally, we show that Y3 exhibits selective and potent cytotoxicity toward human T-cell leukemia Jurkat cells compared with a panel of cancer cell lines via inducing caspase-dependent apoptosis. Screening of a glycan array demonstrated GalNAcβ1-4(Fucα1-3)GlcNAc (LDNF) as a specific Y3-binding ligand. To provide a structural basis for function, the crystal structure was solved to a resolution of 1.2 Å, revealing a single-domain αβα-sandwich motif. Two monomers were dimerized to form a large 10-stranded, antiparallel β-sheet flanked by α-helices on each side, representing a unique oligomerization mode among GBPs. A large glycan binding pocket extends into the dimeric interface, and docking of LDNF identified key residues for glycan interactions. Disruption of residues predicted to be involved in LDNF/Y3 interactions resulted in the significant loss of binding to Jurkat T-cells and severely impaired their cytotoxicity. Collectively, these results demonstrate Y3 to be a GBP with selective cytotoxicity toward human T-cell leukemia cells and indicate its potential use in cancer diagnosis and treatment.
Collapse
|
19
|
Viter R, Jekabsons K, Kalnina Z, Poletaev N, Hsu SH, Riekstina U. Bioanalytical system for detection of cancer cells with photoluminescent ZnO nanorods. NANOTECHNOLOGY 2016; 27:465101. [PMID: 27731308 DOI: 10.1088/0957-4484/27/46/465101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using photoluminescent ZnO nanorods and carbohydrate marker SSEA-4, a novel cancer cell recognition system was developed. Immobilization of SSEA-4 antibodies (αSSEA-4) on ZnO nanorods was performed in buffer solution (pH = 7.1) over 2 h. The cancer cell line probes were fixed on the glass slide. One hundred microliters of ZnO-αSSEA-4 conjugates were deposited on the cell probe and exposed for 30 min. After washing photoluminescence spectra were recorded. Based on the developed methodology, ZnO-αSSEA-4 probes were tested on patient-derived breast and colorectal carcinoma cells. Our data clearly show that the carbohydrate SSEA-4 molecule is expressed on cancer cell lines and patient-derived cancer cells. Moreover, SSEA-4 targeted ZnO nanorods bind to the patient-derived cancer cells with high selectivity and the photoluminescence signal increased tremendously compared to the signal from the control samples. Furthermore, the photoluminescence intensity increase correlated with the extent of malignancy in the target cell population. A novel portable bioanalytical system, based on optical ZnO nanorods and fiber optic detection system was developed. We propose that carbohydrate SSEA-4 specific ZnO nanorods could be used for the development of cancer diagnostic biosensors and for targeted therapy.
Collapse
Affiliation(s)
- R Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, Latvia
| | | | | | | | | | | |
Collapse
|
20
|
Krasnova L, Wong CH. Understanding the Chemistry and Biology of Glycosylation with Glycan Synthesis. Annu Rev Biochem 2016; 85:599-630. [DOI: 10.1146/annurev-biochem-060614-034420] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037;
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037;
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
21
|
Sivasubramaniyan K, Harichandan A, Schilbach K, Mack AF, Bedke J, Stenzl A, Kanz L, Niederfellner G, Bühring HJ. Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells. Glycobiology 2015; 25:902-17. [PMID: 25978997 DOI: 10.1093/glycob/cwv032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Abstract
Stage-specific embryonic antigen-4 (SSEA-4) is a glycosphingolipid, which is overexpressed in some cancers and has been linked to disease progression. However, little is known about the functions of SSEA-4 and the characteristics of SSEA-4 expressing tumor cells. Our studies identified SSEA-4 expression on a subpopulation of cells in many solid tumor cell lines but not in leukemic cell lines. Fluorescence-activated cell sorting-sorted SSEA-4(+) prostate cancer cells formed fibroblast-like colonies with limited cell-cell contacts, whereas SSEA-4(-) cells formed cobblestone-like epithelial colonies. Only colonies derived from SSEA-4(+) cells were enriched for pluripotent embryonic stem cell markers. Moreover, major epithelial cell-associated markers Claudin-7, E-cadherin, ESRP1 and GRHL2 were down-regulated in the SSEA-4(+) fraction of DU145 and HCT-116 cells. Similar to cell lines, SSEA-4(+) primary prostate tumor cells also showed down-regulation of epithelial cell-associated markers. In addition, they showed up-regulation of epithelial-to-mesenchymal transition as well as mesenchymal markers. Furthermore, SSEA-4(+) cells escape from adhesive colonies spontaneously and form invadopodia-like migratory structures, in which SSEA-4, cortactin as well as active pPI3K, pAkt and pSrc are enriched and colocalized. Finally, SSEA-4(+) cells displayed strong tumorigenic ability and stable knockdown of SSEA-4 synthesis resulted in decreased cellular adhesion to different extracellular matrices. In conclusion, we introduce SSEA-4 as a novel marker to identify heterogeneous, invasive subpopulations of tumor cells. Moreover, increased cell-surface SSEA-4 expression is associated with the loss of cell-cell interactions and the gain of a migratory phenotype, suggesting an important role of SSEA-4 in cancer invasion by influencing cellular adhesion to the extracellular matrix.
Collapse
Affiliation(s)
- Kavitha Sivasubramaniyan
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany
| | - Abhishek Harichandan
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany Department of Urology, University Clinic of Tübingen, Tübingen, Germany
| | - Karin Schilbach
- Department of Pediatric Stem Cell Transplantation, University Children's Hospital, Tübingen 72076, Germany
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jens Bedke
- Department of Urology, University Clinic of Tübingen, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Clinic of Tübingen, Tübingen, Germany
| | - Lothar Kanz
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany
| | - Gerhard Niederfellner
- Discovery Oncology, Pharma Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Hans-Jörg Bühring
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Danishefsky SJ, Shue YK, Chang MN, Wong CH. Development of Globo-H cancer vaccine. Acc Chem Res 2015; 48:643-52. [PMID: 25665650 DOI: 10.1021/ar5004187] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of anticancer vaccines requires the identification of unique epitope markers, preferably expressed exclusively on the surface of cancer cells. This Account describes the path of development of a carbohydrate-based vaccine for metastatic breast cancer, including the selection and synthesis of Globo-H as the target, the development of the vaccine conjugate and adjuvant design, the study of the immune response and consideration of class switch, and the analysis of Globo-H distribution on the surface of various cancer cells, cancer stem cells, and normal cells. The first synthesis of Globo-H was accomplished through the use of glycal chemistry; this approach delivered sufficient material for evaluation in phase I human trials. The development of a programmable one-pot synthesis method rendered the synthesis more practical and enabled the midstage proof-of-concept phase II trial and late-stage phase III trial. Finally, enzymatic synthesis of Globo-H coupled with cofactor regeneration was used for the late-stage multicenter trials and manufacture of the product. Along this path of development, it was discovered that the vaccine induced antibodies to target not only Globo-H, but also SSEA3 and SSEA4. Moreover, these three glycolipids were found to be uniquely expressed not only on the cell surface of breast cancer but on 15 additional cancer types, suggesting the broad application of this vaccine in cancer treatment and perhaps cancer prevention. In addition, a new glycolipid adjuvant was designed to target the CD1d receptor on dendritic cells and B cells for presentation to and activation of T cells to modulate the immune response and induce a class switch from IgM to IgG, thereby overcoming the common problem of carbohydrate-based vaccines that often induce mainly IgM antibodies. As demonstrated in this vaccine development, the chemical approach to the synthesis and conjugation of carbohydrate-based immunogens provides the flexibility for access to various structures and linkers to identify optimal compositions for development. The enzymatic method was then introduced to enable the practical synthesis of the vaccine candidate for clinical development and commercialization. Overall, this Account illustrates the path of development of a cancer vaccine, from selection of a unique glycan marker on breast cancer cells and the cancer stem cells as target to the use of chemistry in combination with immunology and cancer biology to enable the design and development of the Globo-H vaccine to target three specific glycan markers exclusively expressed on the cell surface of a number of different types of cancer.
Collapse
Affiliation(s)
- Samuel J. Danishefsky
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, United States
| | - Youe-Kong Shue
- OBI Pharma, Inc., 19th F, 3 Yuan Qu Street, Taipei 11503, Taiwan
| | - Michael N. Chang
- OBI Pharma, Inc., 19th F, 3 Yuan Qu Street, Taipei 11503, Taiwan
| | - Chi-Huey Wong
- The Genomics Research
Center, Academia Sinica, 128 Academia Road, Sec. 2, Taipei, Taiwan
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
23
|
Kavunja HW, Voss PG, Wang JL, Huang X. Identification of Lectins from Metastatic Cancer Cells through Magnetic Glyconanoparticles. Isr J Chem 2015; 55:423-436. [PMID: 27110035 PMCID: PMC4838199 DOI: 10.1002/ijch.201400156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer cells can have characteristic carbohydrate binding properties. Previously, it was shown that a highly metastatic melanoma cell line B16F10 bound to galacto-side-functionalized nanoparticles much stronger than the corresponding less metastatic B16F1 cells. To better understand the carbohydrate binding properties of cancer cells, herein, we report the isolation and characterization of endogenous galactose binding proteins from B16F10 cells using magnetic glyconanoparticles. The galactose-coated magnetic glyconanoparticles could bind with lectins present in the cells and be isolated through magnet-mediated separation. Through Western blot and mass spectrometry, the arginine/serine rich splicing factor Sfrs1 was identified as a galactose-selective endogenous lectin, overexpressed in B16F10 cells, compared with B16F1 cells. In addition, galactin-3 was found in higher amounts in B16F10 cells. Finally, the glyconanoparticles exhibited a superior efficiency in lectin isolation, from both protein mixtures and live cells, than the corresponding more traditional microparticles functionalized with carbohydrates. Thus, the magnetic glyconanoparticles present a useful tool for discovery of endogenous lectins, as well as binding partners of lectins, without prior knowledge of protein identities.
Collapse
Affiliation(s)
- Herbert W. Kavunja
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, MI 48824 (USA)
| | - Patricia G. Voss
- Department of Biochemistry and Molecular Biology, Biochemistry Building, Room 402, 603 Wilson Road, Michigan State University, East Lansing, MI 48824 (USA)
| | - John L. Wang
- Department of Biochemistry and Molecular Biology, Biochemistry Building, Room 402, 603 Wilson Road, Michigan State University, East Lansing, MI 48824 (USA)
| | - Xuefei Huang
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, MI 48824 (USA)
| |
Collapse
|
24
|
Bastos EP, Brentani H, Pasini FS, Silva ART, Torres CH, Puga RD, Olivieri EHR, Piovezani AR, Pereira CADB, Machado-Lima A, Carraro DM, Brentani MM. MicroRNAs discriminate familial from sporadic non-BRCA1/2 breast carcinoma arising in patients ≤35 years. PLoS One 2014; 9:e101656. [PMID: 25006670 PMCID: PMC4090167 DOI: 10.1371/journal.pone.0101656] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/10/2014] [Indexed: 12/16/2022] Open
Abstract
The influence of genetic factors may contribute to the poor prognosis of breast cancer (BC) at a very young age. However BRCA1/2 mutations could not explain the majority of cases arising in these patients. MicroRNAs (miRs) have been implicated in biological processes associated with BC. Therefore, we investigated differences in miRs expression between tumors from young patients (≤35 years) with sporadic or familial history and non-carriers of BRCA1/2 mutations. Thirty-six young Brazilian patients were divided into 2 groups: sporadic (NF-BC) or familial breast cancer (F-BC). Most of the samples were classified as luminal A and B and the frequency of subtypes did not differ between familial or sporadic cases. Using real time qPCR and discriminant function analysis, we identified 9 miRs whose expression levels rather than miR identity can discriminate between both patient groups. Candidate predicted targets were determined by combining results from miRWalk algorithms with mRNA expression profiles (n = 91 differently expressed genes). MiR/mRNA integrated analysis identified 91 candidate genes showing positive or negative correlation to at least 1 of the 9 miRs. Co-expression analysis of these genes with 9 miRs indicated that 49 differentially co-expressed miR-gene interactions changes in F-BC tumors as compared to those of NF-BC tumors. Out of 49, 17 (34.6%) of predicted miR-gene interactions showed an inverse correlation suggesting that miRs act as post-transcriptional regulators, whereas 14 (28.6%) miR-gene pairs tended to be co-expressed in the same direction indicating that the effects exerted by these miRs pointed to a complex level of target regulation. The remaining 18 pairs were not predicted by our criteria suggesting involvement of other regulators. MiR-mRNA co-expression analysis allowed us to identify changes in the miR-mRNA regulation that were able to distinguish tumors from familial and sporadic young BC patients non-carriers of BRCA mutations.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnosis
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Female
- Genes, BRCA1
- Genes, BRCA2
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Transcriptome
- Young Adult
Collapse
Affiliation(s)
- Elen Pereira Bastos
- Oncology and Radiology Department, Laboratory of Medical Investigation 24 (LIM 24), University of São Paulo, Medical School, São Paulo, Brazil
| | - Helena Brentani
- Laboratory of Clinical Pathology – Laboratory of Medical Investigation 23 (LIM 23), Institute and Department of Psychiatry, University of São Paulo, Medical School, São Paulo, Brazil
| | - Fatima Solange Pasini
- Oncology and Radiology Department, Laboratory of Medical Investigation 24 (LIM 24), University of São Paulo, Medical School, São Paulo, Brazil
| | - Aderbal Ruy T. Silva
- Laboratory of Clinical Pathology – Laboratory of Medical Investigation 23 (LIM 23), Institute and Department of Psychiatry, University of São Paulo, Medical School, São Paulo, Brazil
| | - Cesar Henrique Torres
- Laboratory of Clinical Pathology – Laboratory of Medical Investigation 23 (LIM 23), Institute and Department of Psychiatry, University of São Paulo, Medical School, São Paulo, Brazil
| | - Renato David Puga
- Clinical Research Center - Hospital Israelita Albert Einstein- HIAE, São Paulo, Brazil.
| | | | | | | | - Ariane Machado-Lima
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- Laboratory of Genomics and Molecular Biology, Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Maria Mitzi Brentani
- Oncology and Radiology Department, Laboratory of Medical Investigation 24 (LIM 24), University of São Paulo, Medical School, São Paulo, Brazil
| |
Collapse
|
25
|
Hsieh HW, Davis RA, Hoch JA, Gervay-Hague J. Two-step functionalization of oligosaccharides using glycosyl iodide and trimethylene oxide and its applications to multivalent glycoconjugates. Chemistry 2014; 20:6444-54. [PMID: 24715520 PMCID: PMC4497529 DOI: 10.1002/chem.201400024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Indexed: 11/05/2022]
Abstract
Oligosaccharide conjugates, such as glycoproteins and glycolipids, are potential chemotherapeutics and also serve as useful tools for understanding the biological roles of carbohydrates. With many modern isolation and synthetic technologies providing access to a wide variety of free sugars, there is increasing need for general methodologies for carbohydrate functionalization. Herein, we report a two-step methodology for the conjugation of per-O-acetylated oligosaccharides to functionalized linkers that can be used for various displays. Oligosaccharides obtained from both synthetic and commercial sources were converted to glycosyl iodides and activated with I2 to form reactive donors that were subsequently trapped with trimethylene oxide to form iodopropyl conjugates in a single step. The terminal iodide served as a chemical handle for further modification. Conversion into the corresponding azide followed by copper-catalyzed azide-alkyne cycloaddition afforded multivalent glycoconjugates of Gb3 for further investigation as anti-cancer therapeutics.
Collapse
Affiliation(s)
- Hsiao-Wu Hsieh
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA 95616 (USA), Fax: (+ 1)530-754-6915
| | - Ryan A. Davis
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA 95616 (USA), Fax: (+ 1)530-754-6915
| | - Jessica A. Hoch
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA 95616 (USA), Fax: (+ 1)530-754-6915
| | - Jacquelyn Gervay-Hague
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA 95616 (USA), Fax: (+ 1)530-754-6915
| |
Collapse
|
26
|
Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proc Natl Acad Sci U S A 2014; 111:2482-7. [PMID: 24550271 DOI: 10.1073/pnas.1400283111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM), the grade IV astrocytoma, is the most common and aggressive brain tumor in adults. Despite advances in medical management, the survival rate of GBM patients remains poor, suggesting that identification of GBM-specific targets for therapeutic development is urgently needed. Analysis of several glycan antigens on GBM cell lines revealed that eight of 11 GBM cell lines are positive for stage-specific embryonic antigen-4 (SSEA-4), and immunohistochemical staining confirmed that 38/55 (69%) of human GBM specimens, but not normal brain tissue, were SSEA-4(+) and correlated with high-grade astrocytoma. In addition, an SSEA-4-specific mAb was found to induce complement-dependent cytotoxicity against SSEA-4(hi) GBM cell lines in vitro and suppressed GBM tumor growth in mice. Because SSEA-4 is expressed on GBM and many other types of cancers, but not on normal cells, it could be a target for development of therapeutic antibodies and vaccines.
Collapse
|