1
|
Yi L, Yi S, Wang Y, Kong J, Xiong Y, Zhou Y, Duan Y, Zhu X. Late-Stage Tailoring Steps in the Biosynthesis of β-Rubromycin Involve Successive Terminal Oxidations, a Selective Hydroxyl Reduction, and Distinctive O-Methylations. Org Lett 2025; 27:103-108. [PMID: 39690909 DOI: 10.1021/acs.orglett.4c03965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
β-Rubromycin (1) has a unique O-methylated naphthoquinone moiety and is an efficient inhibitor of human telomerase. Through in vivo and in vitro investigations, we elucidated the biosynthetic tailoring steps of compound 1, which involve the carboxyl terminal via successive oxidizations by RubU and RubO1/RubO2, O-methylation of the carboxyl terminal by RubX, and reduction of C-3' hydroxyl by RubK. The final tautomerization of the naphthoquinone moiety is mediated by RubO, which anchors the transitional intermediate through O-methylation to form the naphthoquinone tautomer. The structure-activity relationship further revealed the significant influences of the terminal modification status on anticancer activities of rubromycins.
Collapse
Affiliation(s)
- Liwei Yi
- The Affiliated Nanhua Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Sirun Yi
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yeji Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Jieqian Kong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yi Xiong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yusheng Zhou
- The Affiliated Nanhua Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410013, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Nanyang Westlake-Muyuan Institute of Synthetic Biology, Nanyang, Henan 473000, China
- Center for Future Foods, Muyuan Laboratory, Zhengzhou, Henan 450016, China
| |
Collapse
|
2
|
Xu S, Zheng P, Sun P, Chen P, Wu D. Biosynthesis of 3-Hydroxyphloretin Using Rational Design of 4-Hydroxyphenylacetate 3-Monooxygenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19457-19464. [PMID: 38029276 DOI: 10.1021/acs.jafc.3c06479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The compound 3-hydroxyphloretin is a typical dihydrochalcone that can be obtained in plants by the 3-hydroxylation of phloretin. Here, the flavin-dependent two-component monooxygenase (HpaBC) derived from Pseudomonas aeruginosa was used to convert phloretin into 3-hydroxyphloretin. Following molecular docking and sequence alignment, modifications to the substrate pocket and loop of PaHpaBC were rationally designed, and mutant residues were selected. The results showed that the mutant Q212G/F292A/Q376N gave the best yield of 3-hydroxyphloretin and showed improved catalytic efficiency. Under optimal reaction condition, 2.03 g/L of 3-hydroxyphloretin was produced in the whole-cell catalysis experiment. Molecular docking and molecular dynamics simulations were used to analyze mutants and elucidate the potential mechanism. It was found that the increase in 3-hydroxyphloretin yield was due to the improvement in the flexibility of the loop and the expansion of its substrate pocket. This strategy based on loop and substrate pocket modification has significance in the engineering of PaHpaB.
Collapse
Affiliation(s)
- Shuping Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ping Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Pengcheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
3
|
Shin I, Davis I, Nieves-Merced K, Wang Y, McHardy S, Liu A. A novel catalytic heme cofactor in SfmD with a single thioether bond and a bis-His ligand set revealed by a de novo crystal structural and spectroscopic study. Chem Sci 2021; 12:3984-3998. [PMID: 34163669 PMCID: PMC8179489 DOI: 10.1039/d0sc06369j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
SfmD is a heme-dependent enzyme in the biosynthetic pathway of saframycin A. Here, we present a 1.78 Å resolution de novo crystal structure of SfmD, which unveils a novel heme cofactor attached to the protein with an unusual Hx n HxxxC motif (n ∼ 38). This heme cofactor is unique in two respects. It contains a single thioether bond in a cysteine-vinyl link with Cys317, and the ferric heme has two axial protein ligands, i.e., His274 and His313. We demonstrated that SfmD heme is catalytically active and can utilize dioxygen and ascorbate for a single-oxygen insertion into 3-methyl-l-tyrosine. Catalytic assays using ascorbate derivatives revealed the functional groups of ascorbate essential to its function as a cosubstrate. Abolishing the thioether linkage through mutation of Cys317 resulted in catalytically inactive SfmD variants. EPR and optical data revealed that the heme center undergoes a substantial conformational change with one axial histidine ligand dissociating from the iron ion in response to substrate 3-methyl-l-tyrosine binding or chemical reduction by a reducing agent, such as the cosubstrate ascorbate. The labile axial ligand was identified as His274 through redox-linked structural determinations. Together, identifying an unusual heme cofactor with a previously unknown heme-binding motif for a monooxygenase activity and the structural similarity of SfmD to the members of the heme-based tryptophan dioxygenase superfamily will broaden understanding of heme chemistry.
Collapse
Affiliation(s)
- Inchul Shin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Karinel Nieves-Merced
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
- Center for Innovative Drug Discovery, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Yifan Wang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Stanton McHardy
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
- Center for Innovative Drug Discovery, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| |
Collapse
|
4
|
Jaremko MJ, Davis TD, Corpuz JC, Burkart MD. Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein-protein interactions. Nat Prod Rep 2020; 37:355-379. [PMID: 31593192 PMCID: PMC7101270 DOI: 10.1039/c9np00047j] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1990 to 2019 Many medicinally-relevant compounds are derived from non-ribosomal peptide synthetase (NRPS) products. Type I NRPSs are organized into large modular complexes, while type II NRPS systems contain standalone or minimal domains that often encompass specialized tailoring enzymes that produce bioactive metabolites. Protein-protein interactions and communication between the type II biosynthetic machinery and various downstream pathways are critical for efficient metabolite production. Importantly, the architecture of type II NRPS proteins makes them ideal targets for combinatorial biosynthesis and metabolic engineering. Future investigations exploring the molecular basis or protein-protein recognition in type II NRPS pathways will guide these engineering efforts. In this review, we consolidate the broad range of NRPS systems containing type II proteins and focus on structural investigations, enzymatic mechanisms, and protein-protein interactions important to unraveling pathways that produce unique metabolites, including dehydrogenated prolines, substituted benzoic acids, substituted amino acids, and cyclopropanes.
Collapse
Affiliation(s)
- Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Joshua C Corpuz
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| |
Collapse
|
5
|
Kwong T, Ma M, Pan G, Hindra, Yang D, Yang C, Lohman JR, Rudolf JD, Cleveland JL, Shen B. P450-Catalyzed Tailoring Steps in Leinamycin Biosynthesis Featuring Regio- and Stereoselective Hydroxylations and Substrate Promiscuities. Biochemistry 2018; 57:5005-5013. [PMID: 30070831 PMCID: PMC6211295 DOI: 10.1021/acs.biochem.8b00623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leinamycin (LNM) is a potent antitumor antibiotic produced by Streptomyces atroolivaceus S-140. Both in vivo and in vitro characterization of the LNM biosynthetic machinery have established the formation of the 18-membered macrolactam backbone and the C-3 alkyl branch; the nascent product, LNM E1, of the hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS); and the generation of the thiol moiety at C-3 of LNM E1. However, the tailoring steps converting LNM E1 to LNM are still unknown. Based on gene inactivation and chemical investigation of three mutant strains, we investigated the tailoring steps catalyzed by two cytochromes P450 (P450s), LnmA and LnmZ, in LNM biosynthesis. Our studies revealed that (i) LnmA and LnmZ regio- and stereoselectively hydroxylate the C-8 and C-4' positions, respectively, on the scaffold of LNM; (ii) both LnmA and LnmZ exhibit substrate promiscuity, resulting in multiple LNM analogs from several shunt pathways; and (iii) the C-8 and C-4' hydroxyl groups play important roles in the cytotoxicity of LNM analogs against different cancer cell lines, shedding light on the structure-activity relationships of the LNM scaffold and the LNM-type natural products in general. These studies set the stage for future biosynthetic pathway engineering and combinatorial biosynthesis of the LNM family of natural products for structure diversity and drug discovery.
Collapse
Affiliation(s)
| | - Ming Ma
- Department of Chemistry,United States
| | | | - Hindra
- Department of Chemistry,United States
| | - Dong Yang
- Department of Chemistry,United States
| | | | | | | | | | - Ben Shen
- Department of Chemistry,United States
- Department of Molecular Medicine,United States
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
6
|
Wang YS, Zhang B, Zhu J, Yang CL, Guo Y, Liu CL, Liu F, Huang H, Zhao S, Liang Y, Jiao RH, Tan RX, Ge HM. Molecular Basis for the Final Oxidative Rearrangement Steps in Chartreusin Biosynthesis. J Am Chem Soc 2018; 140:10909-10914. [PMID: 30067334 DOI: 10.1021/jacs.8b06623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative rearrangements play key roles in introducing structural complexity and biological activities of natural products biosynthesized by type II polyketide synthases (PKSs). Chartreusin (1) is a potent antitumor polyketide that contains a unique rearranged pentacyclic aromatic bilactone aglycone derived from a type II PKS. Herein, we report an unprecedented dioxygenase, ChaP, that catalyzes the final α-pyrone ring formation in 1 biosynthesis using flavin-activated oxygen as an oxidant. The X-ray crystal structures of ChaP and two homologues, docking studies, and site-directed mutagenesis provided insights into the molecular basis of the oxidative rearrangement that involves two successive C-C bond cleavage steps followed by lactonization. ChaP is the first example of a dioxygenase that requires a flavin-activated oxygen as a substrate despite lacking flavin binding sites, and represents a new class in the vicinal oxygen chelate enzyme superfamily.
Collapse
Affiliation(s)
- Yi Shuang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Jiapeng Zhu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Cheng Long Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Yu Guo
- iHuman Institute , Shanghai Tech University , Shanghai 201210 , China
| | - Cheng Li Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Fang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Huiqin Huang
- Institute of Tropical Biosciences and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences , Haikou 571101 , China
| | - Suwen Zhao
- iHuman Institute , Shanghai Tech University , Shanghai 201210 , China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
7
|
Che Q, Qiao L, Han X, Liu Y, Wang W, Gu Q, Zhu T, Li D. Anthranosides A-C, Anthranilate Derivatives from a Sponge-Derived Streptomyces sp. CMN-62. Org Lett 2018; 20:5466-5469. [PMID: 30106304 DOI: 10.1021/acs.orglett.8b02382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three new derivatives, anthranosides A-C (1-3), were discovered from a marine sponge-derived actinomycete Streptomyces sp. CMN-62. Their structures including absolute configurations were elucidated using MS and NMR spectroscopic data, X-ray single-crystal diffraction analysis, and chemical synthesis. Compounds 1 and 2 are epimers composed by linking the anthranilate unit to the fructofuranose moiety via a carbon-nitrogen bond, while 3 possessed a unique indole-containing scaffold. All compounds were tested for cytotoxicity, anti-influenza H1N1 virus, and NFκB inhibitory activities, and 3 showed anti-influenza activity. A possible Amadori rearrangement-based biosynthetic pathway was proposed to generate compounds 1-3.
Collapse
Affiliation(s)
- Qian Che
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Liang Qiao
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Xiaoning Han
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Yankai Liu
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Wei Wang
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Qianqun Gu
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Dehai Li
- School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
| |
Collapse
|
8
|
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. BIOLOGY 2018; 7:biology7030042. [PMID: 30072664 PMCID: PMC6165268 DOI: 10.3390/biology7030042] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
9
|
Chang CY, Lohman JR, Huang T, Michalska K, Bigelow L, Rudolf JD, Jedrzejczak R, Yan X, Ma M, Babnigg G, Joachimiak A, Phillips GN, Shen B. Structural Insights into the Free-Standing Condensation Enzyme SgcC5 Catalyzing Ester-Bond Formation in the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027. Biochemistry 2018. [PMID: 29533601 DOI: 10.1021/acs.biochem.8b00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C-1027 is a chromoprotein enediyne antitumor antibiotic, consisting of the CagA apoprotein and the C-1027 chromophore. The C-1027 chromophore features a nine-membered enediyne core appended with three peripheral moieties, including an ( S)-3-chloro-5-hydroxy-β-tyrosine. In a convergent biosynthesis of the C-1027 chromophore, the ( S)-3-chloro-5-hydroxy-β-tyrosine moiety is appended to the enediyne core by the free-standing condensation enzyme SgcC5. Unlike canonical condensation domains from the modular nonribosomal peptide synthetases that catalyze amide-bond formation, SgcC5 catalyzes ester-bond formation, as demonstrated in vitro, between SgcC2-tethered ( S)-3-chloro-5-hydroxy-β-tyrosine and ( R)-1-phenyl-1,2-ethanediol, a mimic of the enediyne core as an acceptor substrate. Here, we report that (i) genes encoding SgcC5 homologues are widespread among both experimentally confirmed and bioinformatically predicted enediyne biosynthetic gene clusters, forming a new clade of condensation enzymes, (ii) SgcC5 shares a similar overall structure with the canonical condensation domains but forms a homodimer in solution, the active site of which is located in a cavity rather than a tunnel typically seen in condensation domains, and (iii) the catalytic histidine of SgcC5 activates the 2-hydroxyl group, while a hydrogen-bond network in SgcC5 prefers the R-enantiomer of the acceptor substrate, accounting for the regio- and stereospecific ester-bond formation between SgcC2-tethered ( S)-3-chloro-5-hydroxy-β-tyrosine and ( R)-1-phenyl-1,2-ethanediol upon acid-base catalysis. These findings expand the catalytic repertoire and reveal new insights into the structure and mechanism of condensation enzymes.
Collapse
Affiliation(s)
- Chin-Yuan Chang
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Jeremy R Lohman
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Tingting Huang
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Karolina Michalska
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Lance Bigelow
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jeffrey D Rudolf
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Robert Jedrzejczak
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Xiaohui Yan
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Ming Ma
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.,Center for Structural Genomics of Infectious Diseases , University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.,Center for Structural Genomics of Infectious Diseases , University of Chicago , Chicago , Illinois 60637 , United States.,Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - George N Phillips
- BioSciences at Rice and Department of Chemistry , Rice University , Houston , Texas 77251 , United States
| | - Ben Shen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States.,Department of Molecular Medicine , The Scripps Research Institute , Jupiter , Florida 33458 , United States.,Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| |
Collapse
|
10
|
Jaremko MJ, Lee DJ, Patel A, Winslow V, Opella SJ, McCammon JA, Burkart MD. Manipulating Protein-Protein Interactions in Nonribosomal Peptide Synthetase Type II Peptidyl Carrier Proteins. Biochemistry 2017; 56:5269-5273. [PMID: 28920687 DOI: 10.1021/acs.biochem.7b00884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In an effort to elucidate and engineer interactions in type II nonribosomal peptide synthetases, we analyzed biomolecular recognition between the essential peptidyl carrier proteins and adenylation domains using nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics, and mutational studies. Three peptidyl carrier proteins, PigG, PltL, and RedO, in addition to their cognate adenylation domains, PigI, PltF, and RedM, were investigated for their cross-species activity. Of the three peptidyl carrier proteins, only PigG showed substantial cross-pathway activity. Characterization of the novel NMR solution structure of holo-PigG and molecular dynamics simulations of holo-PltL and holo-PigG revealed differences in structures and dynamics of these carrier proteins. NMR titration experiments revealed perturbations of the chemical shifts of the loop 1 residues of these peptidyl carrier proteins upon their interaction with the adenylation domain. These experiments revealed a key region for the protein-protein interaction. Mutational studies supported the role of loop 1 in molecular recognition, as mutations to this region of the peptidyl carrier proteins significantly modulated their activities.
Collapse
Affiliation(s)
- Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - D John Lee
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Ashay Patel
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States.,Department of Pharmacology, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0636, United States
| | - Victoria Winslow
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States.,Department of Pharmacology, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0636, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
11
|
Heine T, Scholtissek A, Westphal AH, van Berkel WJH, Tischler D. N-terminus determines activity and specificity of styrene monooxygenase reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1770-1780. [PMID: 28888693 DOI: 10.1016/j.bbapap.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/10/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s-1, one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity.
Collapse
Affiliation(s)
- Thomas Heine
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany; Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Anika Scholtissek
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany; Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany.
| |
Collapse
|
12
|
Latham J, Brandenburger E, Shepherd SA, Menon BRK, Micklefield J. Development of Halogenase Enzymes for Use in Synthesis. Chem Rev 2017; 118:232-269. [PMID: 28466644 DOI: 10.1021/acs.chemrev.7b00032] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature has evolved halogenase enzymes to regioselectively halogenate a diverse range of biosynthetic precursors, with the halogens introduced often having a profound effect on the biological activity of the resulting natural products. Synthetic endeavors to create non-natural bioactive small molecules for pharmaceutical and agrochemical applications have also arrived at a similar conclusion: halogens can dramatically improve the properties of organic molecules for selective modulation of biological targets in vivo. Consequently, a high proportion of pharmaceuticals and agrochemicals on the market today possess halogens. Halogenated organic compounds are also common intermediates in synthesis and are particularly valuable in metal-catalyzed cross-coupling reactions. Despite the potential utility of organohalogens, traditional nonenzymatic halogenation chemistry utilizes deleterious reagents and often lacks regiocontrol. Reliable, facile, and cleaner methods for the regioselective halogenation of organic compounds are therefore essential in the development of economical and environmentally friendly industrial processes. A potential avenue toward such methods is the use of halogenase enzymes, responsible for the biosynthesis of halogenated natural products, as biocatalysts. This Review will discuss advances in developing halogenases for biocatalysis, potential untapped sources of such biocatalysts and how further optimization of these enzymes is required to achieve the goal of industrial scale biohalogenation.
Collapse
Affiliation(s)
- Jonathan Latham
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eileen Brandenburger
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sarah A Shepherd
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Binuraj R K Menon
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
13
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
14
|
Chang CY, Lohman JR, Cao H, Tan K, Rudolf JD, Ma M, Xu W, Bingman CA, Yennamalli RM, Bigelow L, Babnigg G, Yan X, Joachimiak A, Phillips GN, Shen B. Crystal Structures of SgcE6 and SgcC, the Two-Component Monooxygenase That Catalyzes Hydroxylation of a Carrier Protein-Tethered Substrate during the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027 in Streptomyces globisporus. Biochemistry 2016; 55:5142-54. [PMID: 27560143 PMCID: PMC5024704 DOI: 10.1021/acs.biochem.6b00713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
C-1027
is a chromoprotein enediyne antitumor antibiotic produced
by Streptomyces globisporus. In the last step of
biosynthesis of the (S)-3-chloro-5-hydroxy-β-tyrosine
moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose
a two-component monooxygenase that hydroxylates the C-5 position of
(S)-3-chloro-β-tyrosine. This two-component
monooxygenase is remarkable for two reasons. (i) SgcE6 specifically
reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl
carrier protein (PCP)-tethered substrate. To address the molecular
details of substrate specificity, we determined the crystal structures
of SgcE6 and SgcC at 1.66 and 2.63 Å resolution, respectively.
SgcE6 shares a similar β-barrel fold with the class I HpaC-like
flavin reductases. A flexible loop near the active site of SgcE6 plays
a role in FAD binding, likely by providing sufficient space to accommodate
the AMP moiety of FAD, when compared to that of FMN-utilizing homologues.
SgcC shows structural similarity to a few other known FADH2-dependent monooxygenases and sheds light on some biochemically but
not structurally characterized homologues. The crystal structures
reported here provide insights into substrate specificity, and comparison
with homologues provides a catalytic mechanism of the two-component,
FADH2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes
the hydroxylation of a PCP-tethered substrate.
Collapse
Affiliation(s)
- Chin-Yuan Chang
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Jeremy R Lohman
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Hongnan Cao
- BioScience at Rice and Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Kemin Tan
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Ming Ma
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Weijun Xu
- BioScience at Rice and Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Ragothaman M Yennamalli
- BioScience at Rice and Department of Chemistry, Rice University , Houston, Texas 77251, United States.,Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Waknaghat, Himachal Pradesh, India 173234
| | - Lance Bigelow
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - George N Phillips
- BioScience at Rice and Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| |
Collapse
|
15
|
Wo J, Kong D, Brock NL, Xu F, Zhou X, Deng Z, Lin S. Transformation of Streptonigrin to Streptonigrone: Flavin Reductase-Mediated Flavin-Catalyzed Concomitant Oxidative Decarboxylation of Picolinic Acid Derivatives. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jing Wo
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dekun Kong
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nelson L. Brock
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fei Xu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
16
|
Kudo F, Miyanaga A, Eguchi T. Biosynthesis of natural products containing β-amino acids. Nat Prod Rep 2014; 31:1056-73. [DOI: 10.1039/c4np00007b] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β-Amino acids are unique components involved in a wide variety of natural products such as anticancer agents taxol, bleomycin, cytotoxic microcystin, enediyne compound C-1027 chromophore, nucleoside antibiotic blasticidin S, and macrolactam antibiotic vicenistatin. The biosynthesis and incorporation mechanisms are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| |
Collapse
|
17
|
Zhu Y, Zhang Q, Li S, Lin Q, Fu P, Zhang G, Zhang H, Shi R, Zhu W, Zhang C. Insights into Caerulomycin A Biosynthesis: A Two-Component Monooxygenase CrmH-Catalyzed Oxime Formation. J Am Chem Soc 2013; 135:18750-3. [PMID: 24295370 DOI: 10.1021/ja410513g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yiguang Zhu
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Qingbo Zhang
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sumei Li
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Qinheng Lin
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangtao Zhang
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Haibo Zhang
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Rong Shi
- Département
de Biochimie, de Microbiologie et de Bio-informatique, PROTEO et IBIS, Université Laval, Québec, G1V 0A6, Canada
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Changsheng Zhang
- CAS Key
Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center
for Marine Microbiology, Guangdong Key Laboratory of Marine Materia
Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| |
Collapse
|
18
|
Lohman JR, Huang SX, Horsman GP, Dilfer PE, Huang T, Chen Y, Wendt-Pienkowski E, Shen B. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics. MOLECULAR BIOSYSTEMS 2013; 9:478-91. [PMID: 23360970 DOI: 10.1039/c3mb25523a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-l-tyrosine and 3,6,8-trihydroxy-2-naphthonate formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible for the biosynthesis, activation, and coupling of the l-tyrosine-derived moieties from C-1027 and maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-l-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the (R)-2-aza-3-chloro-β-tyrosine and the 2-naphthonate moieties in KED biosynthesis.
Collapse
Affiliation(s)
- Jeremy R Lohman
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Katsuyama Y, Harmrolfs K, Pistorius D, Li Y, Müller R. Eine Semipinakol-Umlagerung - katalysiert durch ein Enzymsystem mit difunktioneller FAD-abhängiger Monooxygenase. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Katsuyama Y, Harmrolfs K, Pistorius D, Li Y, Müller R. A Semipinacol Rearrangement Directed by an Enzymatic System Featuring Dual-Function FAD-Dependent Monooxygenase. Angew Chem Int Ed Engl 2012; 51:9437-40. [DOI: 10.1002/anie.201204138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Indexed: 11/08/2022]
|
21
|
Wang P, Gao X, Tang Y. Complexity generation during natural product biosynthesis using redox enzymes. Curr Opin Chem Biol 2012; 16:362-9. [PMID: 22564679 PMCID: PMC3415589 DOI: 10.1016/j.cbpa.2012.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/11/2012] [Accepted: 04/15/2012] [Indexed: 11/24/2022]
Abstract
Redox enzymes such as FAD-dependent and cytochrome P450 oxygenases play indispensible roles in generating structural complexity during natural product biosynthesis. In the pre-assembly steps, redox enzymes can convert garden variety primary metabolites into unique starter and extender building blocks. In the post-assembly tailoring steps, redox cascades can transform nascent scaffolds into structurally complex final products. In this review, we will discuss several recently characterized redox enzymes in the biosynthesis of polyketides and nonribosomal peptides.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| |
Collapse
|
22
|
Lin S, Huang T, Horsman GP, Huang SX, Guo X, Shen B. Specificity of the ester bond forming condensation enzyme SgcC5 in C-1027 biosynthesis. Org Lett 2012; 14:2300-3. [PMID: 22519717 DOI: 10.1021/ol300720s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The SgcC5 condensation enzyme catalyzes the attachment of SgcC2-tethered (S)-3-chloro-5-hydroxy-β-tyrosine (2) to the enediyne core in C-1027 (1) biosynthesis. It is reported that SgcC5 (i) exhibits high stereospecificity toward the (S)-enantiomers of SgcC2-tethered β-tyrosine and analogues as donors, (ii) prefers the (R)-enantiomers of 1-phenyl-1,2-ethanediol (3) and analogues, mimicking the enediyne core, as acceptors, and (iii) can recognize a variety of donor and acceptor substrates to catalyze their regio- and stereospecific ester bond formations.
Collapse
Affiliation(s)
- Shuangjun Lin
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | | | | | | | | | | |
Collapse
|
23
|
Walsh CT, Haynes SW, Ames BD. Aminobenzoates as building blocks for natural productassembly lines. Nat Prod Rep 2012; 29:37-59. [DOI: 10.1039/c1np00072a] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Lin S, Huang T, Shen B. Tailoring Enzymes Acting on Carrier Protein-Tethered Substrates in Natural Product Biosynthesis. Methods Enzymol 2012; 516:321-43. [DOI: 10.1016/b978-0-12-394291-3.00008-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
25
|
Tang MC, Fu CY, Tang GL. Characterization of SfmD as a Heme peroxidase that catalyzes the regioselective hydroxylation of 3-methyltyrosine to 3-hydroxy-5-methyltyrosine in saframycin A biosynthesis. J Biol Chem 2011; 287:5112-21. [PMID: 22187429 DOI: 10.1074/jbc.m111.306316] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Saframycin A (SFM-A) is a potent antitumor antibiotic that belongs to the tetrahydroisoquinoline family. Biosynthetic studies have revealed that its unique pentacyclic core structure is derived from alanine, glycine, and non-proteinogenic amino acid 3-hydroxy-5-methyl-O-methyltyrosine (3-OH-5-Me-OMe-Tyr). SfmD, a hypothetical protein in the biosynthetic pathway of SFM-A, was hypothesized to be responsible for the generation of the 3-hydroxy group of 3-OH-5-Me-OMe-Tyr based on previously heterologous expression results. We now report the in vitro characterization of SfmD as a novel heme-containing peroxidase that catalyzes the hydroxylation of 3-methyltyrosine to 3-hydroxy-5-methyltyrosine using hydrogen peroxide as the oxidant. In addition, we elucidated the biosynthetic pathway of 3-OH-5-Me-OMe-Tyr by kinetic studies of SfmD in combination with biochemical assays of SfmM2, a methyltransferase within the same pathway. Furthermore, SacD, a counterpart of SfmD involved in safracin B biosynthesis, was also characterized as a heme-containing peroxidase, suggesting that SfmD-like heme-containing peroxidases may be commonly involved in the biosynthesis of SFM-A and its analogs. Finally, we found that the conserved motif HXXXC is crucial for heme binding using comparative UV-Vis and Magnetic Circular Dichroism (MCD) spectra studies of SfmD wild-type and mutants. Together, these findings expand the category of heme-containing peroxidases and set the stage for further mechanistic studies. In addition, this study has critical implications for delineating the biosynthetic pathway of other related tetrahydroisoquinoline family members.
Collapse
Affiliation(s)
- Man-Cheng Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
26
|
Thotsaporn K, Chenprakhon P, Sucharitakul J, Mattevi A, Chaiyen P. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms. J Biol Chem 2011; 286:28170-80. [PMID: 21680741 DOI: 10.1074/jbc.m111.241836] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
p-Hydroxyphenylacetate (HPA) 3-hydroxylase is a two-component flavin-dependent monooxygenase. Based on the crystal structure of the oxygenase component (C(2)), His-396 is 4.5 Å from the flavin C4a locus, whereas Ser-171 is 2.9 Å from the flavin N5 locus. We investigated the roles of these two residues in the stability of the C4a-hydroperoxy-FMN intermediate. The results indicated that the rate constant for C4a-hydroperoxy-FMN formation decreased ~30-fold in H396N, 100-fold in H396A, and 300-fold in the H396V mutant, compared with the wild-type enzyme. Lesser effects of the mutations were found for the subsequent step of H(2)O(2) elimination. Studies on pH dependence showed that the rate constant of H(2)O(2) elimination in H396N and H396V increased when pH increased with pK(a) >9.6 and >9.7, respectively, similar to the wild-type enzyme (pK(a) >9.4). These data indicated that His-396 is important for the formation of the C4a-hydroperoxy-FMN intermediate but is not involved in H(2)O(2) elimination. Transient kinetics of the Ser-171 mutants with oxygen showed that the rate constants for the H(2)O(2) elimination in S171A and S171T were ~1400-fold and 8-fold greater than the wild type, respectively. Studies on the pH dependence of S171A with oxygen showed that the rate constant of H(2)O(2) elimination increased with pH rise and exhibited an approximate pK(a) of 8.0. These results indicated that the interaction of the hydroxyl group side chain of Ser-171 and flavin N5 is required for the stabilization of C4a-hydroperoxy-FMN. The double mutant S171A/H396V reacted with oxygen to directly form the oxidized flavin without stabilizing the C4a-hydroperoxy-FMN intermediate, which confirmed the findings based on the single mutation that His-396 was important for formation and Ser-171 for stabilization of the C4a-hydroperoxy-FMN intermediate in C(2).
Collapse
Affiliation(s)
- Kittisak Thotsaporn
- Department of Biochemistry and Center of Excellence in Protein Structure & Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|
27
|
Ruangchan N, Tongsook C, Sucharitakul J, Chaiyen P. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase. J Biol Chem 2010; 286:223-33. [PMID: 21030590 DOI: 10.1074/jbc.m110.163881] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
p-Hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) catalyzes the hydroxylation of HPA at the ortho-position to yield 3,4-dihydroxyphenylacetate. The enzyme is a flavin-dependent two-component monooxygenase that consists of a reductase component and an oxygenase component (C(2)). C(2) catalyzes the hydroxylation of HPA using oxygen and reduced FMN as co-substrates. To date, the effects of pH on the oxygenation of the two-component monooxygenases have never been reported. Here, we report the reaction kinetics of C(2)·FMNH(-) with oxygen at various pH values investigated by stopped-flow and rapid quenched-flow techniques. In the absence of HPA, the rate constant for the formation of C4a-hydroperoxy-FMN (∼1.1 × 10(6) m(-1)s(-1)) was unaffected at pH 6.2-9.9, which indicated that the pK(a) of the enzyme-bound reduced FMN was less than 6.2. The rate constant for the following H(2)O(2) elimination step increased with higher pH, which is consistent with a pK(a) of >9.4. In the presence of HPA, the rate constants for the formation of C4a-hydroperoxy-FMN (∼4.8 × 10(4) m(-1)s(-1)) and the ensuing hydroxylation step (15-17 s(-1)) were not significantly affected by the pH. In contrast, the following steps of C4a-hydroxy-FMN dehydration to form oxidized FMN occurred through two pathways that were dependent on the pH of the reaction. One pathway, dominant at low pH, allowed the detection of a C4a-hydroxy-FMN intermediate, whereas the pathway dominant at high pH produced oxidized FMN without an apparent accumulation of the intermediate. However, both pathways efficiently catalyzed hydroxylation without generating significant amounts of wasteful H(2)O(2) at pH 6.2-9.9. The decreased accumulation of the intermediate at higher pH was due to the greater rates of C4a-hydroxy-FMN decay caused by the abolishment of substrate inhibition in the dehydration step at high pH.
Collapse
Affiliation(s)
- Nantidaporn Ruangchan
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
28
|
Lin S, Horsman GP, Chen Y, Li W, Shen B. Characterization of the SgcF epoxide hydrolase supporting an (R)-vicinal diol intermediate for enediyne antitumor antibiotic C-1027 biosynthesis. J Am Chem Soc 2010; 131:16410-7. [PMID: 19856960 DOI: 10.1021/ja901242s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
C-1027 is a chromoprotein antitumor antibiotic consisting of an apoprotein and the C-1027 chromophore. The C-1027 chromophore possesses four distinct structural moieties-an enediyne core, a deoxy aminosugar, a benzoxazolinate, and an (S)-3-chloro-5-hydroxy-beta-tyrosine-the latter two of which are proposed to be appended to the enediyne core via a convergent biosynthetic strategy. Here we report the in vitro characterization of SgcF, an epoxide hydrolase from the C-1027 biosynthetic gene cluster that catalyzes regio- and stereospecific hydrolysis of styrene oxide, serving as an enediyne core epoxide intermediate mimic, to form a vicinal diol. Abolishment of C-1027 production in the DeltasgcF mutant strain Streptomyces globisporus SB1010 unambiguously establishes that sgcF plays an indispensable role in C-1027 biosynthesis. SgcF efficiently hydrolyzes (S)-styrene oxide, displaying an apparent K(m) of 0.6 +/- 0.1 mM and k(cat) of 48 +/- 1 min(-1), via attack at the alpha-position to exclusively generate the (R)-phenyl vicinal diol, consistent with the stereochemistry of the C-1027 chromophore. These findings support the role of SgcF in the proposed convergent pathway for C-1027 biosynthesis, unveiling an (R)-vicinal diol as a key intermediate. Interestingly, SgcF can also hydrolyze (R)-styrene oxide to afford preferentially the (R)-phenyl vicinal diol via attack at the beta-position, albeit with significantly reduced efficiency (apparent K(m) of 2.0 +/- 0.4 mM and k(cat) = 4.3 +/- 0.3 min(-1)). Although the latter activity unlikely contributes to C-1027 biosynthesis in vivo, such enantioconvergence arising from complementary regioselective hydrolysis of a racemic substrate could be exploited to engineer epoxide hydrolases with improved regio- and/or enantiospecificity.
Collapse
Affiliation(s)
- Shuangjun Lin
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, USA
| | | | | | | | | |
Collapse
|
29
|
Liang ZX. Complexity and simplicity in the biosynthesis of enediyne natural products. Nat Prod Rep 2010; 27:499-528. [DOI: 10.1039/b908165h] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 2010; 27:571-616. [DOI: 10.1039/b911956f] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Abstract
This review covers the recent literature on the release mechanisms for polyketides and nonribosomal peptides produced by microorganisms. The emphasis is on the novel enzymology and mechanistic insights revealed by the biosynthetic studies of new natural products.
Collapse
Affiliation(s)
- Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, NE 68588, USA.
| | | |
Collapse
|
32
|
Van Lanen SG, Lin S, Horsman GP, Shen B. Characterization of SgcE6, the flavin reductase component supporting FAD-dependent halogenation and hydroxylation in the biosynthesis of the enediyne antitumor antibiotic C-1027. FEMS Microbiol Lett 2009; 300:237-41. [PMID: 19817865 DOI: 10.1111/j.1574-6968.2009.01802.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The C-1027 enediyne antitumor antibiotic from Streptomyces globisporus possesses an (S)-3-chloro-5-hydroxy-beta-tyrosine moiety, the chloro- and hydroxy-substituents of which are installed by a flavin-dependent halogenase SgcC3 and monooxygenase SgcC, respectively. Interestingly, a single flavin reductase, SgcE6, can provide reduced flavin to both enzymes. Bioinformatics analysis reveals that, similar to other flavin reductases involved in natural product biosynthesis, SgcE6 belongs to the HpaC-like subfamily of the Class I flavin reductases. The present study describes the steady-state kinetic characterization of SgcE6 as a strictly NADH- and FAD-specific enzyme.
Collapse
Affiliation(s)
- Steven G Van Lanen
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avemue, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
33
|
A free-standing condensation enzyme catalyzing ester bond formation in C-1027 biosynthesis. Proc Natl Acad Sci U S A 2009; 106:4183-8. [PMID: 19246381 DOI: 10.1073/pnas.0808880106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) catalyze the biosynthesis of many biologically active peptides and typically are modular, with each extension module minimally consisting of a condensation, an adenylation, and a peptidyl carrier protein domain responsible for incorporation of an amino acid into the growing peptide chain. C-1027 is a chromoprotein antitumor antibiotic whose enediyne chromophore consists of an enediyne core, a deoxy aminosugar, a benzoxazolinate, and a beta-amino acid moiety. Bioinformatics analysis suggested that the activation and incorporation of the beta-amino acid moiety into C-1027 follows an NRPS mechanism whereby biosynthetic intermediates are tethered to the peptidyl carrier protein SgcC2. Here, we report the biochemical characterization of SgcC5, an NRPS condensation enzyme that catalyzes ester bond formation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and (R)-1-phenyl-1,2-ethanediol, a mimic of the enediyne core. SgcC5 uses (S)-3-chloro-5-hydroxy-beta-tyrosyl-SgcC2 as the donor substrate and exhibits regiospecificity for the C-2 hydroxyl group of the enediyne core mimic as the acceptor substrate. Remarkably, SgcC5 is also capable of catalyzing amide bond formation, albeit with significantly reduced efficiency, between (S)-3-chloro-5-hydroxy-beta-tyrosyl-(S)-SgcC2 and (R)-2-amino-1-phenyl-1-ethanol, an alternative enediyne core mimic bearing an amine at its C-2 position. Thus, SgcC5 is capable of catalyzing both ester and amide bond formation, providing an evolutionary link between amide- and ester-forming condensation enzymes.
Collapse
|