1
|
Szabelski P. Theoretical Modeling of the Structure Formation in Adsorbed Overlayers Comprising Molecular Building Blocks with Different Symmetries. Molecules 2025; 30:866. [PMID: 40005176 PMCID: PMC11858382 DOI: 10.3390/molecules30040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Controlling the geometry and functionality of multi-component self-assembled superstructures on surfaces is a complex task that requires numerous experimental tests. In this contribution, we demonstrate how computer modeling can be utilized to preselect functional tectons capable of forming low-dimensional architectures with tailored features. To this end, coarse-grained Monte Carlo simulations were conducted for a mixture of tripod and tetrapod units, each equipped with discrete centers for short-range directional interactions, and adsorbed onto a (111) crystalline substrate. The calculations conducted for various isomers of the tetrapod molecule revealed qualitatively distinct self-assembly scenarios, including mixing and segregation, depending on the directionality of interactions assigned to this tecton. The resulting superstructures were classified, and their formation was monitored using temperature-dependent metrics, such as coordination functions. The findings of this study contribute to a better understanding of the on-surface self-assembly of molecules with differing symmetries and can aid in the design of bicomponent overlayers for specific applications.
Collapse
Affiliation(s)
- Paweł Szabelski
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. M.C. Skłodowskiej 3, 20-031 Lublin, Poland
| |
Collapse
|
2
|
Fabozzi F, Cojal González JD, Severin N, Rabe JP, Hecht S. Voltage-Gated Switching of Moiré Patterns in Epitaxial Molecular Crystals. ACS NANO 2024; 18:33664-33670. [PMID: 39574317 PMCID: PMC11636263 DOI: 10.1021/acsnano.4c12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024]
Abstract
Studying molecular materials at the nanoscale allows us to gain a deeper understanding of supramolecular structure formation and serves as the basis for rationally controlling the resulting interfacial properties. Here, we describe the formation of extended Moiré patterns resulting from the assembly of dipolar π-conjugated molecules on highly oriented pyrolytic graphite at the liquid-solid interface as characterized by scanning tunneling microscopy (STM). By switching the bias of the sample and thus the orientation of the external electric field in the vicinity of the STM junction, structural reorganization of the molecular building blocks and the resulting organic 2D crystal is induced and can conveniently be monitored in situ by the appearance and disappearance of the Moiré patterns. Importantly, the formation and loss of the Moiré patterns are fully reversible, providing exquisite control over epitaxial molecular crystals. Our approach provides fundamental insights into the supramolecular organization and resulting superstructure formation of incommensurable 2D lattices upon applying an electric field and enables the rational tuning of Moiré patterns as a key step toward the potential integration of organic 2D crystals in molecular nanodevices.
Collapse
Affiliation(s)
- Filippo
Giovanni Fabozzi
- DWI−Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
- Department
of Chemistry and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - José D. Cojal González
- Department
of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Nikolai Severin
- Department
of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Jürgen P. Rabe
- Department
of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Stefan Hecht
- DWI−Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
- Department
of Chemistry and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| |
Collapse
|
3
|
Rinkovec T, Croket E, Cao H, Harvey JN, De Feyter S. Investigation of the temperature effect on the formation of a two-dimensional self-assembled network at the liquid/solid interface. NANOSCALE 2024; 16:21916-21927. [PMID: 39506615 DOI: 10.1039/d4nr02600d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
In this work, we investigate the temperature effect on the formation of self-assembled molecular networks (SAMNs) at the liquid/solid interface, focusing on an alkylated achiral glycine derivative at the 1-phenyloctane/HOPG interface. Using STM with an in situ heating stage, we comprehensively examine the concentration-temperature phase space for 2D network formation. This study allows us to determine the enthalpic and entropic contributions to the Gibbs free energy (ΔG) of monolayer formation, revealing that the process is enthalpically driven. Moreover, we further develop our previously established Ising code by incorporating temperature dependence, which provides valuable insights into the interplay of enthalpic and entropic factors. Our findings, supported by both experimental and theoretical analyses, demonstrate a strong agreement in thermodynamic parameters, validating our model as a proof of concept for studying temperature effects in SAMN formation. This research underscores the importance of understanding enthalpic and entropic contributions for the successful utilization of 2D molecular self-assembly.
Collapse
Affiliation(s)
- Tamara Rinkovec
- Departement of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Eveline Croket
- Departement of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Hai Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jeremy N Harvey
- Departement of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Steven De Feyter
- Departement of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
4
|
Preetha Genesh N, Dettmann D, Cui D, Che Y, Toader V, Johal TK, Fu C, Perepichka DF, Rosei F. Effect of aromatic substituents on the H-bonded assembly of diketopyrrolopyrroles at solid-liquid interfaces. NANOSCALE 2024; 16:14477-14489. [PMID: 39018156 DOI: 10.1039/d4nr00725e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Hydrogen-bonded (H-bonded) self-assembly is a suitable approach for tailoring the solid-state packing and properties of organic semiconductors. Here we studied the H-bonded self-assembly of an important class of organic semiconductors, diketopyrrolopyrrole (DPP) derivatives, diselenophenylDPP (DSeDPP), dithiazolylDPP (DTzDPP), and dithienothiophenylDPP (DTTDPP), at solid-liquid interfaces using scanning tunneling microscopy (STM) and density functional theory (DFT). At the 1-octanoic acid/highly ordered pyrolytic graphite (HOPG) interface, DSeDPP and DTzDPP either co-assemble with the solvent via H-bonding between lactam and carboxyl groups or form homoassemblies through H-bonding between the lactam groups. However, DTTDPP forms two different homoassemblies involving H-bonding between lactam groups or weak H-bonding between the lactam group and the heteroaromatic ring. Enthalpic factors for the formation of homoassemblies and co-assemblies are investigated by evaluating the inter- and intramolecular interactions in the self-assembled lattices using DFT. A homoassembly with a twisted geometry of molecules with intermolecular π-interactions is only observed for DSeDPP. The absence of homoassembly with the twisted geometry of DTzDPP is attributed to the higher strain energy required to acquire out-of-plane twists in this molecule. Our study shows the profound effects aromatic substituents can impart in the supramolecular assembly of DPP molecules, which influences film morphology and hence its properties (e.g. charge transport).
Collapse
Affiliation(s)
- Navathej Preetha Genesh
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada.
| | - Dominik Dettmann
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada.
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, via Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Daling Cui
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada.
| | - Yuxuan Che
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada.
| | - Violeta Toader
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada.
| | - Tarnjit Kaur Johal
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada.
| | - Chaoying Fu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada.
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada.
| |
Collapse
|
5
|
Cometto FP, Arisnabarreta N, Vanta R, Jacquelín DK, Vyas V, Lotsch BV, Paredes-Olivera PA, Patrito EM, Lingenfelder M. Rational Design of 2D Supramolecular Networks Switchable by External Electric Fields. ACS NANO 2024; 18:4287-4296. [PMID: 38259041 PMCID: PMC10851663 DOI: 10.1021/acsnano.3c09775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
The reversible formation of hydrogen bonds is a ubiquitous mechanism for controlling molecular assembly in biological systems. However, achieving predictable reversibility in artificial two-dimensional (2D) materials remains a significant challenge. Here, we use an external electric field (EEF) at the solid/liquid interface to trigger the switching of H-bond-linked 2D networks using a scanning tunneling microscope. Assisted by density functional theory and molecular dynamics simulations, we systematically vary the molecule-to-molecule interactions, i.e., the hydrogen-bonding strength, as well as the molecule-to-substrate interactions to analyze the EEF switching effect. By tuning the building block's hydrogen-bonding ability (carboxylic acids vs aldehydes) and substrate nature and charge (graphite, graphene/Cu, graphene/SiO2), we induce or freeze the switching properties and control the final polymorphic output in the 2D network. Our results indicate that the switching ability is not inherent to any particular building block but instead relies on a synergistic combination of the relative adsorbate/adsorbate and absorbate/substrate energetic contributions under surface polarization. Furthermore, we describe the dynamics of the switching mechanism based on the rotation of carboxylic groups and proton exchange, which generate the polarizable species that are influenced by the EEF. This work provides insights into the design and control of reversible molecular assembly in 2D materials, with potential applications in a wide range of fields, including sensors and electronics.
Collapse
Affiliation(s)
- Fernando P. Cometto
- Max
Planck-EPFL Laboratory for Molecular Nanoscience and IPHYS, EPFL, Lausanne, CH 1015, Switzerland
- Instituto
de Investigaciones en Fisicoquímica de Córdoba (INFIQC),
CONICET, Ciudad Universitaria, Córdoba X5000HUA, Argentina
- Departamento
de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Nicolás Arisnabarreta
- Max
Planck-EPFL Laboratory for Molecular Nanoscience and IPHYS, EPFL, Lausanne, CH 1015, Switzerland
- Instituto
de Investigaciones en Fisicoquímica de Córdoba (INFIQC),
CONICET, Ciudad Universitaria, Córdoba X5000HUA, Argentina
- Departamento
de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Radovan Vanta
- Max
Planck-EPFL Laboratory for Molecular Nanoscience and IPHYS, EPFL, Lausanne, CH 1015, Switzerland
| | - Daniela K. Jacquelín
- Instituto
de Investigaciones en Fisicoquímica de Córdoba (INFIQC),
CONICET, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Vijay Vyas
- Max
Planck Institute for Solid State Research, Stuttgart D-70569, Germany
| | - Bettina V. Lotsch
- Max
Planck Institute for Solid State Research, Stuttgart D-70569, Germany
- Department
of Chemistry, University of Munich (LMU), Munich 81377, Germany
| | - Patricia A. Paredes-Olivera
- Departamento
de Química Teórica y Computacional, Facultad de Ciencias
Químicas, Universidad Nacional de
Córdoba (UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - E. Martín Patrito
- Instituto
de Investigaciones en Fisicoquímica de Córdoba (INFIQC),
CONICET, Ciudad Universitaria, Córdoba X5000HUA, Argentina
- Departamento
de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Magalí Lingenfelder
- Max
Planck-EPFL Laboratory for Molecular Nanoscience and IPHYS, EPFL, Lausanne, CH 1015, Switzerland
| |
Collapse
|
6
|
Kelestemur S, Maity P, Visaveliya NR, Halpern D, Parveen S, Khatoon F, Khalil A, Greenberg M, Jiang Q, Ng K, Eisele DM. Solution-based Supramolecular Hierarchical Assembly of Frenkel Excitonic Nanotubes Driven by Gold Nanoparticle Formation and Temperature. J Phys Chem B 2024; 128:329-339. [PMID: 38157497 DOI: 10.1021/acs.jpcb.3c05681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Translating nature's successful design principle of solution-based supramolecular self-assembling to broad applications─ranging from renewable energy and information technology to nanomedicine─requires a fundamental understanding of supramolecular hierarchical assembly. Though the forces behind self-assembly (e.g., hydrophobicity) are known, the specific mechanism by which monomers form the hierarchical assembly still remains an open question. A crucial step toward formulating a complete mechanism is understanding not only how the monomer's specific molecular structure but also how manifold environmental conditions impact the self-assembling process. Here, we elucidate the complex correlation between the environmental self-assembling conditions and the resulting structural properties by utilizing a well-characterized model system: well-defined supramolecular Frenkel excitonic nanotubes (NTs), self-assembled from cyanine dye molecules in aqueous solution, which further self-assemble into bundled nanotubes (b-NTs). The NTs and b-NTs inhabit distinct spectroscopic signatures, which allows the use of steady-state absorption spectroscopy to monitor the transition from NTs to b-NTs directly. Specifically, we investigate the impact of temperature (ranging from 23 °C, 55 °C, 70 °C, 85 °C, up to 100 °C) during in situ formation of gold nanoparticles to determine their role in the formation of b-NTs. The considered time regime for the self-assembling process ranges from 1 min to 8 days. With our work, we contribute to a basic understanding of how environmental conditions impact solution-based hierarchical supramolecular self-assembly in both the thermodynamic and the kinetic regime.
Collapse
Affiliation(s)
- Seda Kelestemur
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
- Biotechnology Department, Institute of Health Sciences, University of Health Sciences, Istanbul, 34668, Turkey
| | - Piyali Maity
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Nikunjkumar R Visaveliya
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Damien Halpern
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Sadiyah Parveen
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Firdaus Khatoon
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Ali Khalil
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Matthew Greenberg
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Qingrui Jiang
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| | - Kara Ng
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
- PhD Program in Chemistry, Graduate Center of The City University of New York, New York City, New York 10016, United States
| | - Dorthe M Eisele
- Department of Chemistry and Biochemistry, The City College of New York at The City University of New York, New York City, New York 10031, United States
| |
Collapse
|
7
|
Wang C, Cusin L, Ma C, Unsal E, Wang H, Consolaro VG, Montes-García V, Han B, Vitale S, Dianat A, Croy A, Zhang H, Gutierrez R, Cuniberti G, Liu Z, Chi L, Ciesielski A, Samorì P. Enhancing the Carrier Transport in Monolayer MoS 2 through Interlayer Coupling with 2D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305882. [PMID: 37690084 DOI: 10.1002/adma.202305882] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/23/2023] [Indexed: 09/12/2023]
Abstract
The coupling of different 2D materials (2DMs) to form van der Waals heterostructures (vdWHs) is a powerful strategy for adjusting the electronic properties of 2D semiconductors, for applications in opto-electronics and quantum computing. 2D molybdenum disulfide (MoS2 ) represents an archetypical semiconducting, monolayer thick versatile platform for the generation of hybrid vdWH with tunable charge transport characteristics through its interfacing with molecules and assemblies thereof. However, the physisorption of (macro)molecules on 2D MoS2 yields hybrids possessing a limited thermal stability, thereby jeopardizing their technological applications. Herein, the rational design and optimized synthesis of 2D covalent organic frameworks (2D-COFs) for the generation of MoS2 /2D-COF vdWHs exhibiting strong interlayer coupling effects are reported. The high crystallinity of the 2D-COF films makes it possible to engineer an ultrastable periodic doping effect on MoS2 , boosting devices' field-effect mobility at room temperature. Such a performance increase can be attributed to the synergistic effect of the efficient interfacial electron transfer process and the pronounced suppression of MoS2 's lattice vibration. This proof-of-concept work validates an unprecedented approach for the efficient modulation of the electronic properties of 2D transition metal dichalcogenides toward high-performance (opto)electronics for CMOS digital circuits.
Collapse
Affiliation(s)
- Can Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Luca Cusin
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Chun Ma
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Elif Unsal
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - Hanlin Wang
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | | | - Verónica Montes-García
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Bin Han
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Stefania Vitale
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - Alexander Croy
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737, Jena, Germany
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062, Dresden, Germany
| | - Zhaoyang Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Artur Ciesielski
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
8
|
Lu J, Nieckarz D, Jiang H, Zhu Z, Yan Y, Zheng F, Rżysko W, Lisiecki J, Szabelski P, Sun Q. Order-Disorder Transition of Two-Dimensional Molecular Networks through a Stoichiometric Design. ACS NANO 2023; 17:20194-20202. [PMID: 37788293 DOI: 10.1021/acsnano.3c05945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Materials with disordered structures may exhibit interesting properties. Metal-organic frameworks (MOFs) are a class of hybrid materials composed of metal nodes and coordinating organic linkers. Recently, there has been growing interest in MOFs with structural disorder and the investigations of amorphous structures on surfaces. Herein, we demonstrate a bottom-up method to construct disordered molecular networks on metal surfaces by selecting two organic molecule linkers with the same symmetry but different sizes for preparing two-component samples with different stoichiometric ratios. The amorphous networks are directly imaged by scanning tunneling microscopy under ultrahigh vacuum with a submolecular resolution, allowing us to quantify its degree of disorder and other structural properties. Furthermore, we resort to molecular dynamics simulations to understand the formation of the amorphous metal-organic networks. The results may advance our understanding of the mechanism of formation of monolayer molecular networks with structural disorders, facilitating the design and exploration of amorphous MOF materials with intriguing properties.
Collapse
Affiliation(s)
- Jiayi Lu
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Damian Nieckarz
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Hao Jiang
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Zhiwen Zhu
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Yuyi Yan
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Fengru Zheng
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Wojciech Rżysko
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Jakub Lisiecki
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Paweł Szabelski
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Qiang Sun
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
9
|
Li Z, Li Y, Yin C. Manipulating Molecular Self-Assembly Process at the Solid-Liquid Interface Probed by Scanning Tunneling Microscopy. Polymers (Basel) 2023; 15:4176. [PMID: 37896420 PMCID: PMC10610993 DOI: 10.3390/polym15204176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The phenomenon of ordered self-assembly on solid substrates is a topic of interest in both fundamental surface science research and its applications in nanotechnology. The regulation and control of two-dimensional (2D) self-assembled supra-molecular structures on surfaces have been realized through applying external stimuli. By utilizing scanning tunneling microscopy (STM), researchers can investigate the detailed phase transition process of self-assembled monolayers (SAMs), providing insight into the interplay between intermolecular weak interactions and substrate-molecule interactions, which govern the formation of molecular self-assembly. This review will discuss the structural transition of self-assembly probed by STM in response to external stimuli and provide state-of-the-art methods such as tip-induced confinement for the alignment of SAM domains and selective chirality. Finally, we discuss the challenges and opportunities in the field of self-assembly and STM.
Collapse
Affiliation(s)
| | - Yanan Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China;
| | - Chengjie Yin
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China;
| |
Collapse
|
10
|
Maeda M, Oda K, Hisaki I, Tahara K. Influence of core size on self-assembled molecular networks composed of C3h-symmetric building blocks through hydrogen bonding interactions: structural features and chirality. RSC Adv 2023; 13:29512-29521. [PMID: 37822655 PMCID: PMC10562897 DOI: 10.1039/d3ra05762c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The effect of the core size on the structure and chirality of self-assembled molecular networks was investigated using two aromatic carboxylic acid derivatives with frameworks displaying C3h symmetry, triphenylene derivative H3TTCA and dehydrobenzo[12]annulene (DBA) derivative DBACOOH, each having three carboxy groups per molecule. Scanning tunneling microscopy observations at the 1-heptanoic acid/graphite interface revealed H3TTCA exclusively forming a chiral honeycomb structure, and DBACOOH forming three structures (type I, II, and III structures) depending on its concentration and whether the system is subjected to annealing treatment. Hydrogen bonding interaction patterns and chirality were carefully analyzed based on a modeling study using molecular mechanics simulations. Moreover, DBACOOH forms chiral honeycomb structures through the co-adsorption of guest molecules. Structural diversity observed for DBACOOH is attributed to its relatively large core size, with this feature modulating the balance between molecule-molecule and molecule-substrate interactions.
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Kotoka Oda
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| |
Collapse
|
11
|
Arjariya R, Kaur G, Sen S, Verma S, Lackinger M, Gopakumar TG. Kinetic versus thermodynamic polymorph stabilization of a tri-carboxylic acid derivative at the solid-liquid interface. NANOSCALE 2023; 15:13393-13401. [PMID: 37539991 DOI: 10.1039/d3nr02031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The carboxylic acid moiety gives rise to structural variability in surface-supported self-assembly due to the common expression of various H-bonding motifs. Self-assembly of 3-fold symmetric tricarboxylic acid derivatives on surfaces typically results in monolayer structures that feature the common 2-fold cyclic R22(8) H-bond motif for at least one of the carboxylic acid groups. Polymorphs that are exclusively based on 3-fold cyclic R33(12) H-bonds were predicted but remained elusive. Here, we show the emergence of such a superflower (SF) structure purely based on R33(12) H-bonds for L-benzene-1,3,5-tricarbonyl phenylalanine (L-BTA), a molecule derived from the well-studied trimesic acid (TMA). In contrast to TMA, L-BTA is not completely planar and is also equipped with additional functional groups for the formation of secondary intermolecular bonds. At the heptanoic acid-graphite interface we transiently observe a SF structure, which is dynamically converted into a chicken-wire structure that only exhibits R22(8) H-bonds. Interestingly, when using nonanoic acid as a solvent the initially formed SF structure remained stable. This unexpected behaviour is rationalized by accompanying force field simulations and experimental determination of solvent-dependent L-BTA solubility.
Collapse
Affiliation(s)
- Richa Arjariya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India.
| | - Gagandeep Kaur
- Department of Chemistry, College of Arts and Sciences, Howard University, Washington, DC-20059, USA
| | - Shantanu Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India.
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India.
- Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India
| | - Markus Lackinger
- Department of Physics, Technical University of Munich, James-Franck-Strasse 1, Garching 85748, Germany
- Deutsches Museum, Museumsinsel 1, Munich 80538, Germany
| | - Thiruvancheril G Gopakumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India.
- Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India
| |
Collapse
|
12
|
Yamagata K, Maeda M, Tessari Z, Mali KS, Tobe Y, De Feyter S, Tahara K. Solvent Mediated Nanoscale Quasi-Periodic Chirality Reversal in Self-Assembled Molecular Networks Featuring Mirror Twin Boundaries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207209. [PMID: 36683210 DOI: 10.1002/smll.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Grain boundaries in polycrystals have a prominent impact on the properties of a material, therefore stimulating the research on grain boundary engineering. Structure determination of grain boundaries of molecule-based polycrystals with submolecular resolution remains elusive. Reducing the complexity to monolayers has the potential to simplify grain boundary engineering and may offer real-space imaging with submolecular resolution using scanning tunneling microscopy (STM). Herein, the authors report the observation of quasi-periodic nanoscale chirality switching in self-assembled molecular networks, in combination with twinning, as revealed by STM at the liquid/solid interface. The width of the chiral domain structure peaks at 12-19 nm. Adjacent domains having opposite chirality are connected continuously through interdigitated alkoxy chains forming a 1D defect-free domain border, reflecting a mirror twin boundary. Solvent co-adsorption and the inherent conformational adaptability of the alkoxy chains turn out to be crucial factors in shaping grain boundaries. Moreover, the epitaxial interaction with the substrate plays a role in the nanoscale chirality reversal as well.
Collapse
Affiliation(s)
- Kyohei Yamagata
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Zeno Tessari
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Yoshito Tobe
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30030, Taiwan
- Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, 567-0047, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| |
Collapse
|
13
|
Sahare S, Ghoderao P, Chan Y, Lee SL. Surface supramolecular assemblies tailored by chemical/physical and synergistic stimuli: a scanning tunneling microscopy study. NANOSCALE 2023; 15:1981-2002. [PMID: 36515142 DOI: 10.1039/d2nr05264d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular self-assemblies formed by various non-covalent interactions can produce diverse functional networks on solid surfaces. These networks have recently attracted much interest from both fundamental and application points of view. Unlike covalent organic frameworks (COFs), the properties of the assemblies differ from each other depending on the constituent motifs. These various motifs may find diverse applications such as in crystal engineering, surface modification, and molecular electronics. Significantly, these interactions between/among the molecular tectonics are relatively weak and reversible, which makes them responsive to external stimuli. Moreover, for a liquid-solid-interface environment, the dynamic processes are amenable to in situ observation using scanning tunneling microscopy (STM). In the literature, most review articles focus on supramolecular self-assembly interactions. This review summarizes the recent literature in which stimulation sources, including chemical, physical, and their combined stimuli, cooperatively tailor supramolecular assemblies on surfaces. The appropriate design and synthesis of functional molecules that can be integrated on different surfaces permits the use of nanostructured materials and devices for bottom-up nanotechnology. Finally, we discuss synergic effect on materials science.
Collapse
Affiliation(s)
- Sanjay Sahare
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
- Faculty of Physics, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Prachi Ghoderao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Yue Chan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
14
|
Cui D, Liu CH, Rosei F, Perepichka DF. Bidirectional Phase Transformation of Supramolecular Networks Using Two Molecular Signals. ACS NANO 2022; 16:1560-1566. [PMID: 35014801 DOI: 10.1021/acsnano.1c10122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reversible control of molecular self-assembly is omnipresent in adaptive biological systems, yet its realization in artificial systems remains a major challenge. Using scanning tunneling microscopy and density functional theory calculations, we show that a 2D supramolecular network formed by terthienobenzenetricarboxylic acid (TTBTA) can undergo a reversible structural transition between a porous and dense phase in response to different molecular signals (trimethyltripyrazolotriazine (TMTPT) and C60). TMTPT molecules can induce a phase transition from the TTBTA honeycomb to the dense phase, whereas a reverse transition can be triggered by introducing C60 molecules. This response stems from the selective association between signal molecules and TTBTA polymorphs. The successful realization of reversible molecular transformation represents important progress in controlling supramolecular surface nanostructures and could be potentially applicable in various areas of nanotechnology, including phase control, molecular sensing, and "smart" switchable surfaces.
Collapse
Affiliation(s)
- Daling Cui
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Cheng-Hao Liu
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Dmitrii F Perepichka
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
15
|
Dai H, Huang W, Zeng Q. Temperature-induced self-assembly transformation: an effective external stimulus on 2D supramolecular structures. NEW J CHEM 2022. [DOI: 10.1039/d2nj01139e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the development of nano-characterization technology, imaging and controlling of two-dimension (2D) self-assembled supramolecular structures on the surface have drawn increasing attention in nanoscience and technology. As an important influence...
Collapse
|
16
|
Velpula G, Martin C, Daelemans B, Hennrich G, Van der Auweraer M, Mali KS, De Feyter S. "Concentration-in-Control" self-assembly concept at the liquid-solid interface challenged. Chem Sci 2021; 12:13167-13176. [PMID: 34745548 PMCID: PMC8514005 DOI: 10.1039/d1sc02950a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
Self-assembled molecular networks (SAMNs) on surfaces evoke a lot of interest, both from a fundamental as well as application point of view. When formed at the liquid–solid interface, precise control over different polymorphs can be achieved by simply adjusting the concentration of molecular building blocks in solution. Significant influence of solute concentration on self-assembly behavior has been observed, whether the self-assembly behavior is controlled by either van der Waals forces or hydrogen bonding interactions. In both cases, high- and low-density supramolecular networks have been observed at high and low solute concentrations, respectively. In contrast to this “concentration-in-control” self-assembly concept here we report an atypical concentration dependent self-assembly behavior at a solution–solid interface. At the interface between heptanoic acid (HA) and highly oriented pyrolytic graphite (HOPG), we show, using scanning tunneling microscopy (STM), the formation of a low-density porous network at high solute concentrations, and a high-density compact network at low solute concentrations. This intriguing inverse concentration dependent self-assembly behavior has been attributed to the preaggregation of solute molecules in the heptanoic acid solution as revealed by UV-vis spectroscopy. The observed results have been correlated to the molecular density of self-assembled monolayers attained at the HA/HOPG interface. Surprise! against expectations, increasing (decreasing) the solute concentration leads to the formation of a low-density (high-density) self-assembled molecular network at the liquid–solid interface.![]()
Collapse
Affiliation(s)
- Gangamallaiah Velpula
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Cristina Martin
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium .,Unidad NanoCRIB, Centro Regional de Investigaciones Biomédicas Albacete-02071 Spain
| | - Brent Daelemans
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | | | - Mark Van der Auweraer
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
17
|
Bragança AM, Minoia A, Steeno R, Seibel J, Hirsch BE, Verstraete L, Ivasenko O, Müllen K, Mali KS, Lazzaroni R, De Feyter S. Detection and Stabilization of a Previously Unknown Two-Dimensional (Pseudo)polymorph using Lateral Nanoconfinement. J Am Chem Soc 2021; 143:11080-11087. [PMID: 34283574 DOI: 10.1021/jacs.1c04445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the detection and stabilization of a previously unknown two-dimensional (2D) pseudopolymorph of an alkoxy isophthalic acid using lateral nanoconfinement. The self-assembled molecular networks formed by the isophthalic acid derivative were studied at the interface between covalently modified graphite and an organic solvent. When self-assembled on graphite with moderate surface coverage of covalently bound aryl groups, a previously unknown metastable pseudopolymorph was detected. This pseudopolymorph, which was presumably "trapped" in between the surface bound aryl groups, underwent a time-dependent phase transition to the stable polymorph typically observed on pristine graphite. The stabilization of the pseudopolymorph was then achieved by using an alternative nanoconfinement strategy, where the domains of the pseudopolymorph could be formed and stabilized by restricting the self-assembly in nanometer-sized shallow compartments produced by STM-based nanolithography carried out on a graphite surface with a high density of covalently bound aryl groups. These experimental results are supported by molecular mechanics and molecular dynamics simulations, which not only provide important insight into the relative stabilities of the different structures, but also shed light onto the mechanism of the formation and stabilization of the pseudopolymorph under nanoscopic lateral confinement.
Collapse
Affiliation(s)
- Ana M Bragança
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Andrea Minoia
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Roelof Steeno
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Johannes Seibel
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Brandon E Hirsch
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Lander Verstraete
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Oleksandr Ivasenko
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
18
|
Li W, Xu S, Chen X, Xu C. Structural transformations of carboxyl acids networks induced by concentration and oriented external electric field. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Ustinov E. Thermodynamics, EOS, and heat capacity in molecular modeling of self-assembled molecular layers. J Chem Phys 2020; 153:204105. [PMID: 33261477 DOI: 10.1063/5.0031103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Self-assembled monolayers (SAMs) on solid surfaces represent a rapidly developed class of non-autonomous phases widely used in organic electronics, sensors, catalysis, and other applications. In many cases, the same organic molecules form various stable and metastable polymorphous structures that can transform to each other at certain parameters. A high rigidity of SAMs extremely complicates the evaluation of the chemical potential using standard methods based on thermodynamic integration. This study presents results of molecular modeling of two-dimensional structures of tripod-shaped molecules associated with the trimesic acid (TMA) molecules. A technique used here is based on a recently developed method of external fields imposed on an elongated simulation cell in the framework of a kinetic Monte Carlo algorithm. These fields are the external potential and a damping field that reduces the intermolecular potential and affects the system similar to the increase in temperature. Equations of state (EOS) for several TMA polymorphs have been obtained with the conventional Monte Carlo simulation. It was shown that, in each case, only one constant links the chemical potential obtained with the external field method and the EOS at any temperature and pressure. The heat capacities of SAMs at constant volume and pressure were also determined as functions of temperature and compressibility of the structure at given degrees of freedom. The approach can be used as a general tool for modeling and evaluation of thermodynamic properties of various rigid structures, including SAMs of functional organic molecules.
Collapse
Affiliation(s)
- Eugene Ustinov
- Ioffe Institute, 26 Polytechnicheskaya, St. Petersburg 194021, Russian Federation
| |
Collapse
|
20
|
Ochs O, Martsinovich N, Heckl WM, Lackinger M. Quantifying the Ultraslow Desorption Kinetics of 2,6-Naphthalenedicarboxylic Acid Monolayers at Liquid-Solid Interfaces. J Phys Chem Lett 2020; 11:7320-7326. [PMID: 32787298 DOI: 10.1021/acs.jpclett.0c01882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Kinetic effects in monolayer self-assembly at liquid-solid interfaces are not well explored but can provide unique insights. We use variable-temperature scanning tunneling microscopy (STM) to quantify the desorption kinetics of 2,6-naphthalenedicarboxylic acid (NDA) monolayers at nonanoic acid-graphite interfaces. Quantitative tracking of the decline of molecular coverages by STM between 57.5 and 65.0 °C unveiled single-exponential decays over the course of days. An Arrhenius plot of rate constants derived from fits results in a surprisingly high energy barrier of 208 kJ mol-1 that strongly contrasts with the desorption energy of 16.4 kJ mol-1 with respect to solution as determined from a Born-Haber cycle. This vast discrepancy indicates a high-energy transition state. Expanding these studies to further systems is the key to pinpointing the molecular origin of the remarkably large NDA desorption barrier.
Collapse
Affiliation(s)
- Oliver Ochs
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| | | | - Wolfgang M Heckl
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| | - Markus Lackinger
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| |
Collapse
|
21
|
Reynaerts R, Mali KS, De Feyter S. Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1291-1302. [PMID: 32953373 PMCID: PMC7476593 DOI: 10.3762/bjnano.11.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Structural polymorphism is ubiquitous in physisorbed self-assembled monolayers formed at the solution-solid interface. One of the ways to influence network formation at this interface is to physically decouple the self-assembled monolayer from the underlying substrate thereby removing the influence of the substrate lattice, if any. Here we show a systematic exploration of self-assembly of a typical building block, namely 4-tetradecyloxybenzoic acid at the 1-phenyloctane-graphite interface in the presence and in the absence of a buffer layer formed by a long chain alkane, namely n-pentacontane. Using scanning tunneling microscopy (STM), three different structural polymorphs were identified for 4-tetradecyloxybenzoic acid at the 1-phenyloctane-graphite interface. Surprisingly, the same three structures were formed on top of the buffer layer, albeit at different concentrations. Systematic variation of experimental parameters did not lead to any new network in the presence of the buffer layer. We discovered that the self-assembly on top of the buffer layer allows better control over the nanoscale manipulation of the self-assembled networks. Using the influence of the STM tip, we could initiate the nucleation of small isolated domains of the benzoic acid on-command in a reproducible fashion. Such controlled nucleation experiments hold promise for studying fundamental processes inherent to the assembly process on surfaces.
Collapse
Affiliation(s)
- Robby Reynaerts
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Kunal S Mali
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
22
|
Zeng X, Khan SB, Mahmood A, Lee SL. Nanoscale tailoring of supramolecular crystals via an oriented external electric field. NANOSCALE 2020; 12:15072-15080. [PMID: 32458926 DOI: 10.1039/d0nr01946a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The oriented external electric field of a scanning tunneling microscope (STM) has recently been adapted for controlling the chemical reaction and supramolecular phase transition at surfaces with molecular precision. However, to date, advance controls using such electric-fields for crystal engineering have not been achieved yet. Here, we present how the directional electric-field of an STM can be utilized to harness supramolecular crystallization on a solid surface. We show that a glass-like random-tiling assembly composed of p-terphenyl-3,5,3',5'-tetracarboxylic acid can transform into close-packed periodic assemblies under positive substrate bias conditions at the liquid/solid interface. Importantly, the nucleation and subsequent crystal growth for such field-induced products can be artificially tailored at the early stage in a real-time fashion. Through this method, we were able to produce a two-dimensional supramolecular single crystal. The as-prepared crystals with apparent brightness are ascribed to a spectroscopic feature linked to the electron density of states, which is thus strongly STM bias dependent.
Collapse
Affiliation(s)
- Xingming Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China 518060.
| | - Sadaf Bashir Khan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China 518060. and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Provence, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China 518060
| | - Ayyaz Mahmood
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China 518060. and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Provence, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China 518060
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China 518060.
| |
Collapse
|
23
|
Deng C, Liu Z, Ma C, Zhang H, Chi L. Dynamic Supramolecular Template: Multiple Stimuli-Controlled Size Adjustment of Porous Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5510-5516. [PMID: 32356994 DOI: 10.1021/acs.langmuir.0c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamically switchable porous networks offer exciting potential in functionalizing surfaces. The structure and morphology of the networks can be controlled by applying external stimuli. Here, a dynamic supramolecular template assembled by 1,3,5-tris(4-carboxyphenyl)benzene (BTB) is successfully achieved at the liquid-solid interface by applying two external stimuli simultaneously. Upon varying the concentration of BTB solution together with switching the polarity of the sample bias, self-assembled monolayers (SAMs) undergo phase transitions twice: an immediate transition from a compact structure to a macroporous (honeycomb) structure as a response to the change in the electric field and a fast-changing transition from the macroporous to a microporous (oblique) structure. With saturated BTB solution, however, the initial compact structure can only transform into the oblique structure after switching the polarity of the sample bias without the appearance of a honeycomb structure. The different phase transitions suggest that the dynamic supramolecular template can only survive at a specific concentration range and is obtainable by performing multiple stimuli simultaneously. Interestingly, introducing a guest molecule to the system can adjust the phase transition process and effectively stabilize the honeycomb structure of BTB. The flexibility associated with the porous networks renders it a dynamic supramolecular template for guest binding.
Collapse
Affiliation(s)
- Chenfang Deng
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Chao Ma
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Haiming Zhang
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
24
|
Anzai M, Iyoda M, De Feyter S, Tobe Y, Tahara K. Trapping a pentagonal molecule in a self-assembled molecular network: an alkoxylated isosceles triangular molecule does the job. Chem Commun (Camb) 2020; 56:5401-5404. [PMID: 32286587 DOI: 10.1039/d0cc01823f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a unique example of on-surface adaptive self-assembly. A pentagon-shaped macrocycle, cyclic [5]meta-phenyleneacetylene [5]CMPA, is trapped by the adaptive supramolecular network formed by an isosceles triangular molecule, alkoxy substituted dehydrobenzo[14]annulene [14]ISODBA at the liquid/graphite interface, leading to a highly ordered and large-area bicomponent self-assembled molecular network (SAMN), as revealed by scanning tunneling microscopy (STM).
Collapse
Affiliation(s)
- Masaru Anzai
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| | - Masahiko Iyoda
- Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Yoshito Tobe
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan and Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30030, Taiwan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
25
|
Teyssandier J, Mali KS, De Feyter S. Halogen Bonding in Two-Dimensional Crystal Engineering. ChemistryOpen 2020; 9:225-241. [PMID: 32071832 PMCID: PMC7011184 DOI: 10.1002/open.201900337] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Halogen bonds, which provide an intermolecular interaction with moderate strength and high directionality, have emerged as a promising tool in the repertoire of non-covalent interactions. In this review, we provide a survey of the literature where halogen bonding was used for the fabrication of supramolecular networks on solid surfaces. The definitions of, and the distinction between halogen bonding and halogen-halogen interactions are provided. Self-assembled networks formed at the solution/solid interface and at the vacuum-solid interface, stabilized in part by halogen bonding, are discussed. Besides the broad classification based on the interface at which the systems are studied, the systems are categorized further as those sustained by halogen-halogen and halogen-heteroatom contacts.
Collapse
Affiliation(s)
- Joan Teyssandier
- Division of Molecular Imaging and Photonics Department of ChemistryKU Leuven-University of LeuvenCelestijnenlaan 200F3001LeuvenBelgium
| | - Kunal S. Mali
- Division of Molecular Imaging and Photonics Department of ChemistryKU Leuven-University of LeuvenCelestijnenlaan 200F3001LeuvenBelgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics Department of ChemistryKU Leuven-University of LeuvenCelestijnenlaan 200F3001LeuvenBelgium
| |
Collapse
|
26
|
Peng X, Zhao F, Peng Y, Li J, Zeng Q. Dynamic surface-assisted assembly behaviours mediated by external stimuli. SOFT MATTER 2020; 16:54-63. [PMID: 31712788 DOI: 10.1039/c9sm01847f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular self-assembly behaviors on solid substrates have been widely investigated in the last few decades. Owing to the complexity of interfacial assembly systems, the precise regulation of supramolecular nanostructures is still challenging and waits to be solved. The supramolecular nanostructures are governed by non-covalent bonds, so they can be disrupted and influenced by an external environment. In this review, the dynamic supramolecular nanostructures that are mediated by external stimuli containing guest species, light irradiation, temperature and electric field are discussed in detail. The research studies mentioned in this article are all accomplished by STM, and the effects of these external stimuli on the assembled nanostructures have been elucidated exhaustively here.
Collapse
Affiliation(s)
- Xuan Peng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China. and Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengying Zhao
- Jiangxi College of Applied Technology, Ganzhou 341000, China. and Engineering Research Center of Nano-Geo Materials of Ministry of Education, P. R. China University of Geosciences, Wuhan 430074, China
| | - Yang Peng
- Jiangxi College of Applied Technology, Ganzhou 341000, China. and Engineering Research Center of Nano-Geo Materials of Ministry of Education, P. R. China University of Geosciences, Wuhan 430074, China
| | - Jing Li
- Jiangxi College of Applied Technology, Ganzhou 341000, China. and Engineering Research Center of Nano-Geo Materials of Ministry of Education, P. R. China University of Geosciences, Wuhan 430074, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China. and Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Mahmood A, Zeng X, Saleemi AS, Cheng KY, Lee SL. Electric-field-induced supramolecular phase transitions at the liquid/solid interface: cat-assembly from solvent additives. Chem Commun (Camb) 2020; 56:8790-8793. [DOI: 10.1039/d0cc01670e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrically triggered phase transformations of trimesic acid can be efficiently promoted to occur in an environment where trace levels of a highly polar solvent additive are present at the liquid/solid interface, as revealed by STM and DFT simulations.
Collapse
Affiliation(s)
- Ayyaz Mahmood
- Institute for Advanced Study
- Shenzhen University
- Shenzhen
- China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Provence
| | - Xingming Zeng
- Institute for Advanced Study
- Shenzhen University
- Shenzhen
- China
| | - Awais Siddique Saleemi
- Institute for Advanced Study
- Shenzhen University
- Shenzhen
- China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Provence
| | - Kum-Yi Cheng
- Institute for Advanced Study
- Shenzhen University
- Shenzhen
- China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Provence
| | - Shern-Long Lee
- Institute for Advanced Study
- Shenzhen University
- Shenzhen
- China
| |
Collapse
|
28
|
Pinfold H, Pattison G, Costantini G. Fluorination as a route towards unlocking the hydrogen bond donor ability of phenolic compounds in self-assembled monolayers. CrystEngComm 2020. [DOI: 10.1039/d0ce00213e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorination turns a prototypical diphenol into an effective hydrogen-bond-donating building block for the formation of 2D phenol–pyridine cocrystals.
Collapse
Affiliation(s)
- Harry Pinfold
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | |
Collapse
|
29
|
St John A, Roth MW, Firlej L, Kuchta B, Charra F, Wexler C. Computer modeling of 2D supramolecular nanoporous monolayers self-assembled on graphite. NANOSCALE 2019; 11:21284-21290. [PMID: 31667485 DOI: 10.1039/c9nr05710b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nano-porous two-dimensional molecular crystals, self-assembled on atomically flat host surfaces offer a broad range of possible applications, from molecular electronics to future nano-machines. Computer-assisted designing of such complex structures requires numerically intensive modeling methods. Here we present the results of extensive, fully atomistic simulations of self-assembled monolayers of interdigitated molecules of 1,3,5-tristyrilbenzene substituted by C6 alkoxy peripheral chains (TSB3,5-C6), deposited onto highly-ordered pyrolytic graphite. Structural and electronic properties of the TSB3,5-C6 molecules were determined from ab initio calculations, then used in Molecular Dynamics simulations to analyze the mechanism of formation, epitaxy, and stability of the TSB3,5-C6 nanoporous superlattice. We show that the monolayer disordering results from the competition between flexibility of the C6 chains and their stabilization by interdigitation. The inclusion of guest molecules (benzene and pyrene) into superlattice nanopores stabilizes the monolayer. The alkoxy chain mobility and available pore space defines the systems dynamics, essential for potential application.
Collapse
Affiliation(s)
- Alexander St John
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| | - Michael W Roth
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA. and Physics Department, Waldorf University, Forest City, IA 50436, USA
| | - Lucyna Firlej
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA. and Laboratoire Charles Coulomb, CNRS-Université de Montpellier, Montpellier, France
| | - Bogdan Kuchta
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA. and Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland and Laboratoire MADRIEL, Aix-Marseille Université-CNRS, Marseille, France
| | - Fabrice Charra
- Service de Physique de l'État Condensé (SPEC), CEA CNRS UMR-3680, Université Paris Saclay, CEA Saclay F-91191 Gif-sur-Yvette, France
| | - Carlos Wexler
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
30
|
Leasor C, Goshinsky K, Chen KH, Li Z. Probing Molecular Nanostructures of Aromatic Terephthalic Acids Triggered by Intermolecular Hydrogen Bonds and Electrochemical Potential. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13259-13267. [PMID: 31580684 DOI: 10.1021/acs.langmuir.9b02130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly provides unique routes to create supramolecular nanostructures at well-defined surfaces. In the present work, we employed scanning tunneling microscopy (STM) in combination with electrochemical techniques to explore the adsorption and phase formation of a series of aromatic carboxylic acids (ACAs) at Au(111)/0.1 M HClO4. Specific goals are to elucidate the roles of electrochemical potential and directional hydrogen-bonding on the structures and orientation of individual ACAs that form nanoarchitectures. ACAs are prototype materials for supramolecular self-assemblies via stereospecific hydrogen bonds between neighboring molecules. In this study, we mainly focus on a special ACA, terephthalic acid (TPA), which is almost insoluble in water, making the assembly of this molecule from aqueous solution challenging. Depending on the applied electric field, TPA molecules form distinctly different, highly ordered adlayers on Au(111) triggered by directional intermolecular hydrogen bonds. At low electrochemical potentials, TPA molecules are planar oriented, forming a potentially infinite hydrogen-bonded adlayer without any observed domain boundaries. The increase of the electrode potential triggers the deprotonation of one carboxylic acid functional group of TPA; additionally, this is accompanied by an orientation change of molecules from planar to perpendicular. In contrast, structural "defects" and multiple domain boundaries were found at this positively charged surface. The assembled nanostructures of TPA are compared with other ACAs (trimesic acid, benzoic acid, and isophthalic acid), and corresponding adsorption models were built for all molecular adlayers, showing that intermolecular hydrogen-bonding plays a determining role in the formation of two-dimensional ACA nanostructures.
Collapse
Affiliation(s)
- Cody Leasor
- Department of Chemistry , Ball State University , Muncie , Indiana 47306 , United States
| | - Kelsi Goshinsky
- Department of Chemistry , Ball State University , Muncie , Indiana 47306 , United States
| | - Kuo-Hao Chen
- Department of Chemistry , Ball State University , Muncie , Indiana 47306 , United States
| | - Zhihai Li
- Department of Chemistry , Ball State University , Muncie , Indiana 47306 , United States
| |
Collapse
|
31
|
Li SY, Yang XQ, Chen T, Wang D, Wang SF, Wan LJ. Tri-Stable Structural Switching in 2D Molecular Assembly at the Liquid/Solid Interface Triggered by External Electric Field. ACS NANO 2019; 13:6751-6759. [PMID: 31188581 DOI: 10.1021/acsnano.9b01337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A tri-stable structural switching between different polymorphisms is presented in the 2D molecular assembly of a 5-(benzyloxy)isophthalic acid derivative (BIC-C12) at the liquid/solid interface. The assembled structure of BIC-C12 is sensitive to the applied voltage between the STM tip and the sample surface. A compact lamellar structure is exclusively observed at positive sample bias, while a porous honeycomb structure or a quadrangular structure is preferred at negative sample bias. Selective switching between the lamellar structure and the honeycomb structure or the quadrangular structure is realized by controlling the polarity and magnitude of the sample bias. The transition between the honeycomb structure and the quadrangular structure is, however, absent in the assembly. This tri-stable structural switching is closely related to the molecular concentration in the liquid phase. This result provides insights into the effect of external electric field on molecular assembly and benefits the design and construction of switchable molecular architectures on surfaces.
Collapse
Affiliation(s)
- Shu-Ying Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , People's Republic of China
- Faculty of Chemistry , Northeast Normal University , Changchun 130024 , People's Republic of China
| | - Xue-Qing Yang
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , People's Republic of China
- Hubei University , Wuhan 400062 , People's Republic of China
| | - Ting Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , People's Republic of China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Sheng-Fu Wang
- Hubei University , Wuhan 400062 , People's Republic of China
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , People's Republic of China
| |
Collapse
|
32
|
Hupfer ML, Herrmann‐Westendorf F, Kaufmann M, Weiß D, Beckert R, Dietzek B, Presselt M. Autonomous Supramolecular Interface Self‐Healing Monitored by Restoration of UV/Vis Absorption Spectra of Self‐Assembled Thiazole Layers. Chemistry 2019; 25:8630-8634. [DOI: 10.1002/chem.201901549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Maximilian L. Hupfer
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT) Albert-Einstein-Str. 9 07745 Jena Germany
| | - Felix Herrmann‐Westendorf
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT) Albert-Einstein-Str. 9 07745 Jena Germany
| | - Martin Kaufmann
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Institute of Organic and Macromolecular ChemistryFriedrich Schiller University Jena Humboldstraße 10 07743 Jena Germany
| | - Dieter Weiß
- Institute of Organic and Macromolecular ChemistryFriedrich Schiller University Jena Humboldstraße 10 07743 Jena Germany
| | - Rainer Beckert
- Institute of Organic and Macromolecular ChemistryFriedrich Schiller University Jena Humboldstraße 10 07743 Jena Germany
| | - Benjamin Dietzek
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT) Albert-Einstein-Str. 9 07745 Jena Germany
| | - Martin Presselt
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT) Albert-Einstein-Str. 9 07745 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
- sciclus GmbH & Co. KG Moritz-von-Rohr-Str. 1a 07745 Jena Germany
| |
Collapse
|
33
|
Hu J, Shen K, Hu J, Sun H, Tian Q, Zhaofeng, Liang, Huang H, Jiang Z, Wells JW, Song F. Structural Transformation of 2,7‐Dibromopyrene on Au(111) Mediated by Halogen‐Bonding Motifs. Chemphyschem 2019; 20:2376-2381. [DOI: 10.1002/cphc.201900259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jinbang Hu
- Key Laboratory of Interfacial Physics and Technology and Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 China
- University of Chinese Academy Sciences Beijing 101000 China
| | - Kongchao Shen
- Key Laboratory of Interfacial Physics and Technology and Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 China
| | - Jinping Hu
- Key Laboratory of Interfacial Physics and Technology and Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 China
- University of Chinese Academy Sciences Beijing 101000 China
| | - Haoliang Sun
- Key Laboratory of Interfacial Physics and Technology and Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 China
| | - Qiwei Tian
- Key Laboratory of Interfacial Physics and Technology and Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 China
- School of Physics Science and ElectronicsCentral South University Changsha 410083 China
| | - Zhaofeng
- Key Laboratory of Interfacial Physics and Technology and Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 China
| | - Liang
- Key Laboratory of Interfacial Physics and Technology and Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 China
| | - Han Huang
- School of Physics Science and ElectronicsCentral South University Changsha 410083 China
| | - Zheng Jiang
- Key Laboratory of Interfacial Physics and Technology and Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 China
- University of Chinese Academy Sciences Beijing 101000 China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 China
| | - Justin W. Wells
- Center for Quantum Spintronics, Department of PhysicsNorwegian University of Science and Technology Trondheim NO-7491 Norway
| | - Fei Song
- Key Laboratory of Interfacial Physics and Technology and Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201204 China
- University of Chinese Academy Sciences Beijing 101000 China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 China
| |
Collapse
|
34
|
Kikkawa Y, Nagasaki M, Koyama E, Tsuzuki S, Hiratani K. Hexagonal array formation by intermolecular halogen bonding using a binary blend of linear building blocks: STM study. Chem Commun (Camb) 2019; 55:3955-3958. [PMID: 30874258 DOI: 10.1039/c9cc00532c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hexagonal arrays were fabricated via intermolecular halogen bonding between two linear molecular building blocks in a bicomponent blend. The substitution position of the pyridine N atom involved in the halogen bond plays an important role in the formation of the hexagonal structures.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Mayumi Nagasaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Emiko Koyama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kazuhisa Hiratani
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
35
|
Zhu H, Niu T, Li A. Conformational Transitions of Phase-Separated Binary Molecules Assisted by Surface Dehalogenation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3507-3512. [PMID: 30759989 DOI: 10.1021/acs.langmuir.8b04220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular devices have become an emergent branch of nanoscience and technology beyond traditional silicon-based electronic devices. The properties of these devices are intimately related to the molecular conformation and packing. In this article, three different conformations of melamine molecules are observed on Au(111), and a transition from the lying-down to standing-up phase with long-range order is realized in melamine chains with the assistance of hexabromobenzene (HBB). We argue that it is the expanding of HBB domains from hexagonal to the dimer phase due to surface dehalogenation that facilitates the dehydrogenation of melamine to form a standing-up conformation. Similar transitions are also accomplished on the Ag(111) surface. Our results provide an effective way to achieve standing-up molecular arrays with long-range order on relatively less active metals. This may have significant implications in fabricating organic thin film transistors.
Collapse
Affiliation(s)
- Hailong Zhu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
- CAS Center for Excellence in Superconducting Electronics (CENSE) , Shanghai 200050 , People's Republic of China
| | - Tianchao Niu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , People's Republic of China
- CAS Center for Excellence in Superconducting Electronics (CENSE) , Shanghai 200050 , People's Republic of China
| | - Ang Li
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , People's Republic of China
- CAS Center for Excellence in Superconducting Electronics (CENSE) , Shanghai 200050 , People's Republic of China
| |
Collapse
|
36
|
Jana A, Mishra P, Das N. Polymorphic self-assembly of pyrazine-based tectons at the solution-solid interface. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:494-499. [PMID: 30873321 PMCID: PMC6404514 DOI: 10.3762/bjnano.10.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Exploring the surface self-assembly of small molecules that act as building blocks (tectons) for complex supramolecular structures is crucial for realizing surface-supported functional molecular devices. Here, we report on the synthesis and surface self-assembly of a new pyrazine-derived molecule with pyridine pendants. Ambient scanning tunneling microscopy investigation at the solution-solid interface reveals polymorphic self-assembly of these molecules on a HOPG substrate. Two different molecular packing structures with equal distribution are observed. Detailed analysis of the STM images emphasizes the crucial role of weak intermolecular hydrogen bonding, and molecule-substrate interactions in the formation of the observed polymorphs. Such weak hydrogen bonding interactions are highly desirable for the formation of modular supramolecular architectures since they can provide sufficiently robust molecular structures and also facilitate error correction.
Collapse
Affiliation(s)
- Achintya Jana
- Indian Institute of Technology Patna, Bihta, Patna-801106, India
| | - Puneet Mishra
- Central University of South Bihar, Gaya-824236, India
| | - Neeladri Das
- Indian Institute of Technology Patna, Bihta, Patna-801106, India
| |
Collapse
|
37
|
Hu Y, Bragança AM, Verstraete L, Ivasenko O, Hirsch BE, Tahara K, Tobe Y, De Feyter S. Phase selectivity triggered by nanoconfinement: the impact of corral dimensions. Chem Commun (Camb) 2019; 55:2226-2229. [DOI: 10.1039/c8cc08602h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phase behavior of self-assembled molecular networks is affected by spatial confinement in corrals.
Collapse
Affiliation(s)
- Yi Hu
- Department of Chemistry
- Division of Molecular Imaging and Photonics
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Ana M. Bragança
- Department of Chemistry
- Division of Molecular Imaging and Photonics
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Lander Verstraete
- Department of Chemistry
- Division of Molecular Imaging and Photonics
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Oleksandr Ivasenko
- Department of Chemistry
- Division of Molecular Imaging and Photonics
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Brandon E. Hirsch
- Department of Chemistry
- Division of Molecular Imaging and Photonics
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Yoshito Tobe
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Steven De Feyter
- Department of Chemistry
- Division of Molecular Imaging and Photonics
- KU Leuven
- B-3001 Leuven
- Belgium
| |
Collapse
|
38
|
Ding Y, Wang X, Xie L, Yao X, Xu W. Two-dimensional self-assembled nanostructures of nucleobases and their related derivatives on Au(111). Chem Commun (Camb) 2018; 54:9259-9269. [PMID: 30027963 DOI: 10.1039/c8cc03585g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The construction of two-dimensional (2D) self-assembled nanostructures has been one of the considerably interesting areas of on-surface chemistry in the past few decades, and has benefited from the rapid development and improvement of scanning probe microscopy techniques. In this research field, many attempts have been made in the controllable fabrication of well-ordered and multifunctional surface nanostructures, which attracted interest because of the prospect for artificial design of functional molecular nanodevices. DNA and RNA are considered to be programmable self-assembly systems and it is possible to use their base sequences to encode instructions for assembly in a predetermined fashion at the nanometer scale. As important constituents of nucleic acids, nucleobases, with intrinsic functional groups for hydrogen bonding, coordination bonding, and electrostatic interactions, can be employed as a potential system for the versatile construction of various biomolecular nanostructures, which may be used to structure the self-assembly of DNA-based artificial molecular constructions and play an important role in novel biosensors based on surface functionalization. In this article, we will review the recent progress of on-surface self-assembly of nucleobases and their derivatives together with different reactants (e.g., metals, halogens, salts and water), and as a result, various 2D surface nanostructures are summarized.
Collapse
Affiliation(s)
- Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | | | | | | | | |
Collapse
|
39
|
Garah ME, Cook TR, Sepehrpour H, Ciesielski A, Stang PJ, Samorì P. Concentration-dependent supramolecular patterns of C 3 and C 2 symmetric molecules at the solid/liquid interface. Colloids Surf B Biointerfaces 2018; 168:211-216. [PMID: 29198983 DOI: 10.1016/j.colsurfb.2017.11.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022]
Abstract
Here we report on a scanning tunnelling microscopy (STM) investigation on the self-assembly of C3- and C2-symmetric molecules at the solution/graphite interface. 1,3,5-tris((E)-2-(pyridin-4-yl)vinyl)benzene and 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethane are used as model systems. These molecules displayed a concentration dependent self-assembly behaviour on graphite, resulting in highly ordered supramolecular structures, which are stabilized jointly by van der Waals substrate-adsorbate interactions and in-plane intermolecular H-bonding. Denser packing is obtained when applying a relatively high concentration solution to the basal plane of the surface whereas a less dense porous network is observed upon lowering the concentration. We show that the molecular conformation does not influence the stability of the self-assembly and a twisted molecule can pack into dense and porous architectures under the concentration effect.
Collapse
Affiliation(s)
- Mohamed El Garah
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| | - Timothy R Cook
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, United State
| | - Hajar Sepehrpour
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, United State
| | - Artur Ciesielski
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France.
| | - Peter J Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, United State.
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France.
| |
Collapse
|
40
|
Ubink J, Enache M, Stöhr M. Bias-induced conformational switching of supramolecular networks of trimesic acid at the solid-liquid interface. J Chem Phys 2018; 148:174703. [PMID: 29739202 DOI: 10.1063/1.5017930] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Using the tip of a scanning tunneling microscope, an electric field-induced reversible phase transition between two planar porous structures ("chickenwire" and "flower") of trimesic acid was accomplished at the nonanoic acid/highly oriented pyrolytic graphite interface. The chickenwire structure was exclusively observed for negative sample bias, while for positive sample bias only the more densely packed flower structure was found. We suggest that the slightly negatively charged carboxyl groups of the trimesic acid molecule are the determining factor for this observation: their adsorption behavior varies with the sample bias and is thus responsible for the switching behavior.
Collapse
Affiliation(s)
- J Ubink
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - M Enache
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - M Stöhr
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
41
|
Ochs O, Heckl WM, Lackinger M. Immersion-scanning-tunneling-microscope for long-term variable-temperature experiments at liquid-solid interfaces. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:053707. [PMID: 29864836 DOI: 10.1063/1.5030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fundamental insights into the kinetics and thermodynamics of supramolecular self-assembly on surfaces are uniquely gained by variable-temperature high-resolution Scanning-Tunneling-Microscopy (STM). Conventionally, these experiments are performed with standard ambient microscopes extended with heatable sample stages for local heating. However, unavoidable solvent evaporation sets a technical limit on the duration of these experiments, hence prohibiting long-term experiments. These, however, would be highly desirable to provide enough time for temperature stabilization and settling of drift but also to study processes with inherently slow kinetics. To overcome this dilemma, we propose a STM that can operate fully immersed in solution. The instrument is mounted onto the lid of a hermetically sealed heatable container that is filled with the respective solution. By closing the container, both the sample and microscope are immersed in solution. Thereby solvent evaporation is eliminated and an environment for long-term experiments with utmost stable and controllable temperatures between room-temperature and 100 °C is provided. Important experimental requirements for the immersion-STM and resulting design criteria are discussed, the strategy for protection against corrosive media is described, the temperature stability and drift behavior are thoroughly characterized, and first long-term high resolution experiments at liquid-solid interfaces are presented.
Collapse
Affiliation(s)
- Oliver Ochs
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Wolfgang M Heckl
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Markus Lackinger
- Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
42
|
Fan Q, Liu L, Dai J, Wang T, Ju H, Zhao J, Kuttner J, Hilt G, Gottfried JM, Zhu J. Surface Adatom Mediated Structural Transformation in Bromoarene Monolayers: Precursor Phases in Surface Ullmann Reaction. ACS NANO 2018; 12:2267-2274. [PMID: 29455518 DOI: 10.1021/acsnano.7b06787] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Structural transformations of supramolecular systems triggered by external stimuli maintain great potential for application in the fabrication of molecular storage devices. Using combined ultrahigh vacuum scanning tunneling microscopy, X-ray photoemission spectroscopy, and density functional theory calculations, we observed the surface adatom mediated structural transformation from 4,4''-dibromo- m-terphenyl (DMTP)-based halogen-bonded networks to DMTP-Cu(Ag) coordination networks on Cu(111) and Ag(111) at low temperatures. The halogen-bonded networks, which were formed on Cu(111) at 97 K and on Ag(111) at 93 K, consist of intact DMTP molecules stabilized by triple Br···Br bonds. The DMTP-Cu(Ag) coordination networks form on Cu(111) at 113 K and on Ag(111) at 103 K. They contain alternatingly arranged intact DMTP molecules and Cu(Ag) adatoms stabilized by weak C-Br···Cu(Ag) coordination bonds. Annealing the DMTP-Ag structure to 333 K leads to the initiation of C-Br bond scission. This observation suggests that the DMTP-Ag coordination network represents the intermediate phase ready for dehalogenation, which is the first step of the surface Ullmann reaction.
Collapse
Affiliation(s)
- Qitang Fan
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230029 , P. R. China
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Strasse , 35032 Marburg , Germany
| | - Liming Liu
- Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Jingya Dai
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230029 , P. R. China
| | - Tao Wang
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230029 , P. R. China
| | - Huanxin Ju
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230029 , P. R. China
| | - Jin Zhao
- Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Julian Kuttner
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Strasse , 35032 Marburg , Germany
| | - Gerhard Hilt
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Strasse , 35032 Marburg , Germany
| | - J Michael Gottfried
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Strasse , 35032 Marburg , Germany
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230029 , P. R. China
| |
Collapse
|
43
|
Frath D, Yokoyama S, Hirose T, Matsuda K. Photoresponsive supramolecular self-assemblies at the liquid/solid interface. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2017.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Cai ZF, Yan HJ, Wang D, Wan LJ. Potential- and concentration-dependent self-assembly structures at solid/liquid interfaces. NANOSCALE 2018; 10:3438-3443. [PMID: 29393947 DOI: 10.1039/c7nr08475g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report the potential and concentration controlled assembly of an alkyl-substituted benzo[1,2-b:4,5-b']dithiophene (DDBDT) on an Au(111) electrode by in situ electrochemical scanning tunneling microscopy (ECSTM). It is found that a lamellar structure is formed at low concentrations, while herringbone-like and rhombus structures are obtained at high concentrations. In situ STM results reveal that herringbone-like and rhombus structures could transform into lamellar structures when the electrode potential is tuned negatively. A phase diagram is obtained to illustrate the relationship and effects of concentration and substrate potential on the interfacial structures of DDBDT. Both the substrate potential and the solute concentration can modulate the self-assembly structure through changing the molecular surface density. The results provide important insights into the understanding and precise control of molecular self-assembly on solid surfaces through a combination of different approaches.
Collapse
Affiliation(s)
- Zhen-Feng Cai
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China.
| | | | | | | |
Collapse
|
45
|
Janica I, Patroniak V, Samorì P, Ciesielski A. Imine-Based Architectures at Surfaces and Interfaces: From Self-Assembly to Dynamic Covalent Chemistry in 2D. Chem Asian J 2018; 13:465-481. [DOI: 10.1002/asia.201701629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Iwona Janica
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
- Centre for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c 61-614 Poznań Poland
| | - Violetta Patroniak
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
| | - Paolo Samorì
- CNRS, ISIS; Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Artur Ciesielski
- CNRS, ISIS; Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
46
|
Teyssandier J, Feyter SD, Mali KS. Host-guest chemistry in two-dimensional supramolecular networks. Chem Commun (Camb) 2018; 52:11465-11487. [PMID: 27709179 DOI: 10.1039/c6cc05256h] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanoporous supramolecular networks physisorbed on solid surfaces have been extensively used to immobilize a variety of guest molecules. Host-guest chemistry in such two-dimensional (2D) porous networks is a rapidly expanding field due to potential applications in separation technology, catalysis and nanoscale patterning. Diverse structural topologies with high crystallinity have been obtained to capture molecular guests of different sizes and shapes. A range of non-covalent forces such as hydrogen bonds, van der Waals interactions, coordinate bonds have been employed to assemble the host networks. Recent years have witnessed a surge in the activity in this field with the implementation of rational design strategies for realizing controlled and selective guest capture. In this feature article, we review the development in the field of surface-supported host-guest chemistry as studied by scanning tunneling microscopy (STM). Typical host-guest architectures studied on solid surfaces, both under ambient conditions at the solution-solid interface as well as those formed at the ultrahigh vacuum (UHV)-solid interface, are described. We focus on isoreticular host networks, hosts functionalized pores and dynamic host-guest systems that respond to external stimuli.
Collapse
Affiliation(s)
- Joan Teyssandier
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B3001 Leuven, Belgium.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B3001 Leuven, Belgium.
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B3001 Leuven, Belgium.
| |
Collapse
|
47
|
Kikkawa Y, Tsuzuki S, Kashiwada A, Hiratani K. Self-assembled 2D patterns of structural isomers in isobutenyl compounds revealed by STM at solid/liquid interface. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Aitchison H, Lu H, Ortiz de la Morena R, Cebula I, Zharnikov M, Buck M. Self-assembly of 1,3,5-benzenetribenzoic acid on Ag and Cu at the liquid/solid interface. Phys Chem Chem Phys 2018; 20:2731-2740. [DOI: 10.1039/c7cp06160a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Big difference: molecules of benzenetribenzoic acid are disordered on Cu but highly organised on Ag, forming a monopodal row structure.
Collapse
Affiliation(s)
- Hannah Aitchison
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| | - Hao Lu
- Angewandte Physikalische Chemie
- Universität Heidelberg
- 69120 Heidelberg
- Germany
| | | | - Izabela Cebula
- Department of Chemical and Process Engineering
- University of Strathclyde
- James Weir Building
- Glasgow G1 1XJ
- UK
| | - Michael Zharnikov
- Angewandte Physikalische Chemie
- Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Manfred Buck
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| |
Collapse
|
49
|
Velpula G, Teyssandier J, De Feyter S, Mali KS. Nanoscale Control over the Mixing Behavior of Surface-Confined Bicomponent Supramolecular Networks Using an Oriented External Electric Field. ACS NANO 2017; 11:10903-10913. [PMID: 29112378 PMCID: PMC5707626 DOI: 10.1021/acsnano.7b04610] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Strong electric fields are known to influence the properties of molecules as well as materials. Here we show that by changing the orientation of an externally applied electric field, one can locally control the mixing behavior of two molecules physisorbed on a solid surface. Whether the starting two-component network evolves into an ordered two-dimensional (2D) cocrystal, yields an amorphous network where the two components phase separate, or shows preferential adsorption of only one component depends on the solution stoichiometry. The experiments are carried out by changing the orientation of the strong electric field that exists between the tip of a scanning tunneling microscope and a solid substrate. The structure of the two-component network typically changes from open porous at negative substrate bias to relatively compact when the polarity of the applied bias is reversed. The electric-field-induced mixing behavior is reversible, and the supramolecular system exhibits excellent stability and good response efficiency. When molecular guests are adsorbed in the porous networks, the field-induced switching behavior was found to be completely different. Plausible reasons behind the field-induced mixing behavior are discussed.
Collapse
Affiliation(s)
- Gangamallaiah Velpula
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Joan Teyssandier
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
50
|
Garah ME, Borré E, Ciesielski A, Dianat A, Gutierrez R, Cuniberti G, Bellemin-Laponnaz S, Mauro M, Samorì P. Light-Induced Contraction/Expansion of 1D Photoswitchable Metallopolymer Monitored at the Solid-Liquid Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701790. [PMID: 28841774 DOI: 10.1002/smll.201701790] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The use of a bottom-up approach to the fabrication of nanopatterned functional surfaces, which are capable to respond to external stimuli, is of great current interest. Herein, the preparation of light-responsive, linear supramolecular metallopolymers constituted by the ideally infinite repetition of a ditopic ligand bearing an azoaryl moiety and Co(II) coordination nodes is described. The supramolecular polymerization process is followed by optical spectroscopy in dimethylformamide solution. Noteworthy, a submolecularly resolved scanning tunneling microscopy (STM) study of the in situ reversible trans-to-cis photoisomerization of a photoswitchable metallopolymer that self-assembles into 2D crystalline patterns onto a highly oriented pyrolytic graphite surface is achieved for the first time. The STM analysis of the nanopatterned surfaces is corroborated by modeling the physisorbed species onto a graphene slab before and after irradiation by means of density functional theory calculation. Significantly, switching of the monolayers consisting of supramolecular Co(II) metallopolymer bearing trans-azoaryl units to a novel pattern based on cis isomers can be triggered by UV light and reversed back to the trans conformer by using visible light, thereby restoring the trans-based supramolecular 2D packing. These findings represent a step forward toward the design and preparation of photoresponsive "smart" surfaces organized with an atomic precision.
Collapse
Affiliation(s)
- Mohamed El Garah
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Etienne Borré
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Département des Matériaux Organiques, Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, 67034, Strasbourg, France
| | - Artur Ciesielski
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062, Dresden, Germany
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062, Dresden, Germany
- Center for Advancing Electronics Dresden, Dresden Center for Computational Materials Science, Dresden University of Technology, 01062, Dresden, Germany
| | - Stéphane Bellemin-Laponnaz
- Département des Matériaux Organiques, Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, 67034, Strasbourg, France
| | - Matteo Mauro
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Paolo Samorì
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|