1
|
Ortiz E, Shezaf J, Chang YH, Krische MJ. Enantioselective Metal-Catalyzed Reductive Coupling of Alkynes with Carbonyl Compounds and Imines: Convergent Construction of Allylic Alcohols and Amines. ACS Catal 2022; 12:8164-8174. [PMID: 37082110 PMCID: PMC10112658 DOI: 10.1021/acscatal.2c02444] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of alkynes as vinylmetal pronucleophiles in intermolecular enantioselective metal-catalyzed carbonyl and imine reductive couplings to form allylic alcohols and amines is surveyed. Related hydrogen auto-transfer processes, wherein alcohols or amines serve dually as reductants and carbonyl or imine proelectrophiles, also are cataloged, as are applications in target-oriented synthesis. These processes represent an emerging alternative to the use of stoichiometric vinylmetal reagents or Nozaki-Hiyama-Kishi (NHK) reactions in carbonyl and imine alkenylation.
Collapse
Affiliation(s)
- Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Jonathan Shezaf
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Yu-Hsiang Chang
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
2
|
Targeting PKC in microglia to promote remyelination and repair in the CNS. Curr Opin Pharmacol 2021; 62:103-108. [PMID: 34965482 DOI: 10.1016/j.coph.2021.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 01/28/2023]
Abstract
Microglia and CNS-infiltrating macrophages play significant roles in the pathogenesis of neuroinflammatory and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Prolonged and dysregulated inflammatory responses by these innate immune cells can have deleterious effects on the surrounding CNS microenvironment, which can worsen neurodegeneration and demyelination. However, although chronic activation of pro-inflammatory microglia is maladaptive, other functional microglial subtypes play beneficial roles during CNS repair and regeneration. Therefore, there is a tremendous interest in understanding the underlying mechanism of the activation of these reparative/regenerative microglia. In this review, we focus on the potential role of PKC, a downstream signaling molecule of TREM2 and PLCγ2, and PKC modulators in promoting the activation of reparative/regenerative microglial subtypes as a novel therapy for neuroinflammatory and neurodegenerative diseases.
Collapse
|
3
|
Santana CG, Krische MJ. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. ACS Catal 2021; 11:5572-5585. [PMID: 34306816 PMCID: PMC8302072 DOI: 10.1021/acscatal.1c01109] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atom-efficient processes that occur via addition, redistribution or removal of hydrogen underlie many large volume industrial processes and pervade all segments of chemical industry. Although carbonyl addition is one of the oldest and most broadly utilized methods for C-C bond formation, the delivery of non-stabilized carbanions to carbonyl compounds has relied on premetalated reagents or metallic/organometallic reductants, which pose issues of safety and challenges vis-à-vis large volume implementation. Catalytic carbonyl reductive couplings promoted via hydrogenation, transfer hydrogenation and hydrogen auto-transfer allow abundant unsaturated hydrocarbons to serve as substitutes to organometallic reagents, enabling C-C bond formation in the absence of stoichiometric metals. This perspective (a) highlights past milestones in catalytic hydrogenation, hydrogen transfer and hydrogen auto-transfer, (b) summarizes current methods for catalytic enantioselective carbonyl reductive couplings, and (c) describes future opportunities based on the patterns of reactivity that animate transformations of this type.
Collapse
Affiliation(s)
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
4
|
Chu Z, Tong R, Yang Y, Song X, Hu TB, Fan Y, Zhao C, Gao L, Song Z. Diverse synthesis of the C ring fragment of bryostatins via Zn/Cu-promoted conjugate addition of α-hydroxy iodide with enone. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Heerdegen D, Reuter D, Kornmayer MM, Kriegler KN, Müller C, Mayer P, Bracher F. Synthesis of
Seco
‐Analogues of the DHCR24 Inhibitor SH‐42. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Desirée Heerdegen
- Department of Pharmacy ‐ Center for Drug Research Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Doreen Reuter
- Department of Chemistry Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Moritz M. Kornmayer
- Department of Pharmacy ‐ Center for Drug Research Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Katharina N. Kriegler
- Department of Pharmacy ‐ Center for Drug Research Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Christoph Müller
- Department of Pharmacy ‐ Center for Drug Research Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Peter Mayer
- Department of Chemistry Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Franz Bracher
- Department of Pharmacy ‐ Center for Drug Research Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| |
Collapse
|
6
|
Wu R, Chen H, Chang N, Xu Y, Jiao J, Zhang H. Unlocking the Drug Potential of the Bryostatin Family: Recent Advances in Product Synthesis and Biomedical Applications. Chemistry 2019; 26:1166-1195. [PMID: 31479550 DOI: 10.1002/chem.201903128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/01/2019] [Indexed: 12/14/2022]
Abstract
Bryostatins are a class of naturally occurring macrocyclic lactones with a unique fast developing portfolio of clinical applications, including treatment of AIDS, Alzheimer's disease, and cancer. This comprehensive account summarizes the recent progress (2014-present) in the development of bryostatins, including their total synthesis and biomedical applications. An emphasis is placed on the discussion of bryostatin 1, the most-studied analogue to date. This review highlights the synthetic and biological challenges of bryostatins and provides an outlook on their future development.
Collapse
Affiliation(s)
- Rongzhen Wu
- Department of Chemistry, Southern University of Science and Technology of China, Shenzhen, 518055, P. R. China
| | - Hongyu Chen
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, 518055, P. R. China
| | - Ninghui Chang
- Department of Chemistry, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yuzhi Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jiao Jiao
- Department of Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| |
Collapse
|
7
|
Trost BM, Bai WJ, Stivala CE, Hohn C, Poock C, Heinrich M, Xu S, Rey J. Enantioselective Synthesis of des-Epoxy-Amphidinolide N. J Am Chem Soc 2018; 140:17316-17326. [DOI: 10.1021/jacs.8b11827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Wen-Ju Bai
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Craig E. Stivala
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Christoph Hohn
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Caroline Poock
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Marc Heinrich
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Shiyan Xu
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Jullien Rey
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
8
|
Holmes M, Schwartz LA, Krische MJ. Intermolecular Metal-Catalyzed Reductive Coupling of Dienes, Allenes, and Enynes with Carbonyl Compounds and Imines. Chem Rev 2018; 118:6026-6052. [PMID: 29897740 DOI: 10.1021/acs.chemrev.8b00213] [Citation(s) in RCA: 432] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metal-catalyzed reductive coupling has emerged as an alternative to the use of stoichiometric organometallic reagents in an increasingly diverse range of carbonyl and imine additions. In this review, the use of diene, allene, and enyne pronucleophiles in intermolecular carbonyl and imine reductive couplings are surveyed, along with related hydrogen autotransfer processes.
Collapse
Affiliation(s)
- Michael Holmes
- Department of Chemistry , University of Texas at Austin , Welch Hall A5300, 105 East 24th Street , Austin , Texas 78712 , United States
| | - Leyah A Schwartz
- Department of Chemistry , University of Texas at Austin , Welch Hall A5300, 105 East 24th Street , Austin , Texas 78712 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Welch Hall A5300, 105 East 24th Street , Austin , Texas 78712 , United States
| |
Collapse
|
9
|
Zhao X, Kedei N, Michalowski A, Lewin NE, Keck GE, Blumberg PM. Deletion of the C26 Methyl Substituent from the Bryostatin Analogue Merle 23 Has Negligible Impact on Its Biological Profile and Potency. Chembiochem 2018. [PMID: 29517836 DOI: 10.1002/cbic.201700677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Important strides are being made in understanding the effects of structural features of bryostatin 1, a candidate therapeutic agent for cancer and dementia, in conferring its potency toward protein kinase C and the unique spectrum of biological responses that it induces. A critical pharmacophoric element in bryostatin 1 is the secondary hydroxy group at the C26 position, with a corresponding primary hydroxy group playing an analogous role in binding of phorbol esters to protein kinase C. Herein, we describe the synthesis of a bryostatin homologue in which the C26 hydroxy group is primary, as it is in the phorbol esters, and show that its biological activity is almost indistinguishable from that of the corresponding compound with a secondary hydroxy group.
Collapse
Affiliation(s)
- Xiguang Zhao
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah, 84112, USA
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC4255, Bethesda, MD, 20892-4255, USA
| | - Alexandra Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC4255, Bethesda, MD, 20892-4255, USA
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC4255, Bethesda, MD, 20892-4255, USA
| | - Gary E Keck
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah, 84112, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Building 37, Room 4048, 37 Convent Drive MSC4255, Bethesda, MD, 20892-4255, USA
| |
Collapse
|
10
|
Cummins TJ, Kedei N, Czikora A, Lewin NE, Kirk S, Petersen ME, McGowan KM, Chen JQ, Luo X, Johnson RC, Ravichandran S, Blumberg PM, Keck GE. Synthesis and Biological Evaluation of Fluorescent Bryostatin Analogues. Chembiochem 2018; 19:877-889. [PMID: 29424951 DOI: 10.1002/cbic.201700655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 11/10/2022]
Abstract
To investigate the cellular distribution of tumor-promoting vs. non-tumor-promoting bryostatin analogues, we synthesized fluorescently labeled variants of two bryostatin derivatives that have previously shown either phorbol ester-like or bryostatin-like biological activity in U937 leukemia cells. These new fluorescent analogues both displayed high affinity for protein kinase C (PKC) binding and retained the basic properties of the parent unlabeled compounds in U937 assays. The fluorescent compounds showed similar patterns of intracellular distribution in cells, however; this argues against an existing hypothesis that various patterns of intracellular distribution are responsible for differences in biological activity. Upon further characterization, the fluorescent compounds revealed a slow rate of cellular uptake; correspondingly, they showed reduced activity for cellular responses that were only transient upon treatment with phorbol ester or bryostatin 1.
Collapse
Affiliation(s)
- Thomas J Cummins
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 4048, Bethesda, MD, 20892, USA
| | - Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 4048, Bethesda, MD, 20892, USA
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 4048, Bethesda, MD, 20892, USA
| | - Sharon Kirk
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Mark E Petersen
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Kevin M McGowan
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 1044, Bethesda, MD, 20892, USA
| | - Xiaoling Luo
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 1044, Bethesda, MD, 20892, USA
| | - Randall C Johnson
- Advanced Biomedical and Computational Sciences Biomedical Informatics, and Data Science (BIDS), Directorate Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Building 430, Miller Drive, Fort Detrick, Frederick, MD, 21702, USA
| | - Sarangan Ravichandran
- Advanced Biomedical and Computational Sciences Biomedical Informatics, and Data Science (BIDS), Directorate Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Building 430, Miller Drive, Fort Detrick, Frederick, MD, 21702, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 4048, Bethesda, MD, 20892, USA
| | - Gary E Keck
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| |
Collapse
|
11
|
Zhang Y, Guo Q, Sun X, Lu J, Cao Y, Pu Q, Chu Z, Gao L, Song Z. Total Synthesis of Bryostatin 8 Using an Organosilane-Based Strategy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuebao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Qianyou Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Xianwei Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Ji Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Yanjun Cao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Qiang Pu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Zhiwen Chu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Elemento-organic Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
12
|
Zhang Y, Guo Q, Sun X, Lu J, Cao Y, Pu Q, Chu Z, Gao L, Song Z. Total Synthesis of Bryostatin 8 Using an Organosilane-Based Strategy. Angew Chem Int Ed Engl 2017; 57:942-946. [PMID: 29210495 DOI: 10.1002/anie.201711452] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Yuebao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Qianyou Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Xianwei Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Ji Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Yanjun Cao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Qiang Pu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Zhiwen Chu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Elemento-organic Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
13
|
Green AP, Hardy S, Thomas EJ. Synthetic approaches to the C11-C27 fragments of bryostatins. Org Biomol Chem 2017; 15:9475-9496. [PMID: 29109991 DOI: 10.1039/c7ob02127e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The modified Julia reaction and acyl carbanion chemistry, especially reactions of 2-lithiated dithianes, have been investigated for the synthesis of intermediates that are the synthetic equivalents of the C11-C27 fragments of bryostatins. The modified Julia reaction using 2-benzothiazolylsulfones was found to be more useful for the formation of the C16-C17 double-bond than the classical Julia reaction using phenylsulfones, and bulky sulfones gave very good (E)-stereoselectivity. The alkylation of a dithiane monoxide that corresponded to a C19-acyl carbanion using (E)-1-bromobut-2-ene was efficient but the use of a more complex allylic bromide corresponding to the C20-C27 fragment of the bryostatins was unsuccessful, possibly due to competing elimination reactions. This meant that the use of C19 dithianes for the synthesis of 20-deoxybryostatins would have to involve the stepwise assembly of the C20-C27 fragment from simpler precursors. However, lithiated C19 dithianes gave good yields of adducts with aldehydes and conditions were developed for the stereoselective conversion of the major adducts into methoxyacetals that corresponded to the C17-C27 fragment of 20-oxygenated bryostatins. A convergent synthesis of the C11-C27 fragment of a 20-deoxybryostatin was subsequently achieved using a 2-benzothiazolylsulfone corresponding to the intact C17-C27 fragment.
Collapse
Affiliation(s)
- Anthony P Green
- The School of Chemistry, The University of Manchester, Manchester M13 9PL, UK.
| | | | | |
Collapse
|
14
|
Green AP, Hardy S, Lee ATL, Thomas EJ. Total synthesis of 7-des-O-pivaloyl-7-O-benzylbryostatin 10. Org Biomol Chem 2017; 15:9497-9526. [PMID: 29109995 DOI: 10.1039/c7ob02129a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first total synthesis of a derivative of a 20-deoxybryostatin, namely 7-des-O-pivaloyl-7-O-benzylbryostatin 10 is described. Preliminary studies demonstrated that the modified Julia reactions of 2-benzothiazolylsulfones corresponding to the C17-C27 fragment with aldehydes corresponding to the C1-C16 fragment, provided an efficient and stereoselective assembly of advanced intermediates with the (E)-16,17-double-bond. The synthesis of the C1-C16 fragment was then modified so that the C1 acid was present as its allyl ester before the Julia coupling. A more efficient synthesis of the C17-C27 sulfone was developed in which a key step was the bismuth mediated coupling of an allylic bromide with an aldehyde in the presence of an acrylate moiety in the allylic bromide. A scalable synthesis of an advanced macrolide was completed using the modified Julia reaction followed by selective deprotection and macrolactonisation. The final stages of the synthesis required selective hydroxyl deprotection and the introduction of the sensitive C19-C21 unsaturated keto-ester functionality. Unexpected selectivities were observed during studies of the hydroxyl group deprotections. In particular, cleavage of tri-isopropylsilyl ethers of the exocyclic primary allylic alcohols was observed in the presence of the triethylsilyl ether of the secondary alcohol at C19. Model studies helped in the design of the methods used to introduce the C19-C21 keto-ester functionality and led to the completion of a total synthesis of a close analogue of bryostatin 10 in which a benzyloxy group rather than the pivaloyloxy group was present at C7.
Collapse
Affiliation(s)
- Anthony P Green
- The School of Chemistry, The University of Manchester, Manchester M13 9PL, UK.
| | | | | | | |
Collapse
|
15
|
Lu J, Zhang Y, Yang W, Guo Q, Gao L, Song Z. Transformation of the B Ring to the C Ring of Bryostatins by Csp 3-H Amination and Z to E Isomerization. Org Lett 2017; 19:5232-5235. [PMID: 28901773 DOI: 10.1021/acs.orglett.7b02510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An interesting approach to transform the B ring of bryostatins to the C ring has been developed. The key tactics of the approach feature an intramolecular Csp3-H bond amination to form spirocyclic hemiaminal, which undergoes ring opening to afford the C ring found in bryostatin 17. The subsequent epoxidation/oxidation sequence results in Z to E isomerization of the exo-cyclic enoate, delivering the common precursor, which could be transformed into the C ring found in bryostatins 1, 2, 4-9, 12, 14, and 15.
Collapse
Affiliation(s)
- Ji Lu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University , Chengdu 610064, P. R. China
| | - Yuebao Zhang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University , Chengdu 610064, P. R. China
| | - WenYu Yang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University , Chengdu 610064, P. R. China
| | - Qianyou Guo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University , Chengdu 610064, P. R. China
| | - Lu Gao
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University , Chengdu 610064, P. R. China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University , Chengdu 610064, P. R. China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University , Tianjin 300071, P. R. China
| |
Collapse
|
16
|
Schwartz LA, Krische MJ. Hydrogen-Mediated C−C Bond Formation: Stereo- and Site-Selective Chemical Synthesis Beyond Stoichiometric Organometallic Reagents. Isr J Chem 2017. [DOI: 10.1002/ijch.201700088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Leyah A. Schwartz
- University of Texas at Austin; Department of Chemistry, Welch Hall (A5300); 105 E 24 St. Austin TX 78712 USA
| | - Michael J. Krische
- University of Texas at Austin; Department of Chemistry, Welch Hall (A5300); 105 E 24 St. Austin TX 78712 USA
| |
Collapse
|
17
|
Scoccia J, Pérez SJ, Sinka V, Cruz DA, López-Soria JM, Fernández I, Martín VS, Miranda PO, Padrón JI. Direct Access to 2,3,4,6-Tetrasubstituted Tetrahydro-2H-pyrans via Tandem SN2′–Prins Cyclization. Org Lett 2017; 19:4834-4837. [DOI: 10.1021/acs.orglett.7b02270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jimena Scoccia
- Departamento
de Química, Universidad Nacional del Sur, Av Alem 1253, 800 Bahía Blanca, Argentina
- INQUISUR, CONICET, Av Alem 1253, 800 Bahía Blanca, Argentina
| | - Sixto J. Pérez
- Instituto
Universitario de Bio-Orgánica “Antonio González”
(CIBICAN), “Síntesis Orgánica Sostenible, Unidad
Asociada al CSIC”, Departamento de Química Orgánica, Universidad de La Laguna, Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Victoria Sinka
- Instituto de Productos Naturales y Agrobiología, CSIC, Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Daniel A. Cruz
- Instituto
Universitario de Bio-Orgánica “Antonio González”
(CIBICAN), “Síntesis Orgánica Sostenible, Unidad
Asociada al CSIC”, Departamento de Química Orgánica, Universidad de La Laguna, Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Juan M. López-Soria
- Instituto de Productos Naturales y Agrobiología, CSIC, Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Israel Fernández
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Víctor S. Martín
- Instituto
Universitario de Bio-Orgánica “Antonio González”
(CIBICAN), “Síntesis Orgánica Sostenible, Unidad
Asociada al CSIC”, Departamento de Química Orgánica, Universidad de La Laguna, Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Pedro O. Miranda
- Instituto de Productos Naturales y Agrobiología, CSIC, Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Juan I. Padrón
- Instituto de Productos Naturales y Agrobiología, CSIC, Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
- Instituto
Universitario de Bio-Orgánica “Antonio González”
(CIBICAN), “Síntesis Orgánica Sostenible, Unidad
Asociada al CSIC”, Departamento de Química Orgánica, Universidad de La Laguna, Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
18
|
|
19
|
Ball M, Gregson T, Omori H, Thomas EJ. Syntheses of C17–C27 fragments of 20-deoxybryostatins for assembly using Julia and metathesis reactions. Org Biomol Chem 2017; 15:2740-2767. [DOI: 10.1039/c7ob00076f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two approaches to the synthesis of compounds corresponding to the C17–C27 fragment of the 20-deoxybryostatins are described.
Collapse
Affiliation(s)
- Matthew Ball
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Thomas Gregson
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Hiroki Omori
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Eric J. Thomas
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| |
Collapse
|
20
|
Gómez-Palomino A, Pellicena M, Krämer K, Romea P, Urpí F, Aullón G, Padrón JM. Total synthesis of (+)-herboxidiene/GEX 1A. Org Biomol Chem 2017; 15:1842-1862. [DOI: 10.1039/c7ob00072c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of herboxidiene is granted from highly stereoselective aldol reactions from two lactate-derived ketones and an oxa-Michael cyclization.
Collapse
Affiliation(s)
- Alejandro Gómez-Palomino
- Departament de Química Inorgànica i Orgànica
- Secció de Química Orgànica
- and Institut de Biomedicina (IBUB)
- Universitat de Barcelona
- 08028 Barcelona
| | - Miquel Pellicena
- Departament de Química Inorgànica i Orgànica
- Secció de Química Orgànica
- and Institut de Biomedicina (IBUB)
- Universitat de Barcelona
- 08028 Barcelona
| | - Katrina Krämer
- Departament de Química Inorgànica i Orgànica
- Secció de Química Orgànica
- and Institut de Biomedicina (IBUB)
- Universitat de Barcelona
- 08028 Barcelona
| | - Pedro Romea
- Departament de Química Inorgànica i Orgànica
- Secció de Química Orgànica
- and Institut de Biomedicina (IBUB)
- Universitat de Barcelona
- 08028 Barcelona
| | - Fèlix Urpí
- Departament de Química Inorgànica i Orgànica
- Secció de Química Orgànica
- and Institut de Biomedicina (IBUB)
- Universitat de Barcelona
- 08028 Barcelona
| | - Gabriel Aullón
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - José M. Padrón
- BioLab
- Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG)
- Centro de Investigaciones Biomédicas de Canarias (CIBICAN)
- Universidad de La Laguna
- Spain
| |
Collapse
|
21
|
Dumeunier R, Gregson T, MacCormick S, Omori H, Thomas EJ. Some limitations of an approach to the assembly of bryostatins by ring-closing metathesis. Org Biomol Chem 2017; 15:2768-2783. [DOI: 10.1039/c7ob00079k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Preliminary studies into the use of ring-closing metathesis (RCM) in a convergent approach for the total synthesis of bryostatins are described.
Collapse
Affiliation(s)
- Raphaël Dumeunier
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Thomas Gregson
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | | | - Hiroki Omori
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Eric J. Thomas
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| |
Collapse
|
22
|
Ketcham JM, Volchkov I, Chen TY, Blumberg PM, Kedei N, Lewin NE, Krische MJ. Evaluation of Chromane-Based Bryostatin Analogues Prepared via Hydrogen-Mediated C-C Bond Formation: Potency Does Not Confer Bryostatin-like Biology. J Am Chem Soc 2016; 138:13415-13423. [PMID: 27676096 PMCID: PMC5094189 DOI: 10.1021/jacs.6b08695] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and biological evaluation of chromane-containing bryostatin analogues WN-2-WN-7 and the previously reported salicylate-based analogue WN-8 are described. Analogues WN-2-WN-7 are prepared through convergent assembly of the chromane-containing fragment B-I with the "binding domain" fragment A-I or its C26-des-methyl congener, fragment A-II. The synthesis of fragment B-I features enantioselective double C-H allylation of 1,3-propanediol to form the C2-symmetric diol 3 and Heck cyclization of bromo-diene 5 to form the chromane core. The synthesis of salicylate WN-8 is accomplished through the union of fragments A-III and B-II. The highest binding affinities for PKCα are observed for the C26-des-methyl analogues WN-3 (Ki = 63.9 nM) and WN-7 (Ki = 63.1 nM). All analogues, WN-2-WN-8, inhibited growth of Toledo cells, with the most potent analogue being WN-7. This response, however, does not distinguish between phorbol ester-like and bryostatin-like behavior. In contrast, while many of the analogues contain a conserved C-ring in the binding domain and other features common to analogues with bryostatin-like properties, all analogues evaluated in the U937 proliferation and cell attachment assays displayed phorbol ester-like and/or toxic behavior, including WN-8, for which "bryostatin-like PKC modulatory activities" previously was suggested solely on the basis of PKC binding. These results underscore the importance of considering downstream biological effects, as tumor suppression cannot be inferred from potent PKC binding.
Collapse
Affiliation(s)
- John M. Ketcham
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA
| | - Ivan Volchkov
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA
| | - Te-Yu Chen
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Nancy E. Lewin
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA
| |
Collapse
|
23
|
Petersen ME, Kedei N, Lewin NE, Blumberg PM, Keck GE. Replacement of the Bryostatin A- and B-Pyran Rings With Phenyl Rings Leads to Loss of High Affinity Binding With PKC. Tetrahedron Lett 2016; 57:4749-4753. [PMID: 27713589 DOI: 10.1016/j.tetlet.2016.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We describe a convergent synthesis of a bryostatin analogue in which the natural A- and B-ring pyrans have been replaced by phenyl rings. The new analogue exhibited PMA like behavior in cell assays, but failed to maintain high affinity binding for PKC, despite retaining an unaltered C-ring 'binding domain'.
Collapse
Affiliation(s)
- Mark E Petersen
- University of Utah, Department of Chemistry, Salt Lake City, UT, 84112, USA
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Gary E Keck
- University of Utah, Department of Chemistry, Salt Lake City, UT, 84112, USA
| |
Collapse
|
24
|
Baumann DO, McGowan KM, Kedei N, Peach ML, Blumberg PM, Keck GE. Synthesis and Biological Evaluation of Several Bryostatin Analogues Bearing a Diacylglycerol Lactone C-Ring. J Org Chem 2016; 81:7862-83. [PMID: 27494208 PMCID: PMC6957265 DOI: 10.1021/acs.joc.6b01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As an initial step in designing a simplified bryostatin hybrid molecule, three bryostatin analogues bearing a diacylglycerol lactone-based C-ring, which possessed the requisite pharmacophores for binding to protein kinase C (PKC) together with a modified bryostatin-like A- and B-ring region, were synthesized and evaluated. Merle 46 and Merle 47 exhibited binding affinity to PKC alpha with Ki values of 7000 ± 990 and 4940 ± 470 nM, respectively. Reinstallation of the trans-olefin and gem-dimethyl group present in bryostatin 1 in Merle 48 resulted in improved binding affinity, 363 ± 42 nM. While Merle 46 and 47 were only marginally active biologically, Merle 48 showed sufficient activity on the U937 cells to confirm that it was PMA-like for growth and attachment, as predicted by the substitution pattern of its A- and B-rings.
Collapse
Affiliation(s)
- David O. Baumann
- Department of Chemistry, University of Utah, 315 S 1300 E, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin M. McGowan
- Department of Chemistry, University of Utah, 315 S 1300 E, RM 2020, Salt Lake City, Utah 84112, United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255, United States
| | - Megan L. Peach
- Basic Science Program, Leidos Biomedical Research, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255, United States
| | - Gary E. Keck
- Department of Chemistry, University of Utah, 315 S 1300 E, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
25
|
Feng J, Kasun ZA, Krische MJ. Enantioselective Alcohol C-H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis. J Am Chem Soc 2016; 138:5467-78. [PMID: 27113543 PMCID: PMC4871165 DOI: 10.1021/jacs.6b02019] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development and application of stereoselective and site-selective catalytic methods that directly convert lower alcohols to higher alcohols are described. These processes merge the characteristics of transfer hydrogenation and carbonyl addition, exploiting alcohols and π-unsaturated reactants as redox pairs, which upon hydrogen transfer generate transient carbonyl-organometal pairs en route to products of C-C coupling. Unlike classical carbonyl additions, stoichiometric organometallic reagents and discrete alcohol-to-carbonyl redox reactions are not required. Additionally, due to a kinetic preference for primary alcohol dehydrogenation, the site-selective modification of glycols and higher polyols is possible, streamlining or eliminating use of protecting groups. The total syntheses of several iconic type I polyketide natural products were undertaken using these methods. In each case, the target compounds were prepared in significantly fewer steps than previously achieved.
Collapse
Affiliation(s)
- Jiajie Feng
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Zachary A. Kasun
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
26
|
Staveness D, Abdelnabi R, Schrier AJ, Loy B, Verma VA, DeChristopher BA, Near KE, Neyts J, Delang L, Leyssen P, Wender PA. Simplified Bryostatin Analogues Protect Cells from Chikungunya Virus-Induced Cell Death. JOURNAL OF NATURAL PRODUCTS 2016; 79:675-9. [PMID: 26900625 PMCID: PMC4928627 DOI: 10.1021/acs.jnatprod.5b01016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 05/21/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus showing a recent resurgence and rapid spread worldwide. While vaccines are under development, there are currently no therapies to treat this disease, except for over-the-counter (OTC) analgesics, which alleviate the devastating arthritic and arthralgic symptoms. To identify novel inhibitors of the virus, analogues of the natural product bryostatin 1, a clinical lead for the treatment of cancer, Alzheimer's disease, and HIV eradication, were investigated for in vitro antiviral activity and were found to be among the most potent inhibitors of CHIKV replication reported to date. Bryostatin-based therapeutic efforts and even recent anti-CHIKV strategies have centered on modulation of protein kinase C (PKC). Intriguingly, while the C ring of bryostatin primarily drives interactions with PKC, A- and B-ring functionality in these analogues has a significant effect on the observed cell-protective activity. Significantly, bryostatin 1 itself, a potent pan-PKC modulator, is inactive in these assays. These new findings indicate that the observed anti-CHIKV activity is not solely mediated by PKC modulation, suggesting possible as yet unidentified targets for CHIKV therapeutic intervention. The high potency and low toxicity of these bryologs make them promising new leads for the development of a CHIKV treatment.
Collapse
Affiliation(s)
- Daryl Staveness
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Rana Abdelnabi
- Department of Microbiology and Immunology, Rega Institute for Medical
Research, Laboratory of Virology and Chemotherapy, KU Leuven−University of Leuven, B-3000 Leuven, Belgium
| | - Adam J. Schrier
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Brian
A. Loy
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Vishal A. Verma
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Brian A. DeChristopher
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Katherine E. Near
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Johan Neyts
- Department of Microbiology and Immunology, Rega Institute for Medical
Research, Laboratory of Virology and Chemotherapy, KU Leuven−University of Leuven, B-3000 Leuven, Belgium
- E-mail:
| | - Leen Delang
- Department of Microbiology and Immunology, Rega Institute for Medical
Research, Laboratory of Virology and Chemotherapy, KU Leuven−University of Leuven, B-3000 Leuven, Belgium
| | - Pieter Leyssen
- Department of Microbiology and Immunology, Rega Institute for Medical
Research, Laboratory of Virology and Chemotherapy, KU Leuven−University of Leuven, B-3000 Leuven, Belgium
| | - Paul A. Wender
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
- E-mail:
| |
Collapse
|
27
|
Ball M, Baron A, Bradshaw B, Dumeunier R, O'Brien M, Thomas EJ. The evolution of a stereoselective synthesis of the C1–C16 fragment of bryostatins. Org Biomol Chem 2016; 14:9650-9681. [DOI: 10.1039/c6ob01804a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Scaleable syntheses of the C1–C16 fragment of bryostatins are described.
Collapse
Affiliation(s)
- Matthew Ball
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Anne Baron
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Ben Bradshaw
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Raphaël Dumeunier
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Matthew O'Brien
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Eric J. Thomas
- The School of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| |
Collapse
|
28
|
Larsen EM, Wilson MR, Taylor RE. Conformation-activity relationships of polyketide natural products. Nat Prod Rep 2015; 32:1183-206. [PMID: 25974024 PMCID: PMC4443481 DOI: 10.1039/c5np00014a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polyketides represent an important class of secondary metabolites that interact with biological targets connected to a variety of disease-associated pathways. Remarkably, nature's assembly lines, polyketide synthases, manufacture these privileged structures through a combinatorial mixture of just a few structural units. This review highlights the role of these structural elements in shaping a polyketide's conformational preferences, the use of computer-based molecular modeling and solution NMR studies in the identification of low-energy conformers, and the importance of conformational analogues in probing the bound conformation. In particular, this review covers several examples wherein conformational analysis complements classic structure-activity relationships in the design of biologically active natural product analogues.
Collapse
Affiliation(s)
- Erik M Larsen
- University of Notre Dame, Department of Chemistry & Biochemistry, 250 Nieuwland Science Hall, Notre Dame, Indiana, USA.
| | | | | |
Collapse
|
29
|
Mears PR, Thomas EJ. Synthesis of C16–C27-fragments of bryostatins modified by 20,20-difluorination. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Kedei N, Kraft MB, Keck GE, Herald CL, Melody N, Pettit GR, Blumberg PM. Neristatin 1 provides critical insight into bryostatin 1 structure-function relationships. JOURNAL OF NATURAL PRODUCTS 2015; 78:896-900. [PMID: 25808573 PMCID: PMC4415049 DOI: 10.1021/acs.jnatprod.5b00094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Bryostatin 1, a complex macrocyclic lactone isolated from Bugula neritina, has been the subject of multiple clinical trials for cancer. Although it functions as an activator of protein kinase C (PKC) in vitro, bryostatin 1 paradoxically antagonizes most responses to the prototypical PKC activator, the phorbol esters. The bottom half of the bryostatin 1 structure has been shown to be sufficient to confer binding to PKC. In contrast, we have previously shown that the top half of the bryostatin 1 structure is necessary for its unique biological behavior to antagonize phorbol ester responses. Neristatin 1 comprises a top half similar to that of bryostatin 1 together with a distinct bottom half that confers PKC binding. We report here that neristatin 1 is bryostatin 1-like, not phorbol ester-like, in its biological activity on U937 promyelocytic leukemia cells. We conclude that the top half of the bryostatin 1 structure is largely sufficient for bryostatin 1-like activity, provided the molecule also possesses an appropriate PKC binding domain.
Collapse
Affiliation(s)
- Noemi Kedei
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255, United States
| | - Matthew B. Kraft
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gary E. Keck
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Cherry L. Herald
- Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States
| | - Noeleen Melody
- Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States
| | - George R. Pettit
- Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States
| | - Peter M. Blumberg
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255, United States
| |
Collapse
|
31
|
Loy BA, Lesser AB, Staveness D, Billingsley KL, Cegelski L, Wender PA. Toward a biorelevant structure of protein kinase C bound modulators: design, synthesis, and evaluation of labeled bryostatin analogues for analysis with rotational echo double resonance NMR spectroscopy. J Am Chem Soc 2015; 137:3678-85. [PMID: 25710634 DOI: 10.1021/jacs.5b00886] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein kinase C (PKC) modulators are currently of great importance in preclinical and clinical studies directed at cancer, immunotherapy, HIV eradication, and Alzheimer's disease. However, the bound conformation of PKC modulators in a membrane environment is not known. Rotational echo double resonance (REDOR) NMR spectroscopy could uniquely address this challenge. However, REDOR NMR requires strategically labeled, high affinity ligands to determine interlabel distances from which the conformation of the bound ligand in the PKC-ligand complex could be identified. Here we report the first computer-guided design and syntheses of three bryostatin analogues strategically labeled for REDOR NMR analysis. Extensive computer analyses of energetically accessible analogue conformations suggested preferred labeling sites for the identification of the PKC-bound conformers. Significantly, three labeled analogues were synthesized, and, as required for REDOR analysis, all proved highly potent with PKC affinities (∼1 nM) on par with bryostatin. These potent and strategically labeled bryostatin analogues are new structural leads and provide the necessary starting point for projected efforts to determine the PKC-bound conformation of such analogues in a membrane environment, as needed to design new PKC modulators and understand PKC-ligand-membrane structure and dynamics.
Collapse
Affiliation(s)
- Brian A Loy
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Adam B Lesser
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Daryl Staveness
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Kelvin L Billingsley
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
32
|
Kraft M, Poudel YB, Kedei N, Lewin N, Peach ML, Blumberg PM, Keck GE. Synthesis of a des-B-ring bryostatin analogue leads to an unexpected ring expansion of the bryolactone core. J Am Chem Soc 2014; 136:13202-8. [PMID: 25207434 PMCID: PMC4183620 DOI: 10.1021/ja5078188] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 11/28/2022]
Abstract
A convergent synthesis of a des-B-ring bryostatin analogue is described. This analogue was found to undergo an unexpected ring expansion of the bryolactone core to generate the corresponding 21-membered macrocycle. The parent analogue and the ring-expanded product both displayed nanomolar binding affinity for PKC. Despite containing A-ring substitution identical to that of bryostatin 1 and displaying bryostatin-like biological function, the des-B-ring analogues displayed a phorbol-like biological function in cells. These studies shed new light on the role of the bryostatin B-ring in conferring bryo-like biological function to bryostatin analogues.
Collapse
Affiliation(s)
- Matthew
B. Kraft
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yam B. Poudel
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Noemi Kedei
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Nancy
E. Lewin
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Megan L. Peach
- Basic Science Program,
Leidos Biomedical Research, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Peter M. Blumberg
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Gary E. Keck
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|