1
|
Sontisiri P, Promrug D, Srichaimoon L, Arthan D, Pimtong W, Thongyoo P. A novel photoactivatable coumarin-based fluorescent "turn-on" probe: Synthesis and applications for H 2S detection in living cells and zebrafish models. Bioorg Chem 2025; 160:108447. [PMID: 40220710 DOI: 10.1016/j.bioorg.2025.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
A new photoactivatable "TURN-ON" fluorescent probe for H₂S detection was designed based on a tribromocoumarin scaffold, and successfully implemented through O-sulfonylation between a 3,6,8-tribromo-7-hydroxy-4-methylcoumarin (TBC) fluorophore and a dabsyl quencher. The H₂S-responsive strategy of the dabsyltribromocoumarin (Dab-TBC) probe is initiated via light-induced thiolysis of a sulfonate ester. This probe demonstrated excellent sensitivity and great stability towards H₂S detection under UV light irradiation, with no interference from other analytes, achieving a detection limit (LoD) of 1.61 μM. Importantly, Dab-TBC exhibited superb membrane permeability and showed great potential for visualizing H₂S levels in HeLa cells and zebrafish models, with no toxicity confirmed by in vivo toxicity studies in zebrafish embryos.
Collapse
Affiliation(s)
- Pakornsiri Sontisiri
- Medicinal Chemistry Research Unit, Chemistry Department, Thammasat University, Pathumthani 10120, Thailand
| | - Dusit Promrug
- Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Lalita Srichaimoon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Dumrongkiet Arthan
- Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wittaya Pimtong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Panumart Thongyoo
- Medicinal Chemistry Research Unit, Chemistry Department, Thammasat University, Pathumthani 10120, Thailand.
| |
Collapse
|
2
|
Chen Y, Lin J, Zhang R, He S, Ding Z, Ding L. Electrochemiluminescence of water-dispersed nitrogen and sulfur doped carbon dots synthesized from amino acids. Analyst 2021; 146:5287-5293. [PMID: 34338251 DOI: 10.1039/d1an00991e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A facile one-pot hydrothermal approach for synthesizing water-dispersed nitrogen and sulfur doped carbon dots (NS-CDs) with high luminescence quantum yield was explored, using cysteine and tryptophan as precursors. The NS-CDs were characterized by means of FT-IR spectroscopy, XRD, TEM, etc. It was found that the absolute photoluminescence quantum yield (QY) of the NS-CDs determined with an integrating sphere can reach up to 73%, with an average decay time of 17.06 ns. Electrochemiluminescence (ECL) behaviors and mechanisms of the NS-CDs/K2S2O8 coreactant system were investigated. When the working electrode was modified with the prepared NS-CDs, the ECL efficiency of the NS-CDs with K2S2O8 was 24%, relative to Ru(bpy)3Cl2/K2S2O8. This work shows great potential for the NS-CDs to be used in bioanalytical applications.
Collapse
Affiliation(s)
- Yanhua Chen
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| | | | | | | | | | | |
Collapse
|
3
|
Mann VR, Manea F, Borys NJ, Ajo-Franklin CM, Cohen BE. Controlled and Stable Patterning of Diverse Inorganic Nanocrystals on Crystalline Two-Dimensional Protein Arrays. Biochemistry 2021; 60:1063-1074. [PMID: 33691067 PMCID: PMC8162747 DOI: 10.1021/acs.biochem.1c00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Controlled patterning of nanoparticles on bioassemblies enables synthesis of complex materials for applications in optics, nanoelectronics, and sensing. Biomolecular self-assembly offers molecular control for engineering patterned nanomaterials, but current approaches have been limited in their ability to combine high nanoparticle coverage with generality that enables incorporation of multiple nanoparticle types. Here, we synthesize photonic materials on crystalline two-dimensional (2D) protein sheets using orthogonal bioconjugation reactions, organizing quantum dots (QDs), gold nanoparticles (AuNPs), and upconverting nanoparticles along the surface-layer (S-layer) protein SbsB from the extremophile Geobacillus stearothermophilus. We use electron and optical microscopy to show that isopeptide bond-forming SpyCatcher and SnoopCatcher systems enable the simultaneous and controlled conjugation of multiple types of nanoparticles (NPs) at high densities along the SbsB sheets. These NP conjugation reactions are orthogonal to each other and to Au-thiol bond formation, allowing tailorable nanoparticle combinations at sufficient labeling efficiencies to permit optical interactions between nanoparticles. Fluorescence lifetime imaging of SbsB sheets conjugated to QDs and AuNPs at distinct attachment sites shows spatially heterogeneous QD emission, with shorter radiative decays and brighter fluorescence arising from plasmonic enhancement at short interparticle distances. This specific, stable, and efficient conjugation of NPs to 2D protein sheets enables the exploration of interactions between pairs of nanoparticles at defined distances for the engineering of protein-based photonic nanomaterials.
Collapse
Affiliation(s)
- Victor R. Mann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Francesca Manea
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Current address: Perfect Day Foods, Berkeley, CA 94608
| | - Nicholas J. Borys
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Current address: Department of Physics, Montana State University, Bozeman, MT 59717
| | - Caroline M. Ajo-Franklin
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of BioSciences, Rice University, Houston, TX 77005
| | - Bruce E. Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
4
|
Improved resolution in single-molecule localization microscopy using QD-PAINT. Exp Mol Med 2021; 53:384-392. [PMID: 33654221 PMCID: PMC8080769 DOI: 10.1038/s12276-021-00572-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 01/31/2023] Open
Abstract
Single-molecule localization microscopy (SMLM) has allowed the observation of various molecular structures in cells beyond the diffraction limit using organic dyes. In principle, the SMLM resolution depends on the precision of photoswitching fluorophore localization, which is inversely correlated with the square root of the number of photons released from the individual fluorophores. Thus, increasing the photon number by using highly bright fluorophores, such as quantum dots (QDs), can theoretically fundamentally overcome the current resolution limit of SMLM. However, the use of QDs in SMLM has been challenging because QDs have no photoswitching property, which is essential for SMLM, and they exhibit nonspecificity and multivalency, which complicate their use in fluorescence imaging. Here, we present a method to utilize QDs in SMLM to surpass the resolution limit of the current SMLM utilizing organic dyes. We confer monovalency, specificity, and photoswitchability on QDs by steric exclusion via passivation and ligand exchange with ptDNA, PEG, and casein as well as by DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) via automatic thermally driven hybridization between target-bound docking and dye-bound complementary imager strands. QDs are made monovalent and photoswitchable to enable SMLM and show substantially better photophysical properties than Cy3, with higher fluorescence intensity and an improved resolution factor. QD-PAINT displays improved spatial resolution with a narrower full width at half maximum (FWHM) than DNA-PAINT with Cy3. In summary, QD-PAINT shows great promise as a next-generation SMLM method for overcoming the limited resolution of the current SMLM.
Collapse
|
5
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
6
|
Shi XL, Zou J, Chen ZG. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem Rev 2020; 120:7399-7515. [PMID: 32614171 DOI: 10.1021/acs.chemrev.0c00026] [Citation(s) in RCA: 472] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The long-standing popularity of thermoelectric materials has contributed to the creation of various thermoelectric devices and stimulated the development of strategies to improve their thermoelectric performance. In this review, we aim to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics, including structural design (point defects, dislocations, interfaces, inclusions, and pores), multidimensional design (quantum dots/wires, nanoparticles, nanowires, nano- or microbelts, few-layered nanosheets, nano- or microplates, thin films, single crystals, and polycrystalline bulks), and advanced device design (thermoelectric modules, miniature generators and coolers, and flexible thermoelectric generators). The outline of each strategy starts with a concise presentation of their fundamentals and carefully selected examples. In the end, we point out the controversies, challenges, and outlooks toward the future development of thermoelectric materials and devices. Overall, this review will serve to help materials scientists, chemists, and physicists, particularly students and young researchers, in selecting suitable strategies for the improvement of thermoelectrics and potentially other relevant energy conversion technologies.
Collapse
Affiliation(s)
- Xiao-Lei Shi
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia.,School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jin Zou
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi-Gang Chen
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia.,School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Mondal S, Saha M, Ghosh M, Santra S, Khan MA, Das Saha K, Molla MR. Programmed supramolecular nanoassemblies: enhanced serum stability and cell specific triggered release of anti-cancer drugs. NANOSCALE ADVANCES 2019; 1:1571-1580. [PMID: 36132617 PMCID: PMC9418062 DOI: 10.1039/c9na00052f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 05/30/2023]
Abstract
A bolaamphiphilic cross-linked nanoassembly endowed with pH responsive degradation features has been designed and fabricated for stable noncovalent guest encapsulation and controlled release. The self-assembled bolaamphiphile is utilized to prepare cross-linked nanoassemblies to further stabilize the noncovalent guest encapsulation at a concentration below its critical aggregation concentration (CAC) in a large volume of water or serum for drug delivery applications. Thus, this system can simultaneously address premature drug release and safety issues. The nanoassemblies integrated with a β-thioester linker, which can be hydrolyzed selectively under mildly acidic conditions (pH ∼ 5.3) at a slow rate, thus enable controlled release of guest molecules. Biological evaluation revealed that doxorubicin loaded cross-linked nanoassemblies (CNs-DOX) are nontoxic to normal cells such as HEK-293 or PBMC, but in contrast, showed a robust apoptotic effect on colon cancer cells, HCT-116, indicating excellent specificity. Thus, the fabrication reproducibility, robust stability, triggered drug release and cell selective toxicity behavior make this small molecular system very promising in the field of chemotherapeutic applications.
Collapse
Affiliation(s)
- Sanchaita Mondal
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| | - Moumita Saha
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology 4, Raja S C Mullick Road Kolkata-700032 India
| | - Mousumi Ghosh
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| | - Subrata Santra
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| | - Mijan A Khan
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology 4, Raja S C Mullick Road Kolkata-700032 India
| | - Mijanur R Molla
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| |
Collapse
|
8
|
Mandal S, George L, Tkachenko NV. Charge transfer dynamics in CsPbBr 3 perovskite quantum dots-anthraquinone/fullerene (C 60) hybrids. NANOSCALE 2019; 11:862-869. [PMID: 30600826 DOI: 10.1039/c8nr08445a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An advantage of colloidal quantum dots, particularly perovskite quantum dots (PQDs), as photoactive components is that they easily form complexes with functional organic molecules, which results in hybrids with enriched photophysical properties. Herein, we demonstrate the formation of stable ground state complexes of CsPbBr3 PQD with two widely used molecular electron acceptors, fullerene (C60) and anthraquinone, (AQ) which contain carboxylic anchor groups. Dynamics of the photo-induced electron transfer in the hybrids were compared. The use of carboxylic groups for binding results in stable complex formation and their photophysical properties depend on the ratio of components but not the absolute concentrations (up to micromolar concentrations). Time-resolved transient absorption (TA) spectroscopy shows that in both cases, a charge separated (CS) state is formed. Data analysis was aimed to evaluate the CS time constant in ideal one-to-one complexes and was found to be in the range of 30-190 ps. The CS state of PQD-AQ complexes recombines directly to the ground state in roughly one microsecond. Recombination of the CS state of PQD-C60 is more complex and points to strong inhomogeneity of these complexes. Majority of the CS states relax by first forming the C60 triplet state.
Collapse
Affiliation(s)
- Sadananda Mandal
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, P. O. Box 541, 33101 Tampere, Finland.
| | | | | |
Collapse
|
9
|
Abstract
The past decade has witnessed an explosion in the use of super-resolution fluorescence microscopy methods in biology and other fields. Single-molecule localization microscopy (SMLM) is one of the most widespread of these methods and owes its success in large part to the ability to control the on-off state of fluorophores through various chemical, photochemical, or binding-unbinding mechanisms. We provide here a comprehensive overview of switchable fluorophores in SMLM including a detailed review of all major classes of SMLM fluorophores, and we also address strategies for labeling specimens, considerations for multichannel and live-cell imaging, potential pitfalls, and areas for future development.
Collapse
Affiliation(s)
- Honglin Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA, 98195
| |
Collapse
|
10
|
Jung S, Chen X. Quantum Dot-Dye Conjugates for Biosensing, Imaging, and Therapy. Adv Healthc Mater 2018; 7:e1800252. [PMID: 29862653 PMCID: PMC6149543 DOI: 10.1002/adhm.201800252] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/17/2018] [Indexed: 01/14/2023]
Abstract
Adding value to the intrinsic properties of quantum dots (QDs), a strategy to conjugate dyes on the surface of QDs offers new opportunities, since the coupling between QD and dyes can be designed to allow Förster resonance energy transfer (FRET) and/or electron transfer (eT). These processes are accompanied by the change of QD and/or dye fluorescence and subsequent photochemical reactions (e.g., generation of 1 O2 ). Based on the change of fluorescence signals by the interaction with biomolecules, QD-dye conjugates are exploited as biosensors for the detection of pH, O2 , nicotinamide adenine dinucleotide (phosphate), ions, proteases, glutathione, and microRNA. QD-dye conjugates also can be modulated by the irradiation of external light; this concept is demonstrated for fluorescence super-resolution imaging as photoactivatable or photoswitchable probes. When QDs are conjugated with photosensitizing dyes, the QD-dye conjugates can generate 1 O2 in a repetitive manner for better cancer treatment, and can also be available for approaches using two-photon excitation or bioluminescence resonance energy transfer mechanisms for deep tissue imaging. Here, the recent advances in QD-dye conjugates, where FRET or eT produces fluorescence readouts or photochemical reactions, are reviewed. Various QD-dye conjugate systems and their biosensing/imaging and photodynamic therapeutics are summarized.
Collapse
Affiliation(s)
- Sungwook Jung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
11
|
Xie Y, Chen S, Qian Y, Zhao W, Zhao C. Photo-responsive membrane surface: Switching from bactericidal to bacteria-resistant property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Chashchikhin OV, Budyka MF. Hybrid nanosystems based on colloidal quantum dots and organic ligands (Review). HIGH ENERGY CHEMISTRY 2018. [DOI: 10.1134/s0018143918010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wichner SM, Mann VR, Powers AS, Segal MA, Mir M, Bandaria J, DeWitt MA, Darzacq X, Yildiz A, Cohen BE. Covalent Protein Labeling and Improved Single-Molecule Optical Properties of Aqueous CdSe/CdS Quantum Dots. ACS NANO 2017; 11:6773-6781. [PMID: 28618223 PMCID: PMC5891212 DOI: 10.1021/acsnano.7b01470] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Semiconductor quantum dots (QDs) have proven to be superior probes for single-molecule imaging compared to organic or genetically encoded fluorophores, but they are limited by difficulties in protein targeting, their larger size, and on-off blinking. Here, we report compact aqueous CdSe/CdS QDs with significantly improved bioconjugation efficiency and superior single-molecule optical properties. We have synthesized covalent protein labeling ligands (i.e., SNAP tags) that are optimized for nanoparticle use, and QDs functionalized with these ligands label SNAP-tagged proteins ∼10-fold more efficiently than existing SNAP ligands. Single-molecule analysis of these QDs shows 99% of time spent in the fluorescent on-state, ∼4-fold higher quantum efficiency than standard CdSe/ZnS QDs, and 350 million photons detected before photobleaching. Bright signals of these QDs enable us to track the stepping movement of a kinesin motor in vitro, and the improved labeling efficiency enables tracking of single kinesins in live cells.
Collapse
Affiliation(s)
- Sara M. Wichner
- Department of Chemistry, University of California at Berkeley, Berkeley CA 94720 USA
| | - Victor R. Mann
- Department of Chemistry, University of California at Berkeley, Berkeley CA 94720 USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA
| | - Alexander S. Powers
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA
| | - Maya A. Segal
- Department of Chemistry, University of California at Berkeley, Berkeley CA 94720 USA
| | - Mustafa Mir
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley CA 94720 USA
| | - Jigar Bandaria
- Department of Physics, University of California at Berkeley, Berkeley CA 94720 USA
| | - Mark A. DeWitt
- Biophysics Graduate Group, University of California at Berkeley, Berkeley CA 94720 USA
| | - Xavier Darzacq
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley CA 94720 USA
| | - Ahmet Yildiz
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley CA 94720 USA
- Department of Physics, University of California at Berkeley, Berkeley CA 94720 USA
- Biophysics Graduate Group, University of California at Berkeley, Berkeley CA 94720 USA
- Corresponding authors: ,
| | - Bruce E. Cohen
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA
- Corresponding authors: ,
| |
Collapse
|
14
|
Jung S, Park J, Bang J, Kim JY, Kim C, Jeon Y, Lee SH, Jin H, Choi S, Kim B, Lee WJ, Pack CG, Lee JB, Lee NK, Kim S. Light-Induced Fluorescence Modulation of Quantum Dot-Crystal Violet Conjugates: Stochastic Off-On-Off Cycles for Multicolor Patterning and Super-Resolution. J Am Chem Soc 2017; 139:7603-7615. [PMID: 28493679 DOI: 10.1021/jacs.7b02530] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched "off" to (ii) photoactivated "on" as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened "off" by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from "off" to "on" and "off" by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated.
Collapse
Affiliation(s)
| | | | - Jiwon Bang
- Korea Institute of Ceramic Engineering and Technology , 101 Soho-ro, Jinju-si, Gyeongnam 52851, South Korea
| | | | | | | | | | | | | | | | | | - Chan-Gi Pack
- Department of Convergence Medicine, University of Ulsan College of Medicine & Asan Institute for Life Sciences , Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea
| | | | - Nam Ki Lee
- Department of Chemistry, Seoul National University , Seoul 08826, South Korea
| | | |
Collapse
|
15
|
Zhou X, Jiang Y, Zhao X, Guo D. ESIPT-Based Photoactivatable Fluorescent Probe for Ratiometric Spatiotemporal Bioimaging. SENSORS 2016; 16:s16101684. [PMID: 27754338 PMCID: PMC5087472 DOI: 10.3390/s16101684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
Abstract
Photoactivatable fluorophores have become an important technique for the high spatiotemporal resolution of biological imaging. Here, we developed a novel photoactivatable probe (PHBT), which is based on 2-(2-hydroxyphenyl)benzothiazole (HBT), a small organic fluorophore known for its classic luminescence mechanism through excited-state intramolecular proton transfer (ESIPT) with the keto form and the enol form. After photocleavage, PHBT released a ratiometric fluorophore HBT, which showed dual emission bands with more than 73-fold fluorescence enhancement at 512 nm in buffer and more than 69-fold enhancement at 452 nm in bovine serum. The probe displayed a high ratiometric imaging resolution and is believed to have a wide application in biological imaging.
Collapse
Affiliation(s)
- Xiaohong Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
- Environment Monitoring Department, Changsha Environmental Protection College, Changsha 410004, China.
| | - Yuren Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Xiongjie Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Dong Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
16
|
Solovyev AI, Plyusnin VF, Shubin AA, Grivin VP, Larionov SV. Photochemistry of Dithiocarbamate Cu(S2CNEt2)2 Complex in CHCl3. Transient Species and TD-DFT Calculations. J Phys Chem A 2016; 120:7873-7880. [DOI: 10.1021/acs.jpca.6b08738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aleksey I. Solovyev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Victor F. Plyusnin
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandr A. Shubin
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
| | - Vjacheslav P. Grivin
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090 Novosibirsk, Russia
| | - Stanislav V. Larionov
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
17
|
Sansalone L, Tang S, Zhang Y, Thapaliya ER, Raymo FM, Garcia-Amorós J. Semiconductor Quantum Dots with Photoresponsive Ligands. Top Curr Chem (Cham) 2016; 374:73. [DOI: 10.1007/s41061-016-0073-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
|
18
|
Gungor E, Armani AM. Photocleavage of Covalently Immobilized Amphiphilic Block Copolymer: From Bilayer to Monolayer. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Eda Gungor
- Mork Family
Department of
Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Andrea M. Armani
- Mork Family
Department of
Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
19
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
20
|
Thomas SW, Pawle RH, Smith ZC. Stimuli-responsive side chains for new function from conjugated materials. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Zhou L, Zhang X, Lv Y, Yang C, Lu D, Wu Y, Chen Z, Liu Q, Tan W. Localizable and Photoactivatable Fluorophore for Spatiotemporal Two-Photon Bioimaging. Anal Chem 2015; 87:5626-31. [DOI: 10.1021/acs.analchem.5b00691] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Liyi Zhou
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Research Center of Molecular Engineering
for Theranostics, Hunan University, Changsha 410082, China
| | - Xiaobing Zhang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Research Center of Molecular Engineering
for Theranostics, Hunan University, Changsha 410082, China
| | - Yifan Lv
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Research Center of Molecular Engineering
for Theranostics, Hunan University, Changsha 410082, China
| | - Chao Yang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Research Center of Molecular Engineering
for Theranostics, Hunan University, Changsha 410082, China
| | - Danqing Lu
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Research Center of Molecular Engineering
for Theranostics, Hunan University, Changsha 410082, China
| | - Yuan Wu
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Research Center of Molecular Engineering
for Theranostics, Hunan University, Changsha 410082, China
- Department
of Chemistry, Department of Physiology and Functional Genomics, Center
for Research at Bio/Nano Interface, Shands Cancer Center, University
of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Zhuo Chen
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Research Center of Molecular Engineering
for Theranostics, Hunan University, Changsha 410082, China
| | - Qiaoling Liu
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Research Center of Molecular Engineering
for Theranostics, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Research Center of Molecular Engineering
for Theranostics, Hunan University, Changsha 410082, China
- Department
of Chemistry, Department of Physiology and Functional Genomics, Center
for Research at Bio/Nano Interface, Shands Cancer Center, University
of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
22
|
Gao Y, Dong Q, Lan S, Cai Q, Simalou O, Zhang S, Gao G, Chokto H, Dong A. Decorating CdTe QD-Embedded Mesoporous Silica Nanospheres with Ag NPs to Prevent Bacteria Invasion for Enhanced Anticounterfeit Applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10022-10033. [PMID: 25901940 DOI: 10.1021/acsami.5b02472] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Quantum dots (QDs) as potent candidates possess advantageous superiority in fluorescence imaging applications, but they are susceptible to the biological circumstances (e.g., bacterial environment), leading to fluorescence quenching or lose of fluorescent properties. In this work, CdTe QDs were embedded into mesoporous silica nanospheres (m-SiO2 NSs) for preventing QD agglomeration, and then CdTe QD-embedded m-SiO2 NSs (m-SiO2/CdTe NSs) were modified with Ag nanoparticles (Ag NPs) to prevent bacteria invasion for enhanced anticounterfeit applications. The m-SiO2 NSs, which serve as intermediate layers to combine CdTe QDs with Ag NPs, help us establish a highly fluorescent and long-term antibacterial system (i.e., m-SiO2/CdTe/Ag NSs). More importantly, CdTe QD-embedded m-SiO2 NSs showed fluorescence quenching when they encounter bacteria, which was avoided by attaching Ag NPs outside. Ag NPs are superior to CdTe QDs for preventing bacteria invasion because of the structure (well-dispersed Ag NPs), size (small diameter), and surface charge (positive zeta potentials) of Ag NPs. The plausible antibacterial mechanisms of m-SiO2/CdTe/Ag NSs toward both Gram-positive and Gram-negative bacteria were established. As for potential applications, m-SiO2/CdTe/Ag NSs were developed as fluorescent anticounterfeiting ink for enhanced imaging applications.
Collapse
Affiliation(s)
| | | | - Shi Lan
- ⊥College of Science, Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China
| | | | - Oudjaniyobi Simalou
- ||Département de Chimie, Faculté Des Sciences (FDS), Université de Lomé (UL), BP 1515 Lome, Togo
| | - Shiqi Zhang
- #PhD School of Materiaux, Mechanics, Environnement, Energy, Process and Production Engineering (I-MEP2), University of Grenoble, Grenoble 38031, France
| | - Ge Gao
- △College of Chemistry, Jilin University, Changchun 130021, People's Republic of China
| | | | | |
Collapse
|
23
|
Díaz SA, Gillanders F, Jares-Erijman EA, Jovin TM. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors. Nat Commun 2015; 6:6036. [PMID: 25592060 DOI: 10.1038/ncomms7036] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/03/2014] [Indexed: 11/09/2022] Open
Abstract
Photoswitchable molecules and nanoparticles constitute superior biosensors for a wide range of industrial, research and biomedical applications. Rendered reversible by spontaneous or deterministic means, such probes facilitate many of the techniques in fluorescence microscopy that surpass the optical resolution dictated by diffraction. Here we have devised a family of photoswitchable quantum dots (psQDs) in which the semiconductor core functions as a fluorescence donor in Förster resonance energy transfer (FRET), and multiple photochromic diheteroarylethene groups function as acceptors upon activation by ultraviolet light. The QDs were coated with a polymer bearing photochromic groups attached via linkers of different length. Despite the resulting nominal differences in donor-acceptor separation and anticipated FRET efficiencies, the maximum quenching of all psQD preparations was 38±2%. This result was attributable to the large ultraviolet absorption cross-section of the QDs, leading to preferential cycloreversion of photochromic groups situated closer to the nanoparticle surface and/or with a more favourable orientation.
Collapse
Affiliation(s)
- Sebastián A Díaz
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| | - Florencia Gillanders
- 1] Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany [2] Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CIHIDECAR, CONICET, 1428 Buenos Aires, Argentina
| | - Elizabeth A Jares-Erijman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CIHIDECAR, CONICET, 1428 Buenos Aires, Argentina
| | - Thomas M Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Dong H, Sun LD, Yan CH. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev 2015; 44:1608-34. [DOI: 10.1039/c4cs00188e] [Citation(s) in RCA: 714] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, the various energy transfer pathways involved in lanthanide-related upconversion emissions are comprehensively discussed.
Collapse
Affiliation(s)
- Hao Dong
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- Peking University
- Beijing 100871
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- Peking University
- Beijing 100871
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
25
|
Kale V, Lastusaari M, Hölsä J, Soukka T. Intense UV upconversion through highly sensitized NaRF4:Tm (R:Y,Yb) crystals. RSC Adv 2015. [DOI: 10.1039/c5ra01613d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Photon upconverting luminescent hexagonal NaRF4:Tm (0.5 mol%) (R:Y3+,Yb3+) crystals with Yb3+ concentrations between 20 and 99.5 mol% were synthesized by a modified thermal coprecipitation method.
Collapse
Affiliation(s)
- Vishal Kale
- Department of Biotechnology
- University of Turku
- FI-20520 Turku
- Finland
| | - Mika Lastusaari
- Department of Chemistry
- University of Turku
- FI-20014 Turku
- Finland
- Turku Centre for Materials and Surfaces (MatSurf)
| | - Jorma Hölsä
- Department of Chemistry
- University of Turku
- FI-20014 Turku
- Finland
- Turku Centre for Materials and Surfaces (MatSurf)
| | - Tero Soukka
- Department of Biotechnology
- University of Turku
- FI-20520 Turku
- Finland
| |
Collapse
|
26
|
Idris NM, Jayakumar MKG, Bansal A, Zhang Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem Soc Rev 2015; 44:1449-1478. [DOI: 10.1039/c4cs00158c] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Upconversion nanoparticles enable use of near infrared light for spatially and temporally controlled activation of therapeutic compounds in deeper tissues.
Collapse
Affiliation(s)
- Niagara Muhammad Idris
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore
| | | | - Akshaya Bansal
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering
| | - Yong Zhang
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering
| |
Collapse
|
27
|
Zhu C, Ninh C, Bettinger CJ. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering. Biomacromolecules 2014; 15:3474-94. [PMID: 25226507 DOI: 10.1021/bm500990z] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.
Collapse
Affiliation(s)
- Congcong Zhu
- Department of Materials Science and Engineering and ‡Department of Biomedical Engineering Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | | | | |
Collapse
|
28
|
Shen J, Chen G, Ohulchanskyy TY, Kesseli SJ, Buchholz S, Li Z, Prasad PN, Han G. Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4 :Yb,Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3213-3217. [PMID: 23696330 DOI: 10.1002/smll.201300234] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Indexed: 06/02/2023]
Abstract
A family of upconverting nanoparticles (UCNPs) with a tunable UV enhancement is developed via a facile approach. The design leads to a maximum 9-fold enhancement in comparison with known optimal β-phase core/shell UCNPs in water. A highly effective and rapid in situ real-time live-cell photoactivation is recorded for the first time with such nanoparticles.
Collapse
Affiliation(s)
- Jie Shen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
García-Rodríguez R, Liu H. Solution structure of cadmium carboxylate and its implications for the synthesis of cadmium chalcogenide nanocrystals. Chem Commun (Camb) 2013; 49:7857-9. [DOI: 10.1039/c3cc44103b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Fürstenberg A, Heilemann M. Single-molecule localization microscopy – near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. Phys Chem Chem Phys 2013; 15:14919-30. [DOI: 10.1039/c3cp52289j] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
|
32
|
Abstract
Photoactivatable fluorophores switch from a nonemissive to an emissive state upon illumination at an activating wavelength and then emit after irradiation at an exciting wavelength. The interplay of such activation and excitation events can be exploited to switch fluorescence on in a defined region of space at a given interval of time. In turn, the spatiotemporal control of fluorescence translates into the opportunity to implement imaging and spectroscopic schemes that are not possible with conventional fluorophores. Specifically, photoactivatable fluorophores permit the monitoring of dynamic processes in real time as well as the reconstruction of images with subdiffraction resolution. These promising applications can have a significant impact on the characterization of the structures and functions of biomolecular systems. As a result, strategies to implement mechanisms for fluorescence photoactivation with synthetic fluorophores are particularly valuable. In fact, a number of versatile operating principles have already been identified to activate the fluorescence of numerous members of the main families of synthetic dyes. These methods are based on either the irreversible cleavage of covalent bonds or the reversible opening and closing of rings. This paper overviews the fundamental mechanisms that govern the behavior of these photoresponsive systems, illustrates structural designs for fluorescence photoactivation, and provides representative examples of photoactivatable fluorophores in actions.
Collapse
Affiliation(s)
- Françisco M. Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| |
Collapse
|
33
|
Abstract
This letter describes thiophene-based materials that undergo photoinduced aggregation or precipitation upon irradiation with UV light. The only solubilizing side chains on these materials are photocleavable by connection through photolabile nitrobenzyl esters. While quaterthiophene oligomers yield diacids that remain soluble in dichloromethane at micromolar concentrations upon exposure to ultraviolet light, the polymeric analog shows both red-shifted absorbance and heavily quenched fluorescence, consistent with aggregation due to photochemical cleavage of solubilizing alkyl chains. Thin films of this polymer also resisted dissolution in organic solvent upon irradiation, suggesting applicability in the construction of multilayer solid-state devices.
Collapse
Affiliation(s)
- Zachary C. Smith
- Department of Chemistry, Tufts University, 62 Talbot Avenue,
Medford, Massachusetts
02155, United States
| | - Robert H. Pawle
- Department of Chemistry, Tufts University, 62 Talbot Avenue,
Medford, Massachusetts
02155, United States
| | - Samuel W. Thomas
- Department of Chemistry, Tufts University, 62 Talbot Avenue,
Medford, Massachusetts
02155, United States
| |
Collapse
|
34
|
Two-Photon Activated Two-Photon Fluorescence and Binding of Azidocoumarin in a Gelatin Matrix. J Fluoresc 2012; 22:1291-300. [DOI: 10.1007/s10895-012-1071-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 05/29/2012] [Indexed: 02/04/2023]
|
35
|
Li WH, Zheng G. Photoactivatable fluorophores and techniques for biological imaging applications. Photochem Photobiol Sci 2012; 11:460-71. [PMID: 22252510 PMCID: PMC3677749 DOI: 10.1039/c2pp05342j] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/28/2011] [Indexed: 11/21/2022]
Abstract
Photoactivatable fluorophores (PAFs) are powerful imaging probes for tracking molecular and cellular dynamics with high spatiotemporal resolution in biological systems. Recent developments in biological microscopy have raised new demands for engineering new PAFs with improved properties, such as high two photon excitation efficiency, reversibility, cellular delivery and targeting. Here we review the history and some of the recent developments in this area, emphasizing our efforts in developing a new class of caged coumarins and related imaging methods for studying dynamic cell-cell communication through gap junction channels, and in extending the application of these caged coumarins to new areas including spatiotemporal control of microRNA activity in vivo.
Collapse
Affiliation(s)
- Wen-hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA.
| | | |
Collapse
|
36
|
Impellizzeri S, McCaughan B, Callan JF, Raymo FM. Photoinduced enhancement in the luminescence of hydrophilic quantum dots coated with photocleavable ligands. J Am Chem Soc 2012; 134:2276-83. [PMID: 22217330 DOI: 10.1021/ja209873g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In search of strategies to photoactivate the luminescence of semiconductor quantum dots, we devised a synthetic approach to attach photocleavable 2-nitrobenzyl groups to CdSe-ZnS core-shell quantum dots coated with hydrophilic polymeric ligands. The emission intensity of the resulting nanostructured constructs increases by more than 60% with the photolysis of the 2-nitrobenzyl appendages. Indeed, the photoinduced separation of the organic chromophores from the inorganic nanoparticles suppresses an electron-transfer pathway from the latter to the former and is mostly responsible for the luminescence enhancement. However, the thiol groups anchoring the polymeric envelope to the ZnS shell also contribute to the photoinduced emission increase. Presumably, their photooxidation eliminates defects on the nanoparticle surface and promotes the radiative deactivation of the excited quantum dots. This effect is fully reversible but its magnitude is only a fraction of the change caused by the photocleavage of the 2-nitrobenzyl groups. In addition, these particular quantum dots can cross the membrane of model cells and their luminescence increases by ~80% after the intracellular photocleavage of the 2-nitrobenzyl quenchers. Thus, photoswitchable luminescent constructs with biocompatible character can be assembled combining the established photochemistry of the 2-nitrobenzyl photocage with the outstanding photophysical properties of semiconductor quantum dots and the hydrophilic character of appropriate polymeric ligands.
Collapse
Affiliation(s)
- Stefania Impellizzeri
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, USA
| | | | | | | |
Collapse
|
37
|
García-Rodríguez R, Liu H. Mechanistic study of the synthesis of CdSe nanocrystals: release of selenium. J Am Chem Soc 2012; 134:1400-3. [PMID: 22225464 DOI: 10.1021/ja209246z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We outline a reaction pathway for the cleavage of the P═Se bond in trialkylphosphine selenide during the synthesis of CdSe nanocrystals. The reaction between cadmium carboxylate and trimethylphosphine selenide in the presence of an alcohol produces alkoxytrimethylphosphonium (2). Control experiments and density functional theory calculations suggested that the cleavage of the P═Se bond is initiated by nucleophilic attack of carboxylate on a Cd(2+)-activated phosphine selenide to produce an acyloxytrialkylphosphonium intermediate (1), which is converted to 2 in the presence of an alcohol.
Collapse
Affiliation(s)
- Raúl García-Rodríguez
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
38
|
|
39
|
Kolomeets AV, Plyusnin VF, Grivin VP, Larionov SV, Lemmetyinen H. Photochemical processes for dithiocarbamate metal complexes. Photochemistry of NiII(n-Bu2NCS2)2 complex in CCl4. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Zylstra J, Amey J, Miska NJ, Pang L, Hine CR, Langer J, Doyle RP, Maye MM. A modular phase transfer and ligand exchange protocol for quantum dots. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4371-4379. [PMID: 21410215 DOI: 10.1021/la104542n] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this paper, we describe a quantum dot (qdot) phase transfer protocol using ligand exchange and the amino acid histidine. The phase transfer from nonpolar solvents to aqueous buffers is homogeneous, and no appreciable precipitation occurs. The molecule histidine was chosen in order to first displace the organic encapsulation and second to provide a weakly chemisorbing intermediate at the qdot ionic interface. This allows the histidine to act as an intermediate shell upon which further direct ligand exchange can occur. Since this intermediate encapsulation is easily displaced by an assortment of different molecules while in aqueous buffers, we refer to this approach as modular. Characterization via FTIR and NMR revealed the extent of ligand exchange, and provides insights into the interfacial binding mechanism. The colloidal stability and photostability of the qdots was probed via UV-vis and steady state fluorescence, which revealed promising quantum yield stability of greater than 1 year. The qdots have hydrodynamic diameters of <12 nm and surface charges dependent upon ligand type and coverage. The modularity of this approach is shown by tailoring the qdot surface charge via sequential ligand exchange using mixed monolayers of carboxylic acid and poly(ethylene glycol)-terminated thiols.
Collapse
Affiliation(s)
- Joshua Zylstra
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Groff D, Wang F, Jockusch S, Turro NJ, Schultz PG. A new strategy to photoactivate green fluorescent protein. Angew Chem Int Ed Engl 2011; 49:7677-9. [PMID: 20836111 DOI: 10.1002/anie.201003797] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dan Groff
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
42
|
Yesilyurt V, Ramireddy R, Thayumanavan S. Photoregulated release of noncovalent guests from dendritic amphiphilic nanocontainers. Angew Chem Int Ed Engl 2011; 50:3038-42. [PMID: 21404394 DOI: 10.1002/anie.201006193] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/30/2010] [Indexed: 01/08/2023]
Affiliation(s)
- Volkan Yesilyurt
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
43
|
Yesilyurt V, Ramireddy R, Thayumanavan S. Photoregulated Release of Noncovalent Guests from Dendritic Amphiphilic Nanocontainers. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006193] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Chen S, Wang L, Duce SL, Brown S, Lee S, Melzer A, Cuschieri A, André P. Engineered biocompatible nanoparticles for in vivo imaging applications. J Am Chem Soc 2011; 132:15022-9. [PMID: 20919679 PMCID: PMC2962530 DOI: 10.1021/ja106543j] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Iron−platinum alloy nanoparticles (FePt NPs) are extremely promising candidates for the next generation of contrast agents for magnetic resonance (MR) diagnostic imaging and MR-guided interventions, including hyperthermic ablation of solid cancers. FePt has high Curie temperature, saturation magnetic moment, magneto-crystalline anisotropy, and chemical stability. We describe the synthesis and characterization of a family of biocompatible FePt NPs suitable for biomedical applications, showing and discussing that FePt NPs can exhibit low cytotoxicity. The importance of engineering the interface of strongly magnetic NPs using a coating allowing free aqueous permeation is demonstrated to be an essential parameter in the design of new generations of diagnostic and therapeutic MRI contrast agents. We report effective cell internalization of FePt NPs and demonstrate that they can be used for cellular imaging and in vivo MRI applications. This opens the way for several future applications of FePt NPs, including regenerative medicine and stem cell therapy in addition to enhanced MR diagnostic imaging.
Collapse
Affiliation(s)
- Shu Chen
- School of Physics and Astronomy (SUPA), University of St Andrews, St Andrews KY16 9SS, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Optical switch probes and optical lock-in detection (OLID) imaging microscopy: high-contrast fluorescence imaging within living systems. Biochem J 2011; 433:411-22. [DOI: 10.1042/bj20100992] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Few to single molecule imaging of fluorescent probe molecules can provide information on the distribution, dynamics, interactions and activity of specific fluorescently tagged proteins during cellular processes. Unfortunately, these imaging studies are made challenging in living cells because of fluorescence signals from endogenous cofactors. Moreover, related background signals within multi-cell systems and intact tissue are even higher and reduce signal contrast even for ensemble populations of probe molecules. High-contrast optical imaging within high-background environments will therefore require new ideas on the design of fluorescence probes, and the way their fluorescence signals are generated and analysed to form an image. To this end, in the present review we describe recent studies on a new family of fluorescent probe called optical switches, with descriptions of the mechanisms that underlie their ability to undergo rapid and reversible transitions between two distinct states. Optical manipulation of the fluorescent and non-fluorescent states of an optical switch probe generates a modulated fluorescence signal that can be isolated from a larger unmodulated background by using OLID (optical lock-in detection) techniques. The present review concludes with a discussion on select applications of synthetic and genetically encoded optical switch probes and OLID microscopy for high-contrast imaging of specific proteins and membrane structures within living systems.
Collapse
|
46
|
Fan J, Zhou J, Sun T, Lü S, Tang J, Lü J. Multi-spectroscopic Study on the Interaction between CdTe Quantum Dots and Bovine Serum Albumin. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201190003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Biver T, Eltugral N, Pucci A, Ruggeri G, Schena A, Secco F, Venturini M. Synthesis, characterization, DNA interaction and potential applications of gold nanoparticles functionalized with Acridine Orange fluorophores. Dalton Trans 2011; 40:4190-9. [DOI: 10.1039/c0dt01371d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Pawle RH, Eastman V, Thomas SW. UV-induced fluorescence recovery and solubility modulation of photocaged conjugated oligomers. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12542g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Yuan L, Lin W, Cao Z, Long L, Song J. Photocontrollable Analyte‐Responsive Fluorescent Probes: A Photocaged Copper‐Responsive Fluorescence Turn‐On Probe. Chemistry 2010; 17:689-96. [DOI: 10.1002/chem.201001923] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Indexed: 11/08/2022]
Affiliation(s)
- Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (P. R. China), Fax: (+86) 731‐888‐21464
| | - Weiying Lin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (P. R. China), Fax: (+86) 731‐888‐21464
| | - Zengmei Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (P. R. China), Fax: (+86) 731‐888‐21464
| | - Lingliang Long
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (P. R. China), Fax: (+86) 731‐888‐21464
| | - Jizeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (P. R. China), Fax: (+86) 731‐888‐21464
| |
Collapse
|
50
|
Groff D, Wang F, Jockusch S, Turro NJ, Schultz PG. A New Strategy to Photoactivate Green Fluorescent Protein. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|