1
|
Jiang Z, Zhong H, Chen S, Chung LH, Guo Y, Hu J, Zhou HQ, Peng X, He J. Harnessing Coordination Microenvironment of Metal-bis(dithiolene) Sites for Modulating Electrocatalytic CO 2 Reduction by Metal-Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503299. [PMID: 40351149 DOI: 10.1002/smll.202503299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Nature's metalloenzymes inspire biomimetic catalysts for the CO2 reduction reaction (CO2RR), particularly using metal-bis(dithiolene) ([MS4]) cores in frameworks. While prior research focused on tuning the chelating atoms of Ni-centered sites or [NiS4] in metal-organic frameworks (MOFs), how different metal centers affect the electronic structure and catalytic activity is often overlooked. Notably, reported [NiS4] molecular analogues exhibits a Faradaic efficiency (FE) of less than 70% for the major carbon product and shows operational stability for only about 4 hours (say falling FE and current density beyond). In this study, MOFs are used to host [MS4] units with varying central metals (M = Ni, Cu, Co, Fe) to assess how the metal center affects electrocatalytic CO2RR. Among the studied MS4-In MOFs, NiS4-In demonstrates the best performance, achieving a FECO of 88.54% and operational stability greater than 6 hours-significantly outlasting the ≈200 seconds of the [NiS4] molecule. This work underscores the importance of frameworks in stabilizing [MS4] units and highlights [MS4] as essential for CO2 binding and reduction, with [NiS4] exhibiting optimal catalytic performance due to its favorable electronic properties. This findings clarify how substituting the metal center within the framework enhances electronic structure and coordination, leading to improved electrocatalytic performance.
Collapse
Affiliation(s)
- Zhixin Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Hao Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Song Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| | - Yue Guo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Hua-Qun Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xiang Peng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| |
Collapse
|
2
|
Kamatsos F, Drosou M, Zarkadoulas A, Bethanis K, Mitsopoulou CA. Enhanced Homogeneous Photocatalytic Hydrogen Evolution in a Binuclear Bio-Inspired Ni-Ni Complex Bearing Phenanthroline and Sulfidophenolate Ligands. Chemistry 2025; 31:e202404396. [PMID: 39868769 PMCID: PMC11924997 DOI: 10.1002/chem.202404396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
The prominence of binuclear, bimetallic catalysts underlines the need for the design and development of diverse bifunctional ligand frameworks that exhibit tunable electronic and structural properties. Such strategies enable metal-metal and ligand-metal cooperation towards catalytic applications, improve catalytic activity, and are essential for advancing multi-electron transfers for catalytic application. In this work we present the synthesis, crystal structure, and photocatalytic properties of a binuclear Ni(II) complex, [Ni2(1,10-phenanthroline)2(2-sulfidophenolate)2] (1). Complex 1 crystallizes in the centrosymmetric triclinic system (P-1) showing extensive intra- and inter- non-coordinated interactions. 1 is employed as a catalyst for light driven hydrogen evolution. Its catalytic efficiency in a noble-metal-free photo-driven system using fluorescein as photosensitizer and triethanolamine as the electron donor, reaches TON 2900, threefold the efficiency of the corresponding homoleptic mononuclear complex [Ni(2-sulfidophenolate)2]. Efficiency rises up to 9000 TONs when thioglycolic-coated CdTe quantum dots are used as photosensitizers in the presence of ascorbic acid at pH 4.5. UV-Vis spectroscopy, dynamic light scattering techniques, and Hg-poisoning measurements reveal that 1 maintains its molecular structure during catalysis. Electrochemical studies in DMF with TFA as the proton source were also performed for the elucidation of the mechanism of its catalytic action and its stability, suggesting that the proximity of two nickel ions plays a part in the increased catalytic activity, facilitating hydrogen evolution.
Collapse
Affiliation(s)
- Fotios Kamatsos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| | - Maria Drosou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz1, 45470, Mülheiman der Ruhr, Germany
| | - Athanasios Zarkadoulas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| | - Kostas Bethanis
- Physics Laboratory, Department of Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Christiana A Mitsopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| |
Collapse
|
3
|
Vincent AH, Lubert-Perquel D, Hill S, Long JR. Ferromagnetic Exchange and Slow Magnetic Relaxation in Cobalt Bis(1,2-dithiolene)-Bridged Dilanthanide Complexes. Inorg Chem 2024; 63:24150-24156. [PMID: 39652819 DOI: 10.1021/acs.inorgchem.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The construction of multinuclear lanthanide-based molecules with significant magnetic exchange interactions represents a key challenge in the realization of single-molecule magnets with high operating temperatures. Here, we report the synthesis and magnetic characterization of two series of heterobimetallic compounds, (Cp*2Ln)2(μ-Co(pdt)2) (Ln = Y3+, Gd3+, Dy3+; pdt2- = 1,2-diphenylethylenedithiolate) and [K(18-crown-6)][(Cp*2Ln)2(μ-Co(pdt)2)] (Ln = Y3+, Gd3+), featuring two lanthanide centers bridged by a cobalt bis(1,2-dithiolene) complex. Dc magnetic susceptibility data collected for the Gd congeners indicate significant Gd-Co ferromagnetic exchange interactions with fits affording J = +11.5 and +7.33 cm-1, respectively. Magnetization decay and ac magnetic susceptibility measurements carried out on the single-molecule magnet (Cp*2Dy)2(μ-Co(pdt)2) reveal full suppression of quantum tunneling and open-loop hysteresis persisting up to 3.5 K. These results, along with those of high-field EPR spectroscopy, suggest that transition metalloligands can enforce strong exchange interactions with adjacent lanthanide centers while maintaining a geometry that preserves molecular anisotropy. Furthermore, the magnetic properties of [K(18-crown-6)][(Cp*2Gd)2(μ-Co(pdt)2)] show that increasing the spin of the ground state of the bridging complex may be a viable alternative to increasing J in obtaining well-isolated, strongly coupled magnetic ground states.
Collapse
Affiliation(s)
- Alexandre H Vincent
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Daphné Lubert-Perquel
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Haake M, Reuillard B, Chavarot-Kerlidou M, Costentin C, Artero V. Proton Relays in Molecular Catalysis for Hydrogen Evolution and Oxidation: Lessons From the Mimicry of Hydrogenases and Electrochemical Kinetic Analyses. Angew Chem Int Ed Engl 2024; 63:e202413910. [PMID: 39555743 DOI: 10.1002/anie.202413910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/19/2024]
Abstract
The active sites of metalloenzymes involved in small molecules activation often contain pendant bases that act as proton relay promoting proton-coupled electron-transfer processes. Here we focus on hydrogenases and on the reactions they catalyze, i. e. the hydrogen evolution and oxidation reactions. After a short description of these enzymes, we review some of the various biomimetic and bioinspired molecular systems that contain proton relays. We then provide the formal electrochemical framework required to decipher the key role of such proton relay to enhance catalysis in a single direction and discuss the few systems active for H2 evolution for which quantitative kinetic data are available. We finally highlight key parameters required to reach bidirectional catalysis (both hydrogen evolution and hydrogen oxidation catalyzed) and then transition to reversible catalysis (both reactions catalyzed in a narrow potential range) as well as illustrate these features on few systems from the literature.
Collapse
Affiliation(s)
- Matthieu Haake
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Bertrand Reuillard
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Murielle Chavarot-Kerlidou
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Cyrille Costentin
- Département de Chimie Moléculaire, Univ. Grenoble. Alpes, CNRS, 38000, Grenoble, France
| | - Vincent Artero
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| |
Collapse
|
5
|
Chen X, Zhou R, Du Y, She Y, Yang YF. Mechanistic Insights into Oxidation of Benzaldehyde by Co-Peroxo Complexes. J Org Chem 2024; 89:9019-9026. [PMID: 38831395 DOI: 10.1021/acs.joc.4c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Transition metal-peroxide complexes play a crucial role as intermediates in oxidation reactions. To unravel the mechanism of benzaldehyde oxidation by the Co-peroxo complex, we conducted density functional theory (DFT) calculations. The identified competing mechanisms include nucleophilic attack and hydrogen atom transfer (HAT). The nucleophilic attack pathway involves Co-O cleavage and nucleophilic attack, leading to the formation of the benzoate product. And the HAT pathway comprises O-O cleavage and HAT, ultimately resulting in the benzoate product. DFT calculations revealed that the formation of the end-on Co-superoxo complex 2 through Co-O cleavage, starting from the side-on Co-peroxo complex 1, is much more favorable than the formation of the two-terminal oxyl-radical intermediate 3 through O-O cleavage. Compared with the nucleophilic attack of benzaldehyde by 2, the abstraction of a hydrogen atom from benzaldehyde by 3 requires higher energy. The nature of the nucleophilicity of 2 and 3 accounts for the reactivity of the reaction.
Collapse
Affiliation(s)
- Xiahe Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rongrong Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuxin Du
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
6
|
Awasthi A, Mallojjala SC, Kumar R, Eerlapally R, Hirschi JS, Draksharapu A. Altering the Localization of an Unpaired Spin in a Formal Ni(V) Species. Chemistry 2024; 30:e202302824. [PMID: 37903027 PMCID: PMC10841873 DOI: 10.1002/chem.202302824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
The participation of both ligand and the metal center in the redox events has been recognized as one of the ways to attain the formal high valent complexes for the late 3d metals, such as Ni and Cu. Such an approach has been employed successfully to stabilize a Ni(III) bisphenoxyl diradical species in which there exist an equilibrium between the ligand and the Ni localized resultant spin. The present work, however, broadens the scope of the previously reported three oxidized equivalent species by conveying the approaches that tend to affect the reported equilibrium in CH3 CN at 233 K. Various spectroscopic characterization revealed that employing exogenous N-donor ligands like 1-methyl imidazole and pyridine favors the formation of the Ni centered localized spin though axial binding. In contrast, due to its steric hinderance, quinoline favors an exclusive ligand localized radical species. DFT studies shed light on the novel intermediates' complex electronic structure. Further, the three oxidized equivalent species with the Ni centered spin was examined for its hydrogen atom abstraction ability stressing their key role in alike reactions.
Collapse
Affiliation(s)
- Ayushi Awasthi
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | | - Rakesh Kumar
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Raju Eerlapally
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| | - Apparao Draksharapu
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
7
|
Kumar P, Tyagi VP, Ghosh M. Exploring the Multifarious Role of the Ligand in Electrocatalytic Hydrogen Evolution Reaction Pathways. Chemistry 2023; 29:e202302195. [PMID: 37728113 DOI: 10.1002/chem.202302195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
In recent years, researchers have shifted their focus towards investigating the redox properties of ancillary ligand backbones for small-molecule activation. Several metal complexes have been reported for the electrocatalytic H2 evolution reaction (HER), providing valuable mechanistic insights. This process involves efficient coupling of electrons and protons. Redox-active ligands stipulate internal electron transfer and promote effective orbital overlap between metal and ligand, thereby, enabling efficient proton-coupled electron transfer reactions. Understanding such catalytic mechanisms requires thorough spectroscopic and computational analyses. Herein, we summarize recent examples of molecular electrocatalysts based on 3d transition metals that have significantly influenced mechanistic pathways, thus, emphasizing the multifaceted role of metal-ligand cooperativity.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry, Ashoka University, Plot #2, Rajiv Gandhi Education City, National Capital Region, 131029, Sonipat, Haryana, India
| | - Vyom Prakash Tyagi
- Department of Chemistry, Ashoka University, Plot #2, Rajiv Gandhi Education City, National Capital Region, 131029, Sonipat, Haryana, India
| | - Munmun Ghosh
- Department of Chemistry, Ashoka University, Plot #2, Rajiv Gandhi Education City, National Capital Region, 131029, Sonipat, Haryana, India
| |
Collapse
|
8
|
Hernández-Toledo HC, Flores-Alamo M, Castillo I. Bis(benzimidazole)amino thio- and selenoether Iron(II) complexes as proton reduction electrocatalysts. J Inorg Biochem 2023; 241:112128. [PMID: 36701986 DOI: 10.1016/j.jinorgbio.2023.112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Two novel Iron (II) complexes featuring tetrapodal bis(benzimidazole)amino thio- and selenoether ligands (LS and LSe) were synthesized, characterized, and tested as electrocatalysts for the hydrogen evolution reaction. The bromide complexes [Fe(LS,LSe)Br2] (1-2) are highly insoluble, but their DMSO solvates were characterized by single crystal X-ray diffraction, revealing an octahedral coordination environment that does not feature coordination of the chalcogen atoms. The corresponding triflate derivatives [Fe(LS,LSe)(MeCN)3]OTf2 (1c-2c) were employed for electrocatalytic proton reduction, with 1c exhibiting higher activity, thus suggesting that the thioether may participate as a more competent pendant ligand for proton transfer.
Collapse
Affiliation(s)
- Hugo C Hernández-Toledo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU 04510, Mexico
| | - Marcos Flores-Alamo
- Facultad de Química, División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Circuito Exterior, CU 04510, Mexico
| | - Ivan Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU 04510, Mexico.
| |
Collapse
|
9
|
Zhang C, Prignot E, Jeannin O, Vacher A, Dragoe D, Camerel F, Halime Z, Gramage-Doria R. Efficient Hydrogen Production at pH 7 in Water with a Heterogeneous Electrocatalyst Based on a Neutral Dimeric Cobalt-Dithiolene Complex. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chanjuan Zhang
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d’Orsay, 91190Orsay, France
| | - Erwan Prignot
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000Rennes, France
| | | | | | - Diana Dragoe
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d’Orsay, 91190Orsay, France
| | | | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d’Orsay, 91190Orsay, France
| | | |
Collapse
|
10
|
Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Schallenberg D, Pardemann N, Villinger A, Seidel WW. Synthesis and coordination behaviour of 1 H-1,2,3-triazole-4,5-dithiolates. Dalton Trans 2022; 51:13681-13691. [PMID: 36000523 DOI: 10.1039/d2dt00410k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparative access to and first group 10 metal complexes of novel 1H-1,2,3-triazole-4,5-dithiolate ligands (tazdt2-) are reported. A set of S-protected 1H-1,2,3-triazole-4,5-dithiol derivatives with R1 = 2,6-dimethylphenyl (Xy) or benzyl (Bn) at N1 and with R2 = Bn or trimethylsilylethyl (TMS-ethyl) at both S atoms were synthesized by a 1,3-dipolar cycloaddition catalysed by either Ru(II) or Cu(I). Extensive investigations on the removal of the protective groups resulted the reductive removal of benzyl groups to be superior in isolating the free 4,5-dithiols of R1N3C2(SH)2 with R1 = Xy (H2-8) or Bn (H2-9). Coordination of these ligands led to the formation of the metal complexes [(η5-C5H5)2Ti(8)], [Ni(dppe)(8)], [Ni(dppe)(9)], [Pd(dppe)(9)] {dppe = bis(diphenylphosphanyl)ethane} and homoleptic (NBu4)n[Ni(8)2] (n = 1, 2). All complexes were fully characterized including structure determination by single crystal XRD. The electronic properties of the Ni and Pd complexes were determined by cyclic voltammetry, UV/vis and EPR spectroscopy supported by DFT calculations. According to the spectral and electrochemical data, the tazdt2- complexes resemble the corresponding benzene-1,2-dithiolate (bdt2-) type compounds reflecting the restricted influence of the electron-withdrawing N3 moiety in the backbone. DSC-TGA measurements with [(η5-C5H5)2Ti(8)] and [Ni(dppe)(8)] indicate a well-defined thermal process involving simultaneous elimination of both N2 and CS.
Collapse
Affiliation(s)
- David Schallenberg
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Nils Pardemann
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Wolfram W Seidel
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany. .,Leibniz Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
12
|
Ebeler F, Vishnevskiy YV, Neumann B, Stammler H, Ghadwal RS. Mesoionic Dithiolates (MIDts) Derived from 1,3-Imidazole-Based Anionic Dicarbenes (ADCs). Chemistry 2022; 28:e202200739. [PMID: 35363912 PMCID: PMC9323478 DOI: 10.1002/chem.202200739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/22/2022]
Abstract
Mesoionic dithiolates [(MIDtAr )Li(LiBr)2 (THF)3 ] (MIDtAr ={SC(NDipp)}2 CAr; Dipp=2,6-iPr2 C6 H3 ; Ar=Ph 3 a, 3-MeC6 H4 (3-Tol) 3 b, 4-Me2 NC6 H4 (DMP) 3 c) and [(MIDtPh )Li(THF)2 ] (4) are readily accessible (in≥90 % yields) as crystalline solids on treatments of anionic dicarbenes Li(ADCAr ) (2 a-c) (ADCAr ={C(NDipp)2 }2 CAr) with elemental sulfur. 3 a-c and 4 are monoanionic ditopic ligands with both the sulfur atoms formally negatively charged, while the 1,3-imidazole unit bears a formal positive charge. Treatment of 4 with (L)GeCl2 (L=1,4-dioxane) affords the germylene (MIDtPh )GeCl (5) featuring a three-coordinated Ge atom. 5 reacts with (L)GeCl2 to give the Ge-Ge catenation product (MIDtPh )GeGeCl3 (6). KC8 reduction of 5 yields the homoleptic germylene (MIDtPh )2 Ge (7). Compounds 3 a-c and 4-7 have been characterized by spectroscopic studies and single-crystal X-ray diffraction. The electronic structures of 4-7 have been analyzed by DFT calculations.
Collapse
Affiliation(s)
- Falk Ebeler
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Yury V. Vishnevskiy
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Beate Neumann
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| |
Collapse
|
13
|
Upadhyay A, Meena H, Jha RK, Kanika, Kumar S. Isolation of monomeric copper(II) phenolate selenoether complexes using chelating ortho-bisphenylselenide-phenolate ligands and their electrocatalytic hydrogen gas evolution activity. Dalton Trans 2022; 51:7284-7293. [PMID: 35481842 DOI: 10.1039/d2dt00678b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of novel copper(II) phenolate selenoether complexes have been synthesized and structurally characterized for the first time from copper(I) phenanthroline and various substituted ortho-bisphenylselenide-phenol chelating ligands. The synthesized complexes exhibit Jahn-Teller distortion in their geometry and varied from distorted square planar to distorted octahedral by varying the substituent in the bis-selenophenolate ligand. The synthesized complexes electrocatalyze the hydrogen evolution reaction (HER) with a faradaic efficiency of up to 89%, and it was observed that the distorted square pyramidal geometry is the optimum geometry for the maximum efficiency of these copper complexes.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | - Harshita Meena
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | - Kanika
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
14
|
Novel Dithiolene Nickel Complex Catalysts for Electrochemical Hydrogen Evolution Reaction for Hydrogen Production in Nonaqueous and Aqueous Solutions. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00708-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThree molecular catalysts based on mononuclear nickel(II) complexes with square planar geometries, [BzPy]2[Ni(mnt)2] (1), [BzPy]2[Ni(i-mnt)2] (2), and [BzPy]2[Ni(tdas)2] (3) (BzPy = benzyl pyridinium) are synthesized by the reaction of NiCl2∙6H2O, [BzPy]Br, and Na2(mnt)/Na2(i-mnt)/Na2(tdas) (mnt = 1,2-dicyanoethylene-1,2-dithiolate for (1), i-mnt = 2,2-dicyanoethylene-1,1-dithiolate for (2), and tdas = 1,2,5-thiadiazole-3,4-dithiolate for (3)), respectively. The structures and compositions of these three catalysts are characterized by XRD, elemental analysis, FT-IR, and ESI-MS. The electrochemical properties and the corresponding catalytic activities of these three catalysts are studied by cyclic voltammetry. The controlled-potential electrolysis with gas chromatography analysis confirms the hydrogen production with a turnover frequency (TOF) of 116.89, 165.51, and 189.16 moles of H2 per mole of catalyst per hour at a potential of − 0.99 V (versus SHE) in acetonitrile solutions containing the catalysts, respectively. In a neutral buffer solution, these three molecular catalysts exhibit a TOF of 411.85, 488.76, and 555.06 mol of H2 per mole of catalyst per hour at a potential of − 0.49 V (versus SHE), respectively, indicating that Complex 3 constitutes the better active catalyst than Complexes 1 and 2. For fundamental understanding, a catalytic HER mechanism is also proposed.
Graphical abstract
Collapse
|
15
|
Deng X, Zheng SL, Zhong YH, Hu J, Chung LH, He J. Conductive MOFs based on Thiol-functionalized Linkers: Challenges, Opportunities, and Recent Advances. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Ren Z, Wang S, Zhang H, Huang B, Dai Y, Wei W. Steric effects in the hydrogen evolution reaction based on the TMX 4 active center: Fe-BHT as a case study. Phys Chem Chem Phys 2021; 23:25239-25245. [PMID: 34730581 DOI: 10.1039/d1cp04046d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, Fe-BHT is identified as the most efficient catalyst for the hydrogen evolution reaction (HER) among the TM-BHTs (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni), with an overpotential as low as 0.09 V. It is found that Fe dz2 orbitals do not participate in the bonding with surrounding S/N atoms in the FeX4 active center but are bonding states for hydrogen adsorption. In accordance with our results, a steric effect determined energy gap acts as an efficient descriptor for the HER activity, which has never been discussed in previous studies. In addition, strain engineering proves the proposed steric effects, which also highlights the importance of the point group symmetry of active centers.
Collapse
Affiliation(s)
- Zebin Ren
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Shuhua Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Haona Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Wei Wei
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
17
|
Orchanian NM, Hong LE, Velazquez DA, Marinescu SC. Electrocatalytic syngas generation with a redox non-innocent cobalt 2-phosphinobenzenethiolate complex. Dalton Trans 2021; 50:10779-10788. [PMID: 34286710 DOI: 10.1039/d0dt03270k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt complex supported by the 2-(diisopropylphosphaneyl)benzenethiol ligand was synthesized and its electronic structure and reactivity were explored. X-ray diffraction studies indicate a square planar geometry around the cobalt center with a trans arrangement of the phosphine ligands. Density functional theory calculations and electronic spectroscopy measurements suggest a mixed metal-ligand orbital character, in analogy to previously studied dithiolene and diselenolene systems. Electrochemical studies in the presence of 1 atm of CO2 and Brønsted acid additives indicate that the cobalt complex generates syngas, a mixture of H2 and CO, with faradaic efficiencies up to >99%. The ratios of H2 : CO generated vary based on the additive. A H2 : CO ratio of ∼3 : 1 is generated when H2O is used as the Brønsted acid additive. Chemical reduction of the complex indicates a distortion towards a tetrahedral geometry, which is rationalized with DFT predictions as attributable to the populations of orbitals with σ*(Co-S) character. A mechanistic scheme is proposed whereby competitive binding between a proton and CO2 dictates selectivity. This study provides insight into the development of a catalytic system incorporating non-innocent ligands with pendant base moieties for electrochemical syngas production.
Collapse
Affiliation(s)
- Nicholas M Orchanian
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Lorena E Hong
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - David A Velazquez
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
18
|
Tok GC, Reiter S, Freiberg ATS, Reinschlüssel L, Gasteiger HA, de Vivie-Riedle R, Hess CR. H 2 Evolution from Electrocatalysts with Redox-Active Ligands: Mechanistic Insights from Theory and Experiment vis-à-vis Co-Mabiq. Inorg Chem 2021; 60:13888-13902. [PMID: 34297556 DOI: 10.1021/acs.inorgchem.1c01157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic hydrogen production via transition metal complexes offers a promising approach for chemical energy storage. Optimal platforms to effectively control the proton and electron transfer steps en route to H2 evolution still need to be established, and redox-active ligands could play an important role in this context. In this study, we explore the role of the redox-active Mabiq (Mabiq = 2-4:6-8-bis(3,3,4,4-tetramethlyldihydropyrrolo)-10-15-(2,2-biquinazolino)-[15]-1,3,5,8,10,14-hexaene1,3,7,9,11,14-N6) ligand in the hydrogen evolution reaction (HER). Using spectro-electrochemical studies in conjunction with quantum chemical calculations, we identified two precatalytic intermediates formed upon the addition of two electrons and one proton to [CoII(Mabiq)(THF)](PF6) (CoMbq). We further examined the acid strength effect on the generation of the intermediates. The generation of the first intermediate, CoMbq-H1, involves proton addition to the bridging imine-nitrogen atom of the ligand and requires strong proton activity. The second intermediate, CoMbq-H2, acquires a proton at the diketiminate carbon for which a weaker proton activity is sufficient. We propose two decoupled H2 evolution pathways based on these two intermediates, which operate at different overpotentials. Our results show how the various protonation sites of the redox-active Mabiq ligand affect the energies and activities of HER intermediates.
Collapse
Affiliation(s)
- G Ceren Tok
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Anna T S Freiberg
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Leonhard Reinschlüssel
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Hubert A Gasteiger
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Corinna R Hess
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
19
|
Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213891] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Lin X, Qin P, Ni S, Yang T, Li M, Dang L. Priority of Mixed Diamine Ligands in Cobalt Dithiolene Complex-Catalyzed H 2 Evolution: A Theoretical Study. Inorg Chem 2021; 60:6688-6695. [PMID: 33861584 DOI: 10.1021/acs.inorgchem.1c00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Redox non-innocent metal dithiolene or diamine complexes are potential alternative catalysts in hydrogen evolution reaction and have been incorporated into 2D metal-organic frameworks to obtain unexpected electrocatalytic activity. According to an experimental study, Co-bis(dithiolene), Co-bis(diamine), and Co-dithiolene-diamine portions are considered as active sites where the generation of H2 occurs and a diamine ligand is necessary for high catalytic efficiency. We are interested in the difference between these catalytic active sites, and mechanistic studies on extracted Co-bis(dithiolene), Co-bis(diamine), and Co-dithiolene-diamine complex-catalyzed hydrogen evolution reactions are carried out by using density functional methods. Our calculated results indicate that the priority of ligand mixed complexes resulted from the readily occurring protonation of diamine ligands and large electron affinity of dithiolene ligands as well as the lowest overall barrier for H2 evolution.
Collapse
Affiliation(s)
- Xiuhua Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Peng Qin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Mingde Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
21
|
Drosou M, Zarkadoulas A, Bethanis K, Mitsopoulou CA. Structural modifications on nickel dithiolene complexes lead to increased metal participation in the electrocatalytic hydrogen evolution mechanism. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1918339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Zarkadoulas
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas Bethanis
- Physics Laboratory, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Christiana A. Mitsopoulou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Chen K, Downes CA, Schneider E, Goodpaster JD, Marinescu SC. Improving and Understanding the Hydrogen Evolving Activity of a Cobalt Dithiolene Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16384-16395. [PMID: 33788537 DOI: 10.1021/acsami.1c01727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite the promising previous reports on the development of electrocatalytic dithiolene-based metal-organic frameworks (MOFs) for the hydrogen evolution reaction (HER), these materials often display poor reproducibility of the HER performance because of their poor bulk properties upon integration with electrode materials. We demonstrate here an in-depth investigation of the electrocatalytic HER activity of a cobalt 2,3,6,7,10,11-triphenylenehexathiolate (CoTHT) MOF. To enhance the durability and charge transport properties of the constructed CoTHT/electrode architecture, CoTHT is deposited as an ink composite (1) composed of Nafion and carbon black. We leverage here the well-established use of catalyst inks in the literature to increase adhesion of the catalyst to the electrode surface and to improve the overall electrical conductivity of the integrated catalyst/electrode. The utilization of the composite 1 leads to a significant improvement in the overpotential (η) to reach a current density of 10 mA/cm2 (η = 143 mV) compared to prior reports, resulting in the most active MOF-based electrocatalyst for the HER that contains only earth-abundant elements. Extensive density functional theory (DFT) calculations were applied to understand the structure of CoTHT and the mechanistic pathways of the HER. The computational results suggest that an AB stacking geometry is energetically favorable, where one layer is slipped by 1.6 Å relative to the neighboring one along the a and b vectors. Additionally, the DFT calculations indicate that the catalytic cycle likely involves a Volmer discharge step to generate a cobalt hydride, followed by a Heyrovsky step to form a cobalt-H2 intermediate, and finally the dissociation of H2.
Collapse
Affiliation(s)
- Keying Chen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Courtney A Downes
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Eugene Schneider
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Jason D Goodpaster
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
23
|
Synthesis of Novel Heteroleptic Oxothiolate Ni(II) Complexes and Evaluation of Their Catalytic Activity for Hydrogen Evolution. Catalysts 2021. [DOI: 10.3390/catal11030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two heteroleptic nickel oxothiolate complexes, namely [Ni(bpy)(mp)] (1) and [Ni(dmbpy)(mp)] (2), where mp = 2-hydroxythiophenol, bpy = 2,2′-bipyridine and dmbpy = 4,4′-dimethyl-2,2′-bipyridine were synthesized and characterized with various physical and spectroscopic methods. Complex 2 was further characterized by single crystal X-ray diffraction data. The complex crystallizes in the monoclinic P 21/c system and in its neutral form. The catalytic properties of both complexes for proton reduction were evaluated with photochemical and electrochemical studies. Two different in their nature photosensitizers, namely fluorescein and CdTe-TGA-coated quantum dots, were tested under various conditions. The role of the electron donating character of the methyl substituents was revealed in the light of the studies. Thus, catalyst 2 performs better than 1, reaching 39.1 TONs vs. 4.63 TONs in 3 h, respectively, in electrochemical experiments. In contrast, complex 1 is more photocatalytically active than 2, achieving a TON of over 6700 in 120 h of irradiation. This observed reverse catalytic activity suggests that HER mechanism follows different pathways in electrocatalysis and photocatalysis.
Collapse
|
24
|
Wang J, Dou S, Wang X. Structural tuning of heterogeneous molecular catalysts for electrochemical energy conversion. SCIENCE ADVANCES 2021; 7:eabf3989. [PMID: 33771872 PMCID: PMC7997508 DOI: 10.1126/sciadv.abf3989] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/05/2021] [Indexed: 05/02/2023]
Abstract
Heterogeneous molecular catalysts based on transition metal complexes have received increasing attention for their potential application in electrochemical energy conversion. The structural tuning of first and second coordination spheres of complexes provides versatile strategies for optimizing the activities of heterogeneous molecular catalysts and appropriate model systems for investigating the mechanism of structural variations on the activity. In this review, we first discuss the variation of first spheres by tuning ligated atoms; afterward, the structural tuning of second spheres by appending adjacent metal centers, pendant groups, electron withdrawing/donating, and conjugating moieties on the ligands is elaborated. Overall, these structural tuning resulted in different impacts on the geometric and electronic configurations of complexes, and the improved activity is achieved through tuning the stability of chemisorbed reactants and the redox behaviors of immobilized complexes.
Collapse
Affiliation(s)
- Jiong Wang
- Institute of Advanced Synthesis, Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Yangtze River Delta Research Institute of NPU, Taicang 215400, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Shuo Dou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
25
|
Singh A, Singh A, Kociok-Köhn G, Molloy KC, Singh AK, Kumar A, Muddassir M. Ni( ii) dithiolate anion composites with two-dimensional materials for electrochemical oxygen evolution reactions (OERs). NEW J CHEM 2021. [DOI: 10.1039/d1nj02644e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A redox active anionic nickel dithiolate complex was synthesized and its composites with GO, rGO and GN were prepared and used as electrocatalyts in the OER.
Collapse
Affiliation(s)
- Ayushi Singh
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India
| | - Amita Singh
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India
- Department of Chemistry, Dr. Ram Manohar Lohiya Avadh University, Ayodhya, 224001, India
| | - Gabriele Kociok-Köhn
- Materials and Chemical Characterisation Facility (MC2), University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | | - Ashish Kumar Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyala, Koni, Bilaspur, 495009, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India
| | - Mohd. Muddassir
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
26
|
Derrick JS, Loipersberger M, Chatterjee R, Iovan DA, Smith PT, Chakarawet K, Yano J, Long JR, Head-Gordon M, Chang CJ. Metal–Ligand Cooperativity via Exchange Coupling Promotes Iron- Catalyzed Electrochemical CO2 Reduction at Low Overpotentials. J Am Chem Soc 2020; 142:20489-20501. [DOI: 10.1021/jacs.0c10664] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jeffrey S. Derrick
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthias Loipersberger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Diana A. Iovan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peter T. Smith
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
27
|
Banerjee S, Anayah RI, Gerke CS, Thoi VS. From Molecules to Porous Materials: Integrating Discrete Electrocatalytic Active Sites into Extended Frameworks. ACS CENTRAL SCIENCE 2020; 6:1671-1684. [PMID: 33145407 PMCID: PMC7596858 DOI: 10.1021/acscentsci.0c01088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 05/15/2023]
Abstract
Metal-organic and covalent-organic frameworks can serve as a bridge between the realms of homo- and heterogeneous catalytic systems. While there are numerous molecular complexes developed for electrocatalysis, homogeneous catalysts are hindered by slow catalyst diffusion, catalyst deactivation, and poor product yield. Heterogeneous catalysts can compensate for these shortcomings, yet they lack the synthetic and chemical tunability to promote rational design. To narrow this knowledge gap, there is a burgeoning field of framework-related research that incorporates molecular catalysts within porous architectures, resulting in an exceptional catalytic performance as compared to their molecular analogues. Framework materials provide structural stability to these catalysts, alter their electronic environments, and are easily tunable for increased catalytic activity. This Outlook compares molecular catalysts and corresponding framework materials to evaluate the effects of such integration on electrocatalytic performance. We describe several different classes of molecular motifs that have been included in framework materials and explore how framework design strategies improve on the catalytic behavior of their homogeneous counterparts. Finally, we will provide an outlook on new directions to drive fundamental research at the intersection of reticular-and electrochemistry.
Collapse
Affiliation(s)
- Soumyodip Banerjee
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rasha I. Anayah
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Carter S. Gerke
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - V. Sara Thoi
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
- E-mail:
| |
Collapse
|
28
|
Ghosh P, de Vos S, Lutz M, Gloaguen F, Schollhammer P, Moret ME, Klein Gebbink RJM. Electrocatalytic Proton Reduction by a Cobalt Complex Containing a Proton-Responsive Bis(alkylimdazole)methane Ligand: Involvement of a C-H Bond in H 2 Formation. Chemistry 2020; 26:12560-12569. [PMID: 32350932 PMCID: PMC7589288 DOI: 10.1002/chem.201905746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/19/2020] [Indexed: 01/13/2023]
Abstract
Homogeneous electrocatalytic proton reduction is reported using cobalt complex [1](BF4)2. This complex comprises two bis(1‐methyl‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)methane (HBMIMPh2
) ligands that contain an acidic methylene moiety in their backbone. Upon reduction of [1](BF4)2 by either electrochemical or chemical means, one of its HBMIMPh2
ligands undergoes deprotonation under the formation of dihydrogen. Addition of a mild proton source (acetic acid) to deprotonated complex [2](BF4) regenerates protonated complex [1](BF4)2. In presence of acetic acid in acetonitrile solvent [1](BF4)2 shows electrocatalytic proton reduction with a kobs of ≈200 s−1 at an overpotential of 590 mV. Mechanistic investigations supported by DFT (BP86) suggest that dihydrogen formation takes place in an intramolecular fashion through the participation of a methylene C−H bond of the HBMIMPh2
ligand and a CoII−H bond through formal heterolytic splitting of the latter. These findings are of interest to the development of responsive ligands for molecular (base)metal (electro)catalysis.
Collapse
Affiliation(s)
- Pradip Ghosh
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Present address: Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Sander de Vos
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Martin Lutz
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Frederic Gloaguen
- UMR 6521, CNRS, Université de Bretagne Occidentale, CS 93837, 29238, Brest, France
| | | | - Marc-Etienne Moret
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Robertus J M Klein Gebbink
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
29
|
Pitchaimani J, Ni SF, Dang L. Metal dithiolene complexes in olefin addition and purification, small molecule adsorption, H2 evolution and CO2 reduction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213398] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Chen Z, Cui Y, Ye C, Liu L, Wu X, Sun Y, Xu W, Zhu D. Highly Conductive Cobalt Perthiolated Coronene Complex for Efficient Hydrogen Evolution. Chemistry 2020; 26:12868-12873. [PMID: 32430943 DOI: 10.1002/chem.202001792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Indexed: 11/07/2022]
Abstract
Metal-bis(dithiolene) is one of the most promising structures showing redox activity, excellent electron transport and magnetic properties as well as catalytic activities. Perthiolated coronene (PTC), an emerging highly symmetric ligand containing the smallest graphene nanoplate was employed to manufacture a hybrid material with fused metal-bis(dithiolene) and graphene nanoplate, and it has been demonstrated as an efficient strategy for the construction of multifunctional materials recently. Herein, Co-PTC, a 2D MOF containing Co-bis(dithiolene) and coronene units is prepared via a homogeneous reaction for the first time as powder samples, which are bar-shaped microparticles composed of nanosheets. A neutral formula of [Co3 (C24 S12 )]n is verified for Co-PTC. Co-PTC plays an ultrahigh conductivity of approximately 45 S cm-1 at room temperature as compressed samples, which is among the highest value ever reported for the compressed powder samples of conducting MOFs. Moreover, Co-PTC exhibits good electrocatalytic performance in the hydrogen evolution reaction (HER) with a Tafel slope of 189 mV decade-1 and an operating overpotential of 227 mV at 10 mA cm-1 with pH=0, as well as a remarkable stability in the extremely acidic aqueous solutions, which is the best hydrogen evolution properties among metal-organic compounds.
Collapse
Affiliation(s)
- Zhijun Chen
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yutao Cui
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chunhui Ye
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liyao Liu
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyu Wu
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yimeng Sun
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Xu
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Daoben Zhu
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Tang H, Brothers EN, Grapperhaus CA, Hall MB. Electrocatalytic Hydrogen Evolution and Oxidation with Rhenium Tris(thiolate) Complexes: A Competition between Rhenium and Sulfur for Electrons and Protons. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | | | - Craig A. Grapperhaus
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
32
|
Voloshin YZ, Buznik VM, Dedov AG. New types of the hybrid functional materials based on cage metal complexes for (electro) catalytic hydrogen production. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Successful using of cage metal complexes (clathrochelates) and the functional hybrid materials based on them as promising electro- and (pre)catalysts for hydrogen and syngas production is highlighted in this microreview. The designed polyaromatic-terminated iron, cobalt and ruthenium clathrochelates, adsorbed on carbon materials, were found to be the efficient electrocatalysts of the hydrogen evolution reaction (HER), including those in polymer electrolyte membrane (PEM) water electrolysers. The clathrochelate-electrocatalayzed performances of HER 2H+/H2 in these semi-industrial electrolysers are encouraging being similar to those for the best known to date molecular catalysts and for the promising non-platinum solid-state HER electrocatalysts as well. Electrocatalytic activity of the above clathrochelates was found to be affected by the number of the terminal polyaromatic group(s) per a clathrochelate molecule and the lowest Tafel slopes were obtained with hexaphenanthrene macrobicyclic complexes. The use of suitable carbon materials of a high surface area, as the substrates for their efficient immobilization, allowed to substantially increase an electrocatalytic activity of the corresponding clathrochelate-containing carbon paper-based cathodes. In the case of the reaction of dry reforming of methane (DRM) into syngas of a stoichiometry CO/H2 1:1, the designed metal(II) clathrochelates with terminal polar groups are only the precursors (precatalysts) of single atom catalysts, where each of their catalytically active single sites is included in a matrix of its former encapsulating ligand. Choice of their designed ligands allowed an efficient immobilization of the corresponding cage metal complexes on the surface of a given highly porous ceramic material as a substrate and caused increasing of a surface concentration of the catalytically active centers (and, therefore, that of the catalytic activity of hybrid materials modified with these clathrochelates). Thus designed cage metal complexes and hybrid materials based on them operate under the principals of “green chemistry” and can be considered as efficient alternatives to some classical inorganic and molecular (pre)catalysts of these industrial processes.
Collapse
Affiliation(s)
- Yan Z. Voloshin
- Gubkin Russian State University of Oil and Gas (National Research University) , 119991 Moscow , Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences , 119991 Moscow , Russia
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , 119991 Moscow , Russia
| | - Vyacheslav M. Buznik
- Gubkin Russian State University of Oil and Gas (National Research University) , 119991 Moscow , Russia
| | - Alexey G. Dedov
- Gubkin Russian State University of Oil and Gas (National Research University) , 119991 Moscow , Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences , 119991 Moscow , Russia
- Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences , 119991 Moscow , Russia
| |
Collapse
|
33
|
Drosou M, Kamatsos F, Mitsopoulou CA. Recent advances in the mechanisms of the hydrogen evolution reaction by non-innocent sulfur-coordinating metal complexes. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01113g] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review comments on the homogeneous HER mechanisms for catalysts carrying S-non-innocent ligands in the light of experimental and computational data.
Collapse
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Panepistimiopolis
- Greece
| | - Fotios Kamatsos
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Panepistimiopolis
- Greece
| | - Christiana A. Mitsopoulou
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Panepistimiopolis
- Greece
| |
Collapse
|
34
|
Liu J, Yin H, Liu P, Chen S, Yin S, Wang W, Zhao H, Wang Y. Theoretical Understanding of Electrocatalytic Hydrogen Production Performance by Low-Dimensional Metal-Organic Frameworks on the Basis of Resonant Charge-Transfer Mechanisms. J Phys Chem Lett 2019; 10:6955-6961. [PMID: 31651179 DOI: 10.1021/acs.jpclett.9b02729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The exploration of low-cost and efficient electrocatalysts for the hydrogen evolution reaction (HER) is a prerequisite for large-scale hydrogen fuel generation. The understanding of the electronic properties of electrocatalysts plays a key role in this exploration process. In this study, our first-principles results demonstrate that the catalytic performance of the 1D metal-organic frameworks (MOFs) can be significantly influenced by engineering the composite of the metal node. Using the Gibbs free energy of the adsorption of hydrogen atoms as a key descriptor, we found that Ni- and Cr-based dithiolene MOFs possess better hydrogen evolution performance, and the much different efficiencies can be ascribed to their electronic resonance structures [TM3+(L2-)(L2-)]- ↔ [TM2+(L•-)(L2-)]-. The [TM2+(L•-)(L2-)]- structure is preferred due to the higher activity of the catalytic site L with more radical features, and the stabilized [TM2+(L•-)(L2-)]- structure of the Cr- and Ni-based MOFs can be ascribed to the electronic configurations of their TM2+ cations with half-occupied and fully occupied valence orbitals. Our results therefore reveal a novel strategy for optimizing the electronic structures of materials on the basis of the resonant charge-transfer mechanism for their practical applications.
Collapse
Affiliation(s)
- Junxian Liu
- School of Environment and Science, Centre for Clean Environment and Energy , Griffith University , Gold Coast , Queensland 4222 , Australia
| | - Huajie Yin
- School of Environment and Science, Centre for Clean Environment and Energy , Griffith University , Gold Coast , Queensland 4222 , Australia
| | - Porun Liu
- School of Environment and Science, Centre for Clean Environment and Energy , Griffith University , Gold Coast , Queensland 4222 , Australia
| | - Shan Chen
- School of Environment and Science, Centre for Clean Environment and Energy , Griffith University , Gold Coast , Queensland 4222 , Australia
| | - Shiwei Yin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Huijun Zhao
- School of Environment and Science, Centre for Clean Environment and Energy , Griffith University , Gold Coast , Queensland 4222 , Australia
| | - Yun Wang
- School of Environment and Science, Centre for Clean Environment and Energy , Griffith University , Gold Coast , Queensland 4222 , Australia
| |
Collapse
|
35
|
Basu D, Mazumder S, Kpogo KK, Verani CN. Influence of nitro substituents on the redox, electronic, and proton reduction catalytic behavior of phenolate-based [N 2O 3]-type cobalt(iii) complexes. Dalton Trans 2019; 48:14669-14677. [PMID: 31536091 DOI: 10.1039/c9dt03158h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report on the synthesis, redox, electronic, and catalytic behavior of two new cobalt(iii) complexes, namely [CoIII(L1)MeOH] (1) and [CoIII(L2)MeOH] (2). These species contain nitro-rich, phenolate-based pentadentate ligands and present dramatically distinct properties associated with the position in which the -NO2 substituents are installed. Species 1 displays nitro-substituted phenolates, and exhibits irreversible redox response and negligible catalytic activity, whereas 2 has fuctionalized phenylene moieties, shows much improved redox reversibility and catalytic proton reduction activity at low overpotentials. A concerted experimental and theoretical approach sheds some light on these drastic differences.
Collapse
Affiliation(s)
- Debashis Basu
- Department of Chemistry, Wayne State University, Detroit, MI-48202, USA.
| | | | | | | |
Collapse
|
36
|
Zhuang L, Ge L, Liu H, Jiang Z, Jia Y, Li Z, Yang D, Hocking RK, Li M, Zhang L, Wang X, Yao X, Zhu Z. A Surfactant‐Free and Scalable General Strategy for Synthesizing Ultrathin Two‐Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2019; 58:13565-13572. [DOI: 10.1002/anie.201907600] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Linzhou Zhuang
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Lei Ge
- Centre for Future Materials University of Southern Queensland Springfield 4300 Australia
| | - Hongli Liu
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Institute of Marine Biobased Materials School of Environmental Science and Engineering Qingdao University Shandong 266071 P. R. China
| | - Zongrui Jiang
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Yi Jia
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Zhiheng Li
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Dongjiang Yang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Institute of Marine Biobased Materials School of Environmental Science and Engineering Qingdao University Shandong 266071 P. R. China
| | - Rosalie K. Hocking
- Department of Chemistry and Biotechnology Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Melbourne Victoria 3122 Australia
| | - Mengran Li
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Longzhou Zhang
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Xin Wang
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Xiangdong Yao
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Zhonghua Zhu
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
37
|
Zhuang L, Ge L, Liu H, Jiang Z, Jia Y, Li Z, Yang D, Hocking RK, Li M, Zhang L, Wang X, Yao X, Zhu Z. A Surfactant‐Free and Scalable General Strategy for Synthesizing Ultrathin Two‐Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907600] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linzhou Zhuang
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Lei Ge
- Centre for Future Materials University of Southern Queensland Springfield 4300 Australia
| | - Hongli Liu
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Institute of Marine Biobased Materials School of Environmental Science and Engineering Qingdao University Shandong 266071 P. R. China
| | - Zongrui Jiang
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Yi Jia
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Zhiheng Li
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Dongjiang Yang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Institute of Marine Biobased Materials School of Environmental Science and Engineering Qingdao University Shandong 266071 P. R. China
| | - Rosalie K. Hocking
- Department of Chemistry and Biotechnology Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Melbourne Victoria 3122 Australia
| | - Mengran Li
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Longzhou Zhang
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Xin Wang
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Xiangdong Yao
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Zhonghua Zhu
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
38
|
Liao Q, Liu T, Johnson SI, Klug CM, Wiedner ES, Morris Bullock R, DuBois DL. Evaluation of attractive interactions in the second coordination sphere of iron complexes containing pendant amines. Dalton Trans 2019; 48:4867-4878. [PMID: 30882832 DOI: 10.1039/c9dt00708c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of different ligands to attract a pendant amine is studied in a series of iron complexes.
Collapse
Affiliation(s)
- Qian Liao
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Tianbiao Liu
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Samantha I. Johnson
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Christina M. Klug
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Eric S. Wiedner
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - R. Morris Bullock
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Daniel L. DuBois
- Center for Molecular Electrocatalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| |
Collapse
|
39
|
Thammavongsy Z, Mercer IP, Yang JY. Promoting proton coupled electron transfer in redox catalysts through molecular design. Chem Commun (Camb) 2019; 55:10342-10358. [DOI: 10.1039/c9cc05139b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mini-review on using the secondary coordination sphere to facilitate multi-electron, multi-proton catalysis.
Collapse
Affiliation(s)
| | - Ian P. Mercer
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Jenny Y. Yang
- Department of Chemistry
- University of California
- Irvine
- USA
| |
Collapse
|
40
|
Koroidov S, Hong K, Kjaer KS, Li L, Kunnus K, Reinhard M, Hartsock RW, Amit D, Eisenberg R, Pemmaraju CD, Gaffney KJ, Cordones AA. Probing the Electron Accepting Orbitals of Ni-Centered Hydrogen Evolution Catalysts with Noninnocent Ligands by Ni L-Edge and S K-Edge X-ray Absorption. Inorg Chem 2018; 57:13167-13175. [DOI: 10.1021/acs.inorgchem.8b01497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sergey Koroidov
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Kiryong Hong
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Kasper S. Kjaer
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Lin Li
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Kristjan Kunnus
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Marco Reinhard
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Robert W. Hartsock
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Das Amit
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, New York 14627, United States
| | - Richard Eisenberg
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, New York 14627, United States
| | - C. Das Pemmaraju
- Theory Institute for Materials and Energy Spectroscopies, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kelly J. Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Amy A. Cordones
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
41
|
|
42
|
Indra A, Song T, Paik U. Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705146. [PMID: 29984451 DOI: 10.1002/adma.201705146] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/30/2017] [Indexed: 06/08/2023]
Abstract
Exploring new materials with high efficiency and durability is the major requirement in the field of sustainable energy conversion and storage systems. Numerous techniques have been developed in last three decades to enhance the efficiency of the catalyst systems, control over the composition, structure, surface area, pore size, and moreover morphology of the particles. In this respect, metal organic framework (MOF) derived catalysts are emerged as the finest materials with tunable properties and activities for the energy conversion and storage. Recently, several nano- or microstructures of metal oxides, chalcogenides, phosphides, nitrides, carbides, alloys, carbon materials, or their hybrids are explored for the electrochemical energy conversion like oxygen evolution, hydrogen evolution, oxygen reduction, or battery materials. Interest on the efficient energy storage system is also growing looking at the practical applications. Though, several reviews are available on the synthesis and application of MOF and MOF derived materials, their applications for the electrochemical energy conversion and storage is totally a new field of research and developed recently. This review focuses on the systematic design of the materials from MOF and control over their inherent properties to enhance the electrochemical performances.
Collapse
Affiliation(s)
- Arindam Indra
- Department of Energy Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Taeseup Song
- Department of Energy Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Ungyu Paik
- Department of Energy Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
| |
Collapse
|
43
|
Mondol R, Otten E. Reactivity of Two-Electron-Reduced Boron Formazanate Compounds with Electrophiles: Facile N-H/N-C Bond Homolysis Due to the Formation of Stable Ligand Radicals. Inorg Chem 2018; 57:9720-9727. [PMID: 29446931 PMCID: PMC6106049 DOI: 10.1021/acs.inorgchem.8b00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The reactivity of
a boron complex with a redox-active formazanate ligand, LBPh2 [L = PhNNC(p-tol)NNPh], was studied. Two-electron
reduction of this main-group complex generates the stable, nucleophilic
dianion [LBPh2]2–, which reacts with
the electrophiles BnBr and H2O to form products that derive
from ligand benzylation and protonation, respectively. The resulting
complexes are anionic boron analogues of leucoverdazyls. N–C
and N–H bond homolysis of these compounds was studied by exchange
NMR spectroscopy and kinetic experiments. The weak N–C and
N–H bonds in these systems derive from the stability of the
resulting borataverdazyl radical, in which the unpaired electron is
delocalized over the four N atoms in the ligand backbone. We thus
demonstrate the ability of this system to take up two electrons and
an electrophile (E+ = Bn+, H+) in
a process that takes place on the organic ligand. In addition, we
show that the [2e–/E+] stored on the
ligand can be converted to E• radicals, reactivity
that has implications in energy storage applications such as hydrogen
evolution. A boron complex with a redox-active
formazanate ligand in its two-electron-reduced state is shown to react
with electrophiles (BnBr and H+). The resulting “borataleucoverdazyl”
products have weak N−C and N−H bonds; homolytic cleavage
reactions lead to stable ligand-based radicals. Thus, the accumulation
of [2e−/E+] on the formazanate ligand
and conversion to E• radicals are demonstrated,
and their potential relevance in energy-related electrocatalysis (e.g.,
proton reduction) is discussed.
Collapse
Affiliation(s)
- Ranajit Mondol
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
44
|
Broere DLJ, Mercado BQ, Bill E, Lancaster KM, Sproules S, Holland PL. Alkali Cation Effects on Redox-Active Formazanate Ligands in Iron Chemistry. Inorg Chem 2018; 57:9580-9591. [PMID: 29629752 PMCID: PMC6116910 DOI: 10.1021/acs.inorgchem.8b00226] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Noncovalent interactions of organic moieties with Lewis acidic alkali cations can greatly affect structure and reactivity. Herein, we describe the effects of interactions with alkali-metal cations within a series of reduced iron complexes bearing a redox-active formazanate ligand, in terms of structures, magnetism, spectroscopy, and reaction rates. In the absence of a crown ether to sequester the alkali cation, dimeric complexes are isolated wherein the formazanate has rearranged to form a five-membered metallacycle. The dissociation of these dimers is dependent on the binding mode and size of the alkali cation. In the dimers, the formazanate ligands are radical dianions, as shown by X-ray absorption spectroscopy, Mössbauer spectroscopy, and analysis of metrical parameters. These experimental measures are complemented by density functional theory calculations that show the spin density on the bridging ligands.
Collapse
Affiliation(s)
- Daniel L J Broere
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Brandon Q Mercado
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Stephen Sproules
- WestCHEM, School of Chemistry , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Patrick L Holland
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| |
Collapse
|
45
|
Chu KT, Liu YC, Chung MW, Poerwoprajitno AR, Lee GH, Chiang MH. Energy-Efficient Hydrogen Evolution by Fe-S Electrocatalysts: Mechanistic Investigations. Inorg Chem 2018; 57:7620-7630. [PMID: 29893554 DOI: 10.1021/acs.inorgchem.8b00543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intrinsic catalytic property of a Fe-S complex toward H2 evolution was investigated in a wide range of acids. The title complex exhibited catalytic events at -1.16 and -1.57 V (vs Fc+/Fc) in the presence of trifluoromethanesulfonic acid (HOTf) and trifluoroacetic acid (TFA), respectively. The processes corresponded to the single reduction of the Fe-hydride-S-proton and Fe-hydride species, respectively. When anilinium acid was used, the catalysis occurred at -1.16 V, identical with the working potential of the HOTf catalysis, although the employment of anilinium acid was only capable of achieving the Fe-hydride state on the basis of the spectral and calculated results. The thermodynamics and kinetics of individual steps of the catalysis were analyzed by density functional theory (DFT) calculations and electroanalytical simulations. The stepwise CCE or CE (C, chemical; E, electrochemical) mechanism was operative from the HOTf or TFA source, respectively. In contrast, the involvement of anilinium acid most likely initiated a proton-coupled electron transfer (PCET) pathway that avoided the disfavored intermediate after the initial protonation. Via the PCET pathway, the heterogeneous electron transfer rate was increased and the overpotential was decreased by 0.4 V in comparison with the stepwise pathways. The results showed that the PCET-involved catalysis exhibited substantial kinetic and thermodynamic advantages in comparison to the stepwise pathway; thus, an efficient catalytic system for proton reduction was established.
Collapse
Affiliation(s)
- Kai-Ti Chu
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 115 , Taiwan
| | - Yu-Chiao Liu
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 115 , Taiwan
| | - Min-Wen Chung
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 115 , Taiwan
| | | | - Gene-Hsiang Lee
- Instrumentation Center , National Taiwan University , Taipei 106 , Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 115 , Taiwan
| |
Collapse
|
46
|
Zhang Z, Yang T, Qin P, Dang L. Nickel bis(dithiolene) complexes for electrocatalytic hydrogen evolution: A computational study. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Halter DP, Palumbo CT, Ziller JW, Gembicky M, Rheingold AL, Evans WJ, Meyer K. Electrocatalytic H 2O Reduction with f-Elements: Mechanistic Insight and Overpotential Tuning in a Series of Lanthanide Complexes. J Am Chem Soc 2018; 140:2587-2594. [PMID: 29378127 DOI: 10.1021/jacs.7b11532] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrocatalytic energy conversion with molecular f-element catalysts is still in an early phase of its development. We here report detailed electrochemical investigations on the recently reported trivalent lanthanide coordination complexes [((Ad,MeArO)3mes)Ln] (1-Ln), with Ln = La, Ce, Pr, Nd, Sm, Gd, Dy, Er, and Yb, which were now found to perform as active electrocatalysts for the reduction of water to dihydrogen. Reactivity studies involving complexes 1-Ln and the Ln(II) analogues [K(2.2.2-crypt)][((Ad,MeArO)3mes)Ln] (2-Ln) suggest a reaction mechanism that differs significantly from the reaction pathway found for the corresponding uranium catalyst [((Ad,MeArO)3mes)U] (1-U). While complexes 1-Ln activate water via a radical pathway, only upon a 1 e- reduction to yield the reduced species 2-Ln, the 5f analogue 1-U directly reduces H2O via a 2 e- pathway. The electrocatalytic H2O reduction by complexes 1-Ln is initiated by the respective Ln(III)/Ln(II) redox couples, which gradually turn to more positive values across the Ln series. This correlation has been exploited to tune the catalytic overpotential of water reduction by choice of the lanthanide ion. Kinetic studies of the 1-Ln series were performed to elucidate correlations between overpotential and turnover frequencies of the 4f-based electrocatalysts.
Collapse
Affiliation(s)
- Dominik P Halter
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Egerlandstraße 1, D-91058 Erlangen, Germany
| | - Chad T Palumbo
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Milan Gembicky
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, MC 0332, La Jolla, California 92093, United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, MC 0332, La Jolla, California 92093, United States
| | - William J Evans
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Egerlandstraße 1, D-91058 Erlangen, Germany
| |
Collapse
|
48
|
Rao GK, Pell W, Gabidullin B, Korobkov I, Richeson D. Electro- and Photocatalytic Generation of H 2 Using a Distinctive Co II "PN 3 P" Pincer Supported Complex with Water or Saturated Saline as a Hydrogen Source. Chemistry 2017; 23:16763-16767. [PMID: 29044839 DOI: 10.1002/chem.201704882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Indexed: 12/18/2022]
Abstract
Efficient electrocatalytic production of H2 from mixed water/acetonitrile solutions was achieved using three new CoII complexes supported by the neutral pincer ligand bis(diphenylphosphino)-2,6-di(methylamino)pyridine ("PN3 P"). At -1.9 V vs. Fc/Fc+ , these catalysts showed 96 % Faradaic efficiency with added water or saturated aqueous saline at rates of up to 316 L(mol cat)-1 (cm2 )-1 h-1 using a glassy carbon working electrode. The complex [Co(κ3 -2,6-{Ph2 PNMe}2 (NC5 H3 )Br2 ] (1) was also able to photocatalytically reduce water to hydrogen in the presence of a Ru(bpy)32+ photosensitizer and a reductant.
Collapse
Affiliation(s)
- Gyandshwar Kumar Rao
- Department of Chemistry and Biomolecular Science, Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, USA
| | - Wendy Pell
- Department of Chemistry and Biomolecular Science, Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, USA
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Science, Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, USA
| | - Ilia Korobkov
- Department of Chemistry and Biomolecular Science, Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, USA
| | - Darrin Richeson
- Department of Chemistry and Biomolecular Science, Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, USA
| |
Collapse
|
49
|
Downes CA, Marinescu SC. Electrocatalytic Metal-Organic Frameworks for Energy Applications. CHEMSUSCHEM 2017; 10:4374-4392. [PMID: 28968485 DOI: 10.1002/cssc.201701420] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 05/11/2023]
Abstract
With the global energy demand expected to increase drastically over the next several decades, the development of a sustainable energy system to meet this increase is paramount. Renewable energy sources can be coupled with electrochemical conversion processes to store energy in chemical bonds. To promote these difficult transformations, electrocatalysts that operate at high conversion rates and efficiency are required. Metal-organic frameworks (MOFs) have emerged as a promising class of materials; however, the insulating nature of MOFs has limited their application as electrocatalysts. The recent development of conductive MOFs has led to several electrocatalytic MOFs that display activity comparable to that of the best-performing heterogeneous catalysts. Although many electrocatalytic MOFs exhibit low activity and stability, the few successful examples highlight the possibility of MOF electrocatalysts as replacements for noble-metal-based catalysts in commercial energy-converting devices. We review herein the use of pristine MOFs as electrocatalysts to facilitate important energy-related reactions.
Collapse
Affiliation(s)
- Courtney A Downes
- Department of Chemistry, University of Southern California, 840 Downey Way, Los Angeles, CA, 90089, USA
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, 840 Downey Way, Los Angeles, CA, 90089, USA
| |
Collapse
|
50
|
Wang L, Tranca DC, Zhang J, Qi Y, Sfaelou S, Zhang T, Dong R, Zhuang X, Zheng Z, Seifert G. Toward Activity Origin of Electrocatalytic Hydrogen Evolution Reaction on Carbon-Rich Crystalline Coordination Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700783. [PMID: 28741854 DOI: 10.1002/smll.201700783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/03/2017] [Indexed: 05/28/2023]
Abstract
The fundamental understanding of electrocatalytic active sites for hydrogen evolution reaction (HER) is significantly important for the development of metal complex involved carbon electrocatalysts with low kinetic barrier. Here, the MSx Ny (M = Fe, Co, and Ni, x/y are 2/2, 0/4, and 4/0, respectively) active centers are immobilized into ladder-type, highly crystalline coordination polymers as model carbon-rich electrocatalysts for H2 generation in acid solution. The electrocatalytic HER tests reveal that the coordination of metal, sulfur, and nitrogen synergistically facilitates the hydrogen ad-/desorption on MSx Ny catalysts, leading to enhanced HER kinetics. Toward the activity origin of MS2 N2 , the experimental and theoretical results disclose that the metal atoms are preferentially protonated and then the production of H2 is favored on the MN active sites after a heterocoupling step involving a N-bound proton and a metal-bound hydride. Moreover, the tuning of the metal centers in MS2 N2 leads to the HER performance in the order of FeS2 N2 > CoS2 N2 > NiS2 N2 . Thus, the understanding of the catalytic active sites provides strategies for the enhancement of the electrocatalytic activity by tailoring the ligands and metal centers to the desired function.
Collapse
Affiliation(s)
- Lihuan Wang
- Department of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Diana C Tranca
- Department of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Jian Zhang
- Department of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Yanpeng Qi
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Stavroula Sfaelou
- Department of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Tao Zhang
- Department of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Renhao Dong
- Department of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xiaodong Zhuang
- Department of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Zhikun Zheng
- Department of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Gotthard Seifert
- Department of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|