1
|
Pérez-Medina C, Fisher EA, Fayad ZA, Mulder WJM, Teunissen AJP. Radiolabeling lipoproteins to study and manage disease. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07281-4. [PMID: 40293448 DOI: 10.1007/s00259-025-07281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Lipoproteins are endogenous nanoparticles with essential roles in lipid transport and inflammation. Lipoproteins are also valuable in diagnosing and treating disease. For instance, certain lipoproteins are overexpressed in patients with atherosclerotic cardiovascular disease, and reconstituted lipoproteins have been extensively used for drug delivery. Radiolabeling has proven an especially powerful approach for studying and therapeutically exploiting lipoproteins. This review details how radiochemistry and nuclear imaging can facilitate the study of lipoproteins in health and disease. Among other topics, we discuss approaches for radiolabeling lipoproteins and detail how these have helped advance our understanding of lipoprotein biology and the diagnosis and treatment of diseases, including atherosclerosis, cancer, and hypercholesteremia. METHODS We performed an extensive literature search on all peer-reviewed studies involving radiolabeled lipoproteins and selected representative examples to provide a high-level overview of the most important discoveries and technological advancements. RESULTS More than 200 peer-reviewed papers involved radiolabeled lipoproteins, spanning mechanistic, diagnostic, and therapeutic studies across a wide range of diseases. CONCLUSION Radiolabeling has been critical in advancing our understanding of lipoprotein biology and leveraging these nanomaterials for diagnosing and treating disease.
Collapse
Affiliation(s)
| | - Edward A Fisher
- Department of Medicine (Cardiology), New York University Grossman School of Medicine, New York, NY, USA
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Willem J M Mulder
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Trujillo J, Calvert AE, Rink JS, Perez White BE, Sepulveda F, Biyashev D, Lu KQ, Lavker RM, Peng H, Thaxton CS. Keratinocyte SR-B1 expression and targeting in cytokine-driven skin inflammation. COMMUNICATIONS MEDICINE 2025; 5:100. [PMID: 40181097 PMCID: PMC11968926 DOI: 10.1038/s43856-025-00804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Strategies to treat inflammatory skin conditions require identifying new targets involved in interactions between overlying epithelial and underlying dermal immune cells. Scavenger receptor class B type 1 (SR-B1) is a cell surface receptor that binds high-density lipoproteins (HDL) and mediates inflammatory responses in immune and endothelial cells. The SR-B1 receptor is also expressed in keratinocytes, but its role in inflammatory skin diseases remains unexplored. METHODS To investigate keratinocyte SR-B1 in the setting of inflammation, we measured its expression in skin biopsy samples obtained from patients with psoriasis; human skin explants exposed to the inflammatory cytokine, interleukin-17A (IL-17A); and mouse skin exposed to the pro-inflammatory agent, imiquimod (IMQ). We also evaluated the effects of SR-B1 knockdown on primary keratinocyte responses to IL-17A. Finally, we employed a synthetic HDL-nanoparticle (HDL NP) to investigate the therapeutic potential of targeting SR-B1 in IL-17A-stimulated keratinocytes and in male C57BL/6 mice with IMQ-induced skin inflammation. RESULTS Our data show SR-B1 expression is increased in diseased human skin and in both human and mouse models of skin inflammation. SR-B1 knockdown in keratinocytes exacerbates the inflammatory response to IL-17A, whereas targeting SR-B1 with HDL NP attenuates this response. In the IMQ murine model, topical application of HDL NPs improves the skin phenotype, normalizes SR-B1 expression, and reduces molecular and cellular markers of inflammation. CONCLUSIONS Overall, SR-B1 plays a role in skin inflammation and HDL NP-mediated targeting of SR-B1 in keratinocytes may offer a targeted new therapy for inflammatory skin disease.
Collapse
Affiliation(s)
- Jacquelyn Trujillo
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea E Calvert
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan S Rink
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bethany E Perez White
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fabiola Sepulveda
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dauren Biyashev
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kurt Q Lu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert M Lavker
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Han Peng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - C Shad Thaxton
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
3
|
Rink J, Lin AY, Calvert AE, Kwon D, Moxley A, Henrich SE, Mohammadlou A, Zhang XH, Wu X, Querfeld C, Griend DJV, Yin HH, Horne DA, Nguyen ST, Rosen ST, Gordon LI, Thaxton CS. Encapsulation and Delivery of the Kinase Inhibitor PIK-75 by Organic Core High-Density Lipoprotein-Like Nanoparticles Targeting Scavenger Receptor Class B Type 1. ACS APPLIED MATERIALS & INTERFACES 2025; 17:363-373. [PMID: 39688216 PMCID: PMC11784712 DOI: 10.1021/acsami.4c15472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
PIK-75 (F7) is a potent multikinase inhibitor that targets p110α, DNA-PK, and p38γ. PIK-75 has shown potential as a therapy in preclinical cancer models, but it has not been used in the clinic, at least in part, due to limited solubility. We therefore developed a nanoparticle to encapsulate PIK-75 and enable targeted cellular delivery. Scavenger receptor class B type 1 (SR-B1) is often overexpressed in cancer compared with normal cells, which enables targeting by synthetic lipid nanoparticles with some features of native high-density lipoprotein (HDL), the natural ligand of SR-B1. We investigated the use of organic core (oc) molecular platforms to synthesize HDL-like nanoparticles (oc-HDL NP). Employing an oc, we successfully formulated PIK-75 into oc-HDL NPs. The PIK-75 loaded oc-HDL NP (PIK-75 oc-HDL NP), comprising ∼20 PIK-75 molecules/NP, has similar size, surface charge, and surface composition as oc-HDL NP and natural human HDL. Using prostate cancer (PCa) and cutaneous T-cell lymphoma (CTCL) models known to be sensitive to inhibitors of p110α and p38γ, respectively, we found that PIK-75 oc-HDL NPs specifically targeted SR-B1 to deliver PIK-75 and potently induced cell death in vitro in PCa and CTCL and in vivo in a murine PCa model. Additionally, we found that PIK-75 oc-HDL NP, but not free PIK-75 or oc-HDL NP alone, reduced the IC50 in the NCI-60 cell line panel and additional pancreatic cancer cell lines. These data demonstrate the first example of drug-loaded oc-HDL NP that actively target SR-B1 and kill cancer cells in vitro and in vivo, encouraging further development and translation to human patients.
Collapse
Affiliation(s)
- Jonathan
S. Rink
- Department
of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Simpson
Querrey
Institute for Nanotechnology, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert
H.
Lurie Comprehensive Cancer Center, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Adam Y. Lin
- Department
of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert
H.
Lurie Comprehensive Cancer Center, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Andrea E. Calvert
- Simpson
Querrey
Institute for Nanotechnology, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert
H.
Lurie Comprehensive Cancer Center, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department
of Urology, Northwestern University Feinberg
School of Medicine, Chicago, Illinois 60611, United States
| | - David Kwon
- High Throughput
Screening Core, City of Hope, Duarte, California 91010, United States
| | - Alexandra Moxley
- Department
of Urology, Northwestern University Feinberg
School of Medicine, Chicago, Illinois 60611, United States
| | - Stephen E. Henrich
- Simpson
Querrey
Institute for Nanotechnology, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert
H.
Lurie Comprehensive Cancer Center, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department
of Urology, Northwestern University Feinberg
School of Medicine, Chicago, Illinois 60611, United States
| | - Aliakbar Mohammadlou
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xu Hannah Zhang
- Department
of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Xiwei Wu
- Department
of Computational and Quantitative Medicine, City of Hope, Duarte, California 91010, United States
| | - Christiane Querfeld
- Department
of Pathology, City of Hope, Duarte, California 91010, United States
| | - Donald J. Vander Griend
- Department
of Pathology, University of Illinois at
Chicago, Chicago, Illinois 60612, United States
| | - Hongwei Holly Yin
- High Throughput
Screening Core, City of Hope, Duarte, California 91010, United States
| | - David A. Horne
- Department
of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - SonBinh T. Nguyen
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven T. Rosen
- Department
of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Leo I. Gordon
- Department
of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert
H.
Lurie Comprehensive Cancer Center, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Colby Shad Thaxton
- Simpson
Querrey
Institute for Nanotechnology, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert
H.
Lurie Comprehensive Cancer Center, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department
of Urology, Northwestern University Feinberg
School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
4
|
Wang Y, Calvert AE, Cardenas H, Rink JS, Nahotko D, Qiang W, Ndukwe CE, Chen F, Keathley R, Zhang Y, Cheng J, Thaxton CS, Matei D. Nanoparticle Targeting in Chemo-Resistant Ovarian Cancer Reveals Dual Axis of Therapeutic Vulnerability Involving Cholesterol Uptake and Cell Redox Balance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305212. [PMID: 38263873 PMCID: PMC10987123 DOI: 10.1002/advs.202305212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/18/2023] [Indexed: 01/25/2024]
Abstract
Platinum (Pt)-based chemotherapy is the main treatment for ovarian cancer (OC); however, most patients develop Pt resistance (Pt-R). This work shows that Pt-R OC cells increase intracellular cholesterol through uptake via the HDL receptor, scavenger receptor type B-1 (SR-B1). SR-B1 blockade using synthetic cholesterol-poor HDL-like nanoparticles (HDL NPs) diminished cholesterol uptake leading to cell death and inhibition of tumor growth. Reduced cholesterol accumulation in cancer cells induces lipid oxidative stress through the reduction of glutathione peroxidase 4 (GPx4) leading to ferroptosis. In turn, GPx4 depletion induces decreased cholesterol uptake through SR-B1 and re-sensitizes OC cells to Pt. Mechanistically, GPx4 knockdown causes lower expression of the histone acetyltransferase EP300, leading to reduced deposition of histone H3 lysine 27 acetylation (H3K27Ac) on the sterol regulatory element binding transcription factor 2 (SREBF2) promoter and suppressing expression of this key transcription factor involved in the regulation of cholesterol metabolism. SREBF2 downregulation leads to decreased SR-B1 expression and diminished cholesterol uptake. Thus, chemoresistance and cancer cell survival under high ROS burden obligates high GPx4 and SR-B1 expression through SREBF2. Targeting SR-B1 to modulate cholesterol uptake inhibits this axis and causes ferroptosis in vitro and in vivo in Pt-R OC.
Collapse
Affiliation(s)
- Yinu Wang
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Andrea E. Calvert
- Simpson Querrey Institute for BioNanotechnologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Horacio Cardenas
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Jonathon S. Rink
- Division of Hematology/ OncologyDepartment of MedicineFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Dominik Nahotko
- Division of Hematology/ OncologyDepartment of MedicineFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Wenan Qiang
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Center for Developmental Therapeutics,Feinberg School of MedicineNorthwestern UniversityEvanstonIL60208USA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoIL60611USA
| | - C. Estelle Ndukwe
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Fukai Chen
- Department of PhysicsBoston UniversityBostonMA02215USA
| | - Russell Keathley
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Yaqi Zhang
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Ji‐Xin Cheng
- Department of PhysicsBoston UniversityBostonMA02215USA
| | - C. Shad Thaxton
- Simpson Querrey Institute for BioNanotechnologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoIL60611USA
- Department of UrologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Daniela Matei
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoIL60611USA
- Jesse Brown Veteran Affairs Medical CenterChicagoIL60612USA
| |
Collapse
|
5
|
Wu H, Wu X, Zhao M, Yan J, Li C, Zhang Z, Tang S, Wang R, Fei W. Regulating Cholesterol in Tumorigenesis: A Novel Paradigm for Tumor Nanotherapeutics. Int J Nanomedicine 2024; 19:1055-1076. [PMID: 38322754 PMCID: PMC10844012 DOI: 10.2147/ijn.s439828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
During the past decade, "membrane lipid therapy", which involves the regulation of the structure and function of tumor cell plasma membranes, has emerged as a new strategy for cancer treatment. Cholesterol is an important component of the tumor plasma membrane and serves an essential role in tumor initiation and progression. This review elucidates the role of cholesterol in tumorigenesis (including tumor cell proliferation, invasion/metastasis, drug resistance, and immunosuppressive microenvironment) and elaborates on the potential therapeutic targets for tumor treatment by regulating cholesterol. More meaningfully, this review provides an overview of cholesterol-integrated membrane lipid nanotherapeutics for cancer therapy through cholesterol regulation. These strategies include cholesterol biosynthesis interference, cholesterol uptake disruption, cholesterol metabolism regulation, cholesterol depletion, and cholesterol-based combination treatments. In summary, this review demonstrates the tumor nanotherapeutics based on cholesterol regulation, which will provide a reference for the further development of "membrane lipid therapy" for tumors.
Collapse
Affiliation(s)
- Huifeng Wu
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Mengdan Zhao
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Jingjing Yan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Chaoqun Li
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Zhewei Zhang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Sangsang Tang
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Rong Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| |
Collapse
|
6
|
Zhang A, Ji Q, Sheng X, Wu H. mRNA vaccine in gastrointestinal tumors: Immunomodulatory effects and immunotherapy. Biomed Pharmacother 2023; 166:115361. [PMID: 37660645 DOI: 10.1016/j.biopha.2023.115361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Gastrointestinal tumors remain a significant healthcare burden worldwide, necessitating the development of innovative therapeutic strategies. mRNA vaccines have emerged as a promising approach in cancer immunotherapy, harnessing the immune system's potential to recognize and eliminate tumor cells. mRNA vaccines offer several advantages, including their ability to elicit both innate and adaptive immune responses, ease of production, and adaptability to different tumor types. In the context of gastrointestinal tumors, mRNA vaccines hold great potential as a therapeutic strategy. In this review, we will delve into the immunomodulatory mechanisms and immunotherapy strategies of mRNA vaccines in gastrointestinal tumors. Additionally, we will discuss the challenges and ongoing research efforts in optimizing mRNA vaccine development, delivery, and stability. By understanding the potential of mRNA vaccines in addressing the unmet medical need of gastrointestinal tumors, we aim to pave the way for improved treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Ao Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130012, China
| | - Qingming Ji
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun 130012, China
| | - Xia Sheng
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun 130012, China
| | - Hui Wu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Al Fayez N, Nassar MS, Alshehri AA, Alnefaie MK, Almughem FA, Alshehri BY, Alawad AO, Tawfik EA. Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics 2023; 15:1972. [PMID: 37514158 PMCID: PMC10384963 DOI: 10.3390/pharmaceutics15071972] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Messenger RNA (mRNA) vaccine development for preventive and therapeutic applications has evolved rapidly over the last decade. The mRVNA vaccine has proven therapeutic efficacy in various applications, including infectious disease, immunotherapy, genetic disorders, regenerative medicine, and cancer. Many mRNA vaccines have made it to clinical trials, and a couple have obtained FDA approval. This emerging therapeutic approach has several advantages over conventional methods: safety; efficacy; adaptability; bulk production; and cost-effectiveness. However, it is worth mentioning that the delivery to the target site and in vivo degradation and thermal stability are boundaries that can alter their efficacy and outcomes. In this review, we shed light on different types of mRNA vaccines, their mode of action, and the process to optimize their development and overcome their limitations. We also have explored various delivery systems focusing on the nanoparticle-mediated delivery of the mRNA vaccine. Generally, the delivery system plays a vital role in enhancing mRNA vaccine stability, biocompatibility, and homing to the desired cells and tissues. In addition to their function as a delivery vehicle, they serve as a compartment that shields and protects the mRNA molecules against physical, chemical, and biological activities that can alter their efficiency. Finally, we focused on the future considerations that should be attained for safer and more efficient mRNA application underlining the advantages and disadvantages of the current mRNA vaccines.
Collapse
Affiliation(s)
- Nojoud Al Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Majed S Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Meshal K Alnefaie
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad A Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Bayan Y Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah O Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Essam A Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
8
|
Aranda-Lara L, Isaac-Olivé K, Ocampo-García B, Ferro-Flores G, González-Romero C, Mercado-López A, García-Marín R, Santos-Cuevas C, Estrada JA, Morales-Avila E. Engineered rHDL Nanoparticles as a Suitable Platform for Theranostic Applications. Molecules 2022; 27:7046. [PMID: 36296638 PMCID: PMC9610567 DOI: 10.3390/molecules27207046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 08/27/2023] Open
Abstract
Reconstituted high-density lipoproteins (rHDLs) can transport and specifically release drugs and imaging agents, mediated by the Scavenger Receptor Type B1 (SR-B1) present in a wide variety of tumor cells, providing convenient platforms for developing theranostic systems. Usually, phospholipids or Apo-A1 lipoproteins on the particle surfaces are the motifs used to conjugate molecules for the multifunctional purposes of the rHDL nanoparticles. Cholesterol has been less addressed as a region to bind molecules or functional groups to the rHDL surface. To maximize the efficacy and improve the radiolabeling of rHDL theranostic systems, we synthesized compounds with bifunctional agents covalently linked to cholesterol. This strategy means that the radionuclide was bound to the surface, while the therapeutic agent was encapsulated in the lipophilic core. In this research, HYNIC-S-(CH2)3-S-Cholesterol and DOTA-benzene-p-SC-NH-(CH2)2-NH-Cholesterol derivatives were synthesized to prepare nanoparticles (NPs) of HYNIC-rHDL and DOTA-rHDL, which can subsequently be linked to radionuclides for SPECT/PET imaging or targeted radiotherapy. HYNIC is used to complexing 99mTc and DOTA for labeling molecules with 111, 113mIn, 67, 68Ga, 177Lu, 161Tb, 225Ac, and 64Cu, among others. In vitro studies showed that the NPs of HYNIC-rHDL and DOTA-rHDL maintain specific recognition by SR-B1 and the ability to internalize and release, in the cytosol of cancer cells, the molecules carried in their core. The biodistribution in mice showed a similar behavior between rHDL (without surface modification) and HYNIC-rHDL, while DOTA-rHDL exhibited a different biodistribution pattern due to the significant reduction in the lipophilicity of the modified cholesterol molecule. Both systems demonstrated characteristics for the development of suitable theranostic platforms for personalized cancer treatment.
Collapse
Affiliation(s)
- Liliana Aranda-Lara
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - Carlos González-Romero
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Alfredo Mercado-López
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Rodrigo García-Marín
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - José A. Estrada
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Enrique Morales-Avila
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| |
Collapse
|
9
|
Dhas N, García MC, Kudarha R, Pandey A, Nikam AN, Gopalan D, Fernandes G, Soman S, Kulkarni S, Seetharam RN, Tiwari R, Wairkar S, Pardeshi C, Mutalik S. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release 2022; 346:71-97. [PMID: 35439581 DOI: 10.1016/j.jconrel.2022.04.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
The idea of employing natural cell membranes as a coating medium for nanoparticles (NPs) endows man-made vectors with natural capabilities and benefits. In addition to retaining the physicochemical characteristics of the NPs, the biomimetic NPs also have the functionality of source cell membranes. It has emerged as a promising approach to enhancing the properties of NPs for drug delivery, immune evasion, imaging, cancer-targeting, and phototherapy sensitivity. Several studies have been reported with a multitude of approaches to reengineering the surface of NPs using biological membranes. Owing to their low immunogenicity and intriguing biomimetic properties, cell-membrane-based biohybrid delivery systems have recently gained a lot of interest as therapeutic delivery systems. This review summarises different kinds of biomimetic NPs reported so far, their fabrication aspects, and their application in the biomedical field. Finally, it briefs on the latest advances available in this biohybrid concept.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Mónica C García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchi Tiwari
- Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, 400056, India
| | - Chandrakantsing Pardeshi
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
10
|
Lu Y, Cui X, Zhang L, Wang X, Xu Y, Qin Z, Liu G, Wang Q, Tian K, Lim KS, Charles CJ, Zhang J, Tang J. The Functional Role of Lipoproteins in Atherosclerosis: Novel Directions for Diagnosis and Targeting Therapy. Aging Dis 2022; 13:491-520. [PMID: 35371605 PMCID: PMC8947823 DOI: 10.14336/ad.2021.0929] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Dyslipidemia, characterized by a high level of lipids (cholesterol, triglycerides, or both), can increase the risk of developing and progressing atherosclerosis. As atherosclerosis progresses, the number and severity of aterial plagues increases with greater risk of myocardial infarction, a major contributor to cardiovascular mortality. Atherosclerosis progresses in four phases, namely endothelial dysfunction, fatty streak formation, lesion progression and plaque rupture, and eventually thrombosis and arterial obstruction. With greater understanding of the pathological processes underlying atherosclerosis, researchers have identified that lipoproteins play a significant role in the development of atherosclerosis. In particular, apolipoprotein B (apoB)-containing lipoproteins have been shown to associate with atherosclerosis. Oxidized low-density lipoproteins (ox-LDLs) also contribute to the progression of atherosclerosis whereas high-density lipoproteins (HDL) contribute to the removal of cholesterol from macrophages thereby inhibiting the formation of foam cells. Given these known associations, lipoproteins may have potential as biomarkers for predicting risk associated with atherosclerotic plaques or may be targets as novel therapeutic agents. As such, the rapid development of drugs targeting lipoprotein metabolism may lead to novel treatments for atherosclerosis. A comprehensive review of lipoprotein function and their role in atherosclerosis, along with the latest development of lipoprotein targeted treatment, is timely. This review focuses on the functions of different lipoproteins and their involvement in atherosclerosis. Further, diagnostic and therapeutic potential are highlighted giving insight into novel lipoprotein-targetted approaches to treat atherosclerosis.
Collapse
Affiliation(s)
- Yongzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.,Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xu Wang
- Department of Medical Record Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanyan Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Zhen Qin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Gangqiong Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Qiguang Wang
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| | - Kang Tian
- Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.
| | - Chris J Charles
- Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.,Correspondence should be addressed to: Dr. Junnan Tang, Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
11
|
He H, Hong K, Liu L, Schwendeman A. Artificial high-density lipoprotein-mimicking nanotherapeutics for the treatment of cardiovascular diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1737. [PMID: 34263549 DOI: 10.1002/wnan.1737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 01/08/2023]
Abstract
Despite the ability of current efficacious low-density lipoprotein-cholesterol-lowering therapies to reduce total cardiovascular disease (CVD) risks, CVD still poses major risks for morbidity and mortality to the general population. Because of the pleiotropic endothelial protective effects of high-density lipoproteins (HDL), the direct infusion of reconstituted HDL (rHDL) products, including MDCO-216, CER001, and CSL112, have been tested in clinical trials to determine whether direct infusion of rHDL can reduce coronary events in CVD patients. In addition to these rHDL products, in the past two decades, there has been an increased focused on designing artificial HDL-mimicking nanotherapeutics to produce complementary therapeutic strategies for CVD patients beyond lowering of atherogenic lipoproteins. Although recent reviews have comprehensively discussed the developments of artificial HDL-mimicking nanoparticles as therapeutics for CVD, there has been little assessment of "plain" or "drug-free" HDL-mimicking nanoparticles as therapeutics alone. In this review, we will summarize the clinical outcomes of rHDL products, examine recent advances in other types of artificial HDL-mimicking nanotherapeutics, including polymeric nanoparticles, cyclodextrins, micelles, metal nanoparticles, and so on; and potential new approaches for future CVD interventions. Moreover, success stories, lessons, and interpretations of the utility and functionality of these HDL-mimicking nanotherapeutics will be an integral part of this article. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Hongliang He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.,State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative, Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Kristen Hong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisha Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.,Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing, China.,Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Lavker RM, Kaplan N, McMahon KM, Calvert AE, Henrich SE, Onay UV, Lu KQ, Peng H, Thaxton CS. Synthetic high-density lipoprotein nanoparticles: Good things in small packages. Ocul Surf 2021; 21:19-26. [PMID: 33894397 PMCID: PMC8328934 DOI: 10.1016/j.jtos.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/26/2021] [Accepted: 03/06/2021] [Indexed: 12/26/2022]
Abstract
Medicine has been a great beneficiary of the nanotechnology revolution. Nanotechnology involves the synthesis of functional materials with at least one size dimension between 1 and 100 nm. Advances in the field have enabled the synthesis of bio-nanoparticles that can interface with physiological systems to modulate fundamental cellular processes. One example of a diverse acting nanoparticle-based therapeutic is synthetic high-density lipoprotein (HDL) nanoparticles (NP), which have great potential for treating diseases of the ocular surface. Our group has developed a spherical HDL NP using a gold nanoparticle core. HDL NPs: (i) closely mimic the physical and chemical features of natural HDLs; (ii) contain apoA-I; (iii) bind with high-affinity to SR-B1, which is the major receptor through which HDL modulates cell cholesterol metabolism and controls the selective uptake of HDL cargo into cells; (iv) are non-toxic to cells and tissues; and (v) can be chemically engineered to display nearly any surface or core composition desired. With respect to the ocular surface, topical application of HDL NPs accelerates re-epithelization of the cornea following wounding, attenuates inflammation resulting from chemical burns and/or other stresses, and effectively delivers microRNAs with biological activity to corneal cells and tissues. HDL NPs will be the foundation of a new class of topical eye drops with great translational potential and exemplify the impact that nanoparticles can have in medicine.
Collapse
Affiliation(s)
- Robert M Lavker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Nihal Kaplan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kaylin M McMahon
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrea E Calvert
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephen E Henrich
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ummiye V Onay
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kurt Q Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Han Peng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Shad Thaxton
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
13
|
Groner J, Goepferich A, Breunig M. Atherosclerosis: Conventional intake of cardiovascular drugs versus delivery using nanotechnology - A new chance for causative therapy? J Control Release 2021; 333:536-559. [PMID: 33794270 DOI: 10.1016/j.jconrel.2021.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of death in developed countries. The pathogenetic mechanism relies on a macrophage-based immune reaction to low density lipoprotein (LDL) deposition in blood vessels with dysfunctional endothelia. Thus, atherosclerosis is defined as a chronic inflammatory disease. A plethora of cardiovascular drugs have been developed and are on the market, but the major shortcoming of standard medications is that they do not address the root cause of the disease. Statins and thiazolidinediones that have recently been recognized to exert specific anti-atherosclerotic effects represent a potential breakthrough on the horizon. But their whole potential cannot be realized due to insufficient availability at the pathological site and severe off-target effects. The focus of this review will be to elaborate how both groups of drugs could immensely profit from nanoparticulate carriers. This delivery principle would allow for their accumulation in target macrophages and endothelial cells of the atherosclerotic plaque, increasing bioavailability where it is needed most. Based on the analyzed literature we conclude design criteria for the delivery of statins and thiazolidinediones with nanoparticles for anti-atherosclerotic therapy. Nanoparticles need to be below a diameter of 100 nm to accumulate in the atherosclerotic plaque and should be fabricated using biodegradable materials. Further, the thiazolidinediones or statins must be encapsulated into the particle core, because especially for thiazolidindiones the uptake into cells is prerequisite for their mechanism of action. For optimal uptake into targeted macrophages and endothelial cells, the ideal particle should present ligands on its surface which bind specifically to scavenger receptors. The impact of statins on the lectin-type oxidized LDL receptor 1 (LOX1) seems particularly promising because of its outstanding role in the inflammatory process. Using this pioneering concept, it will be possible to promote the impact of statins and thiazolidinediones on macrophages and endothelial cells and significantly enhance their anti-atherosclerotic therapeutic potential.
Collapse
Affiliation(s)
- Jonas Groner
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
14
|
Mei Y, Tang L, Xiao Q, Zhang Z, Zhang Z, Zang J, Zhou J, Wang Y, Wang W, Ren M. Reconstituted high density lipoprotein (rHDL), a versatile drug delivery nanoplatform for tumor targeted therapy. J Mater Chem B 2021; 9:612-633. [PMID: 33306079 DOI: 10.1039/d0tb02139c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
rHDL is a synthesized drug delivery nanoplatform exhibiting excellent biocompatibility, which possesses most of the advantages of HDL. rHDL shows almost no toxicity and can be degraded to non-toxic substances in vivo. The severe limitation of the application of various antitumor agents is mainly due to their low bioavailability, high toxicity, poor stability, etc. Favorably, antitumor drug-loaded rHDL nanoparticles (NPs), which are known as an important drug delivery system (DDS), help to change the situation a lot. This DDS shows an outstanding active-targeting ability towards tumor cells and improves the therapeutic effect during antitumor treatment while overcoming the shortcomings mentioned above. In the following text, we will mainly focus on the various applications of rHDL in tumor targeted therapy by describing the properties, preparation, receptor active-targeting ability and antitumor effects of antineoplastic drug-loaded rHDL NPs.
Collapse
Affiliation(s)
- Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mucke HA. Patent highlights October-November 2020. Pharm Pat Anal 2021; 10:51-58. [PMID: 33594903 DOI: 10.4155/ppa-2021-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
16
|
Gupta A, Sharma R, Kuche K, Jain S. Exploring the therapeutic potential of the bioinspired reconstituted high density lipoprotein nanostructures. Int J Pharm 2021; 596:120272. [DOI: 10.1016/j.ijpharm.2021.120272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/20/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
|
17
|
|
18
|
Malajczuk CJ, Gandhi NS, Mancera RL. Structure and intermolecular interactions in spheroidal high-density lipoprotein subpopulations. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 5:100042. [PMID: 33437963 PMCID: PMC7788233 DOI: 10.1016/j.yjsbx.2020.100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022]
Abstract
High-density lipoprotein subpopulations have unique surface profiles and dynamics. Relative hydrophobic surface area decreases with increasing lipoprotein size. Core lipid exposure at the lipoprotein surface decreases with increasing size. Cholesterol molecules localise near apolipoprotein A-I central helices. Lipid and protein interactions stabilise multifoil models of apolipoprotein A-I.
Human serum high-density lipoproteins (HDLs) are a population of small, dense protein-lipid aggregates that are crucial for intravascular lipid trafficking and are protective against cardiovascular disease. The spheroidal HDL subfraction can be separated by size and density into five major subpopulations with distinct molecular compositions and unique biological functionalities: HDL3c, HDL3b, HDL3a, HDL2a and HDL2b. Representative molecular models of these five subpopulations were developed and characterised for the first time in the presence of multiple copies of its primary protein component apolipoprotein A-I (apoA-I) using coarse-grained molecular dynamics simulations. Each HDL model exhibited size, morphological and compositional profiles consistent with experimental observables. With increasing particle size the separation of core and surface molecules became progressively more defined, resulting in enhanced core lipid mixing, reduced core lipid exposure at the surface, and the formation of an interstitial region between core and surface molecules in HDL2b. Cholesterol molecules tended to localise around the central helix-5 of apoA-I, whilst triglyceride molecules predominantly interacted with aromatic, hydrophobic residues located within the terminal helix-10 across all subpopulation models. The three intermediate HDL models exhibited similar surface profiles despite having distinct molecular compositions. ApoA-I in trefoil, quatrefoil and pentafoil arrangements across the surface of HDL particles exhibited significant warping and twisting, but largely retained intermolecular contacts between adjacent apoA-I chains. Representative HDL subpopulations differed in particle size, morphology, intermolecular interaction profiles and lipid and protein dynamics. These findings reveal how different HDL subpopulations might exhibit distinct functional associations depending on particle size, form and composition.
Collapse
Affiliation(s)
- Chris J Malajczuk
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Neha S Gandhi
- School of Mathematical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
19
|
Pedersbæk D, Simonsen JB. A systematic review of the biodistribution of biomimetic high-density lipoproteins in mice. J Control Release 2020; 328:792-804. [PMID: 32971201 DOI: 10.1016/j.jconrel.2020.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
For the past two decades, biomimetic high-density lipoproteins (b-HDL) have been used for various drug delivery applications. The b-HDL mimic the endogenous HDL, and therefore possess many attractive features for drug delivery, including high biocompatibility, biodegradability, and ability to transport and deliver their cargo (e.g. drugs and/or imaging agents) to specific cells and tissues that are recognized by HDL. The b-HDL designs reported in the literature often differ in size, shape, composition, and type of incorporated cargo. However, there exists only limited insight into how the b-HDL design dictates their biodistribution. To fill this gap, we conducted a comprehensive systematic literature search of biodistribution studies using various designs of apolipoprotein A-I (apoA-I)-based b-HDL (i.e. b-HDL with apoA-I, apoA-I mutants, or apoA-I mimicking peptides). We carefully screened 679 papers (search hits) for b-HDL biodistribution studies in mice, and ended up with 24 relevant biodistribution profiles that we compared according to b-HDL design. We show similarities between b-HDL biodistribution studies irrespectively of the b-HDL design, whereas the biodistribution of the b-HDL components (lipids and scaffold) differ significantly. The b-HDL lipids primarily accumulate in liver, while the b-HDL scaffold primarily accumulates in the kidney. Furthermore, both b-HDL lipids and scaffold accumulate well in the tumor tissue in tumor-bearing mice. Finally, we present essential considerations and strategies for b-HDL labeling, and discuss how the b-HDL biodistribution can be tuned through particle design and administration route. Our meta-analysis and discussions provide a detailed overview of the fate of b-HDL in mice that is highly relevant when applying b-HDL for drug delivery or in vivo imaging applications.
Collapse
Affiliation(s)
- Dennis Pedersbæk
- Technical University of Denmark, Department of Health Technology, 2800 Kgs. Lyngby, Denmark
| | - Jens B Simonsen
- Technical University of Denmark, Department of Health Technology, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
20
|
McMahon KM, Calvert AE, Dementieva IS, Hussain S, Wilkins JT, Thaxton CS. Interparticle Molecular Exchange of Surface Chemical Components of Native High-Density Lipoproteins to Complementary Nanoparticle Scaffolds. ACS Sens 2020; 5:3019-3024. [PMID: 32643928 DOI: 10.1021/acssensors.0c01117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-density lipoproteins (HDL) are constitutionally dynamic nanoparticles that circulate in the blood. The biological functions of HDLs are impacted by interchangeable surface chemical components, like cholesterol and HDL-associated proteins. Current methods to quantify the chemical constituents of HDL are largely restricted to clinical or academic laboratories and require expensive instrumentation, and there is no commonality to the techniques required to detect and quantify different analytes (e.g., cholesterol versus HDL-associated protein). To potentially facilitate and streamline the analysis of HDL composition, we hypothesized that mixing native HDLs with similarly sized gold nanoparticles whose surfaces are endowed with phospholipids, called complementary nanoparticle scaffolds (CNS), would enable interparticle exchange of surface components. Then, easy isolation of the newly formed particles could be accomplished using benchtop centrifugation for subsequent measurement of HDL components exchanged to the surface of the CNS. As proof-of-concept, data demonstrate that CNS incubated with only a few microliters of human serum rapidly (1 h) sequester cholesterol and HDL-associated proteins with direct correlation to native HDLs. As such, data show that the CNS assay is a single platform for rapid isolation and subsequent detection of the surface components of native HDLs.
Collapse
Affiliation(s)
- Kaylin M. McMahon
- Northwestern University, Feinberg School of Medicine, Department of Urology, Chicago, Illinois 60611, United States
- Northwestern University, Simpson Querrey Institute for Bionanotechnology (SQI), Chicago, Illinois 60611, United States
| | - Andrea E. Calvert
- Northwestern University, Feinberg School of Medicine, Department of Urology, Chicago, Illinois 60611, United States
- Northwestern University, Simpson Querrey Institute for Bionanotechnology (SQI), Chicago, Illinois 60611, United States
| | - Irina S. Dementieva
- Northwestern University, Feinberg School of Medicine, Department of Urology, Chicago, Illinois 60611, United States
- Northwestern University, Simpson Querrey Institute for Bionanotechnology (SQI), Chicago, Illinois 60611, United States
| | - Saber Hussain
- Air Force Research Laboratory, Wright-Patterson
Air Force Base, Dayton, Ohio 45433, United States
| | - John T. Wilkins
- Northwestern University, Feinberg School of Medicine, Department of Cardiology, Chicago, Illinois 60611, United States
- Northwestern University, Feinberg School of Medicine, Department of Preventive Medicine, Chicago, Illinois 60611, United States
| | - C. Shad Thaxton
- Northwestern University, Feinberg School of Medicine, Department of Urology, Chicago, Illinois 60611, United States
- Northwestern University, Simpson Querrey Institute for Bionanotechnology (SQI), Chicago, Illinois 60611, United States
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Northwestern University, International Institute of Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Jiang F, Zhu Y, Gong C, Wei X. Atherosclerosis and Nanomedicine Potential: Current Advances and Future Opportunities. Curr Med Chem 2020; 27:3534-3554. [PMID: 30827225 DOI: 10.2174/0929867326666190301143952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is the leading inducement of cardiovascular diseases, which ranks the first cause of global deaths. It is an arterial disease associated with dyslipidemia and changes in the composition of the vascular wall. Besides invasive surgical strategy, the current conservative clinical treatment for atherosclerosis falls into two categories, lipid regulating-based therapy and antiinflammatory therapy. However, the existing strategies based on conventional drug delivery systems have shown limited efficacy against disease development and plenty of side effects. Nanomedicine has great potential in the development of targeted therapy, controlled drug delivery and release, the design of novel specific drugs and diagnostic modalities, and biocompatible scaffolds with multifunctional characteristics, which has led to an evolution in the diagnosis and treatment of atherosclerosis. This paper will focus on the latest nanomedicine strategies for atherosclerosis diagnosis and treatment as well as discussing the potential therapeutic targets during atherosclerosis progress, which could form the basis of development of novel nanoplatform against atherosclerosis.
Collapse
Affiliation(s)
- Fan Jiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunqi Zhu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xin Wei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
22
|
Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020; 12:pharmaceutics12060510. [PMID: 32503171 PMCID: PMC7356945 DOI: 10.3390/pharmaceutics12060510] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Within recent decades, the development of nanotechnology has made a significant contribution to the progress of various fields of study, including the domains of medical and pharmaceutical sciences. A substantially transformed arena within the context of the latter is the development and production of various injectable parenteral formulations. Indeed, recent decades have witnessed a rapid growth of the marketed and pipeline nanotechnology-based injectable products, which is a testimony to the remarkability of the aforementioned contribution. Adjunct to the ability of nanomaterials to deliver the incorporated payloads to many different targets of interest, nanotechnology has substantially assisted to the development of many further facets of the art. Such contributions include the enhancement of the drug solubility, development of long-acting locally and systemically injectable formulations, tuning the onset of the drug’s release through the endowment of sensitivity to various internal or external stimuli, as well as adjuvancy and immune activation, which is a desirable component for injectable vaccines and immunotherapeutic formulations. The current work seeks to provide a comprehensive review of all the abovementioned contributions, along with the most recent advances made within each domain. Furthermore, recent developments within the domains of passive and active targeting will be briefly debated.
Collapse
Affiliation(s)
- Maryam A. Shetab Boushehri
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Correspondence: ; Tel.: +49-228-736428; Fax: +49-228-735268
| | - Dirk Dietrich
- Department of Neurosurgery, University Clinic of Bonn, 53105 Bonn, Germany;
| | - Alf Lamprecht
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- PEPITE EA4267, Institute of Pharmacy, University Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
23
|
Chuang ST, Cruz S, Narayanaswami V. Reconfiguring Nature's Cholesterol Accepting Lipoproteins as Nanoparticle Platforms for Transport and Delivery of Therapeutic and Imaging Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E906. [PMID: 32397159 PMCID: PMC7279153 DOI: 10.3390/nano10050906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Apolipoproteins are critical structural and functional components of lipoproteins, which are large supramolecular assemblies composed predominantly of lipids and proteins, and other biomolecules such as nucleic acids. A signature feature of apolipoproteins is the preponderance of amphipathic α-helical motifs that dictate their ability to make extensive non-covalent inter- or intra-molecular helix-helix interactions in lipid-free states or helix-lipid interactions with hydrophobic biomolecules in lipid-associated states. This review focuses on the latter ability of apolipoproteins, which has been capitalized on to reconstitute synthetic nanoscale binary/ternary lipoprotein complexes composed of apolipoproteins/peptides and lipids that mimic native high-density lipoproteins (HDLs) with the goal to transport drugs. It traces the historical development of our understanding of these nanostructures and how the cholesterol accepting property of HDL has been reconfigured to develop them as drug-loading platforms. The review provides the structural perspective of these platforms with different types of apolipoproteins and an overview of their synthesis. It also examines the cargo that have been loaded into the core for therapeutic and imaging purposes. Finally, it lays out the merits and challenges associated with apolipoprotein-based nanostructures with a future perspective calling for a need to develop "zip-code"-based delivery for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
| | | | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA; (S.T.C.); (S.C.)
| |
Collapse
|
24
|
Banik B, Surnar B, Askins BW, Banerjee M, Dhar S. Dual-Targeted Synthetic Nanoparticles for Cardiovascular Diseases. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6852-6862. [PMID: 31886643 DOI: 10.1021/acsami.9b19036] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atherosclerosis is one of the world's most aggressive diseases, claiming over 17.5 million lives per year. This disease is usually caused by high amounts of lipoproteins circulating in the blood stream, which leads to plaque formation. Ultimately, these plaques can undergo thrombosis and lead to major heart damage. A major contributor to these vulnerable plaques is macrophage apoptosis. Development of nanovehicles that carry contrast and therapeutic agents to the mitochondria within these macrophages is attractive for the diagnosis and treatment of atherosclerosis. Here, we report the design and synthesis of a dual-targeted synthetic nanoparticle (NP) to perform the double duty of diagnosis and therapy in atherosclerosis treatment regime. A library of dual-targeted NPs with an encapsulated iron oxide NP, mito-magneto (MM), with a magnetic resonance imaging (MRI) contrast enhancement capability was elucidated. Relaxivity measurements revealed that there is a substantial enhancement in transverse relaxivities upon the encapsulation of MM inside the dual-targeted NPs, highlighting the MRI contrast-enhancing ability of these NPs. Successful in vivo imaging documenting the distribution of MM-encapsulated dual-targeted NPs in the heart and aorta in mice ensured the diagnostic potential. The presence of mannose receptor targeting ligands and the optimization of the NP composition facilitated its ability to perform therapeutic duty by targeting the macrophages at the plaque. These dual-targeted NPs with the encapsulated MM were able to show therapeutic potential and did not trigger any toxic immunogenic response.
Collapse
Affiliation(s)
- Bhabatosh Banik
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , Florida 33136 , United States
| | - Bapurao Surnar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , Florida 33136 , United States
| | - Brett W Askins
- Department of Chemistry , University of Georgia , Athens Georgia 30602 , United States
| | - Mainak Banerjee
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , Florida 33136 , United States
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , Florida 33136 , United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States
- Department of Chemistry , University of Georgia , Athens Georgia 30602 , United States
| |
Collapse
|
25
|
Chen J, Zhang X, Millican R, Creutzmann JE, Martin S, Jun HW. High density lipoprotein mimicking nanoparticles for atherosclerosis. NANO CONVERGENCE 2020; 7:6. [PMID: 31984429 PMCID: PMC6983461 DOI: 10.1186/s40580-019-0214-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Atherosclerosis is a major contributor to many cardiovascular events, including myocardial infarction, ischemic stroke, and peripheral arterial disease, making it the leading cause of death worldwide. High-density lipoproteins (HDL), also known as "good cholesterol", have been shown to demonstrate anti-atherosclerotic efficacy through the removal of cholesterol from foam cells in atherosclerotic plaques. Because of the excellent anti-atherosclerotic properties of HDL, in the past several years, there has been tremendous attention in designing HDL mimicking nanoparticles (NPs) of varying functions to image, target, and treat atherosclerosis. In this review, we are summarizing the recent progress in the development of HDL mimicking NPs and their applications for atherosclerosis.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Xixi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Reid Millican
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Jacob Emil Creutzmann
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Sean Martin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
26
|
Singh A, Nandwana V, Rink JS, Ryoo SR, Chen TH, Allen SD, Scott EA, Gordon LI, Thaxton CS, Dravid VP. Biomimetic Magnetic Nanostructures: A Theranostic Platform Targeting Lipid Metabolism and Immune Response in Lymphoma. ACS NANO 2019; 13:10301-10311. [PMID: 31487458 DOI: 10.1021/acsnano.9b03727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
B-cell lymphoma cells depend upon cholesterol to maintain pro-proliferation and pro-survival signaling via the B-cell receptor. Targeted cholesterol depletion of lymphoma cells is an attractive therapeutic strategy. We report here high-density lipoprotein mimicking magnetic nanostructures (HDL-MNSs) that can bind to the high-affinity HDL receptor, scavenger receptor type B1 (SR-B1), and interfere with cholesterol flux mechanisms in SR-B1 receptor positive lymphoma cells, causing cellular cholesterol depletion. In addition, the MNS core can be utilized for its ability to generate heat under an external radio frequency field. The thermal activation of MNS can lead to both innate and adaptive antitumor immune responses by inducing the expression of heat shock proteins that lead to activation of antigen presenting cells and finally lymphocyte trafficking. In the present study, we demonstrate SR-B1 receptor mediated binding and cellular uptake of HDL-MNS and prevention of phagolysosome formation by transmission electron microscopy, fluorescence microscopy, and ICP-MS analysis. The combinational therapeutics of cholesterol depletion and thermal activation significantly improves therapeutic efficacy in SR-B1 expressing lymphoma cells. HDL-MNS reduces the T2 relaxation time under magnetic resonance imaging (MRI) more effectively compared with a commercially available contrast agent, and the specificity of HDL-MNS toward the SR-B1 receptor leads to differential contrast between SR-B1 positive and negative cells suggesting its utility in diagnostic imaging. Overall, we have demonstrated that HDL-MNSs have cell specific targeting efficiency, can modulate cholesterol efflux, can induce thermal activation mediated antitumor immune response, and possess high contrast under MRI, making it a promising theranostic platform in lymphoma.
Collapse
Affiliation(s)
- Abhalaxmi Singh
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
| | - Vikas Nandwana
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
| | - Jonathan S Rink
- Department of Medicine, Division of Hematology/Oncology, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
- Simpson-Querrey Institute for Bionanotechnology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Soo-Ryoon Ryoo
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
| | - Tzu Hung Chen
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Sean David Allen
- Interdisciplinary Biological Sciences Program , Northwestern University , Evanston , Illinois 60208 , United States
| | - Evan A Scott
- Simpson-Querrey Institute for Bionanotechnology , Northwestern University , Chicago , Illinois 60611 , United States
- Interdisciplinary Biological Sciences Program , Northwestern University , Evanston , Illinois 60208 , United States
- Department of Biomedical Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Leo I Gordon
- Department of Medicine, Division of Hematology/Oncology, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University , Chicago , Illinois 60611 , United States
| | - C Shad Thaxton
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University , Chicago , Illinois 60611 , United States
- Department of Urology, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
| | - Vinayak P Dravid
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
| |
Collapse
|
27
|
Pedersbæk D, Kræmer MK, Kempen PJ, Ashley J, Braesch-Andersen S, Andresen TL, Simonsen JB. The Composition of Reconstituted High-Density Lipoproteins (rHDL) Dictates the Degree of rHDL Cargo- and Size-Remodeling via Direct Interactions with Endogenous Lipoproteins. Bioconjug Chem 2019; 30:2634-2646. [PMID: 31487985 DOI: 10.1021/acs.bioconjchem.9b00552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The application of reconstituted high-density lipoproteins (rHDL) as a drug-carrier has during the past decade been established as a promising approach for effective receptor-mediated drug delivery, and its ability to target tumors has recently been confirmed in a clinical trial. The rHDL mimics the endogenous HDL, which is known to be highly dynamic and undergo extensive enzyme-mediated remodulations. Hence, to reveal the physiological rHDL stability, a thorough characterization of the dynamics of rHDL in biologically relevant environments is needed. We employ a size-exclusion chromatography (SEC) method to evaluate the dynamics of discoidal rHDL in fetal bovine serum (FBS), where we track both the rHDL lipids (by the fluorescence from lipid-conjugated fluorophores) and apoA-I (by human apoA-I ELISA). We show by using lipoprotein depleted FBS and isolated lipoproteins that rHDL lipids can be transferred to endogenous lipoproteins via direct interactions in a nonenzymatic process, resulting in rHDL compositional- and size-remodeling. This type of dynamics could lead to misinterpretations of fluorescence-based rHDL uptake studies due to desorption of labile lipophilic fluorophores or off-target side effects due to desorption of incorporated drugs. Importantly, we show how the degree of rHDL remodeling can be controlled by the compositional design of the rHDL. Understanding the correlation between the molecular properties of the rHDL constituents and their collective dynamics is essential for improving the rHDL-based drug delivery platform. Taken together, our work highlights the need to carefully consider the compositional design of rHDL and test its stability in a biological relevant environment, when developing rHDL for drug delivery purposes.
Collapse
Affiliation(s)
- Dennis Pedersbæk
- Technical University of Denmark , Department of Health Technology , 2800 Kongens Lyngby , Denmark
| | - Martin Kisha Kræmer
- Technical University of Denmark , Department of Health Technology , 2800 Kongens Lyngby , Denmark
| | - Paul Joseph Kempen
- Technical University of Denmark , Department of Health Technology , 2800 Kongens Lyngby , Denmark
| | - Jon Ashley
- Technical University of Denmark , Department of Health Technology , 2800 Kongens Lyngby , Denmark
| | | | - Thomas L Andresen
- Technical University of Denmark , Department of Health Technology , 2800 Kongens Lyngby , Denmark
| | - Jens B Simonsen
- Technical University of Denmark , Department of Health Technology , 2800 Kongens Lyngby , Denmark
| |
Collapse
|
28
|
Li J, Cha R, Luo H, Hao W, Zhang Y, Jiang X. Nanomaterials for the theranostics of obesity. Biomaterials 2019; 223:119474. [PMID: 31536920 DOI: 10.1016/j.biomaterials.2019.119474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
As a chronic and lifelong disease, obesity not only significant impairs health but also dramatically shortens life span (at least 10 years). Obesity requires a life-long effort for the successful treatment because a number of abnormalities would appear in the development of obesity. Nanomaterials possess large specific surface area, strong absorptivity, and high bioavailability, especially the good targeting properties and adjustable release rate, which would benefit the diagnosis and treatment of obesity and obesity-related metabolic diseases. Herein, we discussed the therapy and diagnosis of obesity and obesity-related metabolic diseases by using nanomaterials. Therapies of obesity with nanomaterials include improving intestinal health and reducing energy intake, targeting and treating functional cell abnormalities, regulating redox homeostasis, and removing free lipoprotein in blood. Diagnosis of obesity-related metabolic diseases would benefit the therapy of these diseases. The development of nanomaterials will promote the diagnosis and therapy of obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China.
| | - Huize Luo
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Wenshuai Hao
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Yan Zhang
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100032, PR China.
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| |
Collapse
|
29
|
Aghamiri S, Mehrjardi KF, Shabani S, Keshavarz-Fathi M, Kargar S, Rezaei N. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine (Lond) 2019; 14:2083-2100. [PMID: 31368405 DOI: 10.2217/nnm-2018-0379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is one of the most common causes of mortality throughout the world. Unfortunately, chemotherapy has failed to cure advanced cancers developing multidrug resistance (MDR). Moreover, it has critical side effects because of nonspecific toxicity. Thanks to specific silencing of oncogenes and MDR-associated genes, nano-siRNA drugs can be a great help address the limitations of chemotherapy. Here, we review the current advances in nanoparticle-mediated siRNA delivery strategies such as polymeric- and lipid-based systems, rigid nanoparticles and nanoparticles coupled to specific ligand systems. Nanoparticle-based codelivery of anticancer drugs and siRNA targeting various mechanisms of MDR is a cutting-edge strategy for ovarian cancer therapy, which is completely discussed in this review.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19839-63113, Iran
| | - Keyvan Fallah Mehrjardi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran
| | - Sasan Shabani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran.,Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Saeed Kargar
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 1419733151, Iran
| |
Collapse
|
30
|
Henrich SE, Hong BJ, Rink JS, Nguyen ST, Thaxton CS. Supramolecular Assembly of High-Density Lipoprotein Mimetic Nanoparticles Using Lipid-Conjugated Core Scaffolds. J Am Chem Soc 2019; 141:9753-9757. [PMID: 31177775 PMCID: PMC6812518 DOI: 10.1021/jacs.9b00651] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic high-density lipoprotein (HDL) mimics have emerged as promising therapeutic agents. However, approaches to date have been unable to reproduce key features of spherical HDLs, which are the most abundant human HDL species. Here, we report the synthesis and characterization of spherical HDL mimics using lipid-conjugated organic core scaffolds. The core design motif constrains and orients phospholipid geometry to facilitate the assembly of soft-core nanoparticles that are approximately 10 nm in diameter and resemble human HDLs in their size, shape, surface chemistry, composition, and protein secondary structure. These particles execute salient HDL functions, including efflux of cholesterol from macrophages, cholesterol delivery to hepatocytes, support lecithin:cholesterol acyltransferase activity, and suppress inflammation. These results represent a significant step toward a genuine functional mimic of human HDLs.
Collapse
Affiliation(s)
- Stephen E. Henrich
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, Illinois 60611, United States
| | - Bong Jin Hong
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jonathan S. Rink
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, Illinois 60611, United States
| | - SonBinh T. Nguyen
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 E. Chicago Avenue, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - C. Shad Thaxton
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, Illinois 60611, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Chicago Avenue, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 E. Chicago Avenue, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Henrich SE, Thaxton CS. An update on synthetic high-density lipoprotein-like nanoparticles for cancer therapy. Expert Rev Anticancer Ther 2019; 19:515-528. [DOI: 10.1080/14737140.2019.1624529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stephen E. Henrich
- Department of Urology, Simpson Querrey Institute for BioNanotechnology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - C. Shad Thaxton
- Department of Urology, Simpson Querrey Institute for BioNanotechnology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
32
|
Abstract
Biomolecule-nanoparticle hybrids have proven to be one of most promising frontiers in biomedical research. In recent years, there has been an increased focus on the development of hybrid lipid-nanoparticle complexes (HLNCs) which inherit unique properties of both the inorganic nanoparticles and the lipid assemblies (i.e. liposomes, lipoproteins, solid lipid nanoparticles, and nanoemulsions) that comprise them. In combination of their component parts, HLNCs also gain new functionalities which are utilized for numerous biomedical applications (i.e. stimuli-triggered drug release, photothermal therapy, and bioimaging). The localization of nanoparticles within the lipid assemblies largely dictates the attributes and functionalities of the hybrid complexes and are classified as such: (i) liposomes with surface-bound nanoparticles, (ii) liposomes with bilayer-embedded nanoparticles, (iii) liposomes with core-encapsulated nanoparticles, (iv) lipid assemblies with hydrophobic core-encapsulated nanoparticles, and (v) lipid bilayer-coated nanoparticles. Herein, we review the properties of each hybrid and the rational design of HLNCs for biomedical applications as reported by recent investigations. Future directions in advancing and expanding the scope of HLNCs are also proposed.
Collapse
Affiliation(s)
- Kevin M Vargas
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840-9507, USA
| | - Young-Seok Shon
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840-9507, USA
| |
Collapse
|
33
|
Oriana S, Fracassi A, Archer C, Yamakoshi Y. Covalent Surface Modification of Lipid Nanoparticles by Rapid Potassium Acyltrifluoroborate Amide Ligation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13244-13251. [PMID: 30343580 DOI: 10.1021/acs.langmuir.8b01945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Because of the recent increasing demand for the synthetic biomimetic nanoparticles as in vivo carriers of drugs and imaging probes, it is very important to develop reliable, stable, and orthogonal methods for surface functionalization of the particles. To address these issues, in this study, a recently reported chemoselective amide-forming ligation reaction [potassium acyltrifluoroborate (KAT) ligation] was employed for the first time, as a mean to provide the surface functionalization of particles for creating covalent attachments of bioactive molecules. A KAT derivative of oleic acid (OA-KAT, 1) was added to a mixture of three lipid components (triolein, phosphatidyl choline, and cholesteryl oleate), which have been commonly used as substrates for lipid nanoparticles. After sonication and extrusion in a buffer, successfully obtained lipid nanoparticles containing OA-KAT (NP-KAT) resulted to be well-dispersed with mean diameters of about 40-70 nm by dynamic light scattering. After preliminary confirmation of the fast and efficient KAT ligation in a solution phase using the identical reaction substrates, the "on-surface (on-particle)" KAT ligation on the NP-KAT was tested with an N-hydroxylamine derivative of fluorescein 2. The ligation was carried out in a phosphate buffer (10 mM, pH 5.2) at room temperature with reactant concentration ranges of 250 μM. Reaction efficiency was evaluated based on the amount of boron (determined by inductively coupled plasma mass spectrometry) and fluorescein (determined by fluorescence emission) in the particles before and after the reaction. As a result, the reaction proceeded in a significantly efficient way with ca. 40-50% conversion of the OA-KAT incorporated in the particles. Taken together with the fact that KAT ligation does not require any additional coupling reagents, these results indicated that the "on-surface" chemical functionalization of nanoparticles by KAT ligation is a useful method and represents a powerful and potentially versatile tool for the production of nanoparticles with a variety of covalently functionalized biomolecules and probes.
Collapse
Affiliation(s)
- Sean Oriana
- Laboratorium für Organische Chemie , ETH Zürich , Vladimir-Prelog-Weg 3 , CH8093 Zürich , Switzerland
- Institut für Geochemie und Petrologie , ETH Zürich , Clausiusstrasse 25 , CH8092 Zürich , Switzerland
| | - Alessandro Fracassi
- Laboratorium für Organische Chemie , ETH Zürich , Vladimir-Prelog-Weg 3 , CH8093 Zürich , Switzerland
- Institut für Geochemie und Petrologie , ETH Zürich , Clausiusstrasse 25 , CH8092 Zürich , Switzerland
| | - Corey Archer
- Laboratorium für Organische Chemie , ETH Zürich , Vladimir-Prelog-Weg 3 , CH8093 Zürich , Switzerland
- Institut für Geochemie und Petrologie , ETH Zürich , Clausiusstrasse 25 , CH8092 Zürich , Switzerland
| | - Yoko Yamakoshi
- Laboratorium für Organische Chemie , ETH Zürich , Vladimir-Prelog-Weg 3 , CH8093 Zürich , Switzerland
- Institut für Geochemie und Petrologie , ETH Zürich , Clausiusstrasse 25 , CH8092 Zürich , Switzerland
| |
Collapse
|
34
|
Han Y, Ding B, Zhao Z, Zhang H, Sun B, Zhao Y, Jiang L, Zhou J, Ding Y. Immune lipoprotein nanostructures inspired relay drug delivery for amplifying antitumor efficiency. Biomaterials 2018; 185:205-218. [PMID: 30245388 DOI: 10.1016/j.biomaterials.2018.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022]
Abstract
Chemo-immunotherapy represents an appealing approach to improving cancer treatment. Simultaneously administrating chemotherapeutics with immunoadjuvants can elicit potent tumor death and immune responses. Herein, high density lipoprotein (HDL) inspired immune lipoprotein was proposed for relay drug delivery and amplifying antitumor therapy. Lipophilic AS1411 aptamer-immunoadjuvant CpG fused sequences (Apt-CpG-DSPE) were conjugated to facilitate decoration onto HDLs; and doxorubicin (Dox) was successively intercalated into the consecutive base pairs of Apt-CpG to complete immune HDL nanodrug imHDL/Apt-CpG-Dox. For relay drug delivery, imHDL/Apt-CpG-Dox underwent site-specific structure collapse in tumor intercellular substances inspired from HDL biofunctions (sequential module I); subsequently, dissociated Apt-CpG-Dox was endocytosed into tumor cells mediated by the recognition of AS1411 and nucleolin (sequential module II), translocating Dox to nucleus and enabling tumor ablation and antigens release. The liberated CpG motif further evoked antigen recognition, induced vast secretion of pro-inflammatory cytokines and potentiated host antitumor immunity. Our studies demonstrated that HDL biomimetic platform based relay drug delivery strategy outperformed the monotherapy counterparts in malignant tumor models, eventually generating an augmented antitumor efficacy.
Collapse
Affiliation(s)
- Yue Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Bixi Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Ziqiang Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Huaqing Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Bo Sun
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuanpei Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lei Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
35
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
36
|
Shen N, Yan F, Pang J, Gao Z, Al-Kali A, Haynes CL, Litzow MR, Liu S. HDL-AuNPs-BMS Nanoparticle Conjugates as Molecularly Targeted Therapy for Leukemia. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14454-14462. [PMID: 29668254 DOI: 10.1021/acsami.8b01696] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles (AuNPs) with adsorbed high-density lipoprotein (HDL) have been utilized to deliver oligonucleotides, yet HDL-AuNPs functionalized with small-molecule inhibitors have not been systematically explored. Here, we report an AuNP-based therapeutic system (HDL-AuNPs-BMS) for acute myeloid leukemia (AML) by delivering BMS309403 (BMS), a small molecule that selectively inhibits AML-promoting factor fatty acid-binding protein 4. To synthesize HDL-AuNPs-BMS, we use AuNP as a template to control conjugate size ensuring a spherical shape to engineer HDL-like nanoparticles containing BMS. The zeta potential and size of the HDL-AuNPs obtained from transmission electron microscopy demonstrate that the HDL-AuNPs-BMS are electrostatically stable and 25 nm in diameter. Functionally, compared to free drug, HDL-AuNPs-BMS conjugates are more readily internalized by AML cells and have more pronounced effects on downregulation of DNA methyltransferase 1 (DNMT1), induction of DNA hypomethylation, and restoration of epigenetically silenced tumor suppressor p15INK4B coupled with AML growth arrest. Importantly, systemic administration of HDL-AuNPs-BMS conjugates into AML-bearing mice inhibits DNMT1-dependent DNA methylation, induces AML cell differentiation, and diminishes AML disease progression without obvious side effects. In summary, these data, for the first time, demonstrate HDL-AuNPs as an effective delivery platform with great potential to attach distinct inhibitors and HDL-AuNPs-BMS conjugates as a promising therapeutic platform to treat leukemia.
Collapse
Affiliation(s)
- Na Shen
- The Hormel Institute , University of Minnesota , Austin , Minnesota 55912 , United States
| | - Fei Yan
- The Hormel Institute , University of Minnesota , Austin , Minnesota 55912 , United States
| | - Jiuxia Pang
- The Hormel Institute , University of Minnesota , Austin , Minnesota 55912 , United States
| | - Zhe Gao
- Department of Chemistry , College of Science and Engineering , Minneapolis , Minnesota 55455 , United States
| | - Aref Al-Kali
- Division of Hematology , Mayo Clinic , Rochester , Minnesota 55905 , United States
| | - Christy L Haynes
- Department of Chemistry , College of Science and Engineering , Minneapolis , Minnesota 55455 , United States
| | - Mark R Litzow
- Division of Hematology , Mayo Clinic , Rochester , Minnesota 55905 , United States
| | - Shujun Liu
- The Hormel Institute , University of Minnesota , Austin , Minnesota 55912 , United States
| |
Collapse
|
37
|
Rink JS, Sun W, Misener S, Wang JJ, Zhang ZJ, Kibbe MR, Dravid VP, Venkatraman S, Thaxton CS. Nitric Oxide-Delivering High-Density Lipoprotein-like Nanoparticles as a Biomimetic Nanotherapy for Vascular Diseases. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6904-6916. [PMID: 29385802 PMCID: PMC8495904 DOI: 10.1021/acsami.7b18525] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Disorders of blood vessels cause a range of severe health problems. As a powerful vasodilator and cellular second messenger, nitric oxide (NO) is known to have beneficial vascular functions. However, NO typically has a short half-life and is not specifically targeted. On the other hand, high-density lipoproteins (HDLs) are targeted natural nanoparticles (NPs) that transport cholesterol in the systemic circulation and whose protective effects in vascular homeostasis overlap with those of NO. Evolving the AuNP-templated HDL-like nanoparticles (HDL NPs), a platform of bioinspired HDL, we set up a targeted biomimetic nanotherapy for vascular disease that combines the functions of NO and HDL. A synthetic S-nitrosylated (SNO) phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphonitrosothioethanol) was synthesized and assembled with S-containing phospholipids and the principal protein of HDL, apolipoprotein A-I, to construct NO-delivering HDL-like particles (SNO HDL NPs). SNO HDL NPs self-assemble under mild conditions similar to natural processes, avoiding the complex postassembly modification needed for most synthetic NO-release nanoparticles. In vitro data demonstrate that the SNO HDL NPs merge the functional properties of NO and HDL into a targeted nanocarrier. Also, SNO HDL NPs were demonstrated to reduce ischemia/reperfusion injury in vivo in a mouse kidney transplant model and atherosclerotic plaque burden in a mouse model of atherosclerosis. Thus, the synthesis of SNO HDL NPs provides not only a bioinspired nanotherapy for vascular disease but also a foundation to construct diversified multifunctional platforms based on HDL NPs in the future.
Collapse
Affiliation(s)
- Jonathan S. Rink
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 East Chicago Avenue, Chicago, IL 60611, United States
- Northwestern University, Simpson Querrey Institute for BioNanotechnology, 303 East Superior, Chicago, IL 60611, United States
| | - Wangqiang Sun
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 East Chicago Avenue, Chicago, IL 60611, United States
- Northwestern University, Simpson Querrey Institute for BioNanotechnology, 303 East Superior, Chicago, IL 60611, United States
| | - Sol Misener
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 East Chicago Avenue, Chicago, IL 60611, United States
| | - Jiao-Jing Wang
- Northwestern University, Feinberg School of Medicine, Department of Surgery, Division of Transplantation, 303 East Chicago Ave, Chicago, IL 60611, United States
| | - Zheng Jenny Zhang
- Northwestern University, Feinberg School of Medicine, Department of Surgery, Division of Transplantation, 303 East Chicago Ave, Chicago, IL 60611, United States
| | - Melina R. Kibbe
- University of North Carolina at Chapel Hill, Department of Surgery, 101 Manning Dr., Chapel Hill, NC, 27599, United States
| | - Vinayak P. Dravid
- Northwestern University, Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, United States
- Northwestern University, Applied Physics Program, Evanston, IL 60208, United States
- Northwestern University, International Institute for Nanotechnology, Evanston, IL60208, United States
| | - Subbu Venkatraman
- Nanyang Technological University, School of Materials Science and Engineering, 50 Nanyang Avenue, Singapore, 639798
| | - C. Shad Thaxton
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 East Chicago Avenue, Chicago, IL 60611, United States
- Northwestern University, Simpson Querrey Institute for BioNanotechnology, 303 East Superior, Chicago, IL 60611, United States
- Northwestern University, International Institute for Nanotechnology, Evanston, IL60208, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, United States
- Corresponding Author
| |
Collapse
|
38
|
Timerbulatov SV, Valiev RZ, Timerbulatov MV. [Nanobiomedical technologies in surgery]. Khirurgiia (Mosk) 2018:90-98. [PMID: 29376966 DOI: 10.17116/hirurgia2018190-98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Sh V Timerbulatov
- Bashkir State Medical University of Healthcare Ministry of the Russian Federation, Ufa, Russia, Ufa State Aviation Technical University of Ministry of Education and Science of the Russian Federation, Ufa, Russia
| | - R Z Valiev
- Bashkir State Medical University of Healthcare Ministry of the Russian Federation, Ufa, Russia, Ufa State Aviation Technical University of Ministry of Education and Science of the Russian Federation, Ufa, Russia
| | - M V Timerbulatov
- Bashkir State Medical University of Healthcare Ministry of the Russian Federation, Ufa, Russia, Ufa State Aviation Technical University of Ministry of Education and Science of the Russian Federation, Ufa, Russia
| |
Collapse
|
39
|
Bell JB, Rink JS, Eckerdt F, Clymer J, Goldman S, Thaxton CS, Platanias LC. HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma. Sci Rep 2018; 8:1211. [PMID: 29352211 PMCID: PMC5775338 DOI: 10.1038/s41598-017-18100-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/05/2017] [Indexed: 01/31/2023] Open
Abstract
Medulloblastoma is the most common paediatric malignant brain cancer and there is a need for new targeted therapeutic approaches to more effectively treat these malignant tumours, which can be divided into four molecular subtypes. Here, we focus on targeting sonic hedgehog (SHH) subtype medulloblastoma, which accounts for approximately 25% of all cases. The SHH subtype relies upon cholesterol signalling for tumour growth and maintenance of tumour-initiating cancer stem cells (CSCs). To target cholesterol signalling, we employed biomimetic high-density lipoprotein nanoparticles (HDL NPs) which bind to the HDL receptor, scavenger receptor type B-1 (SCARB1), depriving cells of natural HDL and their cholesterol cargo. We demonstrate uptake of HDL NPs in SCARB1 expressing medulloblastoma cells and depletion of cholesterol levels in cancer cells. HDL NPs potently blocked proliferation of medulloblastoma cells, as well as hedgehog-driven Ewing sarcoma cells. Furthermore, HDL NPs disrupted colony formation in medulloblastoma and depleted CSC populations in medulloblastoma and Ewing sarcoma. Altogether, our findings provide proof of principle for the development of a novel targeted approach for the treatment of medulloblastoma using HDL NPs. These findings present HDL-mimetic nanoparticles as a promising therapy for sonic hedgehog (SHH) subtype medulloblastoma and possibly other hedgehog-driven cancers.
Collapse
Affiliation(s)
- Jonathan B Bell
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Lurie 3-125, 303 E. Superior St., Chicago, IL, 60611, United States
| | - Jonathan S Rink
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Lurie 3-125, 303 E. Superior St., Chicago, IL, 60611, United States.,Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E. Superior St., Chicago, IL, 60611, United States.,Simpson Querrey Institute (SQI) for BioNanotechnology, 303 E. Superior St., Chicago, IL, 60611, United States
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Lurie 3-125, 303 E. Superior St., Chicago, IL, 60611, United States.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior St., Chicago, IL, 60611, United States
| | - Jessica Clymer
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Lurie 3-125, 303 E. Superior St., Chicago, IL, 60611, United States.,Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, United States
| | - Stewart Goldman
- Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, United States
| | - C Shad Thaxton
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Lurie 3-125, 303 E. Superior St., Chicago, IL, 60611, United States.,Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E. Superior St., Chicago, IL, 60611, United States.,Simpson Querrey Institute (SQI) for BioNanotechnology, 303 E. Superior St., Chicago, IL, 60611, United States
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Lurie 3-125, 303 E. Superior St., Chicago, IL, 60611, United States. .,Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, 303 E. Superior St., Chicago, IL, 60611, United States. .,Department of Medicine, Jesse Brown VA Medical Center, 820S. Damen Ave., Chicago, IL, 60612, United States.
| |
Collapse
|
40
|
Plebanek MP, Bhaumik D, Bryce PJ, Thaxton CS. Scavenger Receptor Type B1 and Lipoprotein Nanoparticle Inhibit Myeloid-Derived Suppressor Cells. Mol Cancer Ther 2017; 17:686-697. [PMID: 29282300 DOI: 10.1158/1535-7163.mct-17-0981] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are innate immune cells that potently inhibit T cells. In cancer, novel therapies aimed to activate T cells can be rendered ineffective due to the activity of MDSCs. Thus, targeted inhibition of MDSCs may greatly enhance T-cell-mediated antitumor immunity, but mechanisms remain obscure. Here we show, for the first time, that scavenger receptor type B-1 (SCARB1), a high-affinity receptor for spherical high-density lipoprotein (HDL), is expressed by MDSCs. Furthermore, we demonstrate that SCARB1 is specifically targeted by synthetic high-density lipoprotein-like nanoparticles (HDL NP), which reduce MDSC activity. Using in vitro T-cell proliferation assays, data show that HDL NPs specifically bind SCARB1 to inhibit MDSC activity. In murine cancer models, HDL NP treatment significantly reduces tumor growth, metastatic tumor burden, and increases survival due to enhanced adaptive immunity. Flow cytometry and IHC demonstrate that HDL NP-mediated suppression of MDSCs increased CD8+ T cells and reduced Treg cells in the metastatic tumor microenvironment. Using transgenic mice lacking SCARB1, in vivo data clearly show that the HDL NPs specifically target this receptor for suppressing MDSCs. Ultimately, our data provide a new mechanism and targeted therapy, HDL NPs, to modulate a critical innate immune cell checkpoint to enhance the immune response to cancer. Mol Cancer Ther; 17(3); 686-97. ©2017 AACR.
Collapse
Affiliation(s)
- Michael P Plebanek
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Driskill Graduate Program in the Life Sciences, Northwestern University, Chicago, Illinois
| | - Debayan Bhaumik
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Paul J Bryce
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - C Shad Thaxton
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. .,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois.,International Institute for Nanotechnology, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
41
|
Rink JS, Yang S, Cen O, Taxter T, McMahon KM, Misener S, Behdad A, Longnecker R, Gordon LI, Thaxton CS. Rational Targeting of Cellular Cholesterol in Diffuse Large B-Cell Lymphoma (DLBCL) Enabled by Functional Lipoprotein Nanoparticles: A Therapeutic Strategy Dependent on Cell of Origin. Mol Pharm 2017; 14:4042-4051. [PMID: 28933554 DOI: 10.1021/acs.molpharmaceut.7b00710] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer cells have altered metabolism and, in some cases, an increased demand for cholesterol. It is important to identify novel, rational treatments based on biology, and cellular cholesterol metabolism as a potential target for cancer is an innovative approach. Toward this end, we focused on diffuse large B-cell lymphoma (DLBCL) as a model because there is differential cholesterol biosynthesis driven by B-cell receptor (BCR) signaling in germinal center (GC) versus activated B-cell (ABC) DLBCL. To specifically target cellular cholesterol homeostasis, we employed high-density lipoprotein-like nanoparticles (HDL NP) that can generally reduce cellular cholesterol by targeting and blocking cholesterol uptake through the high-affinity HDL receptor, scavenger receptor type B-1 (SCARB1). As we previously reported, GC DLBCL are exquisitely sensitive to HDL NP as monotherapy, while ABC DLBCL are less sensitive. Herein, we report that enhanced BCR signaling and resultant de novo cholesterol synthesis in ABC DLBCL drastically reduces the ability of HDL NPs to reduce cellular cholesterol and induce cell death. Therefore, we combined HDL NP with the BCR signaling inhibitor ibrutinib and the SYK inhibitor R406. By targeting both cellular cholesterol uptake and BCR-associated de novo cholesterol synthesis, we achieved cellular cholesterol reduction and induced apoptosis in otherwise resistant ABC DLBCL cell lines. These results in lymphoma demonstrate that reduction of cellular cholesterol is a powerful mechanism to induce apoptosis. Cells rich in cholesterol require HDL NP therapy to reduce uptake and molecularly targeted agents that inhibit upstream pathways that stimulate de novo cholesterol synthesis, thus, providing a new paradigm for rationally targeting cholesterol metabolism as therapy for cancer.
Collapse
Affiliation(s)
- Jonathan S Rink
- Northwestern University, Feinberg School of Medicine , Department of Urology, Chicago, Illinois 60611, United States.,Northwestern University , Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois 60611, United States
| | - Shuo Yang
- Northwestern University, Feinberg School of Medicine , Division of Hematology/Oncology, Department of Medicine, Chicago, Illinois 60611, United States
| | - Osman Cen
- Northwestern University, Feinberg School of Medicine , Division of Hematology/Oncology, Department of Medicine, Chicago, Illinois 60611, United States
| | - Tim Taxter
- Northwestern University, Feinberg School of Medicine , Department of Pathology, Chicago, Illinois 60611, United States.,Northwestern University, Feinberg School of Medicine , Developmental Therapeutic Institute, Chicago, Illinois 60611, United States
| | - Kaylin M McMahon
- Northwestern University, Feinberg School of Medicine , Department of Urology, Chicago, Illinois 60611, United States.,Northwestern University , Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois 60611, United States.,Northwestern University, Feinberg School of Medicine , Developmental Therapeutic Institute, Chicago, Illinois 60611, United States
| | - Sol Misener
- Northwestern University, Feinberg School of Medicine , Department of Urology, Chicago, Illinois 60611, United States
| | - Amir Behdad
- Northwestern University, Feinberg School of Medicine , Department of Pathology, Chicago, Illinois 60611, United States
| | - Richard Longnecker
- Northwestern University, Feinberg School of Medicine , Department of Microbiology and Immunology, Chicago, Illinois 60611, United States
| | - Leo I Gordon
- Northwestern University, Feinberg School of Medicine , Division of Hematology/Oncology, Department of Medicine, Chicago, Illinois 60611, United States.,Robert H Lurie Comprehensive Cancer Center of Northwestern University , Chicago, Illinois 60611, United States
| | - C Shad Thaxton
- Northwestern University, Feinberg School of Medicine , Department of Urology, Chicago, Illinois 60611, United States.,Northwestern University , Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois 60611, United States.,Robert H Lurie Comprehensive Cancer Center of Northwestern University , Chicago, Illinois 60611, United States.,Northwestern University , International Institute for Nanotechnology (IIN), Evanston, Illinois 60208, United States
| |
Collapse
|
42
|
Zhai Y, Zhang F, Zhang B, Gao X. Engineering Single Nanopores on Gold Nanoplates by Tuning Crystal Screw Dislocation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201703102. [PMID: 28722227 PMCID: PMC5610653 DOI: 10.1002/adma.201703102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 06/22/2017] [Indexed: 05/27/2023]
Abstract
Compared with the large variety of solid gold nanostructures, synthetic approaches for their hollow counterparts are limited, largely confined to chemical and irradiation-based etching of preformed nanostructures. In particular, the preparation of through nanopore structures is extremely challenging. Here, a unique strategy for direct synthesis of gold nanopores in solution without the need for sacrificial templates or postsynthesis processing is reported. By controlling the degree of crystal screw dislocation, a single through pore with diameter ranging from sub-nanometer to tens of nanometers, in the center of large gold nanoplates, can be engineered with precision. Ionic current rectification behaviors are observed using the gold nanopore, potentially enabling new capabilities in biosensing, sequencing, and imaging.
Collapse
Affiliation(s)
- Yueming Zhai
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Fan Zhang
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
43
|
McMahon KM, Scielzo C, Angeloni NL, Deiss-Yehiely E, Scarfo L, Ranghetti P, Ma S, Kaplan J, Barbaglio F, Gordon LI, Giles FJ, Thaxton CS, Ghia P. Synthetic high-density lipoproteins as targeted monotherapy for chronic lymphocytic leukemia. Oncotarget 2017; 8:11219-11227. [PMID: 28061439 PMCID: PMC5355259 DOI: 10.18632/oncotarget.14494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/26/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) remains incurable despite the introduction of new drugs. Therapies targeting receptors and pathways active specifically in malignant B cells might provide better treatment options. For instance, in B cell lymphoma, our group has previously shown that scavenger receptor type B-1 (SR-B1), the high-affinity receptor for cholesterol-rich high-density lipoproteins (HDL), is a therapeutic target. As evidence suggests that targeting cholesterol metabolism in CLL cells may have therapeutic benefit, we examined SR-B1 expression in primary CLL cells from patients. Unlike normal B cells that do not express SR-B1, CLL cells express the receptor. As a result, we evaluated cholesterol-poor synthetic HDL nanoparticles (HDL NP), known for targeting SR-B1, as a therapy for CLL. HDL NPs potently and selectively induce apoptotic cell death in primary CLL cells. HDL NPs had no effect on normal peripheral blood mononuclear cells from healthy individuals or patients with CLL. These data implicate SR-B1 as a target in CLL and HDL NPs as targeted monotherapy for CLL.
Collapse
Affiliation(s)
- Kaylin M McMahon
- Department of Urology, Feinberg School of Medicine, Northwestern University, Tarry, Chicago, IL, USA
| | - Cristina Scielzo
- Università Vita-Salute San Raffaele, Milan, Italy.,Strategic Research Program On CLL and Unit of B cell Neoplasia, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicholas L Angeloni
- Department of Urology, Feinberg School of Medicine, Northwestern University, Tarry, Chicago, IL, USA
| | - Elad Deiss-Yehiely
- Department of Urology, Feinberg School of Medicine, Northwestern University, Tarry, Chicago, IL, USA
| | - Lydia Scarfo
- Università Vita-Salute San Raffaele, Milan, Italy.,Strategic Research Program On CLL and Unit of B cell Neoplasia, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pamela Ranghetti
- Università Vita-Salute San Raffaele, Milan, Italy.,Strategic Research Program On CLL and Unit of B cell Neoplasia, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Shuo Ma
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Jason Kaplan
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Developmental Therapeutics Program of The Division of Hematology Oncology, Feinberg School of Medicine, Chicago, IL, USA
| | - Federica Barbaglio
- Strategic Research Program On CLL and Unit of B cell Neoplasia, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leo I Gordon
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Francis J Giles
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Developmental Therapeutics Program of The Division of Hematology Oncology, Feinberg School of Medicine, Chicago, IL, USA
| | - C Shad Thaxton
- Department of Urology, Feinberg School of Medicine, Northwestern University, Tarry, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Simpson Querrey Institute (SQI) for BioNanotechnology, Chicago, IL, USA.,International Institute for Nanotechnology, Evanston, IL, USA
| | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milan, Italy.,Strategic Research Program On CLL and Unit of B cell Neoplasia, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
44
|
Zhao Y, Leman LJ, Search DJ, Garcia RA, Gordon DA, Maryanoff BE, Ghadiri MR. Self-Assembling Cyclic d,l-α-Peptides as Modulators of Plasma HDL Function. A Supramolecular Approach toward Antiatherosclerotic Agents. ACS CENTRAL SCIENCE 2017; 3:639-646. [PMID: 28691076 PMCID: PMC5492419 DOI: 10.1021/acscentsci.7b00154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 05/26/2023]
Abstract
There is great interest in developing new modes of therapy for atherosclerosis to treat coronary heart disease and stroke, particularly ones that involve modulation of high-density lipoproteins (HDLs). Here, we describe a new supramolecular chemotype for altering HDL morphology and function. Guided by rational design and SAR-driven peptide sequence enumerations, we have synthesized and determined the HDL remodeling activities of over 80 cyclic d,l-α-peptides. We have identified a few distinct sequence motifs that are effective in vitro in remodeling human and mouse plasma HDLs to increase the concentration of lipid-poor pre-beta HDLs, which are key initial acceptors of cholesterol in the reverse cholesterol transport (RCT) process, and concomitantly promote cholesterol efflux from macrophage cells. Functional assays with various control peptides, such as scrambled sequences, linear and enantiomeric cyclic peptide variants, and backbone-modified structures that limit peptide self-assembly, provide strong support for the supramolecular mode of action. Importantly, when the lead cyclic peptide c[wLwReQeR] was administered to mice (ip), it also promoted the formation of small, lipid-poor HDLs in vivo, displayed good plasma half-life (∼6 h), did not appear to have adverse side effects, and exerted potent anti-inflammatory effects in an acute in vivo inflammation assay. Given that previously reported HDL remodeling peptides have been based on α-helical apoA-I mimetic architectures, the present study, involving a new structural class, represents a promising step toward new potential therapeutics to combat atherosclerosis.
Collapse
Affiliation(s)
- Yannan Zhao
- Department
of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Luke J. Leman
- Department
of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Debra J. Search
- Cardiovascular
Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey 08534, United States
| | - Ricardo A. Garcia
- Cardiovascular
Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey 08534, United States
| | - David A. Gordon
- Cardiovascular
Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey 08534, United States
| | - Bruce E. Maryanoff
- Department
of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - M. Reza Ghadiri
- Department
of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
45
|
Lai CT, Sun W, Palekar RU, Thaxton CS, Schatz GC. Molecular Dynamics Simulation and Experimental Studies of Gold Nanoparticle Templated HDL-like Nanoparticles for Cholesterol Metabolism Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1247-1254. [PMID: 28001031 DOI: 10.1021/acsami.6b12249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High-density lipoprotein (HDL) plays an important role in the transport and metabolism of cholesterol. Mimics of HDL are being explored as potentially powerful therapeutic agents for removing excess cholesterol from arterial plaques. Gold nanoparticles (AuNPs) functionalized with apolipoprotein A-I and with the lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate] have been demonstrated to be robust acceptors of cellular cholesterol. However, detailed structural information about this functionalized HDL AuNP is still lacking. In this study, we have used X-ray photoelectron spectroscopy and lecithin/cholesterol acyltransferase activation experiments together with coarse-grained and all-atom molecular dynamics simulations to model the structure and cholesterol uptake properties of the HDL AuNP construct. By simulating different apolipoprotein-loaded AuNPs, we find that lipids are oriented differently in regions with and without apoA-I. We also show that in this functionalized HDL AuNP, the distribution of cholesteryl ester maintains a reverse concentration gradient that is similar to the gradient found in native HDL.
Collapse
Affiliation(s)
- Cheng-Tsung Lai
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Wangqiang Sun
- Department of Urology, Northwestern University , Chicago, Illinois 60611, United States
- Simpson Querrey Institute for Bionanotechnology , 303 East Superior, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rohun U Palekar
- Department of Urology, Northwestern University , Chicago, Illinois 60611, United States
- Simpson Querrey Institute for Bionanotechnology , 303 East Superior, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - C Shad Thaxton
- Department of Urology, Northwestern University , Chicago, Illinois 60611, United States
- Simpson Querrey Institute for Bionanotechnology , 303 East Superior, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
46
|
McMahon KM, Plebanek MP, Thaxton CS. Properties of Native High-Density Lipoproteins Inspire Synthesis of Actively Targeted In Vivo siRNA Delivery Vehicles. ADVANCED FUNCTIONAL MATERIALS 2016; 26:7824-7835. [PMID: 28717350 PMCID: PMC5510894 DOI: 10.1002/adfm.201602600] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Efficient systemic administration of therapeutic short interfering RNA (siRNA) is challenging. High-density lipoproteins (HDL) are natural in vivo RNA delivery vehicles. Specifically, native HDLs: 1) Load single-stranded RNA; 2) Are anionic, which requires charge reconciliation between the RNA and HDL, and 3) Actively target scavenger receptor type B-1 (SR-B1) to deliver RNA. Emphasizing these particular parameters, we employed templated lipoprotein particles (TLP), mimics of spherical HDLs, and self-assembled them with single-stranded complements of, presumably, any highly unmodified siRNA duplex pair after formulation with a cationic lipid. Resulting siRNA templated lipoprotein particles (siRNA-TLP) are anionic and tunable with regard to RNA assembly and function. Data demonstrate that the siRNA-TLPs actively target SR-B1 to potently reduce androgen receptor (AR) and enhancer of zeste homolog 2 (EZH2) proteins in multiple cancer cell lines. Systemic administration of siRNA-TLPs demonstrated no off-target toxicity and significantly reduced the growth of prostate cancer xenografts. Thus, native HDLs inspired the synthesis of a hybrid siRNA delivery vehicle that can modularly load single-stranded RNA complements after charge reconciliation with a cationic lipid, and that function due to active targeting of SR-B1.
Collapse
Affiliation(s)
- Kaylin M McMahon
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Michael P Plebanek
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA. Walter S. and Lucienne Driskill Graduate Training Program in Life Sciences, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - C Shad Thaxton
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA. Simpson Querrey Institute (SQI) for BioNanotechnology, Northwestern University, 303 East Superior, Chicago, IL 60611, USA. Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA. International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
47
|
Thaxton CS, Rink JS, Naha PC, Cormode DP. Lipoproteins and lipoprotein mimetics for imaging and drug delivery. Adv Drug Deliv Rev 2016; 106:116-131. [PMID: 27133387 PMCID: PMC5086317 DOI: 10.1016/j.addr.2016.04.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/02/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
Lipoproteins are a set of natural nanoparticles whose main role is the transport of fats within the body. While much work has been done to develop synthetic nanocarriers to deliver drugs or contrast media, natural nanoparticles such as lipoproteins represent appealing alternatives. Lipoproteins are biocompatible, biodegradable, non-immunogenic and are naturally targeted to some disease sites. Lipoproteins can be modified to act as contrast agents in many ways, such as by insertion of gold cores to provide contrast for computed tomography. They can be loaded with drugs, nucleic acids, photosensitizers or boron to act as therapeutics. Attachment of ligands can re-route lipoproteins to new targets. These attributes render lipoproteins attractive and versatile delivery vehicles. In this review we will provide background on lipoproteins, then survey their roles as contrast agents, in drug and nucleic acid delivery, as well as in photodynamic therapy and boron neutron capture therapy.
Collapse
Affiliation(s)
- C Shad Thaxton
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA; International Institute for Nanotechnology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jonathan S Rink
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Cardiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Abstract
OBJECTIVE To describe the components of targeted nanotherapeutics and to review their applications in the treatment of surgical diseases. BACKGROUND Targeted nanotherapeutic is a novel strategy for treating a variety of diseases and is an emerging technology that offers advantages over current treatment strategies. The nanoscale size, combined with the ability to surface functionalize the delivery vehicle to enable targeting and incorporate a therapeutic payload, provides a new and innovative therapeutic platform to treat surgical diseases that has yet to be fully realized in the surgical arena. METHODS A comprehensive literature review of nanotherapeutics, targeting strategies, and their utility in treating surgical diseases is performed. RESULTS Targeted nanotherapeutics have demonstrated safety and biocompatibility in treating surgical diseases. The ability to surface functionalize the nanoparticles affords a unique tailorability that enables targeting specificity and therapeutic payload delivery to treat a variety of surgical diseases. Moreover, the small size and targeting capabilities allow access to biological compartments, such as the blood-brain barrier, that have previously been difficult to treat. CONCLUSIONS Targeted nanotherapeutics represent a novel therapeutic platform and have great potential to impact the treatment of surgical diseases.
Collapse
|
49
|
Sun W, Wu W, McMahon KM, Rink JS, Thaxton CS. Mosaic Interdigitated Structure in Nanoparticle-Templated Phospholipid Bilayer Supports Partial Lipidation of Apolipoprotein A-I. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2016; 33:300-305. [PMID: 28781432 PMCID: PMC5544021 DOI: 10.1002/ppsc.201600032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Using gold nanoparticle-templated high-density lipoprotein-like particles as a model, the nanoparticle-templated phospholipid bilayer is studied from the bottom-up. Data support the phospholipids have a mosaic interdigitated structure. The discontinuous lipid milieu supports partial lipidation of apolipoprotein A-I, different from an ordinary phospholipid bilayer, suggesting that synergy between nanoparticle templates and bound phospholipid layers can modulate amphiphilic proteins for desired functions.
Collapse
Affiliation(s)
- Wangqiang Sun
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, United States; School of Materials Science & Engineering, Hubei University of Technology, Wuhan 430068, China; Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior, Chicago, Illinois 60611, United States; Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Weiqiang Wu
- Institute for Catalysis in Energy Processes and Center for Catalysis and Surface Science, Evanston, IL 60208, United States; Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Kaylin M McMahon
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior, Chicago, Illinois 60611, United States
| | - Jonathan S Rink
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior, Chicago, Illinois 60611, United States
| | - C Shad Thaxton
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior, Chicago, Illinois 60611, United States; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, Illinois 60611, United States
| |
Collapse
|
50
|
Wang Y, Wu C, Chen T, Sun H, Cansiz S, Zhang L, Cui C, Hou W, Wu Y, Wan S, Cai R, Liu Y, Sumerlin BS, Zhang X, Tan W. DNA micelle flares: a study of the basic properties that contribute to enhanced stability and binding affinity in complex biological systems. Chem Sci 2016; 7:6041-6049. [PMID: 28066539 PMCID: PMC5207227 DOI: 10.1039/c6sc00066e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/20/2016] [Indexed: 01/07/2023] Open
Abstract
DMFs are spherical DNA-diacyllipid nanostructures formed by hydrophobic effects between lipid tails coupled to single-stranded DNAs. Such properties as high cellular permeability, low critical micelle concentration (CMC) and facile fabrication facilitate intracellular imaging and drug delivery. While the basic properties of NFs have been amply described and tested, few studies have characterized the fundamental properties of DMFs with particular respect to aggregation number, dissociation constant and biostability. Therefore, to further explore their conformational features and enhanced stability in complex biological systems, we herein report a series of characterization studies. Static light scattering (SLS) demonstrated that DMFs possess greater DNA loading capacity when compared to other DNA-based nanostructures. Upon binding to complementary DNA (cDNA), DMFs showed excellent dissociation constants (Kd) and increased melting temperatures, as well as constant CMC (10 nM) independent of DNA length. DMFs also present significantly enhanced stability in aqueous solution with nuclease and cell lysate. These properties make DMFs ideal for versatile applications in bioanalysis and theranostics studies.
Collapse
Affiliation(s)
- Yanyue Wang
- Center for Research at Bio/Nano Interface
, Department of Chemistry
, Department of Physiology and Functional Genomics
, Health Cancer Center
, UF Genetics Institute and McKnight Brain Institute
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
.
| | - Cuichen Wu
- Center for Research at Bio/Nano Interface
, Department of Chemistry
, Department of Physiology and Functional Genomics
, Health Cancer Center
, UF Genetics Institute and McKnight Brain Institute
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
.
- Molecular Science and Biomedicine Laboratory
, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics
, College of Chemistry and Chemical Engineering
, College of Biology
, Collaborative Research Center of Molecular Engineering for Theranostics
, Hunan University
,
Changsha 410082
, China
| | - Tao Chen
- Center for Research at Bio/Nano Interface
, Department of Chemistry
, Department of Physiology and Functional Genomics
, Health Cancer Center
, UF Genetics Institute and McKnight Brain Institute
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
.
- Molecular Science and Biomedicine Laboratory
, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics
, College of Chemistry and Chemical Engineering
, College of Biology
, Collaborative Research Center of Molecular Engineering for Theranostics
, Hunan University
,
Changsha 410082
, China
| | - Hao Sun
- George & Josephine Butler Polymer Research Laboratory
, Center for Macromolecular Science & Engineering
, Department of Chemistry
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
| | - Sena Cansiz
- Center for Research at Bio/Nano Interface
, Department of Chemistry
, Department of Physiology and Functional Genomics
, Health Cancer Center
, UF Genetics Institute and McKnight Brain Institute
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
.
| | - Liqin Zhang
- Center for Research at Bio/Nano Interface
, Department of Chemistry
, Department of Physiology and Functional Genomics
, Health Cancer Center
, UF Genetics Institute and McKnight Brain Institute
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
.
| | - Cheng Cui
- Center for Research at Bio/Nano Interface
, Department of Chemistry
, Department of Physiology and Functional Genomics
, Health Cancer Center
, UF Genetics Institute and McKnight Brain Institute
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
.
| | - Weijia Hou
- Center for Research at Bio/Nano Interface
, Department of Chemistry
, Department of Physiology and Functional Genomics
, Health Cancer Center
, UF Genetics Institute and McKnight Brain Institute
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
.
| | - Yuan Wu
- Center for Research at Bio/Nano Interface
, Department of Chemistry
, Department of Physiology and Functional Genomics
, Health Cancer Center
, UF Genetics Institute and McKnight Brain Institute
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
.
- Molecular Science and Biomedicine Laboratory
, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics
, College of Chemistry and Chemical Engineering
, College of Biology
, Collaborative Research Center of Molecular Engineering for Theranostics
, Hunan University
,
Changsha 410082
, China
| | - Shuo Wan
- Center for Research at Bio/Nano Interface
, Department of Chemistry
, Department of Physiology and Functional Genomics
, Health Cancer Center
, UF Genetics Institute and McKnight Brain Institute
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
.
| | - Ren Cai
- Center for Research at Bio/Nano Interface
, Department of Chemistry
, Department of Physiology and Functional Genomics
, Health Cancer Center
, UF Genetics Institute and McKnight Brain Institute
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
.
| | - Yuan Liu
- Center for Research at Bio/Nano Interface
, Department of Chemistry
, Department of Physiology and Functional Genomics
, Health Cancer Center
, UF Genetics Institute and McKnight Brain Institute
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
.
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory
, Center for Macromolecular Science & Engineering
, Department of Chemistry
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory
, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics
, College of Chemistry and Chemical Engineering
, College of Biology
, Collaborative Research Center of Molecular Engineering for Theranostics
, Hunan University
,
Changsha 410082
, China
| | - Weihong Tan
- Center for Research at Bio/Nano Interface
, Department of Chemistry
, Department of Physiology and Functional Genomics
, Health Cancer Center
, UF Genetics Institute and McKnight Brain Institute
, University of Florida
,
Gainesville
, Florida 32611-7200
, USA
.
- Molecular Science and Biomedicine Laboratory
, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics
, College of Chemistry and Chemical Engineering
, College of Biology
, Collaborative Research Center of Molecular Engineering for Theranostics
, Hunan University
,
Changsha 410082
, China
| |
Collapse
|