1
|
Yapa PN, Munaweera I, Weerasekera MM, Weerasinghe L. Nanoarchitectonics for synergistic activity of multimetallic nanohybrids as a possible approach for antimicrobial resistance (AMR). J Biol Inorg Chem 2024; 29:477-498. [PMID: 38995397 DOI: 10.1007/s00775-024-02066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
The global threat posed by antimicrobial resistance (AMR) to public health is an immensurable problem. The effectiveness of treating infections would be more at risk in the absence of effective antimicrobials. Researchers have shown an amplified interest in alternatives, such as developing advanced metallic nanohybrids as new therapeutic candidates for antibiotics due to their promising effectiveness against resistant microorganisms. In recent decades, the antimicrobial activity of monometallic nanoparticles has received extensive study and solid proof, providing new opportunities for developing multimetallic nanohybrid antimicrobials. Advanced metallic nanohybrids are an emerging remedy for a number of issues that develop in the field of medicine. Advanced metallic nanohybrids have shown a promising ability to combat resistant microorganisms due to their overall synergistic activity. Formulating advanced multimetallic nanohybrids falling under the umbrella of the growing field of nanoarchitectonics, which extends beyond nanotechnology. The underlying theory of nanoarchitectonics involves utilizing nanoscale units that follow the concepts of nanotechnology to architect nanomaterials. This review focuses on a comprehensive description of antimicrobial mechanisms of metallic nanohybrids and their enabling future insights on the research directions of developing the nanoarchitectonics of advanced multimetallic nanohybrids as novel antibiotics through their synergistic activity.
Collapse
Affiliation(s)
- Piumika N Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka.
| | - Manjula M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| |
Collapse
|
2
|
Zhang L, Wang H, Qu X. Biosystem-Inspired Engineering of Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211147. [PMID: 36622946 DOI: 10.1002/adma.202211147] [Citation(s) in RCA: 92] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Nanozymes with intrinsic enzyme-mimicking activities have shown great potential to become surrogates of natural enzymes in many fields by virtue of their advantages of high catalytic stability, ease of functionalization, and low cost. However, due to the lack of predictable descriptors, most of the nanozymes reported in the past have been obtained mainly through trial-and-error strategies, and the catalytic efficacy, substrate specificity, as well as practical application effect under physiological conditions, are far inferior to that of natural enzymes. To optimize the catalytic efficacies and functions of nanozymes in biomedical settings, recent studies have introduced biosystem-inspired strategies into nanozyme design. In this review, recent advances in the engineering of biosystem-inspired nanozymes by leveraging the refined catalytic structure of natural enzymes, simulating the behavior changes of natural enzymes in the catalytic process, and mimicking the specific biological processes or living organisms, are introduced. Furthermore, the currently involved biomedical applications of biosystem-inspired nanozymes are summarized. More importantly, the current opportunities and challenges of the design and application of biosystem-inspired nanozymes are discussed. It is hoped that the studies of nanozymes based on bioinspired strategies will be beneficial for constructing the new generation of nanozymes and broadening their biomedical applications.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
3
|
Sahoo J, Sahoo S, Subramaniam Y, Bhatt P, Rana S, De M. Photo-Controlled Gating of Selective Bacterial Membrane Interaction and Enhanced Antibacterial Activity for Wound Healing. Angew Chem Int Ed Engl 2024; 63:e202314804. [PMID: 37955346 DOI: 10.1002/anie.202314804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Reversible biointerfaces are essential for on-demand molecular recognition to regulate stimuli-responsive bioactivity such as specific interactions with cell membranes. The reversibility on a single platform allows the smart material to kill pathogens or attach/detach cells. Herein, we introduce a 2D-MoS2 functionalized with cationic azobenzene that interacts selectively with either Gram-positive or Gram-negative bacteria in a light-gated fashion. The trans conformation (trans-Azo-MoS2 ) selectively kills Gram-negative bacteria, whereas the cis form (cis-Azo-MoS2 ), under UV light, exhibits antibacterial activity against Gram-positive strains. The mechanistic investigation indicates that the cis-Azo-MoS2 exhibits higher affinity towards the membrane of Gram-positive bacteria compared to trans-Azo-MoS2 . In case of Gram-negative bacteria, trans-Azo-MoS2 internalizes more efficiently than cis-Azo-MoS2 and generates intracellular ROS to kill the bacteria. While the trans-Azo-MoS2 exhibits strong electrostatic interactions and internalizes faster into Gram-negative bacterial cells, cis-Azo-MoS2 primarily interacts with Gram-positive bacteria through hydrophobic and H-bonding interactions. The difference in molecular mechanism leads to photo-controlled Gram-selectivity and enhanced antibacterial activity. We found strain-specific and high bactericidal activity (minimal bactericidal concentration, 0.65 μg/ml) with low cytotoxicity, which we extended to wound healing applications. This methodology provides a single platform for efficiently switching between conformers to reversibly control the strain-selective bactericidal activity regulated by light.
Collapse
Affiliation(s)
- Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Soumyashree Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| | | | - Preeti Bhatt
- Materials Research Centre, Indian Institute of Science, Bengaluru, 560012, India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science, Bengaluru, 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
4
|
Ouyang B, Wei D, Wu B, Yan L, Gang H, Cao Y, Chen P, Zhang T, Wang H. In the View of Electrons Transfer and Energy Conversion: The Antimicrobial Activity and Cytotoxicity of Metal-Based Nanomaterials and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303153. [PMID: 37721195 DOI: 10.1002/smll.202303153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Indexed: 09/19/2023]
Abstract
The global pandemic and excessive use of antibiotics have raised concerns about environmental health, and efforts are being made to develop alternative bactericidal agents for disinfection. Metal-based nanomaterials and their derivatives have emerged as promising candidates for antibacterial agents due to their broad-spectrum antibacterial activity, environmental friendliness, and excellent biocompatibility. However, the reported antibacterial mechanisms of these materials are complex and lack a comprehensive understanding from a coherent perspective. To address this issue, a new perspective is proposed in this review to demonstrate the toxic mechanisms and antibacterial activities of metal-based nanomaterials in terms of energy conversion and electron transfer. First, the antimicrobial mechanisms of different metal-based nanomaterials are discussed, and advanced research progresses are summarized. Then, the biological intelligence applications of these materials, such as biomedical implants, stimuli-responsive electronic devices, and biological monitoring, are concluded based on trappable electrical signals from electron transfer. Finally, current improvement strategies, future challenges, and possible resolutions are outlined to provide new insights into understanding the antimicrobial behaviors of metal-based materials and offer valuable inspiration and instructional suggestions for building future intelligent environmental health.
Collapse
Affiliation(s)
- Baixue Ouyang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Peng Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Tingzheng Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
- School of Metallurgy and Environment and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South, University, Changsha, 410083, China
| |
Collapse
|
5
|
Huang X, Li L, Chen Z, Yu H, You X, Kong N, Tao W, Zhou X, Huang J. Nanomedicine for the Detection and Treatment of Ocular Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302431. [PMID: 37231939 DOI: 10.1002/adma.202302431] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Ocular bacterial infection is a prevalent cause of blindness worldwide, with substantial consequences for normal human life. Traditional treatments for ocular bacterial infections areless effective, necessitating the development of novel techniques to enable accurate diagnosis, precise drug delivery, and effective treatment alternatives. With the rapid advancement of nanoscience and biomedicine, increasing emphasis has been placed on multifunctional nanosystems to overcome the challenges posed by ocular bacterial infections. Given the advantages of nanotechnology in the biomedical industry, it can be utilized to diagnose ocular bacterial infections, administer medications, and treat them. In this review, the recent advancements in nanosystems for the detection and treatment of ocular bacterial infections are discussed; this includes the latest application scenarios of nanomaterials for ocular bacterial infections, in addition to the impact of their essential characteristics on bioavailability, tissue permeability, and inflammatory microenvironment. Through an in-depth investigation into the effect of sophisticated ocular barriers, antibacterial drug formulations, and ocular metabolism on drug delivery systems, this review highlights the challenges faced by ophthalmic medicine and encourages basic research and future clinical transformation based on ophthalmic antibacterial nanomedicine.
Collapse
Affiliation(s)
- Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Luoyuan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Haoyu Yu
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Xinru You
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| |
Collapse
|
6
|
Zelikovich D, Dery L, Sagi-Cohen H, Mandler D. Imprinting of nanoparticles in thin films: Quo Vadis? Chem Sci 2023; 14:9630-9650. [PMID: 37736620 PMCID: PMC10510851 DOI: 10.1039/d3sc02178e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
Nanomaterials, and especially nanoparticles, have been introduced to almost any aspect of our lives. This has caused increasing concern as to their toxicity and adverse effects on the environment and human health. The activity of nanoparticles, including their nanotoxicity, is not only a function of the material they are made of but also their size, shape, and surface properties. It is evident that there is an unmet need for simple approaches to the speciation of nanoparticles, namely to monitor and detect them based on their properties. An appealing method for such speciation involves the imprinting of nanoparticles in soft matrices. The principles of imprinting nanoparticles originate from the molecularly imprinted polymer (MIP) approach. This review summarizes the current status of this emerging field, which bridges between the traditional MIP approach and the imprinting of larger entities such as viruses and bacteria. The concepts of nanoparticle imprinting and the requirement of both physical and chemical matching between the nanoparticles and the matrix are discussed and demonstrated.
Collapse
Affiliation(s)
- Din Zelikovich
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Linoy Dery
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Hila Sagi-Cohen
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Daniel Mandler
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
7
|
Ren S, Xu F, Wang H, Zhang Z. Colloidal antibiotic mimics: selective capture and killing of microorganisms by shape-anisotropic colloids. SOFT MATTER 2023; 19:3253-3256. [PMID: 37128986 DOI: 10.1039/d3sm00336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The development of targeted and efficient antimicrobials for the selective killing of pathogenic bacteria is of great importance, yet remains challenging. Here, we propose a targeted approach to selectively capture and kill microorganisms with colloidal antibiotic mimics that are readily prepared by common chemical syntheses. The mimics are shape-anisotropic colloids, which can selectively capture shape-matching microorganisms due to lock-key depletion attractions. Furthermore, after being modified with gold nanoparticles (AuNPs) and irradiated with near-infrared light, the colloidal mimics can kill the selectively captured microorganisms due to the localized photothermal effect of the AuNPs. The work demonstrates the important ability of anisotropic colloids to selectively capture and precisely kill microorganisms, which holds considerable promise for safe and adaptive antibacterial therapies without the risk of antibiotic resistance.
Collapse
Affiliation(s)
- Sihua Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Fei Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, and Institute for Advanced Study, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Guo Q, Luo Y, Guo H, Lan T, Wang S, Geng K, Lu X, Tao L, Shen X. A photo-thermal nanocomposite capable of relieving inflammatory response to compete multidrug-resistant pseudomonas aeruginosa infection. CHEMICAL ENGINEERING JOURNAL 2022; 446:137173. [DOI: 10.1016/j.cej.2022.137173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
|
9
|
Ali SR, De M. Superparamagnetic Nickel Nanocluster-Embedded MoS 2 Nanosheets for Gram-Selective Bacterial Adhesion and Antibacterial Activity. ACS Biomater Sci Eng 2022; 8:2932-2942. [PMID: 35666676 DOI: 10.1021/acsbiomaterials.2c00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ever increasing infectious diseases caused by pathogenic bacteria are creating one of the greatest health problems. The extensive use of numerous antibiotics and antimicrobial agents has prompted the growth of multidrug-resistant bacterial strains. The ancient biomedical application of metals and the recent advancement in the field of nanotechnology have encouraged us to explore the antimicrobial activity of nanomaterials. Herein, we have synthesized a magnetically separable superparamagnetic nickel nanocluster-loaded two-dimensional molybdenum disulfide nanocomposite (Ni@2D-MoS2). It can selectively bind with Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis over Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa. After the functionalization of Ni@2D-MoS2 with a positively charged ligand, it showed an excellent Gram-selective antibacterial activity toward MRSA and E. faecalis. Furthermore, the superparamagnetic property of the synthesized material can be used for the simultaneous removal and killing of the microbes and recycled for further use. This study demonstrates strategies to develop hybrid antimicrobial nanomaterial systems for selective antibacterial activity with recyclability.
Collapse
Affiliation(s)
- Sk Rajab Ali
- Department of Organic Chemistry, Indian Institute of Science, CV Raman Road, Bangalore 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, CV Raman Road, Bangalore 560012, India
| |
Collapse
|
10
|
Liu Y, Xie H, Li X, Sun Y, Zhu Z, Zhao M. On-line monitoring of the dopamine-based molecular imprinting processes for protein templates with the assistance of a fluorescent indicator. Mikrochim Acta 2022; 189:138. [PMID: 35262833 DOI: 10.1007/s00604-022-05221-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/06/2022] [Indexed: 11/28/2022]
Abstract
On-line monitoring of the dopamine (DA)-based molecular imprinting processes over Fe3O4@SiO2-NH2 nanoparticles (SiMNPs) is reported by using a real-time quantitative PCR machine. Taking advantages of the efficient fluorescence quenching capability of polydopamine (PDA) and its high binding affinity to rhodamine B (RhB), we performed molecular imprinting against different proteins with free dopamine as the functional monomer and RhB as a fluorescent indicator. Along with the template molecules, the fluorescent indicators were continuously encapsulated into the PDA layer formed on the surface of the SiMNPs, resulting in immediate quenching of the fluorescence, which can be conveniently monitored in real time. As proteins showed sequence-dependent influences on the oxidation of dopamine and subsequent self-assembly on the surface of the SiMNPs, the observed fluorescence signals clearly indicated the polymerization progress in the presence of the template proteins, allowing precise control of the reaction time for different templates at a given initial concentration. The optimum end point of the reaction was found to be when 90 ± 3% of the templates had been encapsulated into the polymer, which offered the highest imprinting factor and selectivity. We applied the approach to prepare a primary PDA-based surface imprinted polymer for a multifunctional protein apurinic/apyrimidinic endonuclease/redox effector factor 1 (APE1). After further introduction of 3-hydroxyphenylboronic acid to the interfaces between APE1 and PDA, the resultant molecularly imprinted polymers (MIP-II) enabled quantitative isolation APE1 from cell lysate samples. The developed approach will be useful for the quantitative preparation of PDA-based MIPs for precious template proteins with limited input quantity. It is also applicable for further study on the effects of different proteins or peptides on the PDA formation reactions.
Collapse
Affiliation(s)
- Yibin Liu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huaisyuan Xie
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinyi Li
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Sahoo J, De M. Gram-Selective Antibacterial Activity of Mixed-Charge 2D-MoS2. J Mater Chem B 2022; 10:4588-4594. [DOI: 10.1039/d2tb00361a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of nanomaterial-based antibiotics can be the most potent alternative due to the increasing resistance against conventional antibiotics. But one of the important parameters in development of antibacterial agent is...
Collapse
|
12
|
Wang L, Lin X, Liu T, Zhang Z, Kong J, Yu H, Yan J, Luan D, Zhao Y, Bian X. Reusable and universal impedimetric sensing platform for the rapid and sensitive detection of pathogenic bacteria based on bacteria-imprinted polythiophene film. Analyst 2022; 147:4433-4441. [DOI: 10.1039/d2an01122k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bacteria-imprinted polythiophene film (BIF)-based impedimetric sensor was proposed for the rapid and sensitive detection of S. aureus. A significant improvement is the reduced time for both BIF fabrication (15 min) and bacterial capturing (10 min).
Collapse
Affiliation(s)
- Lingling Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Kong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hai Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Juan Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Donglei Luan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
13
|
Wu L, Gao Y, Zhao C, Huang D, Chen W, Lin X, Liu A, Lin L. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112608. [DOI: 10.1016/j.msec.2021.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
|
14
|
Wang Z, Liu X, Duan Y, Huang Y. Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials 2021; 280:121249. [PMID: 34801252 DOI: 10.1016/j.biomaterials.2021.121249] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The emergence and spread of antibiotic resistance is one of the biggest challenges in public health. There is an urgent need to discover novel agents against the occurrence of multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. The drug-resistant pathogens are able to grow and persist in infected sites, including biofilms, phagosomes, or phagolysosomes, which are more difficult to eradicate than planktonic ones and also foster the development of drug resistance. For years, various nano-antibacterial agents have been developed in the forms of antibiotic nanocarriers. Inorganic nanoparticles with intrinsic antibacterial activity and inert nanoparticles assisted by external stimuli, including heat, photon, magnetism, or sound, have also been discovered. Many of these strategies are designed to target the unique microenvironment of bacterial infections, which have shown potent antibacterial effects in vitro and in vivo. This review summarizes ongoing efforts on antibacterial nanotherapeutic strategies related to bacterial infection microenvironments, including targeted antibacterial therapy and responsive antibiotic delivery systems. Several grand challenges and future directions for the development and translation of effective nano-antibacterial agents are also discussed. The development of innovative nano-antibacterial agents could provide powerful weapons against drug-resistant bacteria in systemic or local bacterial infections in the foreseeable future.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Xingyun Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan, 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| |
Collapse
|
15
|
Ladaycia A, Passirani C, Lepeltier E. Microbiota and nanoparticles: Description and interactions. Eur J Pharm Biopharm 2021; 169:220-240. [PMID: 34736984 DOI: 10.1016/j.ejpb.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
The healthy human body is inhabited with a large number of bacteria, forming natural flora. It is even estimated that for a human body, its amount of DNA is less important that its bacterial genetic material. This flora plays major roles in the sickness and health of the human body and any change in its composition may lead to different diseases. Nanoparticles are widely used in numerous fields: cosmetics, food, industry, and as drug delivery carrier in the medical field. Being included in these various applications, nanoparticles may interact with the human body at various levels and with different mechanisms. These interactions differ depending on the nanoparticle nature, its structure, its concentration and manifest in different ways on the microbiota, leading to its destabilization, its restoring or showing no toxic effect. Nanoparticles may also be used as a vehicle to regulate the microbiota or to treat some of its diseases.
Collapse
Affiliation(s)
- Abdallah Ladaycia
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France.
| |
Collapse
|
16
|
Niu J, Wang L, Cui T, Wang Z, Zhao C, Ren J, Qu X. Antibody Mimics as Bio-orthogonal Catalysts for Highly Selective Bacterial Recognition and Antimicrobial Therapy. ACS NANO 2021; 15:15841-15849. [PMID: 34596391 DOI: 10.1021/acsnano.1c03387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial infectious diseases seriously threaten public health and life. The specific interaction between an antibody and its multivalent antigen is an attractive way to defeat infectious disease. However, due to the high expense and strict storage and applied conditions for antibodies, it is highly desirable but remains an urgent challenge for disease diagnosis and treatment to construct artificial antibodies with strong stability and binding ability and excellent selectivity. Herein, we designed and synthesized antibody-like bio-orthogonal catalysts with the ability to recognize specific bacteria and accomplish in situ drug synthesis in captured bacteria by using improved bacterial imprinting technology. On one hand, the artificial antibody possesses a matching morphology for binding pathogens, and on the other hand, it acts as a bio-orthogonal catalyst for in situ synthesis of antibacterial drugs in live bacteria. Both in vitro and in vivo experiments have demonstrated that our designed antibody can distinguish and selectively bind to specific pathogens and eliminate them on site with the activated drugs. Therefore, our work provides a strategy for designing artificial antibodies with bio-orthogonal catalytic activity and may broaden the application of bio-orthogonal chemistry.
Collapse
Affiliation(s)
- Jingsheng Niu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liangpeng Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
17
|
|
18
|
Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Citation(s) in RCA: 338] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Advances in revolutionary technologies pose new challenges for human life; in response to them, global responsibility is pushing modern technologies toward greener pathways. Molecular imprinting technology (MIT) is a multidisciplinary mimic technology simulating the specific binding principle of enzymes to substrates or antigens to antibodies; along with its rapid progress and wide applications, MIT faces the challenge of complying with green sustainable development requirements. With the identification of environmental risks associated with unsustainable MIT, a new aspect of MIT, termed green MIT, has emerged and developed. However, so far, no clear definition has been provided to appraise green MIT. Herein, the implementation process of green chemistry in MIT is demonstrated and a mnemonic device in the form of an acronym, GREENIFICATION, is proposed to present the green MIT principles. The entire greenificated imprinting process is surveyed, including element choice, polymerization implementation, energy input, imprinting strategies, waste treatment, and recovery, as well as the impacts of these processes on operator health and the environment. Moreover, assistance of upgraded instrumentation in deploying greener goals is considered. Finally, future perspectives are presented to provide a more complete picture of the greenificated MIT road map and to pave the way for further development.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
19
|
Bimová P, Barbieriková Z, Grenčíková A, Šípoš R, Škulcová AB, Krivjanská A, Mackuľak T. Environmental risk of nanomaterials and nanoparticles and EPR technique as an effective tool to study them-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22203-22220. [PMID: 33733403 DOI: 10.1007/s11356-021-13270-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnologies and different types of nanomaterials belong in present day to intensively studied materials due to their unique properties and diverse potential applications in, e.g., electronics, medicine, or display technologies. Together with the investigation of their desired beneficial properties, a need to investigate and evaluate their influence on the environment and possible harmful effects towards living organisms is growing. This review summarizes possible toxic effects of nanomaterials on environment and living organisms, focusing on the possible bioaccumulation in organisms, toxicity, and its mechanisms. The main goal of this review is to refer to potential environmental risks rising from the use of nanomaterials and the necessity to deal with the possible toxic effects considering the growing interest in the wide-scale utilization of these materials. Electron paramagnetic resonance spectroscopy as the only analytical technique capable of detecting radical species enables detection, quantification, and monitoring of the generation of short-lived radicals often coupled with toxic effects of nanomaterials, which makes it an important method in the process of nanotoxicity mechanism determination.
Collapse
Affiliation(s)
- Paula Bimová
- Department of Inorganic Technology, Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| | - Zuzana Barbieriková
- Department of Physical Chemistry, Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Anna Grenčíková
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Rastislav Šípoš
- Department of Inorganic Chemistry, Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Andrea Butor Škulcová
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Anna Krivjanská
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Tomáš Mackuľak
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| |
Collapse
|
20
|
Ye X, Feng T, Li L, Wang T, Li P, Huang W. Theranostic platforms for specific discrimination and selective killing of bacteria. Acta Biomater 2021; 125:29-40. [PMID: 33582362 DOI: 10.1016/j.actbio.2021.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Bacterial infections are serious threats to public health due to lack of advanced techniques to rapidly and accurately diagnose these infections in clinics. Although bacterial infections can be treated with broad-spectrum antibiotics based on empirical judgment, the emergence of antimicrobial resistance has attracted global attention due to long-term misuse and abuse of antibiotics by humans in recent decades. Therefore, it is imperative to selectively discriminate and precisely eliminate pathogenic bacteria. Herein, in addition to the conventional methods for bacterial identification, we comprehensively reviewed the recently developed theranostic platforms for specific discrimination and selective killing of bacteria according to their different interactions with the target bacteria, such as electrostatic and hydrophobic interactions, molecular recognition, microenvironment response, metabolic labeling, bacteriophage targeting, and others. These theranostic agents not only benefit from improved therapeutic efficiency but also present limited susceptibility to induce bacterial resistance. The strategies summarized in this review will open up new avenues in developing effective antimicrobial materials to accurately diagnose and treat bacterial infections in the post-antibiotic era. STATEMENT OF SIGNIFICANCE: Bacterial infections are difficult to be rapidly and accurately diagnosed, and are generally treated with broad-spectrum antibiotics, which leads to the development of drug resistance. By integrating imaging modalities and therapeutic methods in a single treatment, various theranostic agents have been developed to address the abovementioned issues. Therefore, the emerging theranostic platforms for selective identification and elimination of bacteria based on the distinct interactions of the theranostic agents with the target bacteria are summarized in this review. We believe that the information provided in this review will guide researchers in designing advanced antibacterial theranostics for practical applications in the post-antibiotic era.
Collapse
Affiliation(s)
- Xiaoting Ye
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Tao Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Chongqing 401120, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China; Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
21
|
Yang J, Pan B, Zeng F, He B, Gao Y, Liu X, Song Y. Magnetic Colloid Antibodies Accelerate Small Extracellular Vesicles Isolation for Point-of-Care Diagnostics. NANO LETTERS 2021; 21:2001-2009. [PMID: 33591201 DOI: 10.1021/acs.nanolett.0c04476] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Small extracellular vesicles (sEVs) are increasingly recognized as noninvasive diagnostic markers for many diseases. Hence, it is highly desirable to isolate sEVs rapidly for downstream molecular analyses. However, conventional methods for sEV isolation (such as ultracentrifugation and immune-based isolation) are time-consuming and expensive and require large sample volumes. Herein, we developed artificial magnetic colloid antibodies (MCAs) via surface imprinting technology for rapid isolation and analysis of sEVs. This approach enabled the rapid, purification-free, and low-cost isolation of sEVs based on size and shape recognition. The MCAs presented a higher capture yield in 20 min with more than 3-fold enrichment of sEVs compared with the ultracentrifugation method in 4 h. Moreover, the MCAs also proposed a reusability benefiting from the high stability of the organosilica recognition layer. By combining with volumetric bar-chart chip technology, this work provides a sensitive, rapid, and easy-to-use sEV detection platform for point-of-care (POC) diagnostics.
Collapse
Affiliation(s)
- Jingjing Yang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, China
| | - Xinli Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Zhang J, Wang Y, Lu X. Molecular imprinting technology for sensing foodborne pathogenic bacteria. Anal Bioanal Chem 2021; 413:4581-4598. [PMID: 33564924 DOI: 10.1007/s00216-020-03138-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 01/09/2023]
Abstract
Foodborne diseases caused by bacterial pathogens pose a widespread and growing threat to public health in the world. Rapid detection of pathogenic bacteria is of great importance to prevent foodborne diseases and ensure food safety. However, traditional detection methods are time-consuming, labour intensive and expensive. In recent years, many attempts have been made to develop alternative methods for bacterial detection. Biosensors integrated with molecular imprinted polymers (MIPs) and various transducer platforms are among the most promising candidates for the detection of pathogenic bacteria in a highly sensitive, selective and ultra-rapid manner. In this review, we summarize the most recent advances in molecular imprinting for bacterial detection, introduce the underlying recognition mechanisms and highlight the applications of MIP-based biosensors. In addition, the challenges and future perspectives are discussed with the aim of accelerating the development of MIP-based biosensors and extending their applications.
Collapse
Affiliation(s)
- Jingbin Zhang
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
23
|
Wang R, Wang L, Yan J, Luan D, Wu J, Bian X. Rapid, sensitive and label-free detection of pathogenic bacteria using a bacteria-imprinted conducting polymer film-based electrochemical sensor. Talanta 2021; 226:122135. [PMID: 33676689 DOI: 10.1016/j.talanta.2021.122135] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 02/05/2023]
Abstract
The rapid and sensitive detection of pathogenic bacteria is very important for timely prevention and treatment of foodborne disease. Here, a bacteria-imprinted conductive poly(3-thiopheneacetic acid) (BICP) film-based impedimetric sensor was developed for the rapid, sensitive and label-free detection of staphylococcus aureus (S. aureus). The BICP film preparation was very convenient and eco-friendly, which was in situ deposited on gold electrode surface without the use of toxic organic solvents and cross-linkers. The process of imprinting and recognition were characterized by electrochemical technique and scanning electron microscope. The BICP had a novel structure without cocci-shaped cavities formed in the poly(3-thiopheneacetic acid) (PTAA) matrices. To obtain the optimal sensing performance, a set of factors affecting the imprinting and recognition were investigated. Under the optimized conditions, an extremely rapid recognition within 10 min, a very low limit of detection (LOD) of 2 CFU/mL, and wide linear range from 10 to 108 CFU/mL were achieved by the BICP film-based impedimetric sensor. The sensor also demonstrated high selectivity, and good universality and repeatability. Furthermore, the feasibility of its application has also been demonstrated in the analysis of real milk samples. This sensor offered a simple and universal method for rapid, sensitive, and selective detection of pathogenic bacteria, which could hold great potentials in fields like food safety.
Collapse
Affiliation(s)
- Ruinan Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lingling Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Juan Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Donglei Luan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jikui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xiaojun Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China.
| |
Collapse
|
24
|
Filby BW, Hardman MJ, Paunov VN. Antibody‐free bioimprint aided sandwich ELISA technique for cell recognition and rapid screening for bacteria. NANO SELECT 2020. [DOI: 10.1002/nano.202000113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Benjamin W. Filby
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| | - Matthew J. Hardman
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| | - Vesselin N. Paunov
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| |
Collapse
|
25
|
Dar KK, Shao S, Tan T, Lv Y. Molecularly imprinted polymers for the selective recognition of microorganisms. Biotechnol Adv 2020; 45:107640. [DOI: 10.1016/j.biotechadv.2020.107640] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
|
26
|
Pelle M, Das AAK, Madden LA, Paunov VN. Bioimprint Mediated Label-Free Isolation of Pancreatic Tumor Cells from a Healthy Peripheral Blood Cell Population. ADVANCED BIOSYSTEMS 2020; 4:e2000054. [PMID: 33016004 DOI: 10.1002/adbi.202000054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/22/2020] [Indexed: 11/11/2022]
Abstract
New techniques are required for earlier diagnosis and response to treatment of pancreatic cancer. Here, a label-free approach is reported in which circulating pancreatic tumor cells are isolated from healthy peripheral blood cells via cell bioimprinting technology. The method involves pre-fabrication of pancreatic cell layers and sequential casting of cell surfaces with a series of custom-made resins to produce negative cell imprints. The imprint is functionalized with a combination of polymers to engineer weak attraction to the cells which is further amplified by the increased area of contact with the matching cells. A flow-through bioimprint chip is designed and tested for selectivity toward two pancreatic tumor cell lines, ASPC-1 and Mia-PaCa-2. Healthy human peripheral blood mononuclear cells (PBMCs) are spiked with pancreatic tumor cells at various concentrations. Bioimprints are designed for preferential retention of the matching pancreatic tumor cells and with respect to PBMCs. Tumor bioimprints are capable of capturing and concentrating pancreatic tumor cells from a mixed cell population with increased retention observed with the number of seedings. ASPC-1 bioimprints preferentially retain both types of pancreatic tumor cells. This technology could be relevant for the collection and interrogation of liquid biopsies, early detection, and relapse monitoring of pancreatic cancer patients.
Collapse
Affiliation(s)
- Marie Pelle
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Anupam A K Das
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Leigh A Madden
- Department of Biomedical Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Vesselin N Paunov
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
27
|
Cui T, Wu S, Sun Y, Ren J, Qu X. Self-Propelled Active Photothermal Nanoswimmer for Deep-Layered Elimination of Biofilm In Vivo. NANO LETTERS 2020; 20:7350-7358. [PMID: 32856923 DOI: 10.1021/acs.nanolett.0c02767] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Increasing penetration of antibacterial agents into biofilm is a promising strategy for improvement of therapeutic effect and slowdown of the progression of antibiotic resistance. Herein, we design a near-infrared (NIR) light-driven nanoswimmer (HSMV). Under NIR light irradiation, HSMV performs efficient self-propulsion and penetrates into the biofilm within 5 min due to photothermal conversion of asymmetrically distributed AuNPs. The localized thermal (∼45 °C) and thermal-triggered release of vancomycin (Van) leads to an efficient combination of photothermal therapy and chemotherapy in one system. The active motion of HSMV increases the effective distance of photothermal therapy (PTT) and also improves the therapeutic index of the antibiotic, resulting in superior biofilm removal rate (>90%) in vitro. Notably, HSMV can eliminate S. aureus biofilms grown in vivo under 10 min of laser irradiation without damage to healthy tissues. This work may shed light on therapeutic strategies for in vivo treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Si Wu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuhuan Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
28
|
Yuan Y, Shi W, Li R, Lim DSW, Armugam A, Zhang Y. Rational Design of Gram-Specific Antimicrobial Imidazolium Tetramers To Combat MRSA. ACS Biomater Sci Eng 2020; 6:5563-5570. [PMID: 33320560 DOI: 10.1021/acsbiomaterials.0c01248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance poses an increasingly serious global health threat. Hence, new antimicrobials with low propensity toward inducing resistance in bacteria are being developed to combat this threat. In this work, a series of imidazolium tetramers have been synthesized by modulating the linkers between imidazoliums or the length of the end groups within the structures of oligomers in order to optimize the activity, selectivity, and biocompatibility of the compounds. These new materials possess high biocompatibility, Gram selectivity, and high efficacy against the selected bacterium as well as clinically isolated methicillin-resistant Staphylococcus aureus species without inducing drug resistance. Therefore, we believe that these compounds can potentially be used to mitigate resistance as highly effective disinfectants in healthcare products or as antimicrobial therapies specifically for Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Yuan Yuan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore
| | - Weiwei Shi
- 2nd Hospital of Dalian Medical University, Dalian 116023, China
| | - Ruihua Li
- 2nd Hospital of Dalian Medical University, Dalian 116023, China
| | - Diane S W Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore
| | - Arunmozhiarasi Armugam
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore
| | - Yugen Zhang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore
| |
Collapse
|
29
|
Yang B, Gao F, Li Z, Li M, Chen L, Guan Y, Liu G, Yang L. Selective Entropy Gain-Driven Adsorption of Nanospheres onto Spherical Bacteria Endows Photodynamic Treatment with Narrow-Spectrum Activity. J Phys Chem Lett 2020; 11:2788-2796. [PMID: 32191475 DOI: 10.1021/acs.jpclett.0c00287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Narrow-spectrum antimicrobials specifically eradicate the target pathogens but suffer from significantly lagging development. Photodynamic therapy eliminates cells with reactive oxygen species (ROS) generated upon light irradiation but is intrinsically a wide-spectrum modality. We herein converted photodynamic therapy into a narrow-spectrum modality by taking advantage of a previously unnoticed physics recognition pathway. We found that negatively charged nanospheres undergo selective entropy gain-driven adsorption onto spherical bacteria, but not onto rod-like bacteria. This bacterial morphology-targeting selectivity, combined with the extremely limited effective radii of action of ROS, enabled photodynamic nanospheres to kill >99% of inoculated spherical bacteria upon light irradiation and <1% of rod-like bacteria under comparable conditions, indicative of narrow-spectrum activity against spherical bacteria. This work unveils the bacterial morphology selectivity in the adsorption of negatively charged nanospheres and suggests a new approach for treating infections characterized by overthriving spherical bacteria in niches naturally dominated by rod-like bacteria.
Collapse
|
30
|
Chester R, Das AAK, Medlock J, Nees D, Allsup DJ, Madden LA, Paunov VN. Removal of Human Leukemic Cells from Peripheral Blood Mononuclear Cells by Cell Recognition Chromatography with Size Matched Particle Imprints. ACS APPLIED BIO MATERIALS 2020; 3:789-800. [DOI: 10.1021/acsabm.9b00770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rosie Chester
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Anupam A. K. Das
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Jevan Medlock
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Dieter Nees
- Joanneum Research FmbH, Leonhardstrasse 59, 8010 Graz, Austria
| | - David J. Allsup
- Hull York Medical School, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Leigh A. Madden
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Vesselin N. Paunov
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| |
Collapse
|
31
|
Weldrick PJ, Hardman MJ, Paunov VN. Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43902-43919. [PMID: 31718141 DOI: 10.1021/acsami.9b16119] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biofilms are prevalent in chronic wounds and once formed are very hard to remove, which is associated with poor outcomes and high mortality rates. Biofilms are comprised of surface-attached bacteria embedded in an extracellular polymeric substance (EPS) matrix, which confers increased antibiotic resistance and host immune evasion. Therefore, disruption of this matrix is essential to tackle the biofilm-embedded bacteria. Here, we propose a novel nanotechnology to do this, based on protease-functionalized nanogel carriers of antibiotics. Such active antibiotic nanocarriers, surface coated with the protease Alcalase 2.4 L FG, "digest" their way through the biofilm EPS matrix, reach the buried bacteria, and deliver a high dose of antibiotic directly on their cell walls, which overwhelms their defenses. We demonstrated their effectiveness against six wound biofilm-forming bacteria, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Klebsiella pneumoniae, Escherichia coli, and Enterococcus faecalis. We confirmed a 6-fold decrease in the biofilm mass and a substantial reduction in bacterial cell density using fluorescence, atomic force, and scanning electron microscopy. Additionally, we showed that co-treatments of ciprofloxacin and Alcalase-coated Carbopol nanogels led to a 3-log reduction in viable biofilm-forming cells when compared to ciprofloxacin treatments alone. Encapsulating an equivalent concentration of ciprofloxacin into the Alcalase-coated nanogel particles boosted their antibacterial effect much further, reducing the bacterial cell viability to below detectable amounts after 6 h of treatment. The Alcalase-coated nanogel particles were noncytotoxic to human adult keratinocyte cells (HaCaT), inducing a very low apoptotic response in these cells. Overall, we demonstrated that the Alcalase-coated nanogels loaded with a cationic antibiotic elicit very strong biofilm-clearing effects against wound-associated biofilm-forming pathogenic bacteria. This nanotechnology approach has the potential to become a very powerful treatment of chronically infected wounds with biofilm-forming bacteria.
Collapse
Affiliation(s)
- Paul J Weldrick
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , U.K
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease , Hull York Medical School , Hull HU6 7RX , U.K
| | - Vesselin N Paunov
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , U.K
| |
Collapse
|
32
|
Molecularly Imprinted Polymers for Cell Recognition. Trends Biotechnol 2019; 38:368-387. [PMID: 31677857 DOI: 10.1016/j.tibtech.2019.10.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Since their conception 50 years ago, molecularly imprinted polymers (MIPs) have seen extensive development both in terms of synthetic routes and applications. Cells are perhaps the most challenging target for molecular imprinting. Although early work was based almost entirely around microprinting methods, recent developments have shifted towards epitope imprinting to generate MIP nanoparticles (NPs). Simultaneously, the development of techniques such as solid phase MIP synthesis has solved many historic issues of MIP production. This review briefly describes various approaches used in cell imprinting with a focus on applications of the created materials in imaging, drug delivery, diagnostics, and tissue engineering.
Collapse
|
33
|
Al-Sharqi A, Apun K, Vincent M, Kanakaraju D, Bilung LM, Sum MSH. Investigation of the antibacterial activity of Ag-NPs conjugated with a specific antibody against Staphylococcus aureus after photoactivation. J Appl Microbiol 2019; 128:102-115. [PMID: 31596989 DOI: 10.1111/jam.14471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 11/26/2022]
Abstract
AIM This work reports a new method for the use of lasers for the selective killing of bacteria targeted using light-absorbing Silver nanoparticles (Ag-NPs) conjugated with a specific antibody against the Gram-positive bacterium Staphylococcus aureus (S. aureus). METHODS AND RESULTS Ag-NPs were synthesized using a chemical reduction method and characterized with respect to their surface plasmon resonance, surface morphology via transmission electron microscopy (TEM) and dynamic light scattering (DLS). The bacterial surface was targeted using 20 nm Ag-NPs conjugated with an anti-protein A antibody. Labelled bacteria were irradiated with blue visible laser at 2·04 W/cm2 . The antibacterial activity of functionalized Ag-NPs was investigated by fluorescence microscopy after irradiation, and morphological changes in S. aureus after laser treatment were assessed using scanning electron microscopy (SEM). The laser-irradiated, functionalized Ag-NPs exhibited significant bactericidal activity, and laser-induced bacterial damage was observed after 10 min of laser irradiation against S. aureus. The fluorescence microscopic analysis results supported that bacterial cell death occurred in the presence of the functionalized Ag-NPs. CONCLUSIONS The results of this study suggest that a novel method for the preparation of functionalized nanoparticles has potential as a potent antibacterial agent for the selective killing of resistant disease-causing bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows that Ag-NPs functionalized with a specific antibody, could be used in combination with laser radiation as a novel treatment to target resistant bacterial and fungal pathogens with minimal impact on normal microflora.
Collapse
Affiliation(s)
- A Al-Sharqi
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - K Apun
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - M Vincent
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - D Kanakaraju
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | | | - M S H Sum
- Institute of Health & Community Medicine, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
34
|
Luo Y, Li J, Liu X, Tan L, Cui Z, Feng X, Yang X, Liang Y, Li Z, Zhu S, Zheng Y, Yeung KWK, Yang C, Wang X, Wu S. Dual Metal-Organic Framework Heterointerface. ACS CENTRAL SCIENCE 2019; 5:1591-1601. [PMID: 31572786 PMCID: PMC6764158 DOI: 10.1021/acscentsci.9b00639] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 05/19/2023]
Abstract
Herein, a core-shell dual metal-organic framework (MOF) heterointerface is synthesized. The Prussian blue (PB) MOF acts as a core for the growth of a porphyrin-doped MOF which is named PB@MOF. Porphyrins can significantly enhance the transfer of photoinspired electrons from PB and suppress the recombination of electrons and holes, thus enhancing the photocatalytic properties and consequently promoting the yields of singlet oxygen rapidly under 660 nm illumination. PB@MOF can exhibit a better photothermal conversion efficiency up to 29.9% under 808 nm near-infrared irradiation (NIR). The PB@MOF heterointerface can possess excellent antibacterial efficacies of 99.31% and 98.68% opposed to Staphylococcus aureus and Escherichia coli, separately, under the dual light illumination of 808 nm NIR and 660 nm red light for 10 min. Furthermore, the trace amount of Fe and Zr ions can trigger the immune system to favor wound healing, promising that PB@MOF achieves the rapid therapy of bacterial infected wounds and environmental disinfection.
Collapse
Affiliation(s)
- Yue Luo
- Ministry-of-Education Key Laboratory for the Green
Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer
Materials, School of Materials Science & Engineering, Hubei
University, Wuhan 430062, China
| | - Jun Li
- School of Materials Science & Engineering, the Key
Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of
China, Tianjin University, Tianjin 300072,
China
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green
Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer
Materials, School of Materials Science & Engineering, Hubei
University, Wuhan 430062, China
- E-mail:
| | - Lei Tan
- Ministry-of-Education Key Laboratory for the Green
Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer
Materials, School of Materials Science & Engineering, Hubei
University, Wuhan 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key
Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of
China, Tianjin University, Tianjin 300072,
China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Xianjin Yang
- School of Materials Science & Engineering, the Key
Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of
China, Tianjin University, Tianjin 300072,
China
| | - Yanqin Liang
- School of Materials Science & Engineering, the Key
Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of
China, Tianjin University, Tianjin 300072,
China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key
Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of
China, Tianjin University, Tianjin 300072,
China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key
Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of
China, Tianjin University, Tianjin 300072,
China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System
and Department of Materials Science and Engineering, College of Engineering,
Peking University, Beijing 100871,
China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka
Shing Faculty of Medicine, The University of Hong Kong,
Pokfulam, Hong Kong 999077, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Xianbao Wang
- Ministry-of-Education Key Laboratory for the Green
Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer
Materials, School of Materials Science & Engineering, Hubei
University, Wuhan 430062, China
| | - Shuilin Wu
- Ministry-of-Education Key Laboratory for the Green
Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer
Materials, School of Materials Science & Engineering, Hubei
University, Wuhan 430062, China
- School of Materials Science & Engineering, the Key
Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of
China, Tianjin University, Tianjin 300072,
China
- E-mail: ;
| |
Collapse
|
35
|
Zhang N, Zhang N, Xu Y, Li Z, Yan C, Mei K, Ding M, Ding S, Guan P, Qian L, Du C, Hu X. Molecularly Imprinted Materials for Selective Biological Recognition. Macromol Rapid Commun 2019; 40:e1900096. [PMID: 31111979 DOI: 10.1002/marc.201900096] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Indexed: 12/11/2022]
Abstract
Molecular imprinting is an approach of generating imprinting cavities in polymer structures that are compatible with the target molecules. The cavities have memory for shape and chemical recognition, similar to the recognition mechanism of antigen-antibody in organisms. Their structures are also called biomimetic receptors or synthetic receptors. Owing to the excellent selectivity and unique structural predictability of molecularly imprinted materials (MIMs), practical MIMs have become a rapidly evolving research area providing key factors for understanding separation, recognition, and regenerative properties toward biological small molecules to biomacromolecules, even cell and microorganism. In this review, the characteristics, morphologies, and applicability of currently popular carrier materials for molecular imprinting, especially the fundamental role of hydrogels, porous materials, hierarchical nanoparticles, and 2D materials in the separation and recognition of biological templates are discussed. Moreover, through a series of case studies, emphasis is given on introducing imprinting strategies for biological templates with different molecular scales. In particular, the differences and connections between small molecular imprinting (bulk imprinting, "dummy" template imprinting, etc.), large molecular imprinting (surface imprinting, interfacial imprinting, etc.), and cell imprinting strategies are demonstrated in detail. Finally, future research directions are provided.
Collapse
Affiliation(s)
- Nan Zhang
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.,Department of Mechanical Engineering, National University of Singapore 9 Engineering Drive 1, 117575, Singapore
| | - Nan Zhang
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yarong Xu
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhiling Li
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chaoren Yan
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Kun Mei
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Minling Ding
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Ping Guan
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Liwei Qian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Chunbao Du
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Xiaoling Hu
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
36
|
Xu JW, Yao K, Xu ZK. Nanomaterials with a photothermal effect for antibacterial activities: an overview. NANOSCALE 2019; 11:8680-8691. [PMID: 31012895 DOI: 10.1039/c9nr01833f] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nanomaterials and nanotechnologies have been expected to provide innovative platforms for addressing antibacterial challenges, with potential to even deal with bacterial infections involving drug-resistance. The current review summarizes recent progress over the last 3 years in the field of antibacterial nanomaterials with a photothermal conversion effect. We classify these photothermal nanomaterials into four functional categories: carbon-based nanoconjugates of graphene derivatives or carbon nanotubes, noble metal nanomaterials mainly from gold and silver, metallic compound nanocomposites such as copper sulfide and molybdenum sulfide, and polymeric as well as other nanostructures. Different categories can be assembled with each other to enhance the photothermal effects and the antibacterial activities. The review describes their fabrication processes, unique properties, antibacterial modes, and potential healthcare applications.
Collapse
Affiliation(s)
- Jing-Wei Xu
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | | | | |
Collapse
|
37
|
Tang C, Liu C, Han Y, Guo Q, Ouyang W, Feng H, Wang M, Xu F. Nontoxic Carbon Quantum Dots/g-C 3 N 4 for Efficient Photocatalytic Inactivation of Staphylococcus aureus under Visible Light. Adv Healthc Mater 2019; 8:e1801534. [PMID: 30941911 DOI: 10.1002/adhm.201801534] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/15/2019] [Indexed: 01/08/2023]
Abstract
The widespread use of antibiotics has caused the rapid emergence of antibiotic-resistant bacterial strains and antibiotic resistance genes in the past few decades. Photocatalytic inactivation, a promising approach for the killing of pathogens, efficiently avoids the problems induced by antimicrobial drugs. However, traditional photocatalysts usually have some disadvantages, such as high costs of raw materials, ultraviolet ray excitation, and potential leaching of toxic metals. Here, a metal-free heterojunction photocatalyst, denoted as CQDs/g-C3 N4 , is synthesized through incorporating carbon quantum dots (CQDs) on graphitic carbon nitride (g-C3 N4 ), which significantly enhances photocatalytic inactivation of Staphylococcus aureus (S. aureus) compared with pure g-C3 N4 in vitro. CQDs/g-C3 N4 causes a rapid increase of intracellular reactive oxygen species levels and destruction of cell membranes under visible light, eventually leading to death of bacteria. The efficacy of CQDs/g-C3 N4 is further examined by a mouse cutaneous infection model of S. aureus. CQDs/g-C3 N4 markedly reduces the bacterial loads and prompts lesion recovery in mice, as compared with g-C3 N4 -treated group. In vivo and in vitro toxicity analyses show that the side effects of CQDs/g-C3 N4 are negligible. Considering the efficient photocatalytic inactivation and nontoxicity of CQDs/g-C3 N4 , this visible-light-driven photocatalyst paves a brand new avenue for the treatment of S. aureus infection.
Collapse
Affiliation(s)
- Chenyi Tang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and RecyclingSchool of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou 310012 Zhejiang China
| | - Chao Liu
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of Medicine Hangzhou 310009 Zhejiang China
| | - Yu Han
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of Medicine Hangzhou 310009 Zhejiang China
| | - Qiaoqi Guo
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and RecyclingSchool of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou 310012 Zhejiang China
| | - Wei Ouyang
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of Medicine Hangzhou 310009 Zhejiang China
| | - Huajun Feng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and RecyclingSchool of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou 310012 Zhejiang China
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and RecyclingSchool of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou 310012 Zhejiang China
| | - Feng Xu
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of Medicine Hangzhou 310009 Zhejiang China
| |
Collapse
|
38
|
Li X, Bai H, Yang Y, Yoon J, Wang S, Zhang X. Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805092. [PMID: 30536445 DOI: 10.1002/adma.201805092] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/24/2018] [Indexed: 05/07/2023]
Abstract
Antibiotic-resistant bacteria have emerged as a severe threat to human health. As effective antibacterial therapies, supramolecular materials display unprecedented advantages because of the flexible and tunable nature of their noncovalent interactions with biomolecules and the ability to incorporate various active agents in their platforms. Herein, supramolecular antibacterial materials are discussed using a format that focuses on their fundamental active elements and on recent advances including material selection, fabrication methods, structural characterization, and activity performance.
Collapse
Affiliation(s)
- Xingshu Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, South Korea
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchong Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, South Korea
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
39
|
Das AA, Medlock J, Liang H, Nees D, Allsup DJ, Madden LA, Paunov VN. Bioimprint aided cell recognition and depletion of human leukemic HL60 cells from peripheral blood. J Mater Chem B 2019. [DOI: 10.1039/c9tb00679f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report a large scale preparation of bioimprints of layers of cultured leukemic HL60 cells which can perform cell shape and size recognition from a mixture with peripheral blood mononuclear cells (PBMCs).
Collapse
Affiliation(s)
- Anupam A.K. Das
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
| | - Jevan Medlock
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
| | - He Liang
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
| | | | | | | | | |
Collapse
|
40
|
Al-Obaidy SSM, Halbus AF, Greenway GM, Paunov VN. Boosting the antimicrobial action of vancomycin formulated in shellac nanoparticles of dual-surface functionality. J Mater Chem B 2019. [DOI: 10.1039/c8tb03102a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We demonstrate a strong enhancement of the antimicrobial action of vancomycin encapsulated in shellac nanocarriers with cationic surface functionality which concentrate on the microbial cell membranes.
Collapse
Affiliation(s)
- Saba S. M. Al-Obaidy
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
- Department of Chemistry
| | - Ahmed F. Halbus
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
- Department of Chemistry
| | | | | |
Collapse
|
41
|
Rozhina E, Ishmukhametov I, Batasheva S, Akhatova F, Fakhrullin R. Nanoarchitectonics meets cell surface engineering: shape recognition of human cells by halloysite-doped silica cell imprints. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1818-1825. [PMID: 31579070 PMCID: PMC6753675 DOI: 10.3762/bjnano.10.176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/21/2019] [Indexed: 05/09/2023]
Abstract
Cell surface engineering, as a practical manifestation of nanoarchitectonics, is a powerful tool to modify and enhance properties of live cells. In turn, cells may serve as sacrificial templates to fabricate cell-mimicking materials. Herein we report a facile method to produce cell-recognising silica imprints capable of the selective detection of human cells. We used HeLa cells to template silica inorganic shells doped with halloysite clay nanotubes. The shells were destroyed by sonication resulting in the formation of polydisperse hybrid imprints that were used to recognise HeLa cells in liquid media supplemented with yeast. We believe that methodology reported here will find applications in biomedical and clinical research.
Collapse
Affiliation(s)
- Elvira Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Ilnur Ishmukhametov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| |
Collapse
|
42
|
Chen H, Jin Y, Wang J, Wang Y, Jiang W, Dai H, Pang S, Lei L, Ji J, Wang B. Design of smart targeted and responsive drug delivery systems with enhanced antibacterial properties. NANOSCALE 2018; 10:20946-20962. [PMID: 30406235 DOI: 10.1039/c8nr07146b] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of antibiotics has been an epoch-making invention in the past few decades for the treatment of infectious diseases. However, the intravenous injection of antibiotics lacking responsiveness and targeting properties has led to low drug utilization and high cytotoxicity. More importantly, it has also caused the development and spread of drug-resistant bacteria due to repeated medication and increased dosage. The differences in the microenvironments of the bacterial infection sites and normal tissues, such as lower pH, high expression of some special enzymes, hydrogen peroxide and released toxins, etc., are usually used for targeted and controlled drug delivery. In addition, bacterial surface charges, antigens and the surface structures of bacterial cell walls are all different from normal tissue cells. Based on the special bacterial infection microenvironments and bacteria surface properties, a series of drug delivery systems has been constructed for highly efficient drug release. This review summarizes the recent progress in targeted and responsive drug delivery systems for enhanced antibacterial properties.
Collapse
Affiliation(s)
- Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China
| | - Yingying Jin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jingjie Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yuqin Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wenya Jiang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Hangdong Dai
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Shuaiyue Pang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Lei Lei
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China
| |
Collapse
|
43
|
Zhai J, Zhao M, Cao X, Li M, Zhao M. Metal-Ion-Responsive Bionanocomposite for Selective and Reversible Enzyme Inhibition. J Am Chem Soc 2018; 140:16925-16928. [DOI: 10.1021/jacs.8b10848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Junqiu Zhai
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Muhua Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiangjian Cao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengyuan Li
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Yuwen L, Sun Y, Tan G, Xiu W, Zhang Y, Weng L, Teng Z, Wang L. MoS 2@polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of Staphylococcus aureus biofilms and wound infection. NANOSCALE 2018; 10:16711-16720. [PMID: 30156245 DOI: 10.1039/c8nr04111c] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Developing novel antibacterial agents to combat bacterial infection has been an everlasting task for scientists, due to the drug resistance evolved by bacteria during antibiotic treatment. In this work, we used polydopamine (PDA) to modify MoS2 nanosheets (MoS2 NSs) and then grew silver nanoparticles (AgNPs) on their surface to form MoS2@PDA-Ag nanosheets (MPA NSs) as multimodal antibacterial nanoagents to treat Staphylococcus aureus (S. aureus) biofilms and S. aureus infected wounds. In vitro results show that treatment with MPA NSs under near-infrared (NIR) laser irradiation can efficiently eradicate the established S. aureus biofilms with 99.99% of the bacteria inside biofilms killed, which shows significantly enhanced therapeutic efficacy compared with the MPA only group or the NIR laser irradiation only group. Remarkably, MPA NSs were also successfully used to treat S. aureus infected wounds in mice under NIR laser irradiation. In vivo experiments demonstrate that about 99% of bacteria in wounds were killed and the healing of the infected wounds was promoted. Overall, this work demonstrates that MPA NSs with enhanced antibacterial activity are promising nanoagents to treat S. aureus biofilms and S. aureus infected wounds.
Collapse
Affiliation(s)
- Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Jia M, Zhang Z, Li J, Ma X, Chen L, Yang X. Molecular imprinting technology for microorganism analysis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Kim D, Kwon SJ, Wu X, Sauve J, Lee I, Nam J, Kim J, Dordick JS. Selective Killing of Pathogenic Bacteria by Antimicrobial Silver Nanoparticle-Cell Wall Binding Domain Conjugates. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13317-13324. [PMID: 29619821 DOI: 10.1021/acsami.8b00181] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Broad-spectrum antibiotics indiscriminately kill bacteria, removing nonpathogenic microorganisms and leading to evolution of antibiotic resistant strains. Specific antimicrobials that could selectively kill pathogenic bacteria without targeting other bacteria in the natural microbial community or microbiome may be able to address this concern. In this work, we demonstrate that silver nanoparticles, suitably conjugated to a selective cell wall binding domain (CBD), can efficiently target and selectively kill bacteria. As a relevant example, CBDBA from Bacillus anthracis selectively bound to B. anthracis in a mixture with Bacillus subtilis, as well in a mixture with Staphylococcus aureus. This new biologically-assisted hybrid strategy, therefore, has the potential to provide selective decontamination of pathogenic bacteria with minimal impact on normal microflora.
Collapse
Affiliation(s)
- Domyoung Kim
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Xia Wu
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Jessica Sauve
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| | - Inseon Lee
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Jahyun Nam
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , 110 8th Street , Troy , New York 12180 , United States
| |
Collapse
|
47
|
Medlock J, Das AAK, Madden LA, Allsup DJ, Paunov VN. Cancer bioimprinting and cell shape recognition for diagnosis and targeted treatment. Chem Soc Rev 2018; 46:5110-5127. [PMID: 28660268 DOI: 10.1039/c7cs00179g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer incidence and mortality have both increased in the last decade and are predicted to continue to rise. Diagnosis and treatment of cancers are often hampered by the inability to specifically target neoplastic cells. Bioimprinting is a promising new approach to overcome shortfalls in cancer targeting. Highly specific recognition cavities can be made into polymer matrices to mimic lock-and-key actions seen in in vivo biological systems. Early studies concentrated on molecules and were inhibited by template size complexity. Surface imprinting allows the capture of increasingly complex motifs from polypeptides to single cell organisms and mammalian cells. Highly specific cell shape recognition can also be achieved by cell interaction with imprints that can be made into polymer matrices to mimic biological systems at a molecular level. Bioimprinting has also been used to achieve nanometre scale resolution imaging of cancer cells. Studies of bioimprint-based drug delivery on cancer cells have been recently trialled in vitro and show that this approach can potentially improve existing chemotherapeutic approaches. This review focuses on the possible applications of bioimprinting with particular regards to cancer understanding, diagnosis and therapy. Cell imprints, incorporated into biosensors can allow the limits of detection to be improved or negate the need for extensive patient sample processing. Similar cell imprinting platforms can be used for nanoscale imaging of cancer morphology, as well as to investigate topographical signalling of cancer cells in vitro. Lastly, bioimprints also have applications as selective drug delivery vehicles to tumours with the potential to decrease chemotherapy-related side effects.
Collapse
Affiliation(s)
- Jevan Medlock
- School of Mathematics and Physical Sciences (Chemistry), University of Hull, Cottingham Road, Hull, HU67RX, UK.
| | | | | | | | | |
Collapse
|
48
|
Pan J, Chen W, Ma Y, Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev 2018; 47:5574-5587. [DOI: 10.1039/c7cs00854f] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecularly imprinted polymers are now approaching the perfection of natural receptors, e.g., the ability to interact with or recognize cells.
Collapse
Affiliation(s)
- Jianming Pan
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Wei Chen
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao
- China
| | - Yue Ma
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Guoqing Pan
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| |
Collapse
|
49
|
Li Y, Gong H, Cheng H, Wang L, Bao M. Individually immobilized and surface-modified hydrocarbon-degrading bacteria for oil emulsification and biodegradation. MARINE POLLUTION BULLETIN 2017; 125:433-439. [PMID: 28969907 DOI: 10.1016/j.marpolbul.2017.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Effective emulsification plays an important role in the treatment of marine oil spills. The negative effects of chemical surfactants have necessitated a search for alternative dispersant that are sustainable and environmentally-friendly. To identify alternate dispersants, oil-in-seawater emulsions stabilized by hydrocarbon-degrading bacteria were investigated. After individual immobilization and surface-modification, the hydrocarbon-degrading bacteria, Bacillus cereus S-1, was found to produce a stable oil-in-seawater Pickering emulsion, which was similar to particle emulsifiers. The individual immobilization and surface-modification process improved the surface hydrophobicity and wettability of the bacterial cells, which was responsible for their effective adsorption at the oil-water interface. Through effective emulsification, the biodegradation of oil was remarkably facilitated by these treated bacteria, because of the increased interfacial area. By combining the emulsification and biodegradation, the results of this reported work demonstrated a novel approach for developing environmentally-friendly bioremediation technology in the field of oil treatment.
Collapse
Affiliation(s)
- Yiming Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Songling Road, Qingdao 266100, Shandong Province, China
| | - Haiyue Gong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Songling Road, Qingdao 266100, Shandong Province, China
| | - Hua Cheng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Songling Road, Qingdao 266100, Shandong Province, China
| | - Lisha Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Songling Road, Qingdao 266100, Shandong Province, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Songling Road, Qingdao 266100, Shandong Province, China.
| |
Collapse
|
50
|
Colloid particle formulations for antimicrobial applications. Adv Colloid Interface Sci 2017; 249:134-148. [PMID: 28528626 DOI: 10.1016/j.cis.2017.05.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 11/23/2022]
Abstract
Colloidal particles are being extensively studied in various antimicrobial applications due to their small size to volume ratio and ability to exhibit a wide spectrum of antibacterial, antifungal, antialgal and antiviral action. The present review focuses on various nanoparticles (NPs) of inorganic, organic and hybrid materials, and discusses some of the methods for their preparation as well as mechanisms of their antimicrobial action. We consider the antimicrobial applications of metal oxide nanoparticles (ZnO, MgO, CuO, Cu2O, Al2O3, TiO2, CeO2 and Y2O3), metal nanoparticles (NPs), such as copper, silver and gold, metal hydroxide NPs such as Mg(OH)2 as well as hybrid NPs made from biodegradable materials, such as chitosan, lignin and dextran, loaded with other antimicrobial agents. Recent developments for targeted delivery of antimicrobials by using colloid antibodies for microbial cell shape and surface recognition are also discussed. We also consider recent advances in the functionalization of nanoparticles and their potential antimicrobial applications as a viable alternative of conventional antibiotics and antiseptic agents which can help to tackle antimicrobial resistance. The review also covers the recently developed environmentally benign NPs (EbNPs) as a "safer-by-design" green chemistry solution of the post use fate of antimicrobial nanomaterials.
Collapse
|