1
|
Lemos R, Pérez-Badell Y, De Nisco M, Carpentieri A, Suárez M, Pedatella S. Organic Chimeras Based on Selenosugars, Steroids, and Fullerenes as Potential Inhibitors of the β-amyloid Peptide Aggregation. Chempluschem 2025; 90:e202400404. [PMID: 39235155 DOI: 10.1002/cplu.202400404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
The aggregation of β-amyloid peptide (Aβ) is associated with neurodegenerative diseases such as Alzheimer's disease (AD). Several therapies aimed at reducing the aggregation of this peptide have emerged as potential strategies for the treatment of AD. This paper describes the design and preparation of new hybrid molecules based on steroids, selenosugars, and [60]fullerene as potential inhibitors of Aβ oligomerization. These moieties were selected based on their antioxidant properties and possible areas of interaction with the Aβ. Cyclopropanations between C60 and malonates bearing different steroid and selenosugar moieties using the Bingel-Hirsch protocol have enabled the synthesis of functionalized molecular hybrids. The obtained derivatives were characterized by physical and spectroscopic techniques. Theoretical calculations for all the selenium compounds were performed using the density functional theory DFT/B3LYP-D3(BJ)/6-311G(2d,p) predicting the most stable conformations of the synthesized derivatives. Relevant geometrical parameters were investigated to relate the stereochemical behavior and the spectroscopic data obtained. The affinity of the compounds for Aβ-peptide was estimated by molecular docking simulation, which predicted an increase in affinity and interactions for Aβ for the hybrids containing the C60 core. In addition, parameters such as lipophilicity, polar surface area, and dipole moment were calculated to predict their potential interaction with membrane cells.
Collapse
Affiliation(s)
- Reinier Lemos
- Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, 10400, La Habana, Cuba
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| | - Yoana Pérez-Badell
- Laboratorio de Química Computacional y Teórica, Facultad de Química, Universidad de La Habana, 10400, La Habana, Cuba
| | - Mauro De Nisco
- Department of Chemical Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, I-85100, Potenza, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| | - Margarita Suárez
- Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, 10400, La Habana, Cuba
| | - Silvana Pedatella
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| |
Collapse
|
2
|
Pan J, Zhong J, Geng J, Oberhauser J, Shi S, Wan J. Microglial Lyzl4 Facilitates β-Amyloid Clearance in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412184. [PMID: 39555667 PMCID: PMC11727385 DOI: 10.1002/advs.202412184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative condition characterized by the accumulation and deposition of amyloid-β (Aβ) aggregates in the brain. Despite a wealth of research on the toxicity of Aβ and its role in synaptic damage, the mechanisms facilitating Aβ clearance are not yet fully understood. However, microglia, the primary immune cells of the central nervous system, are known to maintain homeostasis through the phagocytic clearance of protein aggregates and cellular debris. In this study, RNA sequencing analysis and live cell functional screens are employed to uncover microglial genetic modifiers related to AD. Lyzl4 is identified, which encodes a c-type lysozyme-like enzyme primarily localized to microglial lysosomes, as a gene significantly upregulated in AD microglia with aging and propose that Lyzl4 upregulation acts as a positive regulator of Aβ clearance. Furthermore, it is found that Lyzl4 overexpression boosts Aβ clearance both in vitro and in vivo, underscoring its potential for mitigating Aβ burden. These novel insights position Lyzl4 as a promising therapeutic target for Alzheimer's disease, paving the way for further exploration into potential AD treatments.
Collapse
Affiliation(s)
- Jie Pan
- Department of PathologyStanford University School of MedicinePalo AltoCA94305USA
| | - Jie Zhong
- Shenzhen Key Laboratory for Neuronal Structural BiologyBiomedical Research InstituteShenzhen Peking University – The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdong Province518036China
- Department of Systems BiologySchool of Life SciencesSouthern University of Science and TechnologyShenzhenGuangdong Province518055China
| | - Ji Geng
- Department of PathologyStanford University School of MedicinePalo AltoCA94305USA
| | - Jane Oberhauser
- Department of PathologyStanford University School of MedicinePalo AltoCA94305USA
- Neuroscience Graduate ProgramUniversity of CaliforniaSan FranciscoSan FranciscoCA94143USA
| | - Shihua Shi
- Friedrich Miescher Institute for Biomedical Research (FMI)Basel4056Switzerland
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural BiologyBiomedical Research InstituteShenzhen Peking University – The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdong Province518036China
- Department of NeuroscienceSchool of Life SciencesSouthern University of Science and TechnologyShenzhenGuangdong Province518055China
| |
Collapse
|
3
|
Suladze S, Sustay Martinez C, Rodriguez Camargo DC, Engler J, Rodina N, Sarkar R, Zacharias M, Reif B. Structural Insights into Seeding Mechanisms of hIAPP Fibril Formation. J Am Chem Soc 2024; 146:13783-13796. [PMID: 38723619 PMCID: PMC11117405 DOI: 10.1021/jacs.3c14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
The deposition of islet amyloid polypeptide (hIAPP) fibrils is a hallmark of β-cell death in type II diabetes. In this study, we employ state-of-the-art MAS solid-state spectroscopy to investigate the previously elusive N-terminal region of hIAPP fibrils, uncovering both rigidity and heterogeneity. Comparative analysis between wild-type hIAPP and a disulfide-deficient variant (hIAPPC2S,C7S) unveils shared fibril core structures yet strikingly distinct dynamics in the N-terminus. Specifically, the variant fibrils exhibit extended β-strand conformations, facilitating surface nucleation. Moreover, our findings illuminate the pivotal roles of specific residues in modulating secondary nucleation rates. These results deepen our understanding of hIAPP fibril assembly and provide critical insights into the molecular mechanisms underpinning type II diabetes, holding promise for future therapeutic strategies.
Collapse
Affiliation(s)
- Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Christian Sustay Martinez
- Center
for
Functional Protein Assemblies (CPA), Department of Bioscience, TUM
School of Natural Sciences, Technische Universität
München, Ernst-Otto-Fischer-Straße
8, 85747 Garching, Germany
| | - Diana C. Rodriguez Camargo
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Jonas Engler
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Zacharias
- Center
for
Functional Protein Assemblies (CPA), Department of Bioscience, TUM
School of Natural Sciences, Technische Universität
München, Ernst-Otto-Fischer-Straße
8, 85747 Garching, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
4
|
Guan Y, Li Y, Gao W, Mei J, Xu W, Wang C, Ai H. Aggregation Dynamics Characteristics of Seven Different Aβ Oligomeric Isoforms-Dependence on the Interfacial Interaction. ACS Chem Neurosci 2024; 15:155-168. [PMID: 38109178 DOI: 10.1021/acschemneuro.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The aggregation of β-amyloid (Aβ) peptides has been confirmed to be associated with the onset of Alzheimer's disease (AD). Among the three phases of Aβ aggregation, the lag phase has been considered to be the best time for early Aβ pathological deposition clinical intervention and prevention for potential patients with normal cognition. Aβ peptide exists in various lengths in vivo, and Aβ oligomer in the early lag phase is neurotoxic but polymorphous and metastable, depending on Aβ length (isoform), molecular weight, and specific phase, and therefore hardly characterized experimentally. To cope with the problem, molecular dynamics simulation was used to investigate the aggregation process of five monomers for each of the seven common Aβ isoforms during the lag phase. Results showed that Aβ(1-40) and Aβ(1-38) monomers aggregated faster than their truncated analogues Aβ(4-40) and Aβ(4-38), respectively. However, the aggregation rate of Aβ(1-42) was slower than that of its truncated analogues Aβ(4-42) rather than that of Aβpe(3-42). More importantly, Aβ(1-38) is first predicted as more likely to form stable hexamer than the remaining five Aβ isoforms, as Aβ(1-42) does. It is hydrophobic interaction mainly (>50%) from the interfacial β1 and β2 regions of two reactants, pentamer and monomer, aggregated by Aβ(1-38)/Aβ(1-42) rather than by other Aβ isoforms, that drives the hexamer stably as a result of the formation of the effective hydrophobic collapse. This paper provides new insights into the aggregation characteristics of Aβ with different lengths and the conditions necessary for Aβ to form oligomers with a high molecular weight in the early lag phase, revealing the dependence of Aβ hexamer formation on the specific interfacial interaction.
Collapse
Affiliation(s)
- Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Ye Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wenqi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wen Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
5
|
Dong L, Xie HZ, Jia L, Hong L, Li G. Inhibition of Amyloid β Aggregation and Cytotoxicity by Berbamine Hydrochloride. Chemistry 2023; 29:e202301865. [PMID: 37470691 DOI: 10.1002/chem.202301865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Alzheimer's disease (AD) continues to be a major global health challenge, and the recent approval of Aduhelm and Leqembi has opened new avenues for its treatment. Small-molecule inhibitors targeting Aβ aggregation hold promise as an alternative to monoclonal antibodies. In this study, we evaluated the ability of berbamine hydrochloride (BBMH), a member of the bisbenzylisoquinoline alkaloids, to reduce Aβ aggregation and cytotoxicity. Thioflavin T kinetics, circular dichroism spectroscopy, and atomic force microscopy results indicated that BBMH effectively inhibited Aβ aggregation. Surface plasmon resonance and molecular docking results further revealed that BBMH could bind to Aβ fibrils, thereby hindering the aggregation process. This physical picture has been confirmed in a quantitative way by chemical kinetics analysis, which showed BBMH tends to bind with the fibril ends and thus prevents the transition from protofibrils to mature fibrils as well as the elongation process. Additionally, our MTT results showed that BBMH was able to reduce the cytotoxicity of Aβ40 on N2a cells. Our results demonstrate, for the first time, the potential of BBMH to inhibit Aβ aggregation and cytotoxicity, offering a promising direction for further research and drug development efforts in the fight against Alzheimer's disease.
Collapse
Affiliation(s)
- Li Dong
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology, Cooperation Base of Intelligent Pharmaceutics, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Huan-Zhang Xie
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology, Cooperation Base of Intelligent Pharmaceutics, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Lee Jia
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology, Cooperation Base of Intelligent Pharmaceutics, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Liu Hong
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Gao Li
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology, Cooperation Base of Intelligent Pharmaceutics, Minjiang University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
6
|
Bhopatkar AA, Kayed R. Flanking regions, amyloid cores, and polymorphism: the potential interplay underlying structural diversity. J Biol Chem 2023; 299:105122. [PMID: 37536631 PMCID: PMC10482755 DOI: 10.1016/j.jbc.2023.105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
The β-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-β, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
7
|
Xu W, Mei J, Wang C, Yang H, Ma X, Gao W, Ahmad S, Ai H. Origin of stronger binding of ionic pair (IP) inhibitor to Aβ42 than the equimolar neutral counterparts: synergy mechanism of IP in disrupting Aβ42 protofibril and inhibiting Aβ42 aggregation under two pH conditions. Phys Chem Chem Phys 2023; 25:21612-21630. [PMID: 37551434 DOI: 10.1039/d3cp01683h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Fibrous aggregates of beta-amyloid (Aβ) is a hallmark of Alzheimer's disease (AD). Several major strategies of drugs or inhibitors, including neutral molecules, positive or negative ions, and dual-inhibitor, are used to inhibit the misfolding or aggregation of Aβ42, among which a kind of dual-inhibitor composed of a pair of positive and negative ions is emerging as the most powerful candidate. This knowledge lacks the origin of the strong inhibitory effect and synergy mechanisms blocking the development and application of such inhibitors. To this end, we employed 1 : 1 ionic pairs (IP) of oppositely charged benzothiazole molecules (+)BAM1-EG6 (Pos) and (-)BAM1-EG6 (Neg) as well as equimolar neutral BAM1-EG6 (Neu) counterpart at two pH conditions (5.5 and 7.0) to bind Aβ42 targets, Aβ42 monomer (AβM), soluble pentamer (AβP), and pentameric protofibril (AβF) models, respectively, corresponding to the products of three toxic Aβ42 development pathways, lag, exponential and fibrillation phases. Simulated results illustrated the details of the inhibitory mechanisms of IP and Neu for the AβY (Y = M, P, or F) in the three different phases, characterizing the roles of Pos and Neg of IP as well as their charged, hydrophobic groups and linker playing in the synergistic interaction, and elucidated a previously unknown molecular mechanism governing the IP-Aβ42 interaction. Most importantly, we first revealed the origin of the stronger binding of IP inhibitors to Aβ42 than that of the equimolar neutral counterparts, observing a perplexing phenomenon that the physiological condition (pH = 7.0) than the acidic one (pH = 5.5) is more favorable to the enhancement of IP binding, and finally disclosed that solvation is responsible to the enhancement because at pH 7.0, AβP and AβF act as anionic membranes, where solvation plays a critical role in the chemoelectromechanics. The result not only provides a new dimension in dual-inhibitor/drug design and development but also a new perspective for uncovering charged protein disaggregation under IP-like inhibitors.
Collapse
Affiliation(s)
- Wen Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Huijuan Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xiaohong Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wenqi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
8
|
Zimbone S, Giuffrida ML, Sabatino G, Di Natale G, Tosto R, Consoli GML, Milardi D, Pappalardo G, Sciacca MFM. Aβ 8-20 Fragment as an Anti-Fibrillogenic and Neuroprotective Agent: Advancing toward Efficient Alzheimer's Disease Treatment. ACS Chem Neurosci 2023; 14:1126-1136. [PMID: 36857606 PMCID: PMC10020970 DOI: 10.1021/acschemneuro.2c00720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterized by a spectrum of symptoms associated with memory loss and cognitive decline with deleterious consequences in everyday life. The lack of specific drugs for the treatment and/or prevention of this pathology makes AD an ever-increasing economic and social emergency. Oligomeric species of amyloid-beta (Aβ) are recognized as the primary cause responsible for synaptic dysfunction and neuronal degeneration, playing a crucial role in the onset of the pathology. Several studies have been focusing on the use of small molecules and peptides targeting oligomeric species to prevent Aβ aggregation and toxicity. Among them, peptide fragments derived from the primary sequence of Aβ have also been used to exploit any eventual recognition abilities toward the full-length Aβ parent peptide. Here, we test the Aβ8-20 fragment which contains the self-recognizing Lys-Leu-Val-Phe-Phe sequence and lacks Arg 5 and Asp 7 and the main part of the C-terminus, key points involved in the aggregation pathway and stabilization of the fibrillary structure of Aβ. In particular, by combining chemical and biological techniques, we show that Aβ8-20 does not undergo random coil to β sheet conformational transition, does not form amyloid fibrils by itself, and is not toxic for neuronal cells. Moreover, we demonstrate that Aβ8-20 mainly interacts with the 4-11 region of Aβ1-42 and inhibits the formation of toxic oligomeric species and Aβ fibrils. Finally, our data show that Aβ8-20 protects neuron-like cells from Aβ1-42 oligomer toxicity. We propose Aβ8-20 as a promising drug candidate for the treatment of AD.
Collapse
Affiliation(s)
- Stefania Zimbone
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Via Paolo Gaifami, 18, Catania 95126, Italy
| | - Maria Laura Giuffrida
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Via Paolo Gaifami, 18, Catania 95126, Italy
| | - Giuseppina Sabatino
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Via Paolo Gaifami, 18, Catania 95126, Italy
| | - Giuseppe Di Natale
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Via Paolo Gaifami, 18, Catania 95126, Italy
| | - Rita Tosto
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Via Paolo Gaifami, 18, Catania 95126, Italy
| | - Grazia M L Consoli
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Paolo Gaifami, 18, Catania 95126, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Via Paolo Gaifami, 18, Catania 95126, Italy
| | - Giuseppe Pappalardo
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Via Paolo Gaifami, 18, Catania 95126, Italy
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Via Paolo Gaifami, 18, Catania 95126, Italy
| |
Collapse
|
9
|
Zhou C, Zhang J, Luo X, Lian F, Zeng Y, Zhang Z, Zhang H, Zhang N. Sodium Oligomannate Electrostatically Binds to Aβ and Blocks Its Aggregation. J Phys Chem B 2023; 127:1983-1994. [PMID: 36848623 DOI: 10.1021/acs.jpcb.3c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
GV-971 (sodium oligomannate) is a China Food and Drug Administration (CFDA)-approved drug for treating Alzheimer's disease, and it could inhibit Aβ fibril formation in vitro and in mouse studies. To elucidate the mechanisms for understanding how GV-971 modulates Aβ's aggregation, we conducted a systematic biochemical and biophysical study of Aβ40/Aβ42:GV-971 systems. The integrating analysis of previously published data and our results suggests that the multisite electrostatic interactions between GV-971's carboxylic groups and Aβ40/Aβ42's three histidine residues might play a dominant role in driving the binding of GV-971 to Aβ. The fuzzy-type electrostatic interactions between GV-971 and Aβ are expected to protect Aβ from aggregation potentially through breaking the histidine-mediated inter-Aβ electrostatic interactions. Meanwhile, since GV-971's binding exhibited a slight downregulation effect on the flexibility of Aβ's histidine-colonized fragment, which potentially favors Aβ aggregation, we conclude that the dynamics alteration plays a minor role in GV-971's modulation on Aβ aggregation.
Collapse
Affiliation(s)
- Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jingjing Zhang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinwen Luo
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fulin Lian
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yangyang Zeng
- Green Valley (Shanghai) Pharmaceuticals Co., Ltd., Shanghai 201203, China
| | - Zhenqing Zhang
- School of Pharmaceutical Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Haiyan Zhang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
10
|
Nuñez-Diaz C, Pocevičiūtė D, Schultz N, The Netherlands Brain Bank, Welinder C, Swärd K, Wennström M. Contraction of human brain vascular pericytes in response to islet amyloid polypeptide is reversed by pramlintide. Mol Brain 2023; 16:25. [PMID: 36793056 PMCID: PMC9933335 DOI: 10.1186/s13041-023-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
The islet amyloid polypeptide (IAPP), a pancreas-produced peptide, has beneficial functions in its monomeric form. However, IAPP aggregates, related to type 2 diabetes mellitus (T2DM), are toxic not only for the pancreas, but also for the brain. In the latter, IAPP is often found in vessels, where it is highly toxic for pericytes, mural cells that have contractile properties and regulate capillary blood flow. In the current study, we use a microvasculature model, where human brain vascular pericytes (HBVP) are co-cultured together with human cerebral microvascular endothelial cells, to demonstrate that IAPP oligomers (oIAPP) alter the morphology and contractility of HBVP. Contraction and relaxation of HBVP was verified using the vasoconstrictor sphingosine-1-phosphate (S1P) and vasodilator Y27632, where the former increased, and the latter decreased, the number of HBVP with round morphology. Increased number of round HBVP was also seen after oIAPP stimulation, and the effect was reverted by the IAPP analogue pramlintide, Y27632, and the myosin inhibitor blebbistatin. Inhibition of the IAPP receptor with the antagonist AC187 only reverted IAPP effects partially. Finally, we demonstrate by immunostaining of human brain tissue against laminin that individuals with high amount of brain IAPP levels show significantly lower capillary diameter and altered mural cell morphology compared to individuals with low brain IAPP levels. These results indicate that HBVP, in an in vitro model of microvasculature, respond morphologically to vasoconstrictors, dilators, and myosin inhibitors. They also suggest that oIAPP induces contraction of these mural cells and that pramlintide can reverse such contraction.
Collapse
Affiliation(s)
- Cristina Nuñez-Diaz
- grid.4514.40000 0001 0930 2361Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Dovilė Pocevičiūtė
- grid.4514.40000 0001 0930 2361Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Nina Schultz
- grid.4514.40000 0001 0930 2361Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - The Netherlands Brain Bank
- grid.419918.c0000 0001 2171 8263Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Charlotte Welinder
- grid.4514.40000 0001 0930 2361Faculty of Medicine, Department of Clinical Sciences, Lund, Mass Spectrometry, Lund University, Lund, Sweden
| | - Karl Swärd
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| |
Collapse
|
11
|
Multivariate effects of pH, salt, and Zn 2+ ions on Aβ 40 fibrillation. Commun Chem 2022; 5:171. [PMID: 36697708 PMCID: PMC9814776 DOI: 10.1038/s42004-022-00786-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Amyloid-β (Aβ) peptide aggregation plays a central role in the progress of Alzheimer's disease (AD), of which Aβ-deposited extracellular amyloid plaques are a major hallmark. The brain micro-environmental variation in AD patients, like local acidification, increased ionic strength, or changed metal ion levels, cooperatively modulates the aggregation of the Aβ peptides. Here, we investigate the multivariate effects of varied pH, ionic strength and Zn2+ on Aβ40 fibrillation kinetics. Our results reveal that Aβ fibrillation kinetics are strongly affected by pH and ionic strength suggesting the importance of electrostatic interactions in regulating Aβ40 fibrillation. More interestingly, the presence of Zn2+ ions can further alter or even reserve the role of pH and ionic strength on the amyloid fibril kinetics, suggesting the importance of amino acids like Histidine that can interact with Zn2+ ions. Both pH and ionic strength regulate the secondary nucleation processes, however regardless of pH and Zn2+ ions, ionic strength can also modulate the morphology of Aβ40 aggregates. These multivariate effects in bulk solution provide insights into the correlation of pH-, ionic strength- or Zn2+ ions changes with amyloid deposits in AD brain and will deepen our understanding of the molecular pathology in the local brain microenvironment.
Collapse
|
12
|
Yang J, Wang X, Liu J, Chi W, Zhang L, Xiao L, Yan JW. Near-Infrared Photooxygenation Theranostics Used for the Specific Mapping and Modulating of Amyloid-β Aggregation. Anal Chem 2022; 94:15902-15907. [DOI: 10.1021/acs.analchem.2c04042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinrong Yang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jinsheng Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weijie Chi
- Department of Chemistry, School of Science, Hainan University, Haikou 570228, PR China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jin-wu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
13
|
Young KA, Mancera RL. Review: Investigating the aggregation of amyloid beta with surface plasmon resonance: Do different approaches yield different results? Anal Biochem 2022; 654:114828. [PMID: 35931183 DOI: 10.1016/j.ab.2022.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Aggregation of amyloid beta into amyloid plaques in the brain is a hallmark characteristic of Alzheimer's disease. Therapeutics aimed at preventing or retarding amyloid formation often rely on detailed characterization of the underlying mechanism and kinetics of protein aggregation. Surface plasmon resonance (SPR) spectroscopy is a robust technique used to determine binding affinity and kinetics of biomolecular interactions. This approach has been used to characterize the mechanism of aggregation of amyloid beta but there are multiple pitfalls that need to be addressed when working with this and other amyloidogenic proteins. The choice of method for analyte preparation and ligand immobilization to a sensor chip can lead to different theoretical and practical implications in terms of the mathematical modelling of binding data, different mechanisms of binding and the presence of different interacting species. This review examines preparation methods for SPR characterisation of the aggregation of amyloid beta and their influence on the findings derived from such studies.
Collapse
Affiliation(s)
- Kimberly A Young
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| |
Collapse
|
14
|
Buell AK. Stability matters, too - the thermodynamics of amyloid fibril formation. Chem Sci 2022; 13:10177-10192. [PMID: 36277637 PMCID: PMC9473512 DOI: 10.1039/d1sc06782f] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/30/2022] [Indexed: 12/26/2022] Open
Abstract
Amyloid fibrils are supramolecular homopolymers of proteins that play important roles in biological functions and disease. These objects have received an exponential increase in attention during the last few decades, due to their role in the aetiology of a range of severe disorders, most notably some of a neurodegenerative nature. While an overwhelming number of experimental studies exist that investigate how, and how fast, amyloid fibrils form and how their formation can be inhibited, a much more limited body of experimental work attempts to answer the question as to why these types of structures form (i.e. the thermodynamic driving force) and how stable they actually are. In this review, I attempt to give an overview of the types of experiments that have been performed to-date to answer these questions, and to summarise our current understanding of amyloid thermodynamics.
Collapse
Affiliation(s)
- Alexander K Buell
- Technical University of Denmark, Department of Biotechnology and Biomedicine Søltofts Plads, Building 227 2800 Kgs. Lyngby Denmark
| |
Collapse
|
15
|
Shimanouchi T, Sano Y, Yasuhara K, Kimura Y. Amyloid-β aggregates induced by β-cholesteryl glucose-embedded liposomes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140816. [PMID: 35777623 DOI: 10.1016/j.bbapap.2022.140816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Senile plaques that is characterized as an amyloid deposition found in Alzheimer's disease are composed primarily of fibrils of an aggregated peptide, amyloid β (Aβ). The ability to monitor senile plaque formation on a neuronal membrane under physiological conditions provides an attractive model. In this study, the growth behavior of amyloid Aβ fibrils in the presence of liposomes incorporating β-cholesteryl-D-glucose (β-CG) was examined using total internal reflection fluorescence microscopy, transmittance electron microscopy, and other spectroscopic methods. We found that β-CG on the liposome membrane induced the spontaneous formation of spherulitic Aβ fibrillar aggregates. The β-CG cluster formed on liposome membranes appeared to induce the accumulation of Aβ, followed by the growth of the spherulitic Aβ aggregates. In contrast, DMPC and DMPC incorporated cholesterol-induced fibrils that are laterally associated with each other. A comparison study using three types of liposomes implied that the induction of glucose contributed to the agglomeration of Aβ fibrils and liposomes. This agglomeration required the spontaneous formation of spherulitic Aβ fibrillary aggregates. This action can be regarded as a counterbalance to the growth of fibrils and their toxicity, which has great potential in the study of amyloidopathies.
Collapse
Affiliation(s)
- Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-kku, Okayama 700-8530, Japan.
| | - Yasuhiro Sano
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-kku, Okayama 700-8530, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Yukitaka Kimura
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-kku, Okayama 700-8530, Japan
| |
Collapse
|
16
|
Piccialli I, Tedeschi V, Caputo L, D’Errico S, Ciccone R, De Feo V, Secondo A, Pannaccione A. Exploring the Therapeutic Potential of Phytochemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front Pharmacol 2022; 13:876614. [PMID: 35600880 PMCID: PMC9114803 DOI: 10.3389/fphar.2022.876614] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic, complex neurodegenerative disorder mainly characterized by the irreversible loss of memory and cognitive functions. Different hypotheses have been proposed thus far to explain the etiology of this devastating disorder, including those centered on the Amyloid-β (Aβ) peptide aggregation, Tau hyperphosphorylation, neuroinflammation and oxidative stress. Nonetheless, the therapeutic strategies conceived thus far to treat AD neurodegeneration have proven unsuccessful, probably due to the use of single-target drugs unable to arrest the progressive deterioration of brain functions. For this reason, the theoretical description of the AD etiology has recently switched from over-emphasizing a single deleterious process to considering AD neurodegeneration as the result of different pathogenic mechanisms and their interplay. Moreover, much relevance has recently been conferred to several comorbidities inducing insulin resistance and brain energy hypometabolism, including diabetes and obesity. As consequence, much interest is currently accorded in AD treatment to a multi-target approach interfering with different pathways at the same time, and to life-style interventions aimed at preventing the modifiable risk-factors strictly associated with aging. In this context, phytochemical compounds are emerging as an enormous source to draw on in the search for multi-target agents completing or assisting the traditional pharmacological medicine. Intriguingly, many plant-derived compounds have proven their efficacy in counteracting several pathogenic processes such as the Aβ aggregation, neuroinflammation, oxidative stress and insulin resistance. Many strategies have also been conceived to overcome the limitations of some promising phytochemicals related to their poor pharmacokinetic profiles, including nanotechnology and synthetic routes. Considering the emerging therapeutic potential of natural medicine, the aim of the present review is therefore to highlight the most promising phytochemical compounds belonging to two major classes, polyphenols and monoterpenes, and to report the main findings about their mechanisms of action relating to the AD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Anna Pannaccione,
| |
Collapse
|
17
|
Vugmeyster L, Ostrovsky D, Greenwood A, Fu R. Deuteron rotating frame relaxation for the detection of slow motions in rotating solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107171. [PMID: 35219160 PMCID: PMC8994516 DOI: 10.1016/j.jmr.2022.107171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/06/2023]
Abstract
We demonstrate experimental and computational approaches for measuring 2H rotating frame NMR relaxation for solid samples under magic angle spinning (MAS) conditions. The relaxation properties of the deuterium spin-1 system are dominated by the reorientation of the anisotropic quadrupolar tensors, with the effective quadrupolar coupling constant around 55 kHz for methyl groups. The technique is demonstrated using the model compound dimethyl-sulfone at MAS rates of 10 and 60 kHz as well as for an amyloid fibril sample comprising an amyloid-β (1-40) protein with a selective methyl group labeled in the disordered domain of the fibrils, at an MAS rate of 8 kHz. For both systems, the motional parameters fall well within the ranges determined by other techniques, thus validating its feasibility. Experimental and computational factors such as i) the probe's radio frequency inhomogeneity profiles, ii) rotary resonances at conditions for which the spin-lock field strength matches the half- or full-integer of the MAS rate, iii) the choice of MAS rates and spin-lock field strengths, and iv) simulations that account for the interconversion of multiple coherences for the spin-1 system under MAS and deviations from the analytical Redfield treatment are thoroughly considered.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA.
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO 80204, USA
| | - Alexander Greenwood
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL 32310, USA
| |
Collapse
|
18
|
Yuan M, Tang X, Han W. Anatomy and Formation Mechanisms of Early Amyloid-β Oligomers with Lateral Branching: Graph Network Analysis on Large-Scale Simulations. Chem Sci 2022; 13:2649-2660. [PMID: 35356670 PMCID: PMC8890322 DOI: 10.1039/d1sc06337e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Oligomeric amyloid-β aggregates (AβOs) effectively trigger Alzheimer's disease-related toxicity, generating great interest in understanding their structures and formation mechanisms. However, AβOs are heterogeneous and transient, making their structure and formation difficult to study. Here, we performed graph network analysis of tens of microsecond massive simulations of early amyloid-β (Aβ) aggregations at near-atomic resolution to characterize AβO structures with sizes up to 20-mers. We found that AβOs exhibit highly curvilinear, irregular shapes with occasional lateral branches, consistent with recent cryo-electron tomography experiments. We also found that Aβ40 oligomers were more likely to develop branches than Aβ42 oligomers, explaining an experimental observation that only Aβ40 was trapped in network-like aggregates and exhibited slower fibrillization kinetics. Moreover, AβO architecture dissection revealed that their curvilinear appearance is related to the local packing geometries of neighboring peptides and that Aβ40's greater branching ability originates from specific C-terminal interactions at branching interfaces. Finally, we demonstrate that whether Aβ oligomerization causes oligomers to elongate or to branch depends on the sizes and shapes of colliding aggregates. Collectively, this study provides bottom-up structural information for understanding early Aβ aggregation and AβO toxicity. Graph network analysis on large-scale simulations uncovers the differential branching behaviours of large Aβ40 and Aβ42 oligomers.![]()
Collapse
Affiliation(s)
- Miao Yuan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xuan Tang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
19
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: a systematic review. Ageing Res Rev 2021; 72:101496. [PMID: 34687956 DOI: 10.1016/j.arr.2021.101496] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in ageing, affecting around 46 million people worldwide but few treatments are currently available. The etiology of AD is still puzzling, and new drugs development and clinical trials have high failure rates. Urgent outline of an integral (multi-target) and effective treatment of AD is needed. Accumulation of amyloid-β (Aβ) peptides is considered one of the fundamental neuropathological pillars of the disease, and its dyshomeostasis has shown a crucial role in AD onset. Therefore, many amyloid-targeted therapies have been investigated. Here, we will systematically review recent (from 2014) investigational, follow-up and review studies focused on anti-amyloid strategies to summarize and analyze their current clinical potential. Combination of anti-Aβ therapies with new developing early detection biomarkers and other therapeutic agents acting on early functional AD changes will be highlighted in this review. Near-term approval seems likely for several drugs acting against Aβ, with recent FDA approval of a monoclonal anti-Aβ oligomers antibody -aducanumab- raising hopes and controversies. We conclude that, development of oligomer-epitope specific Aβ treatment and implementation of multiple improved biomarkers and risk prediction methods allowing early detection, together with therapies acting on other factors such as hyperexcitability in early AD, could be the key to slowing this global pandemic.
Collapse
|
20
|
Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A. The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry 2021; 26:5481-5503. [PMID: 34456336 PMCID: PMC8758495 DOI: 10.1038/s41380-021-01249-0] [Citation(s) in RCA: 873] [Impact Index Per Article: 218.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Aisen
- USC Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Colin L Masters
- Laureate Professor of Dementia Research, Florey Institute and The University of Melbourne, Parkville, VIC, Australia
| | - Min Cho
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA
| | - Lars Lannfelt
- Uppsala University, Department of of Public Health/Geriatrics, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Andrea Vergallo
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| |
Collapse
|
21
|
Vugmeyster L, Ostrovsky D. Deuterium solid-state NMR quadrupolar order rotating frame relaxation with applications to amyloid-β fibrils. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:853-863. [PMID: 33161607 PMCID: PMC8105426 DOI: 10.1002/mrc.5114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 05/27/2023]
Abstract
We describe a new method for measuring molecular dynamics based on the deuterium solid-state nuclear magnetic resonance (NMR) quadrupolar order rotating frame relaxation rate R1ρ,Q under static conditions. The observed quadrupolar order coherence is created using the broad-band Jeener-Broekaert excitation and is locked with a weak radio frequency (RF) field. We describe the experimental and theoretical approaches and show applications to a selectively deuterated valine side chain of the phosphorylated amyloid-β (1-40) fibrils phosphorylated at the serine-8 position. The R1ρ,Q rate is sensitive to the rotameric exchange mode. For biological samples, the low spin-lock field in the 5- to 10-kHz range has the advantage of avoiding sample heating and dehydration. Thus, it provides an alternative to approaches based on single-quantum coherence, which require larger spin-lock fields.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| |
Collapse
|
22
|
Byman E, Martinsson I, Haukedal H, The Netherlands Brain Bank, Gouras G, Freude KK, Wennström M. Neuronal α-amylase is important for neuronal activity and glycogenolysis and reduces in presence of amyloid beta pathology. Aging Cell 2021; 20:e13433. [PMID: 34261192 PMCID: PMC8373367 DOI: 10.1111/acel.13433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies indicate a crucial role for neuronal glycogen storage and degradation in memory formation. We have previously identified alpha-amylase (α-amylase), a glycogen degradation enzyme, located within synaptic-like structures in CA1 pyramidal neurons and shown that individuals with a high copy number variation of α-amylase perform better on the episodic memory test. We reported that neuronal α-amylase was absent in patients with Alzheimer's disease (AD) and that this loss corresponded to increased AD pathology. In the current study, we verified these findings in a larger patient cohort and determined a similar reduction in α-amylase immunoreactivity in the molecular layer of hippocampus in AD patients. Next, we demonstrated reduced α-amylase concentrations in oligomer amyloid beta 42 (Aβ42 ) stimulated SH-SY5Y cells and neurons derived from human-induced pluripotent stem cells (hiPSC) with PSEN1 mutation. Reduction of α-amylase production and activity, induced by siRNA and α-amylase inhibitor Tendamistat, respectively, was further shown to enhance glycogen load in SH-SY5Y cells. Both oligomer Aβ42 stimulated SH-SY5Y cells and hiPSC neurons with PSEN1 mutation showed, however, reduced load of glycogen. Finally, we demonstrate the presence of α-amylase within synapses of isolated primary neurons and show that inhibition of α-amylase activity with Tendamistat alters neuronal activity measured by calcium imaging. In view of these findings, we hypothesize that α-amylase has a glycogen degrading function within synapses, potentially important in memory formation. Hence, a loss of α-amylase, which can be induced by Aβ pathology, may in part underlie the disrupted memory formation seen in AD patients.
Collapse
Affiliation(s)
- Elin Byman
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöLund UniversityMalmöSweden
| | - Isak Martinsson
- Experimental Dementia Research UnitDepartment of Experimental Medical ScienceBMC B11Lund UniversityLundSweden
| | - Henriette Haukedal
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | | - Gunnar Gouras
- Experimental Dementia Research UnitDepartment of Experimental Medical ScienceBMC B11Lund UniversityLundSweden
| | - Kristine K. Freude
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Malin Wennström
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöLund UniversityMalmöSweden
| |
Collapse
|
23
|
Morris C, Kent TW, Shen F, Wojcikiewicz EP, Du D. Effects of the Hydrophilic N-Terminal Region on Aβ-Mediated Membrane Disruption. J Phys Chem B 2021; 125:7671-7678. [PMID: 34252282 DOI: 10.1021/acs.jpcb.1c03413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloidogenesis of amyloid-β (Aβ) peptides is intimately related to pathological neurodegeneration in Alzheimer's disease. Here, we investigated the membrane damage activity of Aβ40 and its derivatives that contain mutation at the N-terminal charged residues using a membrane leakage assay. A model 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) phospholipid vesicle encapsulating the fluorescent dye carboxyfluorescein was used in the study. Our results show that the mutations of the N-terminal charged residues of Aβ40 significantly affect the peptide-induced membrane leakage. The results suggest that favorable electrostatic interactions of the N-terminal charged residues and the phosphatidylcholine membrane surface are crucial in Aβ-mediated membrane permeation. The flexible and charge-rich N-terminal region may play a critical role in directing Aβ self-association on the membrane surface and in anchoring and stabilizing the peptide aggregates inserted in the phospholipid membrane, which are closely related with membrane disruption activity of Aβ. The results provide new mechanistic insight into the Aβ-mediated membrane damage process, which may be critical for understanding the mechanism of Aβ neurotoxicity in Alzheimer's disease.
Collapse
Affiliation(s)
- Clifford Morris
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Thomas W Kent
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Fengyun Shen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Ewa P Wojcikiewicz
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
24
|
Vugmeyster L. Recent developments in deuterium solid-state NMR for the detection of slow motions in proteins. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 111:101710. [PMID: 33450712 PMCID: PMC7903970 DOI: 10.1016/j.ssnmr.2020.101710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 05/14/2023]
Abstract
Slow timescale dynamics in proteins are essential for a variety of biological functions spanning ligand binding, enzymatic catalysis, protein folding and misfolding regulations, as well as protein-protein and protein-nucleic acid interactions. In this review, we focus on the experimental and theoretical developments of 2H static NMR methods applicable for studies of microsecond to millisecond motional modes in proteins, particularly rotating frame relaxation dispersion (R1ρ), quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) relaxation dispersion, and quadrupolar chemical exchange saturation transfer NMR experiments (Q-CEST). With applications chosen from amyloid-β fibrils, we show the complementarity of these approaches for elucidating the complexities of conformational ensembles in disordered domains in the non-crystalline solid state, with the employment of selective deuterium labels. Combined with recent advances in relaxation dispersion backbone measurements for 15N/13C/1H nuclei, these techniques provide powerful tools for studies of biologically relevant timescale dynamics in disordered domains in the solid state.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO, 80204, USA.
| |
Collapse
|
25
|
Thermodynamics of amyloid fibril formation from non-equilibrium experiments of growth and dissociation. Biophys Chem 2021; 271:106549. [PMID: 33578107 DOI: 10.1016/j.bpc.2021.106549] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Amyloid fibrils are ordered, non-covalent polymers of proteins that are linked to a range of diseases, as well as biological functions. Amyloid fibrils are often considered thermodynamically so stable that they appear to be irreversible, explaining why very few quantitative thermodynamic studies have been performed on amyloid fibrils, compared to the very large body of kinetic studies. Here we explore the thermodynamics of amyloid fibril formation by the protein PI3K-SH3, which forms amyloid fibrils under acidic conditions. We use quartz crystal microbalance (QCM) and develop novel temperature perturbation experiments based on differential scanning fluorimetry (DSF) to measure the temperature dependence of the fibril growth and dissociation rates, allowing us to quantitatively describe the thermodynamic stability of PI3K-SH3 amyloid fibrils between 10 and 75°C.
Collapse
|
26
|
Ye Z, Geng X, Wei L, Li Z, Lin S, Xiao L. Length-Dependent Distinct Cytotoxic Effect of Amyloid Fibrils beyond Optical Diffraction Limit Revealed by Nanoscopic Imaging. ACS NANO 2021; 15:934-943. [PMID: 33320527 DOI: 10.1021/acsnano.0c07555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fibrillar species have been proposed to play an essential role in the cytotoxicity of amyloid peptide and the pathogenesis of neurodegenerative diseases. Discrimination of Aβ aggregates in situ at high spatial resolution is therefore significant for the development of a therapeutic method. In this work, we adopt a rhodamine-like structure as luminescent centers to fabricate carbonized fluorescent nanoparticles (i.e., carbon dots, RhoCDs) with tunable emission wavelengths from green to red and burst-like photoblinking property for localization-based nanoscopic imaging. These RhoCDs contain lipophilic cationic and carboxyl groups which can specifically bind with Aβ1-40 aggregates via electrostatic interaction and hydrogen bonding. According to the nanoscopic imaging in the Aβ1-40 fibrillation and disaggregation process, different types of Aβ1-40 aggregates beyond the optical diffraction limit have been disclosed. Additionally, length-dependent toxic effect of Aβ1-40 aggregates beyond the optical diffraction limit is unveiled. Short amyloid assemblies with length of 187 ± 3.9 nm in the early stage are more toxic than the elongated amyloid fibrils. Second, disassembly of long fibrils into short species by Gramicidin S (GS-2) peptide might enhance the cytotoxicity. These results lay the foundation to develop functional fluorophore for nanoscopic imaging and also provide deep insight into morphology-dependent cytotoxicity from amyloid peptides.
Collapse
Affiliation(s)
- Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Geng
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Wei
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zhaohui Li
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shen Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Ma W, Wang C, Liu R, Wang N, Lv Y, Dai B, He L. Advances in cell membrane chromatography. J Chromatogr A 2021; 1639:461916. [PMID: 33548663 DOI: 10.1016/j.chroma.2021.461916] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Cell membrane chromatography (CMC) is a biomimetic chromatographic method based on the ability of membrane receptors to selectively interact with their ligands in vivo. Using membrane receptors as a stationary phase, the CMC method helps in determining the binding characteristics between ligands and membrane receptors and in efficiently identifying specific target components in a complex sample that produce the cellular biological effects of ligands (drugs, antibodies, enzymes, cytokines, etc.). CMC is an analytical tool for revealing characteristics of ligand-receptor interactions, screening and discovering target substances, and accurately controlling the quality of drugs. Since establishment of CMC in the early 1990s, with the rapid development of cell biology, significant progress has been made in the development of high-expression receptors, engineered cell cultures, and standardized preparations, which allowed in vitro immobilization of cell membrane receptors and miniaturization of binding assays. A variety of CMC models have been established using different membrane receptors as a stationary phase, and many new methods have been developed by combining CMC with high-performance liquid chromatography (HPLC)/mass spectrometry or HPLC-IT-TOF technologies. CMC methods have been widely used to study drug-receptor interactions and to screen complex samples for effective or harmful components.
Collapse
Affiliation(s)
- Weina Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Cheng Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Rui Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Bingling Dai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China.
| |
Collapse
|
28
|
Rivera-Marrero S, Bencomo-Martínez A, Orta Salazar E, Sablón-Carrazana M, García-Pupo L, Zoppolo F, Arredondo F, Dapueto R, Daniela Santi M, Kreimerman I, Pardo T, Reyes L, Galán L, León-Chaviano S, Espinosa-Rodríguez LA, Menéndez-Soto Del Valle R, Savio E, Díaz Cintra S, Rodríguez-Tanty C. A new naphthalene derivative with anti-amyloidogenic activity as potential therapeutic agent for Alzheimer's disease. Bioorg Med Chem 2020; 28:115700. [PMID: 33069076 DOI: 10.1016/j.bmc.2020.115700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022]
Abstract
The aggregation of β-amyloid peptides is associated to neurodegeneration in Alzheimer's disease (AD) patients. Consequently, the inhibition of both oligomerization and fibrillation of β-amyloid peptides is considered a plausible therapeutic approach for AD. Herein, the synthesis of new naphthalene derivatives and their evaluation as anti-β-amyloidogenic agents are presented. Molecular dynamic simulations predicted the formation of thermodynamically stable complexes between the compounds, the Aβ1-42 peptide and fibrils. In human microglia cells, these compounds inhibited the aggregation of Aβ1-42 peptide. The lead compound 8 showed a high affinity to amyloid plaques in mice brain ex vivo assays and an adequate log Poct/PBS value. Compound 8 also improved the cognitive function and decreased hippocampal β-amyloid burden in the brain of 3xTg-AD female mice. Altogether, our results suggest that 8 could be a novel therapeutic agent for AD.
Collapse
Affiliation(s)
- Suchitil Rivera-Marrero
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Alberto Bencomo-Martínez
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Erika Orta Salazar
- Institute of Neurobiology (INB), Developmental Neurobiology and Neurophysiology, UNAM Juriquilla Querétaro, Mexico
| | - Marquiza Sablón-Carrazana
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Laura García-Pupo
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Florencia Zoppolo
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Florencia Arredondo
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Rosina Dapueto
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - María Daniela Santi
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Ingrid Kreimerman
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Tania Pardo
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Laura Reyes
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Lídice Galán
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Samila León-Chaviano
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Luis A Espinosa-Rodríguez
- Center of Genetic Engineering and Biotechnology (CIGB), Ave 31 e/ 158 and 190, Havana, CP10600, Cuba
| | - Roberto Menéndez-Soto Del Valle
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Eduardo Savio
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Sofía Díaz Cintra
- Institute of Neurobiology (INB), Developmental Neurobiology and Neurophysiology, UNAM Juriquilla Querétaro, Mexico.
| | - Chryslaine Rodríguez-Tanty
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba.
| |
Collapse
|
29
|
Byman E, Schultz N, Blom AM, Wennström M. A Potential Role for α-Amylase in Amyloid-β-Induced Astrocytic Glycogenolysis and Activation. J Alzheimers Dis 2020; 68:205-217. [PMID: 30775997 DOI: 10.3233/jad-180997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Astrocytes produce and store the energy reserve glycogen. However, abnormal large glycogen units accumulate if the production or degradation of glycogen is disturbed, a finding often seen in patients with Alzheimer's disease (AD). We have shown increased activity of glycogen degrading α-amylase in AD patients and α-amylase positive glial cells adjacent to AD characteristic amyloid-β (Aβ) plaques. OBJECTIVES Investigate the role of α-amylase in astrocytic glycogenolysis in presence of Aβ. METHODS Presence of α-amylase and large glycogen units in postmortem entorhinal cortex from AD patients and non-demented controls were analyzed by immunohistological stainings. Impact of different Aβ42 aggregation forms on enzymatic activity (α-amylase, pyruvate kinase, and lactate dehydrogenase), lactate secretion, and accumulation of large glycogen units in cultured astrocytes were analyzed by activity assays, ELISA, and immunocytochemistry, respectively. RESULTS AD patients showed increased number of α-amylase positive glial cells. The glial cells co-expressed the astrocytic marker glial fibrillary acidic protein, displayed hypertrophic features, and increased amount of large glycogen units. We further found increased load of large glycogen units, α-amylase immunoreactivity and α-amylase activity in cultured astrocytes stimulated with fibril Aβ42, with increased pyruvate kinase activity, but unaltered lactate release as downstream events. The fibril Aβ42-induced α-amylase activity was attenuated by β-adrenergic receptor antagonist propranolol. DISCUSSION We hypothesize that astrocytes respond to fibril Aβ42 in Aβ plaques by increasing their α-amylase production to either liberate energy or regulate functions needed in reactive processes. These findings indicate α-amylase as an important actor involved in AD associated neuroinflammation.
Collapse
Affiliation(s)
- Elin Byman
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Nina Schultz
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | | | - Anna M Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Malin Wennström
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| |
Collapse
|
30
|
Vugmeyster L, Au DF, Ostrovsky D, Rickertsen DRL, Reed SM. Dynamics of Serine-8 Side-Chain in Amyloid-β Fibrils and Fluorenylmethyloxycarbonyl Serine Amino Acid, Investigated by Solid-State Deuteron NMR. J Phys Chem B 2020; 124:4723-4731. [PMID: 32396356 DOI: 10.1021/acs.jpcb.0c02490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Serine side-chains are strategic sites of post-translational modifications, and it is important to establish benchmarks of their internal dynamics. In this work, we compare the dynamics of serine side-chains in several biologically important systems: serine-8 in the disordered domain of Aβ1-40 fibrils in the hydrated and dry states and fluorenylmethyloxycarbonyl (Fmoc) serine with the bulky group that mimics the hydrophobicity of the fibril contacts yet lacks the complexity of the protein system. Using deuterium solid-state NMR static line shape and longitudinal relaxation techniques in the 310 to 180 K temperature range, we compare the main features of the dynamics in these systems. The main motional modes in the fibrils are large-scale fluctuations in the hydrated state of the fibrils as well as local motions such as 3-site jumps of the Cβ deuterons at high temperatures and small-angle fluctuations of the Cα-Cβ axis at low temperatures. In the hydrated fibrils, two distinct states are present with vastly different extents of large-scale diffusive motions and 3-site-jump rate constants. The hydrated state at the physiological conditions is dominated by the "free" state undergoing large-scale diffusive motions and very fast local 3-site jumps, while in the "bound" state, these large-scale motions are quenched due to transient inter- and intramolecular interactions. Additionally, in the bound state, the 3-site-jump motions are orders of magnitude slower. Details of the dynamics in the serine side-chain are dependent on fine structural features and hydration levels of the systems.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, Colorado 80204, United States
| | | | - Scott M Reed
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| |
Collapse
|
31
|
Doherty CPA, Ulamec SM, Maya-Martinez R, Good SC, Makepeace J, Khan GN, van Oosten-Hawle P, Radford SE, Brockwell DJ. A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function. Nat Struct Mol Biol 2020; 27:249-259. [PMID: 32157247 PMCID: PMC7100612 DOI: 10.1038/s41594-020-0384-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/22/2020] [Indexed: 02/04/2023]
Abstract
Aggregation of human α-synuclein (αSyn) is linked to Parkinson’s disease (PD) pathology. The central region of the αSyn sequence contains the non-amyloid β-component (NAC) crucial for aggregation. However, how NAC flanking regions modulate αSyn aggregation remains unclear. Using bioinformatics, mutation, and NMR we identify a 7-residue sequence, named P1 (residues 36-42), that controls αSyn aggregation. Deletion or substitution of this ‘master-controller’ prevents aggregation at pH 7.5 in vitro. At lower pH, P1 synergises with a sequence containing the PreNAC region (P2, residues 45-57) to prevent aggregation. Deleting P1 (ΔP1) or both P1 and P2 (ΔΔ) also prevents age-dependent αSyn aggregation and toxicity in C. elegans models and prevents αSyn-mediated vesicle fusion by altering the conformational properties of the protein when lipid-bound. The results highlight the importance of a master-controller sequence motif that controls both αSyn aggregation and function- a region that could be targeted to prevent aggregation in disease.
Collapse
Affiliation(s)
- Ciaran P A Doherty
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sabine M Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sarah C Good
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Jemma Makepeace
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Patricija van Oosten-Hawle
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
32
|
Aggarwal L, Biswas P. Effect of Alzheimer’s Disease Causative and Protective Mutations on the Hydration Environment of Amyloid-β. J Phys Chem B 2020; 124:2311-2322. [DOI: 10.1021/acs.jpcb.9b10425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leena Aggarwal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
33
|
|
34
|
Islam T, Gharibyan AL, Lee CC, Olofsson A. Morphological analysis of Apolipoprotein E binding to Aβ Amyloid using a combination of Surface Plasmon Resonance, Immunogold Labeling and Scanning Electron Microscopy. BMC Biotechnol 2019; 19:97. [PMID: 31829176 PMCID: PMC6907347 DOI: 10.1186/s12896-019-0589-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/27/2019] [Indexed: 12/05/2022] Open
Abstract
Background Immunogold labeling in combination with transmission electron microscopy analysis is a technique frequently used to correlate high-resolution morphology studies with detailed information regarding localization of specific antigens. Although powerful, the methodology has limitations and it is frequently difficult to acquire a stringent system where unspecific low-affinity interactions are removed prior to analysis. Results We here describe a combinatorial strategy where surface plasmon resonance and immunogold labeling are used followed by a direct analysis of the sensor-chip surface by scanning electron microscopy. Using this approach, we have probed the interaction between amyloid-β fibrils, associated to Alzheimer’s disease, and apolipoprotein E, a well-known ligand frequently found co-deposited to the fibrillar form of Aβ in vivo. The results display a lateral binding of ApoE along the amyloid fibrils and illustrates how the gold-beads represent a good reporter of the binding. Conclusions This approach exposes a technique with generic features which enables both a quantitative and a morphological evaluation of a ligand-receptor based system. The methodology mediates an advantage compared to traditional immunogold labeling since all washing steps can be monitored and where a high stringency can be maintained throughout the experiment.
Collapse
Affiliation(s)
- Tohidul Islam
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Anna L Gharibyan
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Cheng Choo Lee
- Umeå Core Facility for Electron Microscopy (UCEM), Umeå University, SE-90187, Umeå, Sweden
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
35
|
Vugmeyster L, Au DF, Ostrovsky D, Kierl B, Fu R, Hu ZW, Qiang W. Effect of Post-Translational Modifications and Mutations on Amyloid-β Fibrils Dynamics at N Terminus. Biophys J 2019; 117:1524-1535. [PMID: 31570231 PMCID: PMC6817547 DOI: 10.1016/j.bpj.2019.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 02/04/2023] Open
Abstract
We investigate the variability in the dynamics of the disordered N-terminal domain of amyloid-β fibrils (Aβ), comprising residues 1-16 of Aβ1-40, due to post-translational modifications and mutations in the β-bend regions known to modulate aggregation properties. Using 2H static solid-state NMR approaches, we compare the dynamics in the wild-type Aβ fibrils in the threefold symmetric polymorph with the fibrils from three post-translational modification sequences: isoaspartate-D7, the phosphorylation of S8, and an N-terminal truncation ΔE3. Additional comparisons are made with the mutants in the β-bend region (residues 21-23) corresponding to the familial Osaka E22Δ deletion and D23N Iowa mutation. We also include the aggregates induced by Zn2+ ions. The dynamics are probed at the F4 and G9 positions. The main motional model involves two free states undergoing diffusion and conformational exchanges with the bound state in which the diffusion is quenched because of transient interactions involving fibril core and other intrastrand contacts. The fraction of the bound state increases in a sigmoidal fashion with a decrease in temperature. There is clear variability in the dynamics: the phosphorylation of S8 variant is the most rigid at the G9 site in line with structural studies, the ΔE3 fibrils are more flexible at the G9 site in line with the morphological fragmentation pattern, the Zn-induced aggregates are the most mobile, and the two β-bend mutants have the strongest changes at the F4 site toward higher rigidity. Overall, the changes underlie the potential role of conformational ensembles in setting the stage for aggregation-prone states.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, Colorado.
| | - Dan F Au
- Department of Chemistry, University of Colorado Denver, Denver, Colorado
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, Colorado
| | - Brian Kierl
- Department of Chemistry, University of Colorado Denver, Denver, Colorado
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, Florida
| | - Zhi-Wen Hu
- Department of Chemistry, Binghamton University, Binghamton, New York
| | - Wei Qiang
- Department of Chemistry, Binghamton University, Binghamton, New York
| |
Collapse
|
36
|
The growth of amyloid fibrils: rates and mechanisms. Biochem J 2019; 476:2677-2703. [DOI: 10.1042/bcj20160868] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
AbstractAmyloid fibrils are β-sheet-rich linear protein polymers that can be formed by a large variety of different proteins. These assemblies have received much interest in recent decades, due to their role in a range of human disorders. However, amyloid fibrils are also found in a functional context, whereby their structural, mechanical and thermodynamic properties are exploited by biological systems. Amyloid fibrils form through a nucleated polymerisation mechanism with secondary processes acting in many cases to amplify the number of fibrils. The filamentous nature of amyloid fibrils implies that the fibril growth rate is, by several orders of magnitude, the fastest step of the overall aggregation reaction. This article focusses specifically on in vitro experimental studies of the process of amyloid fibril growth, or elongation, and summarises the state of knowledge of its kinetics and mechanisms. This work attempts to provide the most comprehensive summary, to date, of the available experimental data on amyloid fibril elongation rate constants and the temperature and concentration dependence of amyloid fibril elongation rates. These data are compared with those from other types of protein polymers. This comparison with data from other polymerising proteins is interesting and relevant because many of the basic ideas and concepts discussed here were first introduced for non-amyloid protein polymers, most notably by the Japanese school of Oosawa and co-workers for cytoskeletal filaments.
Collapse
|
37
|
Islam T, Gharibyan AL, Golchin SA, Pettersson N, Brännström K, Hedberg I, Virta MM, Olofsson L, Olofsson A. Apolipoprotein E impairs amyloid-β fibril elongation and maturation. FEBS J 2019; 287:1208-1219. [PMID: 31571352 DOI: 10.1111/febs.15075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/18/2019] [Accepted: 09/27/2019] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is strongly linked to amyloid depositions of the Aβ peptide (Aβ). The lipid-binding protein apolipoprotein E (ApoE) has been found to interfere with Aβ amyloid formation and to exert a strong clinical impact to the pathology of AD. The APOE gene exists in three allelic isoforms represented by APOE ε2, APOE ε3, and APOE ε4. Carriers of the APOE ε4 variant display a gene dose-dependent increased risk of developing the disease. Aβ amyloids are formed via a nucleation-dependent mechanism where free monomers are added onto a nucleus in a template-dependent manner. Using a combination of surface plasmon resonance and thioflavin-T assays, we here show that ApoE can target the process of fibril elongation and that its interference effectively prevents amyloid maturation. We expose a complex equilibrium where the concentration of ApoE, Aβ monomers, and the amount of already formed Aβ fibrils will affect the relative proportion and formation rate of mature amyloids versus alternative assemblies. The result illustrates a mechanism which may affect both the clearance rate of Aβ assemblies in vivo and the population of cytotoxic Aβ assemblies.
Collapse
Affiliation(s)
- Tohidul Islam
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | - Anna L Gharibyan
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | - Solmaz A Golchin
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | - Nina Pettersson
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | | | - Isabell Hedberg
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | - Merit-Miriam Virta
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | - Linnea Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| |
Collapse
|
38
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
39
|
Vugmeyster L, Au DF, Ostrovsky D, Fu R. Deuteron Solid-State NMR Relaxation Measurements Reveal Two Distinct Conformational Exchange Processes in the Disordered N-Terminal Domain of Amyloid-β Fibrils. Chemphyschem 2019; 20:1680-1689. [PMID: 31087613 PMCID: PMC6663588 DOI: 10.1002/cphc.201900363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/12/2019] [Indexed: 12/26/2022]
Abstract
We employed deuterium solid-state NMR techniques under static conditions to discern the details of the μs-ms timescale motions in the flexible N-terminal subdomain of Aβ1-40 amyloid fibrils, which spans residues 1-16. In particular, we utilized a rotating frame (R1ρ ) and the newly developed time domain quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) relaxation measurements at the selectively deuterated side chains of A2, H6, and G9. The two experiments are complementary in terms of probing somewhat different timescales of motions, governed by the tensor parameters and the sampling window of the magnetization decay curves. The results indicated two mobile "free" states of the N-terminal domain undergoing global diffusive motions, with isotropic diffusion coefficients of 0.7-1 ⋅ 108 and 0.3-3 ⋅ 106 ad2 s-1 . The free states are also involved in the conformational exchange with a single bound state, in which the diffusive motions are quenched, likely due to transient interactions with the structured hydrophobic core. The conformational exchange rate constants are 2-3 ⋅ 105 s-1 and 2-3 ⋅ 104 s-1 for the fast and slow diffusion free states, respectively.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO, USA, 80204
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver CO, USA, 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO, USA, 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL, 32310
| |
Collapse
|
40
|
Xu Y, Safari MS, Ma W, Schafer NP, Wolynes PG, Vekilov PG. Steady, Symmetric, and Reversible Growth and Dissolution of Individual Amyloid-β Fibrils. ACS Chem Neurosci 2019; 10:2967-2976. [PMID: 31099555 DOI: 10.1021/acschemneuro.9b00179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oligomers and fibrils of the amyloid-β (Aβ) peptide are implicated in the pathology of Alzheimer's disease. Here, we monitor the growth of individual Aβ40 fibrils by time-resolved in situ atomic force microscopy and thereby directly measure fibril growth rates. The measured growth rates in a population of fibrils that includes both single protofilaments and bundles of filaments are independent of the fibril thickness, indicating that cooperation between adjacent protofilaments does not affect incorporation of monomers. The opposite ends of individual fibrils grow at similar rates. In contrast to the "stop-and-go" kinetics that has previously been observed for amyloid-forming peptides, growth and dissolution of the Aβ40 fibrils are relatively steady for peptide concentration of 0-10 μM. The fibrils readily dissolve in quiescent peptide-free solutions at a rate that is consistent with the microscopic reversibility of growth and dissolution. Importantly, the bimolecular rate coefficient for the association of a monomer to the fibril end is significantly smaller than the diffusion limit, implying that the transition state for incorporation of a monomer into a fibril is associated with a relatively high free energy.
Collapse
Affiliation(s)
- Yuechuan Xu
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Mohammad S. Safari
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Wenchuan Ma
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Nicholas P. Schafer
- Center for Theoretical Biological Physics, Rice University, P.O. Box 1892, MS 654, Houston, Texas 77251-1892, United States
- Department of Chemistry, Rice University, P.O. Box 1892, MS 60, Houston, Texas 77251-1892, United States
| | - Peter G. Wolynes
- Center for Theoretical Biological Physics, Rice University, P.O. Box 1892, MS 654, Houston, Texas 77251-1892, United States
- Department of Chemistry, Rice University, P.O. Box 1892, MS 60, Houston, Texas 77251-1892, United States
| | - Peter G. Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, Texas 77204-5003, United States
| |
Collapse
|
41
|
Kehoe PG. The Coming of Age of the Angiotensin Hypothesis in Alzheimer's Disease: Progress Toward Disease Prevention and Treatment? J Alzheimers Dis 2019; 62:1443-1466. [PMID: 29562545 PMCID: PMC5870007 DOI: 10.3233/jad-171119] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is wide recognition of a complex association between midlife hypertension and cardiovascular disease and later development of Alzheimer’s disease (AD) and cognitive impairment. While significant progress has been made in reducing rates of mortality and morbidity due to cardiovascular disease over the last thirty years, progress towards effective treatments for AD has been slower. Despite the known association between hypertension and dementia, research into each disease has largely been undertaken in parallel and independently. Yet over the last decade and a half, the emergence of converging findings from pre-clinical and clinical research has shown how the renin angiotensin system (RAS), which is very important in blood pressure regulation and cardiovascular disease, warrants careful consideration in the pathogenesis of AD. Numerous components of the RAS have now been found to be altered in AD such that the multifunctional and potent vasoconstrictor angiotensin II, and similarly acting angiotensin III, are greatly altered at the expense of other RAS signaling peptides considered to contribute to neuronal and cognitive function. Collectively these changes may contribute to many of the neuropathological hallmarks of AD, as well as observed progressive deficiencies in cognitive function, while also linking elements of a number of the proposed hypotheses for the cause of AD. This review discusses the emergence of the RAS and its likely importance in AD, not only because of the multiple facets of its involvement, but also perhaps fortuitously because of the ready availability of numerous RAS-acting drugs, that could be repurposed as interventions in AD.
Collapse
Affiliation(s)
- Patrick Gavin Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| |
Collapse
|
42
|
Au DF, Ostrovsky D, Fu R, Vugmeyster L. Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils. J Biol Chem 2019; 294:5840-5853. [PMID: 30737281 DOI: 10.1074/jbc.ra118.006559] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/08/2019] [Indexed: 11/06/2022] Open
Abstract
Amyloid fibril deposits observed in Alzheimer's disease comprise amyloid-β (Aβ) protein possessing a structured hydrophobic core and a disordered N-terminal domain (residues 1-16). The internal flexibility of the disordered domain is likely essential for Aβ aggregation. Here, we used 2H static solid-state NMR methods to probe the dynamics of selected side chains of the N-terminal domain of Aβ1-40 fibrils. Line shape and relaxation data suggested a two-state model in which the domain's free state undergoes a diffusive motion that is quenched in the bound state, likely because of transient interactions with the structured C-terminal domain. At 37 °C, we observed freezing of the dynamics progressively along the Aβ sequence, with the fraction of the bound state increasing and the rate of diffusion decreasing. We also found that without solvation, the diffusive motion is quenched. The solvent acted as a plasticizer reminiscent of its role in the onset of global dynamics in globular proteins. As the temperature was lowered, the fraction of the bound state exhibited sigmoidal behavior. The midpoint of the freezing curve coincided with the bulk solvent freezing for the N-terminal residues and increased further along the sequence. Using 2H R 1ρ measurements, we determined the conformational exchange rate constant between the free and bound states under physiological conditions. Zinc-induced aggregation leads to the enhancement of the dynamics, manifested by the faster conformational exchange, faster diffusion, and lower freezing-curve midpoints.
Collapse
Affiliation(s)
- Dan Fai Au
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado, Denver, Colorado 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, Florida 32310
| | - Liliya Vugmeyster
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204.
| |
Collapse
|
43
|
Morris C, Cupples S, Kent TW, Elbassal EA, Wojcikiewicz EP, Yi P, Du D. N-Terminal Charged Residues of Amyloid-β Peptide Modulate Amyloidogenesis and Interaction with Lipid Membrane. Chemistry 2018; 24:9494-9498. [PMID: 29738067 PMCID: PMC6035087 DOI: 10.1002/chem.201801805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/07/2018] [Indexed: 11/08/2022]
Abstract
Interactions of amyloid-β (Aβ) peptides and cellular membranes are proposed to be closely related with Aβ neurotoxicity in Alzheimer's disease. In this study, we systematically investigated the effect of the N-terminal hydrophilic region of Aβ40 on its amyloidogenesis and interaction with supported phospholipid bilayer. Our results show that modulation of the charge properties of the dynamic N-terminal region dramatically influences the aggregation properties of Aβ. Furthermore, our results demonstrate that the N-terminal charged residues play a crucial role in driving the early adsorption and latter remobilization of the peptide on membrane bilayer, and mediating the rigidity and viscoelasticity properties of the bound Aβ40 at the membrane interface. The results provide new mechanistic insight into the early Aβ-membrane interactions and binding, which may be critical for elucidating membrane-mediated Aβ amyloidogenesis in a physiological environment and unravelling the origin of Aβ neurotoxicity.
Collapse
Affiliation(s)
- Clifford Morris
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Shirin Cupples
- Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL, 33431, USA
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Thomas W Kent
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Esmail A Elbassal
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Ewa P Wojcikiewicz
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Peng Yi
- Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| |
Collapse
|
44
|
Liu H, Morris C, Lantz R, Kent TW, Elbassal EA, Wojcikiewicz EP, Du D. Residue‐Specific Dynamics and Local Environmental Changes in Aβ40 Oligomer and Fibril Formation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haiyang Liu
- Department of Chemistry and BiochemistryFlorida Atlantic University 777 Glades Road Boca Raton FL 33431 USA
| | - Clifford Morris
- Department of Chemistry and BiochemistryFlorida Atlantic University 777 Glades Road Boca Raton FL 33431 USA
| | - Richard Lantz
- Department of Chemistry and BiochemistryFlorida Atlantic University 777 Glades Road Boca Raton FL 33431 USA
| | - Thomas W. Kent
- Department of Chemistry and BiochemistryFlorida Atlantic University 777 Glades Road Boca Raton FL 33431 USA
| | - Esmail A. Elbassal
- Department of Chemistry and BiochemistryFlorida Atlantic University 777 Glades Road Boca Raton FL 33431 USA
| | - Ewa P. Wojcikiewicz
- Department of Biomedical ScienceFlorida Atlantic University 777 Glades Road Boca Raton FL 33431 USA
| | - Deguo Du
- Department of Chemistry and BiochemistryFlorida Atlantic University 777 Glades Road Boca Raton FL 33431 USA
| |
Collapse
|
45
|
Liu H, Morris C, Lantz R, Kent TW, Elbassal EA, Wojcikiewicz EP, Du D. Residue-Specific Dynamics and Local Environmental Changes in Aβ40 Oligomer and Fibril Formation. Angew Chem Int Ed Engl 2018; 57:8017-8021. [PMID: 29750857 DOI: 10.1002/anie.201802490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 11/12/2022]
Abstract
Elucidating local dynamics of protein aggregation is crucial for understanding the mechanistic details of protein amyloidogenesis. Herein, we studied the residue-specific dynamics and local environmental changes of Aβ40 along the course of aggregation by using para-cyanophenylalanine (PheCN ) as a fluorescent and vibrational probe. Our results show that the PheCN residues introduced at various positions all exhibited an immediate decay of fluorescence intensity, indicating a relatively synergistic process in early oligomer formation. The fast decreases in the fluorescence intensities of residues 19 and 20 in the central hydrophobic core region and residue 10 in the N-terminal region suggest that they play crucial roles in the formation of the oligomeric core. The PheCN 4 residue exhibits a remarkably slower decrease in fluorescence intensity, implicating its dynamic conformational characteristics in oligomer and fibril formation. Our results also suggest that the N-terminal residues in fibrils are surrounded by a relatively hydrophobic local environment, as opposed to being solvated.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Clifford Morris
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Richard Lantz
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Thomas W Kent
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Esmail A Elbassal
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Ewa P Wojcikiewicz
- Department of Biomedical Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| |
Collapse
|
46
|
Transthyretin Interferes with Aβ Amyloid Formation by Redirecting Oligomeric Nuclei into Non-Amyloid Aggregates. J Mol Biol 2018; 430:2722-2733. [PMID: 29890120 DOI: 10.1016/j.jmb.2018.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/26/2022]
Abstract
The pathological Aβ aggregates associated with Alzheimer's disease follow a nucleation-dependent path of formation. A nucleus represents an oligomeric assembly of Aβ peptides that acts as a template for subsequent incorporation of monomers to form a fibrillar structure. Nuclei can form de novo or via surface-catalyzed secondary nucleation, and the combined rates of elongation and nucleation control the overall rate of fibril formation. Transthyretin (TTR) obstructs Aβ fibril formation in favor of alternative non-fibrillar assemblies, but the mechanism behind this activity is not fully understood. This study shows that TTR does not significantly disturb fibril elongation; rather, it effectively interferes with the formation of oligomeric nuclei. We demonstrate that this interference can be modulated by altering the relative contribution of elongation and nucleation, and we show how TTR's effects can range from being essentially ineffective to almost complete inhibition of fibril formation without changing the concentration of TTR or monomeric Aβ.
Collapse
|
47
|
Schultz N, Brännström K, Byman E, Moussaud S, Nielsen HM, Olofsson A, Wennström M. Amyloid-beta 1-40 is associated with alterations in NG2+ pericyte population ex vivo and in vitro. Aging Cell 2018; 17:e12728. [PMID: 29453790 PMCID: PMC5946076 DOI: 10.1111/acel.12728] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2017] [Indexed: 12/17/2022] Open
Abstract
The population of brain pericytes, a cell type important for vessel stability and blood brain barrier function, has recently been shown altered in patients with Alzheimer's disease (AD). The underlying reason for this alteration is not fully understood, but progressive accumulation of the AD characteristic peptide amyloid‐beta (Aβ) has been suggested as a potential culprit. In the current study, we show reduced number of hippocampal NG2+ pericytes and an association between NG2+ pericyte numbers and Aβ1‐40 levels in AD patients. We further demonstrate, using in vitro studies, an aggregation‐dependent impact of Aβ1‐40 on human NG2+ pericytes. Fibril‐EP Aβ1‐40 exposure reduced pericyte viability and proliferation and increased caspase 3/7 activity. Monomer Aβ1‐40 had quite the opposite effect: increased pericyte viability and proliferation and reduced caspase 3/7 activity. Oligomer‐EP Aβ1‐40 had no impact on either of the cellular events. Our findings add to the growing number of studies suggesting a significant impact on pericytes in the brains of AD patients and suggest different aggregation forms of Aβ1‐40 as potential key regulators of the brain pericyte population size.
Collapse
Affiliation(s)
- Nina Schultz
- Clinical Memory Research Unit; Department of Clinical Sciences Malmö; Lund University; Malmö Sweden
| | | | - Elin Byman
- Clinical Memory Research Unit; Department of Clinical Sciences Malmö; Lund University; Malmö Sweden
| | - Simon Moussaud
- Department of Neurochemistry; Stockholm University; Stockholm Sweden
| | | | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå Sweden
| | - Malin Wennström
- Clinical Memory Research Unit; Department of Clinical Sciences Malmö; Lund University; Malmö Sweden
| | | |
Collapse
|
48
|
Ma W, Yang L, He L. Overview of the detection methods for equilibrium dissociation constant KD of drug-receptor interaction. J Pharm Anal 2018; 8:147-152. [PMID: 29922482 PMCID: PMC6004624 DOI: 10.1016/j.jpha.2018.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 01/27/2023] Open
Abstract
Drug-receptor interaction plays an important role in a series of biological effects, such as cell proliferation, immune response, tumor metastasis, and drug delivery. Therefore, the research on drug-receptor interaction is growing rapidly. The equilibrium dissociation constant (KD) is the basic parameter to evaluate the binding property of the drug-receptor. Thus, a variety of analytical methods have been established to determine the KD values, including radioligand binding assay, surface plasmon resonance method, fluorescence energy resonance transfer method, affinity chromatography, and isothermal titration calorimetry. With the invention and innovation of new technology and analysis method, there is a deep exploration and comprehension about drug-receptor interaction. This review discusses the different methods of determining the KD values, and analyzes the applicability and the characteristic of each analytical method. Conclusively, the aim is to provide the guidance for researchers to utilize the most appropriate analytical tool to determine the KD values.
Collapse
Affiliation(s)
| | | | - Langchong He
- School of Pharmacy, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Street, Xi’an, Shaanxi Province 710061, PR China
| |
Collapse
|
49
|
Bra Nnstro M K, Gharibyan AL, Islam T, Iakovleva I, Nilsson L, Lee CC, Sandblad L, Pamren A, Olofsson A. Scanning electron microscopy as a tool for evaluating morphology of amyloid structures formed on surface plasmon resonance chips. Data Brief 2018; 19:1166-1170. [PMID: 30228999 PMCID: PMC6140406 DOI: 10.1016/j.dib.2018.05.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 11/26/2022] Open
Abstract
We demonstrate the use of Scanning Electron microscopy (SEM) in combination with Surface Plasmon Resonance (SPR) to probe and verify the formation of amyloid and its morphology on an SPR chip. SPR is a technique that measures changes in the immobilized weight on the chip surface and is frequently used to probe the formation and biophysical properties of amyloid structures. In this context it is of interest to also monitor the morphology of the formed structures. The SPR chip surface is made of a layer of gold, which represent a suitable material for direct analysis of the surface using SEM. The standard SPR chip used here (CM5-chip, GE Healthcare, Uppsala, Sweden) can easily be disassembled and directly analyzed by SEM. In order to verify the formation of amyloid fibrils in our experimental conditions we analyzed also in-solution produced structures by using Transmission Electron Microscopy (TEM). For further details and experimental findings, please refer to the article published in Journal of Molecular Biology, (Brännström K. et al., 2018) [1].
Collapse
Affiliation(s)
- Kristoffer Bra Nnstro M
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå SE 90187, Sweden
| | - Anna L Gharibyan
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå SE 90187, Sweden
| | - Tohidul Islam
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå SE 90187, Sweden
| | - Irina Iakovleva
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå SE 90187, Sweden
| | - Lina Nilsson
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå SE 90187, Sweden
| | - Cheng Choo Lee
- Umeå University, Umeå Core Facility for Electron Microscopy (UCEM), Linneaus väg 4, Umeå SE 90187, Sweden
| | - Linda Sandblad
- Umeå University, Umeå Core Facility for Electron Microscopy (UCEM), Linneaus väg 4, Umeå SE 90187, Sweden
| | - Annelie Pamren
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå SE 90187, Sweden
| | - Anders Olofsson
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå SE 90187, Sweden
| |
Collapse
|
50
|
Brännström K, Islam T, Gharibyan AL, Iakovleva I, Nilsson L, Lee CC, Sandblad L, Pamrén A, Olofsson A. The Properties of Amyloid-β Fibrils Are Determined by their Path of Formation. J Mol Biol 2018; 430:1940-1949. [PMID: 29751013 DOI: 10.1016/j.jmb.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/23/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
Fibril formation of the amyloid-β peptide (Aβ) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aβ are observed in vivo, but Aβ1-40 and Aβ1-42 are the dominant forms. The fibril architectures of Aβ1-40 and Aβ1-42 differ and Aβ1-42 assemblies are generally considered more pathogenic. We show here that monomeric Aβ1-42 can be cross-templated and incorporated into the ends of Aβ1-40 fibrils, while incorporation of Aβ1-40 monomers into Aβ1-42 fibrils is very poor. We also show that via cross-templating incorporated Aβ monomers acquire the properties of the parental fibrils. The suppressed ability of Aβ1-40 to incorporate into the ends of Aβ1-42 fibrils and the capacity of Aβ1-42 monomers to adopt the properties of Aβ1-40 fibrils may thus represent two mechanisms reducing the total load of fibrils having the intrinsic, and possibly pathogenic, features of Aβ1-42 fibrils in vivo. We also show that the transfer of fibrillar properties is restricted to fibril-end templating and does not apply to cross-nucleation via the recently described path of surface-catalyzed secondary nucleation, which instead generates similar structures to those acquired via de novo primary nucleation in the absence of catalyzing seeds. Taken together these results uncover an intrinsic barrier that prevents Aβ1-40 from adopting the fibrillar properties of Aβ1-42 and exposes that the transfer of properties between amyloid-β fibrils are determined by their path of formation.
Collapse
Affiliation(s)
- Kristoffer Brännström
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Tohidul Islam
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Anna L Gharibyan
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Irina Iakovleva
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Lina Nilsson
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Cheng Choo Lee
- Umeå University, Umeå Core Facility for Electron Microscopy (UCEM), Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Linda Sandblad
- Umeå University, Umeå Core Facility for Electron Microscopy (UCEM), Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Annelie Pamrén
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden
| | - Anders Olofsson
- Umeå University, Department of Medical Biochemistry and Biophysics, Linneaus väg 4, Umeå, SE 90187, Sweden.
| |
Collapse
|