1
|
Yudkina AV, Zharkov DO. The hidden elephant: Modified abasic sites and their consequences. DNA Repair (Amst) 2025; 148:103823. [PMID: 40056494 DOI: 10.1016/j.dnarep.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Abasic, or apurinic/apyrimidinic sites (AP sites) are among the most abundant DNA lesions, appearing in DNA both through spontaneous base loss and as intermediates of base excision DNA repair. Natural aldehydic AP sites have been known for decades and their interaction with the cellular replication, transcription and repair machinery has been investigated in detail. Oxidized AP sites, produced by free radical attack on intact nucleotides, received much attention recently due to their ability to trap DNA repair enzymes and chromatin structural proteins such as histones. In the past few years, it became clear that the reactive nature of aldehydic and oxidized AP sites produces a variety of modifications, including AP site-protein and AP site-peptide cross-links, adducts with small molecules of metabolic or xenobiotic origin, and AP site-mediated interstrand DNA cross-links. The diverse chemical nature of these common-origin lesions is reflected in the wide range of their biological consequences. In this review, we summarize the data on the mechanisms of modified AP sites generation, their abundance, the ability to block DNA polymerases or cause nucleotide misincorporation, and the pathways of their repair.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St, Novosibirsk 630090, Russia.
| |
Collapse
|
2
|
Cranford MT, Dahmen SN, Cortez D, Dewar JM. Leading and lagging strand abasic sites differentially affect vertebrate replisome progression but involve analogous bypass mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632187. [PMID: 39829849 PMCID: PMC11741305 DOI: 10.1101/2025.01.09.632187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Abasic sites are one of the most frequent forms of DNA damage that interfere with DNA replication. However, abasic sites exhibit complex effects because they can be processed into other types of DNA damage. Thus, it remains poorly understood how abasic sites affect replisome progression, which replication-coupled repair pathways they elicit, and whether this is affected by the template strand that is damaged. Using Xenopus egg extracts, we developed an approach to analyze replication of DNA containing a site-specific, stable abasic site on the leading or lagging strand template. We show that abasic sites robustly stall synthesis of nascent DNA strands but exert different effects when encountered on the leading or lagging strand template. At a leading strand AP site, replisomes stall ∼100 bp from the lesion until it is bypassed or a converging fork triggers termination. At a lagging strand abasic site, replisome progression is unaffected and lagging strands are reprimed downstream, generating a post-replicative gap, which is then bypassed. Despite different effects on replisome progression, both leading and lagging strand abasic sites rely on translesion DNA synthesis for bypass. Our results detail similarities and differences between how leading and lagging strand AP sites affect vertebrate DNA replication.
Collapse
|
3
|
Savitskaya VY, Novoselov KA, Dolinnaya NG, Monakhova MV, Snyga VG, Diatlova EA, Peskovatskova ES, Golyshev VM, Kitaeva MI, Eroshenko DA, Zvereva MI, Zharkov DO, Kubareva EA. Position-Dependent Effects of AP Sites Within an hTERT Promoter G-Quadruplex Scaffold on Quadruplex Stability and Repair Activity of the APE1 Enzyme. Int J Mol Sci 2025; 26:337. [PMID: 39796192 PMCID: PMC11720163 DOI: 10.3390/ijms26010337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1). Although AP sites' repair in regular B-DNA has been studied extensively, their processing in G-quadruplexes (G4s) has received much less attention. Here, we used the hTERT promoter region that is capable of forming three stacked parallel G4s to understand how AP sites can influence higher-order quadruplex folding and stability and how a G4 affects the efficiency of human APE1-mediated AP site processing. We designed a series of synthetic single- and double-stranded DNA constructs of varying lengths containing a stable AP site analog in both G- and C-rich strands at positions corresponding to somatic driver mutations. Using circular dichroism, we studied the effect of the AP site on hTERT G4 structure and stability. Bio-layer interferometry and gel-based approaches were employed to characterize APE1 binding to the designed DNA substrates and AP site processing. It was shown that (i) an AP site leads to G4 destabilization, which depends on the lesion location in the G4 scaffold; (ii) APE1 binds tightly to hTERT G4 structure but exhibits greatly reduced cleavage activity at AP sites embedded in the quadruplex; and (iii) a clear correlation was revealed between AP site-induced hTERT G4 destabilization and APE1 activity. We can hypothesize that reduced repair of AP sites in the hTERT G4 is one of the reasons for the high mutation rate in this promoter region.
Collapse
Affiliation(s)
- Viktoriia Yu. Savitskaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Kirill A. Novoselov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Mayya V. Monakhova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Viktoriia G. Snyga
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Evgeniia A. Diatlova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
| | - Elizaveta S. Peskovatskova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Victor M. Golyshev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
| | - Mariia I. Kitaeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Daria A. Eroshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena A. Kubareva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
4
|
Islam T, Amin SBM, Gates KS. The Intercalator Ethidium Bromide Generates Covalent Adducts at Apurinic/Apyrimidinic Sites in DNA. Chem Res Toxicol 2024; 37:1911-1917. [PMID: 39492465 DOI: 10.1021/acs.chemrestox.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Ethidium bromide was first described as a DNA intercalator 60 years ago and, over the ensuing years, may be the most widely used fluorescent DNA stain in molecular biology, biochemistry, and histology. Noncovalent DNA binding by ethidium has been well characterized, but to date, there have been no reports of covalent DNA adduct formation by ethidium bromide. This report describes the characterization of covalent adducts generated by the reaction of ethidium with apurinic/apyrimidinic (AP) sites in DNA. Adduct formation proceeds via the reaction of the amino group(s) on ethidium with the ring-opened aldehyde residue of the AP site in DNA to yield an imine. Ethidium-AP adducts may form under a variety of circumstances due to the ubiquitous occurrence of AP sites in cellular and synthetic DNA.
Collapse
Affiliation(s)
- Tanhaul Islam
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Saosan Binth Md Amin
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
5
|
Xue CY, Liu YH, Yu Y, Liu Y, Zhou YL, Zhang XX. Ultrasensitive mass spectrometric quantitation of apurinic/apyrimidinic sites in genomic DNA of mammalian cell lines exposed to genotoxic reagents. Anal Chim Acta 2024; 1329:343238. [PMID: 39396301 DOI: 10.1016/j.aca.2024.343238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
The apurinic/apyrimidinic (AP) site is an important intermediate in the DNA base excision repair (BER) pathway, having the potential of being a biomarker for DNA damage. AP sites could lead to the stalling of polymerases, the misincorporation of bases and DNA strand breaks, which might affect physiological function of cells. However, the abundance of AP sites in genomic DNA is very low (less than 2 AP sites/106 nts), which requires a sensitive and accurate method to meet its detection requirements. Here, we described an ultrasensitive quantification method based on a hydrazine-s-triazine reagent (i-Pr2N) labeling for AP sites combining with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The limit of detection reached an ultralow level (40 amol), realizing the most sensitive MS-based quantification for the AP site. To guarantee the accuracy of the quantitative results, the labeling reaction was carried out directly on DNA strands instead of labeling after DNA enzymatic digestion to reduce artifacts that might be produced during the enzymatic process of DNA strands. And selective detection was realized by MS to avoid introducing the false-positive signals from other aldehyde species, which could also react with i-Pr2N. Genomic DNA samples from different mammalian cell lines were successfully analyzed using this method. There were 0.4-0.8 AP sites per 106 nucleotides, and the values would increase 16.1 and 2.75 times when cells were treated with genotoxic substances methyl methanesulfonate and 5-fluorouracil, respectively. This method has good potential in the analysis of a small number of cell samples and clinical samples, is expected to be useful for evaluating the damage level of DNA bases, the genotoxicity of compounds and the drug resistance of cancer cells, and provides a new tool for cell function research and clinical precise treatment.
Collapse
Affiliation(s)
- Chen-Yu Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, 100191, China
| | - Ya-Hong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yue Yu
- Qilu Pharmaceutical Co., Ltd, Jinan, 250104, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
7
|
Abbouche L, Bythell-Douglas R, Deans AJ. FANCM branchpoint translocase: Master of traverse, reverse and adverse DNA repair. DNA Repair (Amst) 2024; 140:103701. [PMID: 38878565 DOI: 10.1016/j.dnarep.2024.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
FANCM is a multifunctional DNA repair enzyme that acts as a sensor and coordinator of replication stress responses, especially interstrand crosslink (ICL) repair mediated by the Fanconi anaemia (FA) pathway. Its specialised ability to bind and remodel branched DNA structures enables diverse genome maintenance activities. Through ATP-powered "branchpoint translocation", FANCM can promote fork reversal, facilitate replication traverse of ICLs, resolve deleterious R-loop structures, and restrain recombination. These remodelling functions also support a role as sensor of perturbed replication, eliciting checkpoint signalling and recruitment of downstream repair factors like the Fanconi anaemia FANCI:FANCD2 complex. Accordingly, FANCM deficiency causes chromosome fragility and cancer susceptibility. Other recent advances link FANCM to roles in gene editing efficiency and meiotic recombination, along with emerging synthetic lethal relationships, and targeting opportunities in ALT-positive cancers. Here we review key properties of FANCM's biochemical activities, with a particular focus on branchpoint translocation as a distinguishing characteristic.
Collapse
Affiliation(s)
- Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
8
|
Ahmed A, Kato N, Gautier J. Replication-Independent ICL Repair: From Chemotherapy to Cell Homeostasis. J Mol Biol 2024; 436:168618. [PMID: 38763228 PMCID: PMC11227339 DOI: 10.1016/j.jmb.2024.168618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Interstrand crosslinks (ICLs) are a type of covalent lesion that can prevent transcription and replication by inhibiting DNA strand separation and instead trigger cell death. ICL inducing compounds are commonly used as chemotherapies due to their effectiveness in inhibiting cell proliferation. Naturally occurring crosslinking agents formed from metabolic processes can also pose a challenge to genome stability especially in slowly or non-dividing cells. Cells maintain a variety of ICL repair mechanisms to cope with this stressor within and outside the S phase of the cell cycle. Here, we discuss the mechanisms of various replication-independent ICL repair pathways and how crosslink repair efficiency is tied to aging and disease.
Collapse
Affiliation(s)
- Arooba Ahmed
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Niyo Kato
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
9
|
Oswalt LE, Eichman BF. NEIL3: A unique DNA glycosylase involved in interstrand DNA crosslink repair. DNA Repair (Amst) 2024; 139:103680. [PMID: 38663144 PMCID: PMC11162926 DOI: 10.1016/j.dnarep.2024.103680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
Endonuclease VIII-like 3 (NEIL3) is a versatile DNA glycosylase that repairs a diverse array of chemical modifications to DNA. Unlike other glycosylases, NEIL3 has a preference for lesions within single-strand DNA and at single/double-strand DNA junctions. Beyond its canonical role in base excision repair of oxidized DNA, NEIL3 initiates replication-dependent interstrand DNA crosslink repair as an alternative to the Fanconi Anemia pathway. This review outlines our current understanding of NEIL3's biological functions, role in disease, and three-dimensional structure as it pertains to substrate specificity and catalytic mechanism.
Collapse
Affiliation(s)
- Leah E Oswalt
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Wang Y, Wang F, Li L, Zhang L, Song M, Jiang G. Comprehensive Toxicological Assessment of Halobenzoquinones in Drinking Water at Environmentally Relevant Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9125-9134. [PMID: 38743861 DOI: 10.1021/acs.est.4c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Halobenzoquinones (HBQs), an emerging unregulated category of disinfection byproduct (DBP) in drinking water, have aroused an increasing concern over their potential health risks. However, the chronic toxicity of HBQs at environmentally relevant concentrations remains largely unknown. Here, the occurrence and concentrations of 13 HBQs in drinking water from a northern megacity in China were examined using ultrahigh performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-MS/MS). Four HBQs, including 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ), 2,3,6-trichloro-1,4-benzoquinone (TriCBQ), and 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ), were detected beyond 50% occurrence frequency and at median concentrations from 4 to 50 ng/L. The chronic toxicity of these four HBQs to normal human colon and liver cells (FHC and THLE-2) was investigated at these concentrations. After 90 days of exposure, 2,5-DBBQ and 2,6-DCBQ induced the highest levels of oxidative stress and deoxyribonucleic acid (DNA) damage in colon and liver cells, respectively. Moreover, 2,5-DBBQ and 2,6-DCBQ were also found to induce epithelial-mesenchymal transition (EMT) in normal human liver cells via the extracellular signal regulated kinase (ERK) signaling pathway. Importantly, heating to 100 °C (boiling) was found to efficiently reduce the levels of these four HBQs in drinking water. These results suggested that environmentally relevant concentrations of HBQs could induce cytotoxicity and genotoxicity in normal human cells, and boiling is a highly efficient way of detoxification for HBQs.
Collapse
Affiliation(s)
- Yuanyuan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lan Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Price NE, Gates KS. Novel Processes Associated with the Repair of Interstrand Cross-Links Derived from Abasic Sites in Duplex DNA: Roles for the Base Excision Repair Glycosylase NEIL3 and the SRAP Protein HMCES. Chem Res Toxicol 2024; 37:199-207. [PMID: 38198604 DOI: 10.1021/acs.chemrestox.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Recent studies have defined a novel pathway for the repair of interstrand cross-links derived from the reaction of an adenine residue with an apurinic/apyrimidinic (AP) site on the opposing strand of DNA (dA-AP ICL). Stalling of a replication fork at the dA-AP ICL triggers TRAIP-dependent ubiquitylation of the CMG helicase that recruits the base excision repair glycosylase NEIL3 to the lesion. NEIL3 unhooks the dA-AP ICL to regenerate the native adenine residue on one strand and an AP site on the other strand. Covalent capture of the abasic site by the SRAP protein HMCES protects against genomic instability that would result from cleavage of the abasic site in the context of single-stranded DNA at the replication fork. After repair synthesis moves the HMCES-AP adduct into the context of double-stranded DNA, the DNA-protein cross-link is resolved by a nonproteolytic mechanism involving dissociation of thiazolidine attachment. The AP site in duplex DNA is then repaired by the base excision repair pathway.
Collapse
Affiliation(s)
- Nathan E Price
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
12
|
Rama-Garda R, Martin-Ortega MD, Sánchez ADJ, Priego J, de Blas J, Torrado A, Domínguez E, Haro R, Rivera-Sagredo A, Román JP, Lorite MJ, Johansson HE, Loza MI, Amigo J, Sobrino B, Lallena MJ, Toledo MÁ. Design, synthesis and validation of a new Crimped Head-Piece for DNA-Encoded libraries generation. Bioorg Med Chem 2024; 99:117596. [PMID: 38232459 DOI: 10.1016/j.bmc.2024.117596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Codification of DNA Encoded Libraries (DELs) is critical for successful ligand identification of molecules that bind a protein of interest (POI). There are different encoding strategies that permit, for instance, the customization of a DEL for testing single or dual pharmacophores (single strand DNA) or for producing and screening large diversity libraries of small molecules (double strand DNA). Both approaches challenges, either from the synthetic and encoding point of view, or from the selection methodology to be utilized for the screening. The Head-Piece contains the DNA sequence that is attached to a chemical compound, allowing the encoding of each molecule with a unique DNA tag. Designing the Head-Piece for a DNA-encoded library involves careful consideration of several key aspects including DNA barcode identity, sequence length and attachment chemistry. Here we describe a double stranded DNA versatile Head-Piece that can be used for the generation of single or dual pharmacophore libraries, but also shows other advanced DEL functionalities, stability and enlarged encoding capacity.
Collapse
Affiliation(s)
- Ramón Rama-Garda
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain; BioFarma, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña 15782, Spain.
| | - María Dolores Martin-Ortega
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | | | - Julián Priego
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Jesús de Blas
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Alicia Torrado
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Eduardo Domínguez
- Genomic Medicine, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña, Spain
| | - Rubén Haro
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Alfonso Rivera-Sagredo
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - José Pablo Román
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - María José Lorite
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | | | - María Isabel Loza
- BioFarma, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña 15782, Spain
| | - Jorge Amigo
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Servizo Galego de Saúde (SERGAS), Instituto de Investigaciones Sanitarias (IDIS), A Coruña 15706, Spain
| | - Beatriz Sobrino
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Servizo Galego de Saúde (SERGAS), Instituto de Investigaciones Sanitarias (IDIS), A Coruña 15706, Spain
| | - María José Lallena
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Miguel Ángel Toledo
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| |
Collapse
|
13
|
Gusti Ngurah Putu EP, Cattiaux L, Lavergne T, Pommier Y, Bombard S, Granzhan A. Unprecedented reactivity of polyamines with aldehydic DNA modifications: structural determinants of reactivity, characterization and enzymatic stability of adducts. Nucleic Acids Res 2023; 51:10846-10866. [PMID: 37850658 PMCID: PMC10639052 DOI: 10.1093/nar/gkad837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites, 5-formyluracil (fU) and 5-formylcytosine (fC) are abundant DNA modifications that share aldehyde-type reactivity. Here, we demonstrate that polyamines featuring at least one secondary 1,2-diamine fragment in combination with aromatic units form covalent DNA adducts upon reaction with AP sites (with concomitant cleavage of the AP strand), fU and, to a lesser extent, fC residues. Using small-molecule mimics of AP site and fU, we show that reaction of secondary 1,2-diamines with AP sites leads to the formation of unprecedented 3'-tetrahydrofuro[2,3,4-ef]-1,4-diazepane ('ribodiazepane') scaffold, whereas the reaction with fU produces cationic 2,3-dihydro-1,4-diazepinium adducts via uracil ring opening. The reactivity of polyamines towards AP sites versus fU and fC can be tuned by modulating their chemical structure and pH of the reaction medium, enabling up to 20-fold chemoselectivity for AP sites with respect to fU and fC. This reaction is efficient in near-physiological conditions at low-micromolar concentration of polyamines and tolerant to the presence of a large excess of unmodified DNA. Remarkably, 3'-ribodiazepane adducts are chemically stable and resistant to the action of apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphoesterase 1 (TDP1), two DNA repair enzymes known to cleanse a variety of 3' end-blocking DNA lesions.
Collapse
Affiliation(s)
- Eka Putra Gusti Ngurah Putu
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Laurent Cattiaux
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Thomas Lavergne
- DCM, CNRS UMR5250, Université Grenoble Alpes, 38000 Grenoble, France
| | - Yves Pommier
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, CCR-NCI, NIH, Bethesda, MD 20892, USA
| | - Sophie Bombard
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Anton Granzhan
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
14
|
Donsbach M, Dürauer S, Grünert F, Nguyen KT, Nigam R, Yaneva D, Weickert P, Bezalel‐Buch R, Semlow DR, Stingele J. A non-proteolytic release mechanism for HMCES-DNA-protein crosslinks. EMBO J 2023; 42:e113360. [PMID: 37519246 PMCID: PMC10505908 DOI: 10.15252/embj.2022113360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
The conserved protein HMCES crosslinks to abasic (AP) sites in ssDNA to prevent strand scission and the formation of toxic dsDNA breaks during replication. Here, we report a non-proteolytic release mechanism for HMCES-DNA-protein crosslinks (DPCs), which is regulated by DNA context. In ssDNA and at ssDNA-dsDNA junctions, HMCES-DPCs are stable, which efficiently protects AP sites against spontaneous incisions or cleavage by APE1 endonuclease. In contrast, HMCES-DPCs are released in dsDNA, allowing APE1 to initiate downstream repair. Mechanistically, we show that release is governed by two components. First, a conserved glutamate residue, within HMCES' active site, catalyses reversal of the crosslink. Second, affinity to the underlying DNA structure determines whether HMCES re-crosslinks or dissociates. Our study reveals that the protective role of HMCES-DPCs involves their controlled release upon bypass by replication forks, which restricts DPC formation to a necessary minimum.
Collapse
Affiliation(s)
- Maximilian Donsbach
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Sophie Dürauer
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Florian Grünert
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Kha T Nguyen
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Richa Nigam
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Denitsa Yaneva
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Pedro Weickert
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Rachel Bezalel‐Buch
- Department of Biological Chemistry and Molecular BiophysicsWashington University School of MedicalSaint LouisMOUSA
| | - Daniel R Semlow
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Julian Stingele
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| |
Collapse
|
15
|
Liu C, Le BH, Xu W, Yang CH, Chen YH, Zhao L. Dual chemical labeling enables nucleotide-resolution mapping of DNA abasic sites and common alkylation damage in human mitochondrial DNA. Nucleic Acids Res 2023; 51:e73. [PMID: 37293974 PMCID: PMC10359467 DOI: 10.1093/nar/gkad502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Mitochondrial DNA (mtDNA) modifications play an emerging role in innate immunity and inflammatory diseases. Nonetheless, relatively little is known regarding the locations of mtDNA modifications. Such information is critically important for deciphering their roles in mtDNA instability, mtDNA-mediated immune and inflammatory responses, and mitochondrial disorders. The affinity probe-based enrichment of lesion-containing DNA represents a key strategy for sequencing DNA modifications. Existing methods are limited in the enrichment specificity of abasic (AP) sites, a prevalent DNA modification and repair intermediate. Herein, we devise a novel approach, termed dual chemical labeling-assisted sequencing (DCL-seq), for mapping AP sites. DCL-seq features two designer compounds for enriching and mapping AP sites specifically at single-nucleotide resolution. For proof of principle, we mapped AP sites in mtDNA from HeLa cells under different biological conditions. The resulting AP site maps coincide with mtDNA regions with low TFAM (mitochondrial transcription factor A) coverage and with potential G-quadruplex-forming sequences. In addition, we demonstrated the broader applicability of the method in sequencing other DNA modifications in mtDNA, such as N7-methyl-2'-deoxyguanosine and N3-methyl-2'-deoxyadenosine, when coupled with a lesion-specific repair enzyme. Together, DCL-seq holds the promise to sequence multiple DNA modifications in various biological samples.
Collapse
Affiliation(s)
- Chaoxing Liu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon H Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Wenyan Xu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Ching-Hsin Yang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Yu Hsuan Chen
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
16
|
Bellamri M, Terrell JT, Brandt K, Gruppi F, Turesky RJ, Rizzo CJ. Anthracyclines React with Apurinic/Apyrimidinic Sites in DNA. ACS Chem Biol 2023; 18:1315-1323. [PMID: 37200590 PMCID: PMC10391585 DOI: 10.1021/acschembio.3c00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The combination of doxorubicin (Adriamycin) and cyclophosphamide, referred to as AC chemotherapy, is commonly used for the clinical treatment of breast and other cancers. Both agents target DNA with cyclophosphamide causing alkylation damage and doxorubicin stabilizing the topoisomerase II-DNA complex. We hypothesize a new mechanism of action whereby both agents work in concert. DNA alkylating agents, such as nitrogen mustards, increase the number of apurinic/apyrimidinic (AP) sites through deglycosylation of labile alkylated bases. Herein, we demonstrate that anthracyclines with aldehyde-reactive primary and secondary amines form covalent Schiff base adducts with AP sites in a 12-mer DNA duplex, calf thymus DNA, and MDA-MB-231 human breast cancer cells treated with nor-nitrogen mustard and the anthracycline mitoxantrone. The anthracycline-AP site conjugates are characterized and quantified by mass spectrometry after NaB(CN)H3 or NaBH4 reduction of the Schiff base. If stable, the anthracycline-AP site conjugates represent bulky adducts that may block DNA replication and contribute to the cytotoxic mechanism of therapies involving combinations of anthracyclines and DNA alkylating agents.
Collapse
|
17
|
Zhao W, Xu W, Tang J, Kaushik S, Chang CEA, Zhao L. Key Amino Acid Residues of Mitochondrial Transcription Factor A Synergize with Abasic (AP) Site Dynamics To Facilitate AP-Lyase Reactions. ACS Chem Biol 2023; 18:1168-1179. [PMID: 36930463 PMCID: PMC10198963 DOI: 10.1021/acschembio.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Human mitochondrial DNA (mtDNA) encodes 37 essential genes and plays a critical role in mitochondrial and cellular functions. mtDNA is susceptible to damage by endogenous and exogenous chemicals. Damaged mtDNA molecules are counteracted by the redundancy, repair, and degradation of mtDNA. In response to difficult-to-repair or excessive amounts of DNA lesions, mtDNA degradation is a crucial mitochondrial genome maintenance mechanism. Nevertheless, the molecular basis of mtDNA degradation remains incompletely understood. Recently, mitochondrial transcription factor A (TFAM) has emerged as a factor in degrading damaged mtDNA containing abasic (AP) sites. TFAM has AP-lyase activity, which cleaves DNA at AP sites. Human TFAM and its homologs contain a higher abundance of Glu than that of the proteome. To decipher the role of Glu in TFAM-catalyzed AP-DNA cleavage, we constructed TFAM variants and used biochemical assays, kinetic simulations, and molecular dynamics (MD) simulations to probe the functional importance of E187 near a key residue K186. Our previous studies showed that K186 is a primary residue to cleave AP-DNA via Schiff base chemistry. Here, we demonstrate that E187 facilitates β-elimination, key to AP-DNA strand scission. MD simulations showed that extrahelical confirmation of the AP lesion and the flexibility of E187 in TFAM-DNA complexes facilitate AP-lyase reactions. Together, highly abundant Lys and Glu residues in TFAM promote AP-DNA strand scission, supporting the role of TFAM in AP-DNA turnover and implying the breadth of this process across different species.
Collapse
Affiliation(s)
- Wenxin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
| | - Wenyan Xu
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
| | - Jin Tang
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
| | - Shivansh Kaushik
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
| | - Chia-En A. Chang
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California, 92521, United States
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California, 92521, United States
| |
Collapse
|
18
|
Bryan C, Le J, Wei X, Yang K. Saccharomyces cerevisiae apurinic/apyrimidinic endonuclease 1 repairs abasic site-mediated DNA-peptide/protein cross-links. DNA Repair (Amst) 2023; 126:103501. [PMID: 37075541 DOI: 10.1016/j.dnarep.2023.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Saccharomyces cerevisiae apurinic/apyrimidinic (AP) endonuclease 1 (yApn1) is a key player of the base excision repair pathway. This multifunctional enzyme is an AP endonuclease, 3'-5' exonuclease, 3'-phosphodiesterase, and participates in nucleotide incision repair. To the best of our knowledge, the known substrates of yApn1 are small DNA lesions such as AP sites and 3'-phospho-α,β-unsaturated aldehyde (3'-PUA). Here, we wish to report in vitro findings that yApn1 repairs bulky DNA-peptide cross-links (DpCs) and DNA-protein cross-links (DPCs) arising from AP sites and 3'-PUA. We chemically synthesized stable and linkage-defined DpCs and DPCs by oxime ligation and reductive amination, respectively. Our steady-state kinetic data showed that yApn1 repairs a 10-mer peptide-conjugated AP site and 3'-PUA with comparable efficiencies to that of processing the unconjugated lesions. We demonstrated that yApn1 is the predominant enzyme that incises AP-DpC in yeast cell extracts. We also demonstrated that yApn1 incises AP-DPCs in a DPC size-dependent manner, and prior DPC proteolysis by trypsin facilitates the repair. We further found that yApn1 removes 3'-PUA-histone DPCs with moderate efficiencies. Together, our results uncovered a novel role of yApn1 in DPC repair, and support the emerging model that proteolysis is required for efficient DPC repair.
Collapse
Affiliation(s)
- Cameron Bryan
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jennifer Le
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Xiaoying Wei
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States
| | - Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
19
|
Nagatsugi F, Onizuka K. Selective Chemical Modification to the Higher-Order Structures of Nucleic Acids. CHEM REC 2023; 23:e202200194. [PMID: 36111635 DOI: 10.1002/tcr.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Indexed: 11/06/2022]
Abstract
DNA and RNA can adopt a variety of stable higher-order structural motifs, including G-quadruplex (G4 s), mismatches, and bulges. Many of these secondary structures are closely related to the regulation of gene expression. Therefore, the higher-order structure of nucleic acids is one of the candidate therapeutic targets, and the development of binding molecules targeting the higher-order structure of nucleic acids has been pursued vigorously. Furthermore, as one of the methodologies for detecting the higher-order structures of these nucleic acids, developing techniques for the selective chemical modification of the higher-order structures of nucleic acids is also underway. In this personal account, we focus on the following higher-order structures of nucleic acids, double-stranded DNA containing the abasic site, T-T/U-U mismatch structure, and G-quadruplex structure, and describe the development of molecules that bind to and chemically modify these structures.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
20
|
Yin J, Gates KS, Wang Y. N-Methyl- N-nitrosourea Induced 3'-Glutathionylated DNA-Cleavage Products in Mammalian Cells. Anal Chem 2022; 94:15595-15603. [PMID: 36332130 PMCID: PMC9869666 DOI: 10.1021/acs.analchem.2c02003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apurinic/apyrimidinic (AP) sites, that is, abasic sites, are among the most frequently induced DNA lesions. Spontaneous or DNA glycosylase-mediated β-elimination of the 3'-phosphoryl group can lead to strand cleavages at AP sites to yield a highly reactive, electrophilic 3'-phospho-α,β-unsaturated aldehyde (3'-PUA) remnant. The latter can react with amine or thiol groups of biological small molecules, DNA, and proteins to yield various damaged 3'-end products. Considering its high intracellular concentration, glutathione (GSH) may conjugate with 3'-PUA to yield 3-glutathionyl-2,3-dideoxyribose (GS-ddR), which may constitute a significant, yet previously unrecognized endogenous lesion. Here, we developed a liquid chromatography tandem mass spectroscopy method, in combination with the use of a stable isotope-labeled internal standard, to quantify GS-ddR in genomic DNA of cultured human cells. Our results revealed the presence of GS-ddR in the DNA of untreated cells, and its level was augmented in cells upon exposure to an alkylating agent, N-methyl-N-nitrosourea (MNU). In addition, inhibition of AP endonuclease (APE1) led to an elevated level of GS-ddR in the DNA of MNU-treated cells. Together, we reported here, for the first time, the presence of appreciable levels of GS-ddR in cellular DNA, the induction of GS-ddR by a DNA alkylating agent, and the role of APE1 in modulating its level in human cells.
Collapse
Affiliation(s)
- Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
21
|
Amin SM, Islam T, Price NE, Wallace A, Guo X, Gomina A, Heidari M, Johnson KM, Lewis CD, Yang Z, Gates KS. Effects of Local Sequence, Reaction Conditions, and Various Additives on the Formation and Stability of Interstrand Cross-Links Derived from the Reaction of an Abasic Site with an Adenine Residue in Duplex DNA. ACS OMEGA 2022; 7:36888-36901. [PMID: 36278095 PMCID: PMC9583646 DOI: 10.1021/acsomega.2c05736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The experiments described here examined the effects of reaction conditions, various additives, and local sequence on the formation and stability interstrand cross-links (ICLs) derived from the reaction of an apurinic/apyrimidinic (AP) site with the exocyclic amino group of an adenine residue on the opposing strand in duplex DNA. Cross-link formation was observed in a range of different buffers, with faster formation rates observed at pH 5. Inclusion of the base excision repair enzyme alkyladenine DNA glycosylase (hAAG) which binds tightly to AP-containing duplexes decreased, but did not completely prevent, formation of the dA-AP ICL. Formation of the dA-AP ICL was not altered by the presence of the biological metal ion Mg2+ or the biological thiol, glutathione. Several organocatalysts of imine formation did not enhance the rate of dA-AP ICL formation. Duplex length did not have a large effect on dA-AP yield, so long as the melting temperature of the duplex was not significantly below the reaction temperature (the duplex must remain hybridized for efficient ICL formation). Formation of the dA-AP ICL was examined in over 40 different sequences that varied the neighboring and opposing bases at the cross-linking site. The results indicate that ICL formation can occur in a wide variety of sequence contexts under physiological conditions. Formation of the dA-AP ICL was strongly inhibited by the aldehyde-trapping agents methoxyamine and hydralazine, by NaBH3CN, by the intercalator ethidium bromide, and by the minor groove-binding agent netropsin. ICL formation was inhibited to some extent in bicarbonate and Tris buffers. The dA-AP ICL showed substantial inherent stability under a variety of conditions and was not a substrate for AP-processing enzymes APE1 or Endo IV. Finally, we characterized cross-link formation in a small (11 bp) stem-loop (hairpin) structure and in DNA-RNA hybrid duplexes.
Collapse
Affiliation(s)
- Saosan
Binth Md. Amin
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Tanhaul Islam
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Nathan E. Price
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Amanda Wallace
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Xu Guo
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Anuoluwapo Gomina
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Marjan Heidari
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kevin M. Johnson
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Calvin D. Lewis
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
22
|
Huskova A, Dinesh DC, Srb P, Boura E, Veverka V, Silhan J. Model of abasic site DNA cross-link repair; from the architecture of NEIL3 DNA binding domains to the X-structure model. Nucleic Acids Res 2022; 50:10436-10448. [PMID: 36155818 PMCID: PMC9561275 DOI: 10.1093/nar/gkac793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Covalent DNA interstrand crosslinks are toxic DNA damage lesions that block the replication machinery that can cause a genomic instability. Ubiquitous abasic DNA sites are particularly susceptible to spontaneous cross-linking with a base from the opposite DNA strand. Detection of a crosslink induces the DNA helicase ubiquitination that recruits NEIL3, a DNA glycosylase responsible for the lesion removal. NEIL3 utilizes several zinc finger domains indispensable for its catalytic NEI domain repairing activity. They recruit NEIL3 to the repair site and bind the single-stranded DNA. However, the molecular mechanism underlying their roles in the repair process is unknown. Here, we report the structure of the tandem zinc-finger GRF domain of NEIL3 and reveal the molecular details of its interaction with DNA. Our biochemical data indicate the preferential binding of the GRF domain to the replication fork. In addition, we obtained a structure for the catalytic NEI domain in complex with the DNA reaction intermediate that allowed us to construct and validate a model for the interplay between the NEI and GRF domains in the recognition of an interstrand cross-link. Our results suggest a mechanism for recognition of the DNA replication X-structure by NEIL3, a key step in the interstrand cross-link repair.
Collapse
Affiliation(s)
- Andrea Huskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czech Republic
| | - Dhurvas Chandrasekaran Dinesh
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czech Republic
| |
Collapse
|
23
|
Wei X, Person MD, Yang K. Tyrosyl-DNA phosphodiesterase 1 excises the 3'-DNA-ALKBH1 cross-link and its application for 3'-DNA-ALKBH1 cross-link characterization by LC-MS/MS. DNA Repair (Amst) 2022; 119:103391. [PMID: 36049356 DOI: 10.1016/j.dnarep.2022.103391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
The apurinic/apyrimidinic (abasic, AP) site is one of the most abundant DNA lesions. Previous studies by others demonstrated that human AlkB homologue 1 (ALKBH1) catalyzes the DNA strand incision at an AP site, resulting in suicidal cross-linking of the enzyme to the 3'-DNA end. Prior site-directed mutagenesis experiments had reported that Cys129 of ALKBH1 is the predominant nucleophile that conjugates to the C3' position of the incised AP site, 3'-phospho-α,β-unsaturated aldehyde (3'-PUA), to form a 3'-PUA-ALKBH1 cross-link. However, direct evidence to support this mechanism was lacking. The 3'-PUA-ALKBH1 cross-link is so far the only adduct that has been found to form via a Michael addition reaction between a protein and 3'-PUA. It is unclear whether and how this type of cross-link is repaired. In this study, we first demonstrated that the 3'-PUA-ALKBH1 cross-link is fairly stable under physiological temperature and pH as only ~10% of the adduct decomposed after a 3-day incubation. Using a gel-based assay with an aldehyde-reacting probe, we demonstrated that the 3'-PUA-ALKBH1 cross-link has a free aldehyde group that is in line with the Michael addition mechanism. Moreover, we found that the 3'-PUA-ALKBH1 cross-link can be excised by human tyrosyl-DNA phosphodiesterase 1 (TDP1) and the removal efficiency is significantly enhanced if the adduct is pre-digested by trypsin. Notably, we employed TDP1 as a molecular tool to homogeneously release the cross-linked peptides from DNA to facilitate liquid chromatography tandem mass spectrometry analysis, and demonstrated that Cys129 and Cys371 of ALKBH1 cross-link to 3'-PUA.
Collapse
Affiliation(s)
- Xiaoying Wei
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States
| | - Maria D Person
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, TX 78712, United States
| | - Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
24
|
Paulin KA, Cortez D, Eichman BF. The SOS response-associated peptidase (SRAP) domain of YedK catalyzes ring opening of abasic sites and reversal of its DNA-protein crosslink. J Biol Chem 2022; 298:102307. [PMID: 35934051 PMCID: PMC9436759 DOI: 10.1016/j.jbc.2022.102307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
Apurinic/apyrimidinic (AP, or abasic) sites in DNA are one of the most common forms of DNA damage. AP sites are reactive and form cross-links to both proteins and DNA, are prone to strand breakage, and inhibit DNA replication and transcription. The replication-associated AP site repair protein HMCES protects cells from strand breaks, inhibits mutagenic translesion synthesis, and participates in repair of interstrand DNA cross-links derived from AP sites by forming a stable thiazolidine DNA–protein cross-link (DPC) to AP sites in single-stranded DNA (ssDNA). Despite the importance of HMCES to genome maintenance and the evolutionary conservation of its catalytic SRAP (SOS Response Associated Peptidase) domain, the enzymatic mechanisms of DPC formation and resolution are unknown. Using the bacterial homolog YedK, we show that the SRAP domain catalyzes conversion of the AP site to its reactive, ring-opened aldehyde form, and we provide structural evidence for the Schiff base intermediate that forms prior to the more stable thiazolidine. We also report two new activities, whereby SRAP reacts with polyunsaturated aldehydes at DNA 3′-ends generated by bifunctional DNA glycosylases and catalyzes direct reversal of the DPC to regenerate the AP site, the latter of which we observe in both YedK and HMCES-SRAP proteins. Taken together, this work provides insights into possible mechanisms by which HMCES DPCs are resolved in cells.
Collapse
|
25
|
Onizuka K, Yamano Y, Abdelhady AM, Nagatsugi F. Hybridization-specific chemical reactions to create interstrand crosslinking and threaded structures of nucleic acids. Org Biomol Chem 2022; 20:4699-4708. [PMID: 35622064 DOI: 10.1039/d2ob00551d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interstrand crosslinking and threaded structures of nucleic acids have high potential in oligonucleotide therapeutics, chemical biology, and nanotechnology. For example, properly designed crosslinking structures provide high activity and nuclease resistance for anti-miRNAs. The noncovalent labeling and modification by the threaded structures are useful as new chemical biology tools. Photoreversible crosslinking creates smart materials, such as reversible photoresponsive gels and DNA origami objects. This review introduces the creation of interstrand crosslinking and threaded structures, such as catenanes and rotaxanes, based on hybridization-specific chemical reactions and their functions and perspectives.
Collapse
Affiliation(s)
- Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yuuhei Yamano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
26
|
Semlow DR, MacKrell VA, Walter JC. The HMCES DNA-protein cross-link functions as an intermediate in DNA interstrand cross-link repair. Nat Struct Mol Biol 2022; 29:451-462. [PMID: 35534579 PMCID: PMC9949344 DOI: 10.1038/s41594-022-00764-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/28/2022] [Indexed: 12/31/2022]
Abstract
The 5-hydroxymethylcytosine binding, embryonic stem-cell-specific (HMCES) protein forms a covalent DNA-protein cross-link (DPC) with abasic (AP) sites in single-stranded DNA, and the resulting HMCES-DPC is thought to suppress double-strand break formation in S phase. However, the dynamics of HMCES cross-linking and whether any DNA repair pathways normally include an HMCES-DPC intermediate remain unknown. Here, we use Xenopus egg extracts to show that an HMCES-DPC forms on the AP site generated during replication-coupled DNA interstrand cross-link repair. We show that HMCES cross-links form on DNA after the replicative CDC45-MCM2-7-GINS (CMG) helicase has passed over the AP site, and that HMCES is subsequently removed by the SPRTN protease. The HMCES-DPC suppresses double-strand break formation, slows translesion synthesis past the AP site and introduces a bias for insertion of deoxyguanosine opposite the AP site. These data demonstrate that HMCES-DPCs form as intermediates in replication-coupled repair, and they suggest a general model of how HMCES protects AP sites during DNA replication.
Collapse
Affiliation(s)
- Daniel R Semlow
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Victoria A MacKrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
27
|
Huskova A, Landova B, Boura E, Silhan J. The rate of formation and stability of abasic site interstrand crosslinks in the DNA duplex. DNA Repair (Amst) 2022; 113:103300. [PMID: 35255312 DOI: 10.1016/j.dnarep.2022.103300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/03/2022]
Abstract
DNA interstrand crosslinks (ICLs) strands pose an impenetrable barrier for DNA replication. Different ICLs are known to recruit distinct DNA repair pathways. NEIL3 glycosylase has been known to remove an abasic (Ap) site derived DNA crosslink (Ap-ICL). An Ap-ICL forms spontaneously from the Ap site with an adjacent adenine in the opposite strand. Lack of genetic models and a poor understanding of the fate of these lesions leads to many questions about the occurrence and the toxicity of Ap-ICL in cells. Here, we investigate the circumstances of Ap-ICL formation. With an array of different oligos, we have investigated the rates of formation, the yields, and the stability of Ap-ICL. Our findings point out how different bases in the vicinity of the Ap site change crosslink formation in vitro. We reveal that AT-rich rather than GC-rich regions in the surrounding Ap site lead to higher rates of Ap-ICL formation. Overall, our data reveal that Ap-ICL can be formed in virtually any DNA sequence context surrounding a hot spot of a 5'-Ap-dT pair, albeit with significantly different rates and yields. Based on Ap-ICL formation in vitro, we attempt to predict the number of Ap-ICLs in the cell.
Collapse
Affiliation(s)
- Andrea Huskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague 6, Czech Republic
| | - Barbora Landova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague 6, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
28
|
Facile preparation of model DNA interstrand cross-link repair intermediates using ribonucleotide-containing DNA. DNA Repair (Amst) 2022; 111:103286. [PMID: 35124371 PMCID: PMC8939895 DOI: 10.1016/j.dnarep.2022.103286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 01/13/2023]
Abstract
DNA interstrand cross-links (ICLs) are lesions with a covalent bond formed between DNA strands. ICLs are extremely toxic to cells because they prevent the separation of the two strands, which are necessary for the genetic interpretation of DNA. ICLs are repaired via Fanconi anemia and replication-independent pathways. The formation of so-called unhooked repair intermediates via a dual strand incision flanking the ICL site on one strand is an essential step in nearly all ICL repair pathways. Recently, ICLs derived from endogenous sources, such as those from ubiquitous DNA lesions, abasic (AP) sites, have emerged as an important class of ICLs. Despite the earlier efforts in preparing AP-ICLs in high yield using nucleotide analogs, little information is available for preparing AP-ICL unhooked intermediates with varying lengths of overhangs. In this study, we devise a simple approach to prepare model ICL unhooked intermediates derived from AP sites. We exploited the alkaline lability of ribonucleotides (rNMPs) and the high cross-linking efficiency between an AP lesion and a nucleotide analog, 2-aminopurine, via reductive amination. We designed chimeric DNA/RNA substrates with rNMPs flanking the cross-linking residue (2-aminopurine) to facilitate subsequent strand cleavage under our optimized conditions. Mass spectrometric analysis and primer extension assays confirmed the structures of ICL substrates. The method is straightforward, requires no synthetic chemistry expertise, and should be broadly accessible to all researchers in the DNA repair community. For step-by-step descriptions of the method, please refer to the companion manuscript in MethodsX.
Collapse
|
29
|
Haldar T, Jha JS, Yang Z, Nel C, Housh K, Cassidy OJ, Gates KS. Unexpected Complexity in the Products Arising from NaOH-, Heat-, Amine-, and Glycosylase-Induced Strand Cleavage at an Abasic Site in DNA. Chem Res Toxicol 2022; 35:218-232. [PMID: 35129338 PMCID: PMC9482271 DOI: 10.1021/acs.chemrestox.1c00409] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrolytic loss of nucleobases from the deoxyribose backbone of DNA is one of the most common unavoidable types of damage in synthetic and cellular DNA. The reaction generates abasic sites in DNA, and it is important to understand the properties of these lesions. The acidic nature of the α-protons of the ring-opened abasic aldehyde residue facilitates the β-elimination of the 3'-phosphoryl group. This reaction is expected to generate a DNA strand break with a phosphoryl group on the 5'-terminus and a trans-α,β-unsaturated aldehyde residue on the 3'-terminus; however, a handful of studies have identified noncanonical sugar remnants on the 3'-terminus, suggesting that the products arising from strand cleavage at apurinic/apyrimidinic sites in DNA may be more complex than commonly thought. We characterized the strand cleavage induced by the treatment of an abasic site-containing DNA oligonucleotide with heat, NaOH, piperidine, spermine, and the base excision repair glycosylases Fpg and Endo III. The results showed that under multiple conditions, cleavage at an abasic site in a DNA oligomer generated noncanonical sugar remnants including cis-α,β-unsaturated aldehyde, 2-deoxyribose, and 3-thio-2,3-dideoxyribose products on the 3'-terminus of the strand break.
Collapse
Affiliation(s)
- Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Jay S. Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Zhiyu Yang
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Orla J. Cassidy
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211,University of Missouri, Department of Biochemistry, Columbia, MO 65211,Address correspondence to Kent S. Gates – Departments of Chemistry and Biochemistry, 125 Chemistry Bldg. University of Missouri, Columbia, MO 65211, United States; ORCHID ID: 0000-0002-4218-7411; Phone: (573) 882-6763;
| |
Collapse
|
30
|
Wei X, Wang Z, Hinson C, Yang K. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3638-3657. [PMID: 35349719 PMCID: PMC9023300 DOI: 10.1093/nar/gkac185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Caroline Hinson
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kun Yang
- To whom correspondence should be addressed. Tel: +1 512 471 4843;
| |
Collapse
|
31
|
Chan W, Jin L. DNA-Protein Cross-Links Formed by Reacting Lysine with Apurinic/Apyrimidinic Sites in DNA and Human Cells: Quantitative Analysis by Liquid Chromatography-Tandem Mass Spectrometry Coupled with Stable Isotope Dilution. Anal Chem 2021; 94:803-810. [PMID: 34971314 DOI: 10.1021/acs.analchem.1c03356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Accumulating evidence suggests that DNA lesion-induced DNA-protein cross-links (DPCs) interrupt normal DNA metabolic processes, such as transcription, replication, and repair, resulting in profound biological consequences, including the development of many human diseases, such as cancers. Although apurinic/apyrimidinic (AP) sites are among the most predominant DNA lesions and are in close proximity to the histone proteins that they wrap around in the nucleosome, knowledge of the chemical structure or biological consequences of their associated DPCs is limited in part due to a lack of sensitive and selective analytical methods. We developed liquid chromatography-tandem mass spectrometry coupled with a stable isotope dilution method for rigorous quantitation of DPCs formed by reacting a DNA AP site with a lysine residue. In combination with chemical derivatization with fluorenylmethoxycarbonyl chloride to form a hydrophobic conjugate, the developed LC-MS/MS method allows sensitive detection of AP site-Lys cross-links down to sub-1 adduct per 106 nt. After validation using a synthetic AP site-lysine-cross-linked peptide and an oligodeoxyribonucleotide, the method was used to determine the concentration of AP site-lysine cross-links in hot acid-treated DNA and in human cells exposed to methyl methanesulfonate.
Collapse
Affiliation(s)
- Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Long Jin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
32
|
Rozelle AL, Lee S. Genotoxic C8-Arylamino-2'-deoxyadenosines Act as Latent Alkylating Agents to Induce DNA Interstrand Cross-Links. J Am Chem Soc 2021; 143:18960-18976. [PMID: 34726902 DOI: 10.1021/jacs.1c07234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA interstrand cross-links (ICLs) are extremely deleterious and structurally diverse, driving the evolution of ICL repair pathways. Discovering ICL-inducing agents is, thus, crucial for the characterization of ICL repair pathways and Fanconi anemia, a genetic disease caused by mutations in ICL repair genes. Although several studies point to oxidative stress as a cause of ICLs, oxidative stress-induced cross-linking events remain poorly characterized. Also, polycyclic aromatic amines, potent environmental carcinogens, have been implicated in producing ICLs, but their identities and sequences are unknown. To close this knowledge gap, we tested whether ICLs arise by the oxidation of 8-arylamino-2'-deoxyadenosine (ArNHdA) lesions, adducts produced by arylamino carcinogens. Herein, we report that ArNHdA acts as a latent cross-linking agent to generate ICLs under oxidative conditions. The formation of an ICL from 8-aminoadenine, but not from 8-aminoguanine, highlights the specificity of 8-aminopurine-mediated ICL production. Under the influence of the reactive oxygen species (ROS) nitrosoperoxycarbonate, ArNHdA (Ar = biphenyl, fluorenyl) lesions were selectively oxidized to generate ICLs. The cross-linking reaction may occur between the C2-ArNHdA and N2-dG, presumably via oxidation of ArNHdA into a reactive diiminoadenine intermediate followed by the nucleophilic attack of the N2-dG on the diiminoadenine. Overall, ArNHdA-mediated ICLs represent rare examples of ROS-induced ICLs and polycyclic aromatic amine-mediated ICLs. These results reveal novel cross-linking chemistry and the genotoxic effects of arylamino carcinogens and support the hypothesis that C8-modified adenines with low redox potential can cause ICLs in oxidative stress.
Collapse
Affiliation(s)
- Aaron L Rozelle
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States.,McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Seongmin Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
33
|
Housh K, Gates KS. Synthesis of DNA Duplexes Containing Site-Specific Interstrand Cross-Links via Sequential Reductive Amination Reactions Involving Diamine Linkers and Abasic Sites on Complementary Oligodeoxynucleotides. Chem Res Toxicol 2021; 34:2384-2391. [PMID: 34694787 PMCID: PMC8650211 DOI: 10.1021/acs.chemrestox.1c00293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interstrand DNA cross-links are important in biology, medicinal chemistry, and materials science. Accordingly, methods for the targeted installation of interstrand cross-links in DNA duplexes may be useful in diverse fields. Here, a simple procedure is reported for the preparation of DNA duplexes containing site-specific, chemically defined interstrand cross-links. The approach involves sequential reductive amination reactions between diamine linkers and two abasic (apurinic/apyrimidinic, AP) sites on complementary oligodeoxynucleotides. Use of the symmetrical triamine, tris(2-aminoethyl)amine, in this reaction sequence enabled the preparation of a cross-linked DNA duplex bearing a derivatizable aminoethyl group.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
- University of Missouri, Department of Biochemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| |
Collapse
|
34
|
Housh K, Jha JS, Yang Z, Haldar T, Johnson KM, Yin J, Wang Y, Gates KS. Formation and Repair of an Interstrand DNA Cross-Link Arising from a Common Endogenous Lesion. J Am Chem Soc 2021; 143:15344-15357. [PMID: 34516735 DOI: 10.1021/jacs.1c06926] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interstrand DNA cross-links (ICLs) are cytotoxic because they block the strand separation required for read-out and replication of the genetic information in duplex DNA. The unavoidable formation of ICLs in cellular DNA may contribute to aging, neurodegeneration, and cancer. Here, we describe the formation and properties of a structurally complex ICL derived from an apurinic/apyrimidinic (AP) site, which is one of the most common endogenous lesions in cellular DNA. The results characterize a cross-link arising from aza-Michael addition of the N2-amino group of a guanine residue to the electrophilic sugar remnant generated by spermine-mediated strand cleavage at an AP site in duplex DNA. An α,β-unsaturated iminium ion is the critical intermediate involved in ICL formation. Studies employing the bacteriophage φ29 polymerase provided evidence that this ICL can block critical DNA transactions that require strand separation. The results of biochemical studies suggest that this complex strand break/ICL might be repaired by a simple mechanism in which the 3'-exonuclease action of the enzyme apurinic/apyrimidinic endonuclease (APE1) unhooks the cross-link to initiate repair via the single-strand break repair pathway.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Jay S Jha
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Tuhin Haldar
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Kevin M Johnson
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Jiekai Yin
- Department of Chemistry University of California-Riverside Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry University of California-Riverside Riverside, California 92521-0403, United States
| | - Kent S Gates
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States.,University of Missouri Department of Biochemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| |
Collapse
|
35
|
Effect of N7-methylation on base pairing patterns of guanine: a DFT study. J Mol Model 2021; 27:184. [PMID: 34036469 DOI: 10.1007/s00894-021-04792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
In this paper, we aim to determine whether the N7-methylation can influence the base pairing properties of guanine by promoting the formation of guanine enol-tautomers. The keto- to -enol-tautomerization of N7-methylguanine (N7mG) and its base pairing patterns with all the canonical DNA bases have been investigated at the M06-2X/6-311+G(d,p) level of density functional theory. The barrier free energy calculations reveal that N7-methylation does not promote the keto- to enol- tautomerization of guanine. The Watson-Crick-like enol-N7mG:T1 or enol-N7mG:T2 base pair similar to what is observed experimentally is found to be energetically more stable than the keto-N7mG:T base pairs. However, the keto-N7mG:C1 which is structurally similar to the canonical G:C base pair is the most stable base pair among all the base pairs studied here. Thus, our calculations predict that N7mG would pair preferably with cytosine during DNA replication but there is also a probability that it can cause mutation through mispairing with thymine, in agreement with experimental observations.
Collapse
|
36
|
Abstract
DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.
Collapse
Affiliation(s)
- Daniel R Semlow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Current affiliation: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
37
|
Varela JG, Pierce LE, Guo X, Price NE, Johnson KM, Yang Z, Wang Y, Gates KS. Interstrand Cross-Link Formation Involving Reaction of a Mispaired Cytosine Residue with an Abasic Site in Duplex DNA. Chem Res Toxicol 2021; 34:1124-1132. [PMID: 33784065 PMCID: PMC8650171 DOI: 10.1021/acs.chemrestox.1c00004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation of interstrand cross-links in duplex DNA is important in biology, medicine, and biotechnology. Interstrand cross-links arising from the reaction of the aldehyde residue of an abasic (apurinic or AP) site with the exocyclic amino groups of guanine or adenine residues on the opposing strand of duplex DNA have previously been characterized. The canonical nucleobase cytosine has an exocyclic amino group but its ability to form interstrand cross-links by reaction with an AP site has not been characterized before now. Here it is shown that substantial yields of interstrand cross-links are generated in sequences having a mispaired cytosine residue located one nucleotide to the 3'-side of the AP site on the opposing strand (e.g., 5'XA/5'CA, where X = AP). Formation of the dC-AP cross-link is pH-dependent, with significantly higher yields at pH 5 than pH 7. Once formed, the dC-AP cross-link is quite stable, showing less than 5% dissociation over the course of 96 h at pH 7 and 37 °C. No significant yields of cross-link are observed when the cytosine residue is paired with its Watson-Crick partner guanine. It was also shown that a single AP site can engage with multiple nucleobase cross-linking partners in some sequences. Specifically, the dG-AP and dC-AP cross-links coexist in dynamic equilibrium in the sequence 5'CXA/5'CAG (X = AP). In this sequence, the dC-AP cross-link dominates. However, in the presence of NaBH3CN, irreversible reduction of small amounts of the dG-AP cross-link present in the mixture shifts the equilibria away from the dC-AP cross-link toward good yields of the dG-APred cross-link.
Collapse
Affiliation(s)
- Jacqueline Gamboa Varela
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Luke E. Pierce
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Xu Guo
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Nathan E. Price
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
- Department of Chemistry, University of California-Riverside, Riverside, California 92521-0403, United States
| | - Kevin M. Johnson
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Zhiyu Yang
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California-Riverside, Riverside, California 92521-0403, United States
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
- University of Missouri, Department of Biochemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| |
Collapse
|
38
|
Elskens J, Madder A. Crosslinker-modified nucleic acid probes for improved target identification and biomarker detection. RSC Chem Biol 2021; 2:410-422. [PMID: 34458792 PMCID: PMC8341421 DOI: 10.1039/d0cb00236d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 01/02/2023] Open
Abstract
Understanding the intricate interaction pattern of nucleic acids with other molecules is essential to gain further insight in biological processes and disease mechanisms. To this end, a multitude of hybridization-based assays have been designed that rely on the non-covalent recognition between complementary nucleic acid sequences. However, the ephemeral nature of these interactions complicates straightforward analysis as low efficiency and specificity are rule rather than exception. By covalently locking nucleic acid interactions by means of a crosslinking agent, the overall efficiency, specificity and selectivity of hybridization-based assays could be increased. In this mini-review we highlight methodologies that exploit the use of crosslinker-modified nucleic acid probes for interstrand nucleic acid crosslinking with the objective to study, detect and identify important targets as well as nucleic acid sequences that can be considered relevant biomarkers. We emphasize on the usefulness and advantages of crosslinking agents and elaborate on the chemistry behind the crosslinking reactions they induce.
Collapse
Affiliation(s)
- Joke Elskens
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 Building S4 9000 Ghent Belgium +32-9-264-49-98 +32-9-264-44-72
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 Building S4 9000 Ghent Belgium +32-9-264-49-98 +32-9-264-44-72
| |
Collapse
|
39
|
Rozelle AL, Cheun Y, Vilas CK, Koag MC, Lee S. DNA interstrand cross-links induced by the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine. Nat Commun 2021; 12:1897. [PMID: 33772030 PMCID: PMC7997976 DOI: 10.1038/s41467-021-22273-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Oxidative damage to DNA generates 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as two major lesions. Despite the comparable prevalence of these lesions, the biological effects of oxoA remain poorly characterized. Here we report the discovery of a class of DNA interstrand cross-links (ICLs) involving oxidized nucleobases. Under oxidative conditions, oxoA, but not oxoG, readily reacts with an opposite base to produce ICLs, highlighting a latent alkylating nature of oxoA. Reactive halogen species, one-electron oxidants, and the myeloperoxidase/H2O2/Cl− system induce oxoA ICLs, suggesting that oxoA-mediated cross-links may arise endogenously. Nucleobase analog studies suggest C2-oxoA is covalently linked to N2-guanine and N3-adenine for the oxoA-G and oxoA-A ICLs, respectively. The oxoA ICLs presumably form via the oxidative activation of oxoA followed by the nucleophilic attack by an opposite base. Our findings provide insights into oxoA-mediated mutagenesis and contribute towards investigations of oxidative stress-induced ICLs and oxoA-based latent alkylating agents. 7,8-dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine (oxoA) are generated upon oxidative damage to DNA, but the biological effects of oxoA are not well known. Here, the authors report that only oxoA forms DNA interstrand crosslinks (ICLs) upon secondary oxidation and that these ICLs can be induced by reactive halogen species, one-electron oxidants and the myeloperoxidase/H2O2/Cl- system.
Collapse
Affiliation(s)
- Aaron L Rozelle
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.,McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Young Cheun
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Caroline K Vilas
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Myong-Chul Koag
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Seongmin Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
40
|
McNeill DR, Whitaker AM, Stark WJ, Illuzzi JL, McKinnon PJ, Freudenthal BD, Wilson DM. Functions of the major abasic endonuclease (APE1) in cell viability and genotoxin resistance. Mutagenesis 2021; 35:27-38. [PMID: 31816044 DOI: 10.1093/mutage/gez046] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
DNA is susceptible to a range of chemical modifications, with one of the most frequent lesions being apurinic/apyrimidinic (AP) sites. AP sites arise due to damage-induced (e.g. alkylation) or spontaneous hydrolysis of the N-glycosidic bond that links the base to the sugar moiety of the phosphodiester backbone, or through the enzymatic activity of DNA glycosylases, which release inappropriate bases as part of the base excision repair (BER) response. Unrepaired AP sites, which lack instructional information, have the potential to cause mutagenesis or to arrest progressing DNA or RNA polymerases, potentially causing outcomes such as cellular transformation, senescence or death. The predominant enzyme in humans responsible for repairing AP lesions is AP endonuclease 1 (APE1). Besides being a powerful AP endonuclease, APE1 possesses additional DNA repair activities, such as 3'-5' exonuclease, 3'-phophodiesterase and nucleotide incision repair. In addition, APE1 has been shown to stimulate the DNA-binding activity of a number of transcription factors through its 'REF1' function, thereby regulating gene expression. In this article, we review the structural and biochemical features of this multifunctional protein, while reporting on new structures of the APE1 variants Cys65Ala and Lys98Ala. Using a functional complementation approach, we also describe the importance of the repair and REF1 activities in promoting cell survival, including the proposed passing-the-baton coordination in BER. Finally, results are presented indicating a critical role for APE1 nuclease activities in resistance to the genotoxins methyl methanesulphonate and bleomycin, supporting biologically important functions as an AP endonuclease and 3'-phosphodiesterase, respectively.
Collapse
Affiliation(s)
- Daniel R McNeill
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wesley J Stark
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Peter J McKinnon
- Department of Genetics and Tumor Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David M Wilson
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
41
|
Housh K, Jha JS, Haldar T, Amin SBM, Islam T, Wallace A, Gomina A, Guo X, Nel C, Wyatt JW, Gates KS. Formation and repair of unavoidable, endogenous interstrand cross-links in cellular DNA. DNA Repair (Amst) 2021; 98:103029. [PMID: 33385969 PMCID: PMC8882318 DOI: 10.1016/j.dnarep.2020.103029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Genome integrity is essential for life and, as a result, DNA repair systems evolved to remove unavoidable DNA lesions from cellular DNA. Many forms of life possess the capacity to remove interstrand DNA cross-links (ICLs) from their genome but the identity of the naturally-occurring, endogenous substrates that drove the evolution and retention of these DNA repair systems across a wide range of life forms remains uncertain. In this review, we describe more than a dozen chemical processes by which endogenous ICLs plausibly can be introduced into cellular DNA. The majority involve DNA degradation processes that introduce aldehyde residues into the double helix or reactions of DNA with endogenous low molecular weight aldehyde metabolites. A smaller number of the cross-linking processes involve reactions of DNA radicals generated by oxidation.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jay S Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Saosan Binth Md Amin
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tanhaul Islam
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Amanda Wallace
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Anuoluwapo Gomina
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Xu Guo
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jesse W Wyatt
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States; University of Missouri, Department of Biochemistry, Columbia, MO 65211, United States.
| |
Collapse
|
42
|
Bizzarri BM, Fanelli A, Kapralov M, Krasavin E, Saladino R. Meteorite-catalyzed intermolecular trans-glycosylation produces nucleosides under proton beam irradiation. RSC Adv 2021; 11:19258-19264. [PMID: 35478633 PMCID: PMC9033569 DOI: 10.1039/d1ra02379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
Di-glycosylated adenines act as glycosyl donors in the intermolecular trans-glycosylation of pyrimidine nucleobases under proton beam irradiation conditions. Formamide and chondrite meteorite NWA 1465 increased the yield and the selectivity of the reaction. The glycosyl transfer process was highly regioselective in yielding canonical N1-pyrimidine nucleosides, the natural β-anomers prevailing in the presence of formamide and NWA 1465. These data highlight the possible role of intermolecular trans-glycosylation in the prebiotic formation of purine and pyrimidine nucleosides, avoiding the occurrence of independent synthetic pathways. Di-glycosylated adenines act as glycosyl donors in the intermolecular trans-glycosylation of pyrimidine nucleobases under proton beam irradiation conditions.![]()
Collapse
Affiliation(s)
| | - Angelica Fanelli
- Ecological and Biological Sciences Department (DEB)
- University of Tuscia
- Viterbo
- Italy
| | - Michail Kapralov
- Joint Institute for Nuclear Research
- JINR's Laboratory of Radiation Biology
- Russia
- Dubna State University
- Ulitsa Universitetskaya
| | - Eugene Krasavin
- Joint Institute for Nuclear Research
- JINR's Laboratory of Radiation Biology
- Russia
- Dubna State University
- Ulitsa Universitetskaya
| | - Raffaele Saladino
- Ecological and Biological Sciences Department (DEB)
- University of Tuscia
- Viterbo
- Italy
| |
Collapse
|
43
|
Kellum AH, Qiu DY, Voehler MW, Martin W, Gates KS, Stone MP. Structure of a Stable Interstrand DNA Cross-Link Involving a β- N-Glycosyl Linkage Between an N6-dA Amino Group and an Abasic Site. Biochemistry 2020; 60:41-52. [PMID: 33382597 DOI: 10.1021/acs.biochem.0c00596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abasic (AP) sites are one of the most common forms of DNA damage. The deoxyribose ring of AP sites undergoes anomerization between α and β configurations, via an electrophilic aldehyde intermediate. In sequences where an adenine residue is located on the opposing strand and offset 1 nt to the 3' side of the AP site, the nucleophilic N6-dA amino group can react with the AP aldehyde residue to form an interstrand cross-link (ICL). Here, we present an experimentally determined structure of the dA-AP ICL by NMR spectroscopy. The ICL was constructed in the oligodeoxynucleotide 5'-d(T1A2T3G4T5C6T7A8A9G10T11T12C13A14T15C16T17A18)-3':5'-d(T19A20G21A22T23G24A25A26C27X28T29A30G31A32C33A34T35A36)-3' (X=AP site), with the dA-AP ICL forming between A8 and X28. The NMR spectra indicated an ordered structure for the cross-linked DNA duplex and afforded detailed spectroscopic resonance assignments. Structural refinement, using molecular dynamics calculations restrained by NOE data (rMD), revealed the structure of the ICL. In the dA-AP ICL, the 2'-deoxyribosyl ring of the AP site was ring-closed and in the β configuration. Juxtapositioning the N6-dA amino group and the aldehydic C1 of the AP site within bonding distance while simultaneously maintaining two flanking unpaired A9 and T29 bases stacked within the DNA is accomplished by the unwinding of the DNA at the ICL. The structural data is discussed in the context of recent studies describing the replication-dependent unhooking of the dA-AP ICL by the base excision repair glycosylase NEIL3.
Collapse
Affiliation(s)
- Andrew H Kellum
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - David Y Qiu
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Markus W Voehler
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - William Martin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kent S Gates
- Departments of Chemistry and Biochemistry, University of Missouri, Columbia, Missouri 65221, United States
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
44
|
Rodriguez AA, Wojtaszek JL, Greer BH, Haldar T, Gates KS, Williams RS, Eichman BF. An autoinhibitory role for the GRF zinc finger domain of DNA glycosylase NEIL3. J Biol Chem 2020; 295:15566-15575. [PMID: 32878989 PMCID: PMC7667957 DOI: 10.1074/jbc.ra120.015541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/30/2020] [Indexed: 01/07/2023] Open
Abstract
The NEIL3 DNA glycosylase maintains genome integrity during replication by excising oxidized bases from single-stranded DNA (ssDNA) and unhooking interstrand cross-links (ICLs) at fork structures. In addition to its N-terminal catalytic glycosylase domain, NEIL3 contains two tandem C-terminal GRF-type zinc fingers that are absent in the other NEIL paralogs. ssDNA binding by the GRF-ZF motifs helps recruit NEIL3 to replication forks converged at an ICL, but the nature of DNA binding and the effect of the GRF-ZF domain on catalysis of base excision and ICL unhooking is unknown. Here, we show that the tandem GRF-ZFs of NEIL3 provide affinity and specificity for DNA that is greater than each individual motif alone. The crystal structure of the GRF domain shows that the tandem ZF motifs adopt a flexible head-to-tail configuration well-suited for binding to multiple ssDNA conformations. Functionally, we establish that the NEIL3 GRF domain inhibits glycosylase activity against monoadducts and ICLs. This autoinhibitory activity contrasts GRF-ZF domains of other DNA-processing enzymes, which typically use ssDNA binding to enhance catalytic activity, and suggests that the C-terminal region of NEIL3 is involved in both DNA damage recruitment and enzymatic regulation.
Collapse
Affiliation(s)
- Alyssa A Rodriguez
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica L Wojtaszek
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Briana H Greer
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Tuhin Haldar
- Department of Chemistry, University of Missouri, Columbia, Missouri, USA
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA.
| | - Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
45
|
Bradley NP, Washburn LA, Christov PP, Watanabe CMH, Eichman BF. Escherichia coli YcaQ is a DNA glycosylase that unhooks DNA interstrand crosslinks. Nucleic Acids Res 2020; 48:7005-7017. [PMID: 32409837 PMCID: PMC7367128 DOI: 10.1093/nar/gkaa346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Interstrand DNA crosslinks (ICLs) are a toxic form of DNA damage that block DNA replication and transcription by tethering the opposing strands of DNA. ICL repair requires unhooking of the tethered strands by either nuclease incision of the DNA backbone or glycosylase cleavage of the crosslinked nucleotide. In bacteria, glycosylase-mediated ICL unhooking was described in Streptomyces as a means of self-resistance to the genotoxic natural product azinomycin B. The mechanistic details and general utility of glycosylase-mediated ICL repair in other bacteria are unknown. Here, we identify the uncharacterized Escherichia coli protein YcaQ as an ICL repair glycosylase that protects cells against the toxicity of crosslinking agents. YcaQ unhooks both sides of symmetric and asymmetric ICLs in vitro, and loss or overexpression of ycaQ sensitizes E. coli to the nitrogen mustard mechlorethamine. Comparison of YcaQ and UvrA-mediated ICL resistance mechanisms establishes base excision as an alternate ICL repair pathway in bacteria.
Collapse
Affiliation(s)
- Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Lauren A Washburn
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Plamen P Christov
- Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Coran M H Watanabe
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
46
|
Rogers CM, Simmons Iii RH, Fluhler Thornburg GE, Buehler NJ, Bochman ML. Fanconi anemia-independent DNA inter-strand crosslink repair in eukaryotes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 158:33-46. [PMID: 32877700 DOI: 10.1016/j.pbiomolbio.2020.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
DNA inter-strand crosslinks (ICLs) are dangerous lesions that can be caused by a variety of endogenous and exogenous bifunctional compounds. Because covalently linking both strands of the double helix locally disrupts DNA replication and transcription, failure to remove even a single ICL can be fatal to the cell. Thus, multiple ICL repair pathways have evolved, with the best studied being the canonical Fanconi anemia (FA) pathway. However, recent research demonstrates that different types of ICLs (e.g., backbone distorting vs. non-distorting) can be discriminated by the cell, which then mounts a specific repair response using the FA pathway or one of a variety of FA-independent ICL repair pathways. This review focuses on the latter, covering current work on the transcription-coupled, base excision, acetaldehyde-induced, and SNM1A/RecQ4 ICL repair pathways and highlighting unanswered questions in the field. Answering these questions will provide mechanistic insight into the various pathways of ICL repair and enable ICL-inducing agents to be more effectively used as chemotherapeutics.
Collapse
Affiliation(s)
- Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Robert H Simmons Iii
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Gabriella E Fluhler Thornburg
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Nicholas J Buehler
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA.
| |
Collapse
|
47
|
Structural biology of DNA abasic site protection by SRAP proteins. DNA Repair (Amst) 2020; 94:102903. [PMID: 32663791 DOI: 10.1016/j.dnarep.2020.102903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/24/2022]
Abstract
Abasic (AP) sites are one of the most frequently occurring types of DNA damage. They lead to DNA strand breaks, interstrand DNA crosslinks, and block transcription and replication. Mutagenicity of AP sites arises from translesion synthesis (TLS) by error-prone bypass polymerases. Recently, a new cellular response to AP sites was discovered, in which the protein HMCES (5-hydroxymethlycytosine (5hmC) binding, embryonic stem cell-specific) forms a stable, covalent DNA-protein crosslink (DPC) to AP sites at stalled replication forks. The stability of the HMCES-DPC prevents strand cleavage by endonucleases and mutagenic bypass by TLS polymerases. Crosslinking is carried out by a unique SRAP (SOS Response Associated Peptidase) domain conserved across all domains of life. Here, we review the collection of recently reported SRAP crystal structures from human HMCES and E. coli YedK, which provide a unified basis for SRAP specificity and a putative chemical mechanism of AP site crosslinking. We discuss the structural and chemical basis for the stability of the SRAP DPC and how it differs from covalent protein-DNA intermediates in DNA lyase catalysis of strand scission.
Collapse
|
48
|
Rogers CM, Lee CY, Parkins S, Buehler NJ, Wenzel S, Martínez-Márquez F, Takagi Y, Myong S, Bochman ML. The yeast Hrq1 helicase stimulates Pso2 translesion nuclease activity and thereby promotes DNA interstrand crosslink repair. J Biol Chem 2020; 295:8945-8957. [PMID: 32371399 PMCID: PMC7335788 DOI: 10.1074/jbc.ra120.013626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
DNA interstrand crosslink (ICL) repair requires a complex network of DNA damage response pathways. Removal of the ICL lesions is vital, as they are physical barriers to essential DNA processes that require the separation of duplex DNA, such as replication and transcription. The Fanconi anemia (FA) pathway is the principal mechanism for ICL repair in metazoans and is coupled to DNA replication. In Saccharomyces cerevisiae, a vestigial FA pathway is present, but ICLs are predominantly repaired by a pathway involving the Pso2 nuclease, which is hypothesized to use its exonuclease activity to digest through the lesion to provide access for translesion polymerases. However, Pso2 lacks translesion nuclease activity in vitro, and mechanistic details of this pathway are lacking, especially relative to FA. We recently identified the Hrq1 helicase, a homolog of the disease-linked enzyme RecQ-like helicase 4 (RECQL4), as a component of Pso2-mediated ICL repair. Here, using genetic, biochemical, and biophysical approaches, including single-molecule FRET (smFRET)- and gel-based nuclease assays, we show that Hrq1 stimulates the Pso2 nuclease through a mechanism that requires Hrq1 catalytic activity. Importantly, Hrq1 also stimulated Pso2 translesion nuclease activity through a site-specific ICL in vitro We noted that stimulation of Pso2 nuclease activity is specific to eukaryotic RecQ4 subfamily helicases, and genetic and biochemical data suggest that Hrq1 likely interacts with Pso2 through their N-terminal domains. These results advance our understanding of FA-independent ICL repair and establish a role for the RecQ4 helicases in the repair of these detrimental DNA lesions.
Collapse
Affiliation(s)
- Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Chun-Ying Lee
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Samuel Parkins
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicholas J Buehler
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Sabine Wenzel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Francisco Martínez-Márquez
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
49
|
Thompson PS, Cortez D. New insights into abasic site repair and tolerance. DNA Repair (Amst) 2020; 90:102866. [PMID: 32417669 PMCID: PMC7299775 DOI: 10.1016/j.dnarep.2020.102866] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Thousands of apurinic/apyrimidinic (AP or abasic) sites form in each cell, each day. This simple DNA lesion can have profound consequences to cellular function, genome stability, and disease. As potent blocks to polymerases, they interfere with the reading and copying of the genome. Since they provide no coding information, they are potent sources of mutation. Due to their reactive chemistry, they are intermediates in the formation of lesions that are more challenging to repair including double-strand breaks, interstrand crosslinks, and DNA protein crosslinks. Given their prevalence and deleterious consequences, cells have multiple mechanisms of repairing and tolerating these lesions. While base excision repair of abasic sites in double-strand DNA has been studied for decades, new interest in abasic site processing has come from more recent insights into how they are processed in single-strand DNA. In this review, we discuss the source of abasic sites, their biological consequences, tolerance mechanisms, and how they are repaired in double and single-stranded DNA.
Collapse
Affiliation(s)
- Petria S Thompson
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, 37232, USA
| | - David Cortez
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, 37232, USA.
| |
Collapse
|
50
|
Whitaker AM, Stark WJ, Flynn TS, Freudenthal BD. Molecular and structural characterization of disease-associated APE1 polymorphisms. DNA Repair (Amst) 2020; 91-92:102867. [PMID: 32454397 DOI: 10.1016/j.dnarep.2020.102867] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Under conditions of oxidative stress, reactive oxygen species (ROS) continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. When the nucleobase structure is altered, its base-pairing properties may also be altered, promoting mutations. Consequently, oxidative DNA damage is a major source of the mutation load that gives rise to numerous human maladies, including cancer. Base excision repair (BER) is the primary pathway tasked with removing and replacing mutagenic DNA base damage. Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme with AP-endonuclease and 3' to 5' exonuclease functions during BER, and therefore is key to maintenance of genome stability. Polymorphisms, or SNPs, in the gene encoding APE1 (APEX1) have been identified among specific human populations and result in variants of APE1 with modified function. These defects in APE1 potentially result in impaired DNA repair capabilities and consequently an increased risk of disease for individuals within these populations. In the present study, we determined the X-ray crystal structures of three prevalent disease-associated APE1 SNPs (D148E, L104R, and R237C). Each APE1 SNP results in unique localized changes in protein structure, including protein dynamics and DNA binding contacts. Combined with comprehensive biochemical characterization, including pre-steady-state kinetic and DNA binding analyses, variant APE1:DNA complex structures with both AP-endonuclease and exonuclease substrates were analyzed to elucidate how these SNPs might perturb the two major repair functions employed by APE1 during BER.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS,66160, USA
| | - Wesley J Stark
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS,66160, USA
| | - Tony S Flynn
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS,66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS,66160, USA.
| |
Collapse
|