1
|
Nomura K, Hochido H, Morita Y, Hashimoto S, Kawada H. Preparation of sterically hindered peptides using trifluoroacetyl protection: incorporation of N-alkyl-α,α-dialkyl amino acids into N-alkyl amino acids. Chem Commun (Camb) 2025; 61:4856-4859. [PMID: 40042883 DOI: 10.1039/d4cc05780e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
We have established a synthetic method for sterically hindered sequences, specifically the motif of N-alkyl-α,α-dialkyl amino acids to N-alkyl amino acids. The method consists of two steps, exploiting the unique properties of the trifluoroacetyl group for N-protection: enhancing the electrophilicity of Tfa-protected N-H amino acids, and increasing the acidity of the N-H moiety to enable site-selective N-alkylation.
Collapse
Affiliation(s)
- Kenichi Nomura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan.
| | - Hidekazu Hochido
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan.
| | - Yuya Morita
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan.
| | - Satoshi Hashimoto
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan.
| | - Hatsuo Kawada
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan.
| |
Collapse
|
2
|
Schröder MP, Pfeiffer IPM, Mordhorst S. Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry. Beilstein J Org Chem 2024; 20:1652-1670. [PMID: 39076295 PMCID: PMC11285071 DOI: 10.3762/bjoc.20.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
This review article aims to highlight the role of methyltransferases within the context of ribosomally synthesised and post-translationally modified peptide (RiPP) natural products. Methyltransferases play a pivotal role in the biosynthesis of diverse natural products with unique chemical structures and bioactivities. They are highly chemo-, regio-, and stereoselective allowing methylation at various positions. The different possible acceptor regions in ribosomally synthesised peptides are described in this article. Furthermore, we will discuss the potential application of these methyltransferases as powerful biocatalytic tools in the synthesis of modified peptides and other bioactive compounds. By providing an overview of the various methylation options available, this review is intended to emphasise the biocatalytic potential of RiPP methyltransferases and their impact on the field of natural product chemistry.
Collapse
Affiliation(s)
- Maria-Paula Schröder
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Isabel P-M Pfeiffer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Silja Mordhorst
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Colombo É, Désilets A, Hassanzadeh M, Lemieux G, Marois I, Cliche D, Delbrouck JA, Murza A, Jean F, Marsault E, Richter MV, Leduc R, Boudreault PL. Optimization of Ketobenzothiazole-Based Type II Transmembrane Serine Protease Inhibitors to Block H1N1 Influenza Virus Replication. ChemMedChem 2024; 19:e202300458. [PMID: 37864572 DOI: 10.1002/cmdc.202300458] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Human influenza viruses cause acute respiratory symptoms that can lead to death. Due to the emergence of antiviral drug-resistant strains, there is an urgent requirement for novel antiviral agents and innovative therapeutic strategies. Using the peptidomimetic ketobenzothiazole protease inhibitor RQAR-Kbt (IN-1, aka N-0100) as a starting point, we report how substituting P2 and P4 positions with natural and unnatural amino acids can modulate the inhibition potency toward matriptase, a prototypical type II transmembrane serine protease (TTSP) that acts as a priming protease for influenza viruses. We also introduced modifications of the peptidomimetics N-terminal groups, leading to significant improvements (from μM to nM, 60 times more potent than IN-1) in their ability to inhibit the replication of influenza H1N1 virus in the Calu-3 cell line derived from human lungs. The selectivity towards other proteases has been evaluated and explained using molecular modeling with a crystal structure recently obtained by our group. By targeting host cell TTSPs as a therapeutic approach, it may be possible to overcome the high mutational rate of influenza viruses and consequently prevent potential drug resistance.
Collapse
Affiliation(s)
- Éloïc Colombo
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Malihe Hassanzadeh
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Gabriel Lemieux
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Isabelle Marois
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
- Current address: Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, J1K 2R1 Québec, Canada
| | - Dominic Cliche
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| | - Julien A Delbrouck
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Current address: Xenon Pharmaceuticals Inc., Burnaby, V5G 4W8, British Columbia, Canada
| | - Alexandre Murza
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - François Jean
- Department of Microbiology and Immunology, Faculty of Science, Life Sciences Institute, University of British Columbia, V6T 1Z3, British Columbia, Canada
| | - Eric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Martin V Richter
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| |
Collapse
|
4
|
Yeom S, Kim DY, Kim S, Gontala A, Park J, Lee YH, Kim HJ. Carboxylate-Directed Pd-Catalyzed β-C(sp 3)-H Arylation of N-Methyl Alanine Derivatives for Diversification of Bioactive Peptides. Org Lett 2023; 25:9008-9013. [PMID: 38084750 DOI: 10.1021/acs.orglett.3c03616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This study presents a Pd(II)-catalyzed method for the β-C(sp3)-H arylation of N-Cbz- or N-Fmoc-protected N-methyl alanines, providing ready access to building blocks for N-methylated peptide synthesis. For this transformation, the native carboxylate was exploited as the directing group, attributing its success to the use of a monoprotected amino-pyridine ligand. Its synthetic utility was demonstrated by facile generation of nine analogues of the naturally occurring N-methylated cyclic peptide cycloaspeptide A.
Collapse
Affiliation(s)
- Suyeon Yeom
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Do Young Kim
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Seungwoo Kim
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Arjun Gontala
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Jimin Park
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Yong Ho Lee
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Li X, Wang N, Liu Y, Li W, Bai X, Liu P, He CY. Backbone N-methylation of peptides: Advances in synthesis and applications in pharmaceutical drug development. Bioorg Chem 2023; 141:106892. [PMID: 37776681 DOI: 10.1016/j.bioorg.2023.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Peptide-based drugs have garnered considerable attention in recent years owing to their increasingly crucial role in the treatment of diverse diseases. However, the limited pharmacokinetic properties of peptides have hindered their full potential. One prominent strategy for enhancing the druggability of peptides is N-methylation, which involves the addition of a methyl group to the nitrogen atom of the peptide backbone. This modification significantly improves the stability, bioavailability, receptor binding affinity and selectivity of peptide drug candidates. In this review, we provide a comprehensive overview of the advancements in synthetic methods for N-methylated peptide synthesis, as well as the associated limitations. Moreover, we explore the versatile effects of N-methylation on various aspects of peptide properties. Furthermore, we emphasize the efforts dedicated to N-methylated peptide pharmaceuticals that have successfully obtained marketing approval.
Collapse
Affiliation(s)
- Xuefei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Ningchao Wang
- Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yuhang Liu
- Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Weipiao Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ping Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chun-Yang He
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
6
|
Román T, Acosta G, Cárdenas C, de la Torre BG, Guzmán F, Albericio F. Protocol for Facile Synthesis of Fmoc-N-Me-AA-OH Using 2-CTC Resin as Temporary and Reusable Protecting Group. Methods Protoc 2023; 6:110. [PMID: 37987357 PMCID: PMC10660853 DOI: 10.3390/mps6060110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
One approach to enhance the bioavailability and half-life of peptides in vivo is through N-methylation of one or more of the amino acids within the peptide sequence. However, commercially available Fmoc-N-Me-AA-OHs are limited and often expensive. In this study, a solid-phase synthesis method for Fmoc-N-Me-AA-OH was developed using a 2-chlorotrityl chloride (2-CTC) resin as a temporary protective group for the carboxylic acid strategy. Two strategies for the alkylation step were compared, employing either dimethyl sulfate or methyl iodide in the Biron-Kessler method. In this work we tested the protocol with two amino acids: Fmoc-Thr(tBu)-OH and Fmoc-βAla-OH. The first one is an alpha amino acid, very hindered and with the amine group directly influenced by the electronic effects of the carboxy group, whereas in Fmoc-βAla-OH, the presence of a methylene group weakens this influence due to the intervening carbon atoms. The desired amino acids, Fmoc-N-Me-Thr(tBu)-OH and Fmoc-N-Me-βAla-OH, were synthesized by both strategies with high yield and purity.
Collapse
Affiliation(s)
- Tanya Román
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.)
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnica Federico Santa María, Valparaíso 2373223, Chile
- Department of Organic Chemistry and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona, 08028 Barcelona, Spain;
| | - Gerardo Acosta
- Department of Organic Chemistry and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona, 08028 Barcelona, Spain;
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Constanza Cárdenas
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.)
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.)
| | - Fernando Albericio
- Department of Organic Chemistry and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona, 08028 Barcelona, Spain;
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
7
|
Lee D, Choi J, Yang MJ, Park CJ, Seo J. Controlling the Chameleonic Behavior and Membrane Permeability of Cyclosporine Derivatives via Backbone and Side Chain Modifications. J Med Chem 2023; 66:13189-13204. [PMID: 37718494 DOI: 10.1021/acs.jmedchem.3c01140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Some macrocycles exhibit enhanced membrane permeability through conformational switching in different environmental polarities, a trait known as chameleonic behavior. In this study, we demonstrate specific backbone and side chain modifications that can control chameleonic behavior and passive membrane permeability using a cyclosporin O (CsO) scaffold. To quantify chameleonic behavior, we used a ratio of the population of the closed conformation obtained in polar solvent and nonpolar solvent for each CsO derivative. We found that β-hydroxylation at position 1 (1 and 3) can encode chameleonicity and improve permeability. However, the conformational stabilization induced by adding an additional transannular H-bond (2 and 5) leads to a much slower rate of membrane permeation. Our CsO scaffold provides a platform for the systematic study of the relationship among conformation, membrane permeability, solubility, and protein binding. This knowledge contributes to the discovery of potent beyond the rule of five (bRo5) macrocycles capable of targeting undruggable targets.
Collapse
Affiliation(s)
- Dongjae Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Min June Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
8
|
Meng Y, Huang R. Site-specific methylation on α-N-terminus of peptides through chemical and enzymatic methods. Methods Enzymol 2023; 684:113-133. [PMID: 37230586 PMCID: PMC10525076 DOI: 10.1016/bs.mie.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein α-N-terminal (Nα) methylation is a post-translational modification catalyzed by N-terminal methyltransferase 1/2 (NTMT1/2) and METTL13. Nα methylation affects protein stability, protein-protein interaction, and protein-DNA interaction. Thus, Nα methylated peptides are essential tools to study the function of Nα methylation, generate specific antibodies for different states of Nα methylation, and characterize the enzyme kinetics and activity. Here, we describe chemical methods of site-specific synthesis of Nα mono-, di-, and trimethylated peptides in the solid phase. In addition, we describethe preparation of trimethylation peptides by recombinant NTMT1 catalysis.
Collapse
Affiliation(s)
- Ying Meng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
9
|
N-sulfonyl peptide-hybrids as a new class of dengue virus protease inhibitors. Eur J Med Chem 2023; 251:115227. [PMID: 36893626 DOI: 10.1016/j.ejmech.2023.115227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Dengue virus (DENV) from the Flaviviridae family causes an epidemic disease that seriously threatens human life. The viral serine protease NS2B-NS3 is a promising target for drug development against DENV and other flaviviruses. We here report the design, synthesis, and in-vitro characterization of potent peptidic inhibitors of DENV protease with a sulfonyl moiety as N-terminal cap, thereby creating sulfonamide-peptide hybrids. The in-vitro target affinities of some synthesized compounds were in the nanomolar range, with the most promising derivative reaching a Ki value of 78 nM against DENV-2 protease. The synthesized compounds did not have relevant off-target activity nor cytotoxicity. The metabolic stability of compounds against rat liver microsomes and pancreatic enzymes was remarkable. In general, the integration of sulfonamide moieties at the N-terminus of peptidic inhibitors proved to be a promising and attractive strategy for further drug development against DENV infections.
Collapse
|
10
|
Kaguchi R, Katsuyama A, Sato T, Takahashi S, Horiuchi M, Yokota SI, Ichikawa S. Discovery of Biologically Optimized Polymyxin Derivatives Facilitated by Peptide Scanning and In Situ Screening Chemistry. J Am Chem Soc 2023; 145:3665-3681. [PMID: 36708325 DOI: 10.1021/jacs.2c12971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Peptides can be converted to highly active compounds by introducing appropriate substituents on the suitable amino acid residue. Although modifiable residues in peptides can be systematically identified by peptide scanning methodologies, there is no practical method for optimization at the "scanned" position. With the purpose of using derivatives not only for scanning but also as a starting point for further chemical functionalization, we herein report the "scanning and direct derivatization" strategy through chemoselective acylation of embedded threonine residues by a serine/threonine ligation (STL) with the help of in situ screening chemistry. We have applied this strategy to the optimization of the polymyxin antibiotics, which were selected as a model system to highlight the power of the rapid derivatization of active scanning derivatives. Using this approach, we explored the structure-activity relationships of the polymyxins and successfully prepared derivatives with activity against polymyxin-resistant bacteria and those with Pseudomonas aeruginosa selective antibacterial activity. This strategy opens up efficient structural exploration and further optimization of peptide sequences.
Collapse
Affiliation(s)
- Rintaro Kaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan.,Graduate School of Infectious Diseases, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan.,One Health Research Center, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Minami-1, Nishi-16, Chuo-ku, Sapporo060-8543, Japan.,Division of Laboratory Medicine, Sapporo Medical University Hospital, Minami-1, Nishi-16, Chuo-ku, Sapporo060-8543, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan.,Graduate School of Infectious Diseases, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan.,One Health Research Center, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Minami-1, Nishi-17, Chuo-ku, Sapporo060-8556, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan
| |
Collapse
|
11
|
Pallara C, Cabot D, Rivas J, Brun S, Seco J, Abuasaker B, Tarragó T, Jaumot M, Prades R, Agell N. Peptidomimetics designed to bind to RAS effector domain are promising cancer therapeutic compounds. Sci Rep 2022; 12:15810. [PMID: 36138080 PMCID: PMC9499927 DOI: 10.1038/s41598-022-19703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Oncogenic RAS proteins are important for driving tumour formation, and for maintenance of the transformed phenotype, and thus their relevance as a cancer therapeutic target is undeniable. We focused here on obtaining peptidomimetics, which have good pharmacological properties, to block Ras–effector interaction. Computational analysis was used to identify hot spots of RAS relevant for these interactions and to screen a library of peptidomimetics. Nine compounds were synthesized and assayed for their activity as RAS inhibitors in cultured cells. Most of them induced a reduction in ERK and AKT activation by EGF, a marker of RAS activity. The most potent inhibitor disrupted Raf and PI3K interaction with oncogenic KRAS, corroborating its mechanism of action as an inhibitor of protein–protein interactions, and thus validating our computational methodology. Most interestingly, improvement of one of the compounds allowed us to obtain a peptidomimetic that decreased the survival of pancreatic cancer cell lines harbouring oncogenic KRAS.
Collapse
Affiliation(s)
- Chiara Pallara
- Iproteos S.L., Barcelona Science Park, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Debora Cabot
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, C/Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep Rivas
- Iproteos S.L., Barcelona Science Park, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Sonia Brun
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, C/Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jesús Seco
- Iproteos S.L., Barcelona Science Park, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Baraa Abuasaker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, C/Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Barcelona Science Park, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Montserrat Jaumot
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, C/Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roger Prades
- Iproteos S.L., Barcelona Science Park, Baldiri Reixac 10, 08028, Barcelona, Spain.
| | - Neus Agell
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, C/Casanova 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
12
|
Schindler L, Wohlfahrt K, Gluhacevic von Krüchten L, Prante O, Keller M, Maschauer S. Neurotensin analogs by fluoroglycosylation at N ω-carbamoylated arginines for PET imaging of NTS1-positive tumors. Sci Rep 2022; 12:15028. [PMID: 36056076 PMCID: PMC9440028 DOI: 10.1038/s41598-022-19296-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Since neurotensin (NT) receptors of subtype-1 (NTS1) are expressed by different types of malignant tumors, such as pancreatic adenocarcinoma, colorectal and prostate carcinoma, they represent an interesting target for tumor imaging by positron emission tomography (PET) and endoradiotherapy. Previously reported neurotensin-derived NTS1 ligands for PET were radiolabeled by modification and prelongation of the N-terminus of NT(8-13) peptide analogs. In this study, we demonstrate that modifying Arg8 or Arg9 by Nω-carbamoylation and subsequent fluoroglycosylation provides a suitable approach for the development of NT(8-13) analogs as PET imaging agents. The Nω-carbamoylated and fluoroglycosylated NT(8-13) analogs retained high NTS1 affinity in the one-digit nanomolar range as well as high metabolic stability in vitro. In vivo, the radioligand [18F]21 demonstrated favorable biokinetics in HT-29 tumor-bearing mice with high tumor uptake and high retention, predominantly renal clearance, and fast wash-out from blood and other non-target tissues. Therefore, [18F]21 has the potential to be used as molecular probe for the imaging of NTS1-expressing tumors by PET.
Collapse
Affiliation(s)
- Lisa Schindler
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Katrin Wohlfahrt
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
- Hennig Arzneimittel GmbH & Co KG, Liebigstr. 1-2, 65439, Flörsheim am Main, Germany
| | - Lara Gluhacevic von Krüchten
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany
| | - Max Keller
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany.
| |
Collapse
|
13
|
Daus F, Xie X, Geyer A. The silica mineralisation properties of synthetic Silaffin-1A 1 ( synSil-1A 1). Org Biomol Chem 2022; 20:3387-3396. [PMID: 35362502 DOI: 10.1039/d2ob00390b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic monodisperse pentadecapeptide synSil-1A1 is a representative of the microdisperse mixture of the native silaffin natSil-1A1 produced by the diatom Cylindrotheca fusiformis. The octaphosphorylated zwitterionic synSil-1A1 is able to mineralise silica under slightly acidic conditions at pH 5.5, which is the physiologically relevant pH range assumed. Like the posttranslational modifications of the native silaffins, synSil-1A1 is functionalised on all four lysine and phosphorylated on all seven serine residues. We describe the synthesis of a trimethyl-δ-hydroxy-L-lysine building block, the incorporation of this choline-type amino acid in peptide synthesis and its phosphorylation, together with all further posttranslational modifications observed in the native silaffins. Quantitative structure-activity relationships from silicification experiments at high dilution reveal the unique mineralisation properties of the hyperphosphorylated peptide as a single substance and in interaction with long-chain polyamines (LCPA). Diffusion-ordered spectroscopy (DOSY) experiments reveal the formation of polyelectrolyte complexes (PEC) between synSil-1A1 and long-chain polyamines, which promotes the silicification process. The microdroplets have an overall balanced ratio of 100-150 cationic and the same number of anionic charges. The unique zwitterionic synSil-1A1 confirms the prevailing molecular model of biosilicification and validates it with quantitative data based on a single phosphopeptide species, avoiding the usual unphysiologically high concentrations of phosphate of many previous in vitro silicification experiments.
Collapse
Affiliation(s)
- Fabian Daus
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Xiulan Xie
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Armin Geyer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| |
Collapse
|
14
|
Thongbamrer C, Roobsoong W, Sattabongkot J, Opanasopit P, Yingyongnarongkul BE. Serum Compatible Spermine-based Cationic Lipids with Non-identical Hydrocarbon Tails Mediate High Transfection Efficiency. Chembiochem 2022; 23:e202100672. [PMID: 35001486 DOI: 10.1002/cbic.202100672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Indexed: 11/09/2022]
Abstract
Cationic lipids are widely used as non-viral synthetic vectors for gene delivery as a safer alternative to viral vectors. In this work, a library of L-shaped spermine-based cationic lipids with identical and non-identical hydrophobic chains having variable carbon length (from C10 to C18) was designed and synthesized. These lipids were characterized and the structure-activity relationships of these compounds were determined for DNA binding and transfection ability when formulated as cationic liposomes. The liposomes were then used successfully for the transfection of HEK293T, HeLa, PC3, H460, HepG2, SH-SY5Y and Calu'3 cell lines. The transfection efficiency of lipids with non-identical hydrocarbon chains was greater than the identical analog. These reagents exhibited superior efficiency to the commercial reagent, Lipofectamine3000, under both serum-free and 10-40% serum conditions in HEK293T, HeLa and H460 cell lines. The lipids were also not toxic to the tested cells. The results suggested that L-shaped spermine-based cationic lipids with non-identical hydrocarbon tails could serve as an efficient and safe non-viral vector gene carrier for further in vivo studies.
Collapse
Affiliation(s)
- Chopaka Thongbamrer
- Ramkhamhaeng University, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), THAILAND
| | | | | | - Praneet Opanasopit
- Silpakorn University, Pharmaceutical Development of Green Innovations Group (PDGIG), THAILAND
| | - Boon-Ek Yingyongnarongkul
- Ramkhamhaeng University, Department of Chemistry and Center of Excellene for Innovation in Chemistry (PERCH-CIC), Ramkhamhaeng Road, Huamark Bangkapi, 10240, Bangkok, THAILAND
| |
Collapse
|
15
|
Siow A, Tasma Z, Walker CS, Brimble MA, Harris PWR. Synthesis and development of seven-membered constrained cyclic urea based PSMA inhibitors via RCM. NEW J CHEM 2022. [DOI: 10.1039/d2nj01016j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular ring-closing metathesis on an N,N-diallyl Glu-urea-Gly substrate affords 7-membered cyclic ureas as inhibitors of prostrate specific membrane antigen (PMSA).
Collapse
Affiliation(s)
- Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Paul. W. R. Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
16
|
Influence of N-Methylation and Conformation on Almiramide Anti-Leishmanial Activity. Molecules 2021; 26:molecules26123606. [PMID: 34204673 PMCID: PMC8231256 DOI: 10.3390/molecules26123606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
The almiramide N-methylated lipopeptides exhibit promising activity against trypanosomatid parasites. A structure–activity relationship study has been performed to examine the influences of N-methylation and conformation on activity against various strains of leishmaniasis protozoan and on cytotoxicity. The synthesis and biological analysis of twenty-five analogs demonstrated that derivatives with a single methyl group on either the first or fifth residue amide nitrogen exhibited greater activity than the permethylated peptides and relatively high potency against resistant strains. Replacement of amino amide residues in the peptide, by turn inducing α amino γ lactam (Agl) and N-aminoimidazalone (Nai) counterparts, reduced typically anti-parasitic activity; however, peptide amides possessing Agl residues at the second residue retained significant potency in the unmethylated and permethylated series. Systematic study of the effects of methylation and turn geometry on anti-parasitic activity indicated the relevance of an extended conformer about the central residues, and conformational mobility by tertiary amide isomerization and turn geometry at the extremities of the active peptides.
Collapse
|
17
|
Improvement on Permeability of Cyclic Peptide/Peptidomimetic: Backbone N-Methylation as A Useful Tool. Mar Drugs 2021; 19:md19060311. [PMID: 34072121 PMCID: PMC8229464 DOI: 10.3390/md19060311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Peptides have a three-dimensional configuration that can adopt particular conformations for binding to proteins, which are well suited to interact with larger contact surface areas on target proteins. However, low cell permeability is a major challenge in the development of peptide-related drugs. In recent years, backbone N-methylation has been a useful tool for manipulating the permeability of cyclic peptides/peptidomimetics. Backbone N-methylation permits the adjustment of molecule’s conformational space. Several pathways are involved in the drug absorption pathway; the relative importance of each N-methylation to total permeation is likely to differ with intrinsic properties of cyclic peptide/peptidomimetic. Recent studies on the permeability of cyclic peptides/peptidomimetics using the backbone N-methylation strategy and synthetic methodologies will be presented in this review.
Collapse
|
18
|
Ghaffari S, Kazemi F. Highly Efficient Synthesis of
N
‐Alkyl‐α‐amino Acid Methyl Esters by Microwave Irradiation. ChemistrySelect 2021. [DOI: 10.1002/slct.202100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saeedeh Ghaffari
- Department of Chemistry Institute of Advanced Studies in Basic Sciences (IASBS) Zanjan 45195-1159 Iran
- Department of Chemistry, College of Sciences Shiraz University Shiraz 71946-84795 Iran
| | - Foad Kazemi
- Department of Chemistry Institute of Advanced Studies in Basic Sciences (IASBS) Zanjan 45195-1159 Iran
| |
Collapse
|
19
|
Velkov T, Swarbrick JD, Hussein MH, Schneider-Futschik EK, Hoyer D, Li J, Karas JA. The impact of backbone N-methylation on the structure-activity relationship of Leu 10 -teixobactin. J Pept Sci 2019; 25:e3206. [PMID: 31389086 DOI: 10.1002/psc.3206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 11/07/2022]
Abstract
Antimicrobial resistance is a serious threat to global human health; therefore, new anti-infective therapeutics are required. The cyclic depsi-peptide teixobactin exhibits potent antimicrobial activity against several Gram-positive pathogens. To study the natural product's mechanism of action and improve its pharmacological properties, efficient chemical methods for preparing teixobactin analogues are required to expedite structure-activity relationship studies. Described herein is a synthetic route that enables rapid access to analogues. Furthermore, our new N-methylated analogues highlight that hydrogen bonding along the N-terminal tail is likely to be important for antimicrobial activity.
Collapse
Affiliation(s)
- Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - James D Swarbrick
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Maytham H Hussein
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Elena K Schneider-Futschik
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - John A Karas
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Comandè A, Greco M, Belsito EL, Liguori A, Leggio A. A titanium tetrachloride-based effective methodology for the synthesis of dipeptides. RSC Adv 2019; 9:22137-22142. [PMID: 35518841 PMCID: PMC9066614 DOI: 10.1039/c9ra04058g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022] Open
Abstract
A series of dipeptide systems have been easily achieved through a TiCl4-assisted condensation reaction. The reaction of N-protected amino acids with amino acid methyl esters in pyridine and in the presence of TiCl4 furnished the corresponding dipeptides with high yields and diastereoselectivity. The reaction was successfully applied to amino acids protected on the α-amino function with different protecting groups. The adopted experimental conditions allowed preserving both the protecting groups on the α-amino function and on the side chain functionalities. Furthermore, the preservation of the stereochemical integrity at the amino acid chiral centres has been verified.
Collapse
Affiliation(s)
- Alessandra Comandè
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria Edificio Polifunzionale I-87036 Arcavacata di Rende CS Italy +39 984 493265 +39 984 493199
| | - Marianna Greco
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria Edificio Polifunzionale I-87036 Arcavacata di Rende CS Italy +39 984 493265 +39 984 493199
| | - Emilia Lucia Belsito
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria Edificio Polifunzionale I-87036 Arcavacata di Rende CS Italy +39 984 493265 +39 984 493199
| | - Angelo Liguori
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria Edificio Polifunzionale I-87036 Arcavacata di Rende CS Italy +39 984 493265 +39 984 493199
| | - Antonella Leggio
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria Edificio Polifunzionale I-87036 Arcavacata di Rende CS Italy +39 984 493265 +39 984 493199
| |
Collapse
|
21
|
Merlino F, Billard É, Yousif AM, Di Maro S, Brancaccio D, Abate L, Carotenuto A, Bellavita R, d'Emmanuele di Villa Bianca R, Santicioli P, Marinelli L, Novellino E, Hébert TE, Lubell WD, Chatenet D, Grieco P. Functional Selectivity Revealed by N-Methylation Scanning of Human Urotensin II and Related Peptides. J Med Chem 2019; 62:1455-1467. [PMID: 30615452 DOI: 10.1021/acs.jmedchem.8b01601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In accordance with their common but also divergent physiological actions, human urotensin II (1) and urotensin II-related peptide (2) could stabilize specific urotensin II receptor (UTR) conformations, thereby activating different signaling pathways, a feature referred to as biased agonism or functional selectivity. Sequential N-methylation of the amides in the conserved core sequence of 1, 2, and fragment U-II4-11 (3) shed light on structural requirements involved in their functional selectivity. Thus, 18 N-methylated UTR ligands were synthesized and their biological profiles evaluated using in vitro competition binding assays, ex vivo rat aortic ring bioassays and BRET-based biosensor experiments. Biological activity diverged from that of the parent structures contingent on the location of amide methylation, indicating relevant hydrogen-bond interactions for the function of the endogenous peptides. Conformational analysis of selected N-methyl analogs indicated the importance of specific amide residues of 2 for the distinct pharmacology relative to 1 and 3.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Étienne Billard
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , 531 Boulevard des Prairies , Ville de Laval , Québec H7V 1B7 , Canada
| | - Ali M Yousif
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Salvatore Di Maro
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Diego Brancaccio
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Luigi Abate
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Alfonso Carotenuto
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Rosa Bellavita
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | | | - Paolo Santicioli
- Department of Pharmacology , Menarini Ricerche , via Rismondo 12/A , Florence 50131 , Italy
| | - Luciana Marinelli
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Ettore Novellino
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec H3A 1A3 , Canada
| | - William D Lubell
- Département de Chimie , Université de Montréal , C.P. 6128, Station Centre-ville , Montréal , Québec H3C 3J7 , Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , 531 Boulevard des Prairies , Ville de Laval , Québec H7V 1B7 , Canada
| | - Paolo Grieco
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| |
Collapse
|
22
|
Sensfuss U, Kruse T, Skyggebjerg RB, Uldam HK, Vestergaard B, Huus K, Vinther TN, Reinau ME, Schéele S, Clausen TR. Structure–Activity Relationships and Characterization of Highly Selective, Long-Acting, Peptide-Based Cholecystokinin 1 Receptor Agonists. J Med Chem 2019; 62:1407-1419. [DOI: 10.1021/acs.jmedchem.8b01558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Chen Y. Recent Advances in Methylation: A Guide for Selecting Methylation Reagents. Chemistry 2018; 25:3405-3439. [DOI: 10.1002/chem.201803642] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yantao Chen
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech UnitAstraZeneca Gothenburg Sweden
| |
Collapse
|
24
|
Arranz-Gibert P, Prades R, Guixer B, Guerrero S, Araya E, Ciudad S, Kogan MJ, Giralt E, Teixidó M. HAI Peptide and Backbone Analogs-Validation and Enhancement of Biostability and Bioactivity of BBB Shuttles. Sci Rep 2018; 8:17932. [PMID: 30560894 PMCID: PMC6298966 DOI: 10.1038/s41598-018-35938-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 11/09/2018] [Indexed: 01/03/2023] Open
Abstract
Low effectiveness and resistance to treatments are commonplace in disorders of the central nervous system (CNS). These issues concern mainly the blood-brain barrier (BBB), which preserves homeostasis in the brain and protects this organ from toxic molecules and biohazards by regulating transport through it. BBB shuttles—short peptides able to cross the BBB—are being developed to help therapeutics to cross this barrier. BBB shuttles can be discovered by massive exploration of chemical diversity (e.g. computational means, phage display) or rational design (e.g. derivatives from a known peptide/protein able to cross). Here we present the selection of a peptide shuttle (HAI) from several candidates and the subsequent in-depth in vitro and in vivo study of this molecule. In order to explore the chemical diversity of HAI and enhance its biostability, and thereby its bioactivity, we explored two new protease-resistant versions of HAI (i.e. the retro-D-version, and a version that was N-methylated at the most sensitive sites to enzymatic cleavage). Our results show that, while both versions of HAI are resistant to proteases, the retro-D-approach preserved better transport properties.
Collapse
Affiliation(s)
- Pol Arranz-Gibert
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, E-08028, Spain
| | - Roger Prades
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, E-08028, Spain
| | - Bernat Guixer
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, E-08028, Spain
| | - Simón Guerrero
- Department of Pharmacological and Toxicological Chemistry, Faculty of Pharmaceutical Sciences, University of Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone, 1007, Independencia, Santiago, Chile
| | - Eyleen Araya
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone, 1007, Independencia, Santiago, Chile.,Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Sonia Ciudad
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, E-08028, Spain
| | - Marcelo J Kogan
- Department of Pharmacological and Toxicological Chemistry, Faculty of Pharmaceutical Sciences, University of Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone, 1007, Independencia, Santiago, Chile
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, E-08028, Spain. .,Department of Inorganic and Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona, E-08028, Spain.
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, E-08028, Spain.
| |
Collapse
|
25
|
New advances in the synthesis of tripyridinophane macrocycles suitable to enhance the luminescence of Ln(III) ions in aqueous solution. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem 2018; 26:2766-2773. [DOI: 10.1016/j.bmc.2017.08.031] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|
27
|
Sable GA, Lee KJ, Shin MK, Lim HS. Submonomer Strategy toward Divergent Solid-Phase Synthesis of α-ABpeptoids. Org Lett 2018; 20:2526-2529. [DOI: 10.1021/acs.orglett.8b00661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ganesh A. Sable
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Kang Ju Lee
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Min-Kyung Shin
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
28
|
Lee LLH, Buckton LK, McAlpine SR. Converting polar cyclic peptides into membrane permeable molecules using N
-methylation. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Leo L. H. Lee
- Chemistry; University of New South Wales; Sydney New South Wales Australia
| | - Laura K. Buckton
- Chemistry; University of New South Wales; Sydney New South Wales Australia
| | - Shelli R. McAlpine
- Chemistry; University of New South Wales; Sydney New South Wales Australia
| |
Collapse
|
29
|
Sharma A, Kumar A, Abdel Monaim SAH, Jad YE, El-Faham A, de la Torre BG, Albericio F. N-methylation in amino acids and peptides: Scope and limitations. Biopolymers 2018. [PMID: 29528112 DOI: 10.1002/bip.23110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Active pharmaceutical ingredients (APIs) can be divided into two types, namely chemical and biological entities. Traditionally, the former has been associated with the so-called small molecules. The revival of peptides in pharmaceutical industry results from their importance in many biological roles. However, low metabolic stability and the lack of oral availability of most peptides is the main drawback for peptide to fulfill that paradigmatic situation. In this regard, efforts are being channeled into addressing this issue by introducing restrictions into the flexible peptide backbone, mainly through N-methyl amino acids (NMAAs) or development of small cyclic peptides. In many cases, both the above restrictions are combined with the aim to enhance oral availability. The synthesis of NMAAs is complex and their introduction into the peptide chain brings additional synthetic challenges and also sometimes leads to side-reactions. Here we discuss the most efficient methods for the synthesis of NMAAs (either in solution or in solid phase) and also their introduction into peptide sequences. Special attention is also given to the detection of side reactions and the most efficient way to prevent them.
Collapse
Affiliation(s)
- Anamika Sharma
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Ashish Kumar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Shimaa A H Abdel Monaim
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Yahya E Jad
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, Alexandria, 21321, Egypt
| | - Beatriz G de la Torre
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,KRISP, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Fernando Albericio
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona, 08028, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona, 08028, Spain
| |
Collapse
|
30
|
Wang L, Coric P, Zhu K, Liu WQ, Vidal M, Bouaziz S, Broussy S. Synthesis and characterization of water-soluble macrocyclic peptides stabilizing protein α-turn. Org Biomol Chem 2018; 16:459-471. [DOI: 10.1039/c7ob02852k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrocyclic peptides mimic tight “non-classical” α-turn type II-αLS found in proteins, as shown by spectroscopic and computational analysis of their equilibrating conformations.
Collapse
Affiliation(s)
- Lei Wang
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Pascale Coric
- UMR 8015 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Kexin Zhu
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Wang-Qing Liu
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Michel Vidal
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Serge Bouaziz
- UMR 8015 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Sylvain Broussy
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| |
Collapse
|
31
|
Hilimire TA, Chamberlain JM, Anokhina V, Bennett RP, Swart O, Myers JR, Ashton JM, Stewart RA, Featherston AL, Gates K, Helms ED, Smith HC, Dewhurst S, Miller BL. HIV-1 Frameshift RNA-Targeted Triazoles Inhibit Propagation of Replication-Competent and Multi-Drug-Resistant HIV in Human Cells. ACS Chem Biol 2017; 12:1674-1682. [PMID: 28448121 PMCID: PMC5477779 DOI: 10.1021/acschembio.7b00052] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
The
HIV-1 frameshift-stimulating (FSS) RNA, a regulatory RNA of
critical importance in the virus’ life cycle, has been posited
as a novel target for anti-HIV drug development. We report the synthesis
and evaluation of triazole-containing compounds able to bind the FSS
with high affinity and selectivity. Readily accessible synthetically,
these compounds are less toxic than previously reported olefin congeners.
We show for the first time that FSS-targeting compounds have antiviral
activity against replication-competent HIV in human cells, including
a highly cytopathic, multidrug-resistant strain. These results support
the viability of the HIV-1 FSS RNA as a therapeutic target and more
generally highlight opportunities for synthetic molecule-mediated
interference with protein recoding in a wide range of organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Eric D. Helms
- Department of Chemistry, SUNY Geneseo, Geneseo, New York 14454, United States
| | | | | | | |
Collapse
|
32
|
Naoum JN, Chandra K, Shemesh D, Gerber RB, Gilon C, Hurevich M. DMAP-assisted sulfonylation as an efficient step for the methylation of primary amine motifs on solid support. Beilstein J Org Chem 2017; 13:806-816. [PMID: 28546838 PMCID: PMC5433225 DOI: 10.3762/bjoc.13.81] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/11/2017] [Indexed: 11/23/2022] Open
Abstract
Several multistep strategies were developed to ensure single methylation of amines on solid support. These strategies rely on the introduction of the o-NBS protecting/activating group as a key step. We found that the state-of-the-art strategies fail for the methylation of several primary amine motifs, largely due to inefficient sulfonylation. Here we show that using the superior nucleophilic base DMAP instead of the commonly used base collidine as a sulfonylation additive is essential for the introduction of the o-NBS group to these amine motifs. DFT calculations provide an explanation by showing that the energy barrier of the DMAP intermediate is significantly lower than the one of the collidine. We demonstrate that using DMAP as a sole additive in the sulfonylation step results in an overall effective and regioselective N-methylation. The method presented herein proved highly efficient in solid-phase synthesis of a somatostatin analogue bearing three Nα-methylation sites that could not be synthesized using the previously described state-of-the-art methods.
Collapse
Affiliation(s)
- Johnny N Naoum
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Koushik Chandra
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Dorit Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem, 91904, Israel
- Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - R Benny Gerber
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem, 91904, Israel
- Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Chaim Gilon
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
33
|
Kobayashi K, Mizuguchi T, Hattori Y, Ohara N, Ninomiya R, Iida M, Ooe H, Yamazaki Y, Takata M, Tamamura H, Akaji K. Effects of replacement and addition of an amino acid contained in a cyclic peptide corresponding to a β-hairpin loop sequence of human EGF receptor. J Pept Sci 2017; 23:581-586. [PMID: 28378383 DOI: 10.1002/psc.3004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/20/2023]
Abstract
Effects of replacement and addition of an amino acid in a cyclic decapeptide 1 (cyclic-CYNPTTYQMC) for inhibitory activity to dimerization of human epidermal growth factor receptor (EGFR) were examined. By alanine scanning of 1 corresponding to the arm structure (residues 246-254) of a β-hairpin loop sequence (residues 242-259) of EGFR, it was confirmed that replacement of any amino acid in the loop structure lowered the dimerization inhibitory activity of 1. Among the residues examined, Tyr at position 246 and Thr at 250 were found to be crucial for dimer formation. Addition of an amino acid to the N-terminus of 1 also affected the dimerization inhibitory activity. Addition of an amino acid containing a moderately hydrophilic side-chain increased the inhibitory activity. In contrast, an intramolecular hydrogen bond of 1 is not thought to be crucial for holding the dimer structure on the basis of the dimerization inhibitory activities of N-methylated analogues of 1. These results will be useful for the design and evaluation of a potent dimerization inhibitor as an anti-proliferation agent. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kazuya Kobayashi
- Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Takaaki Mizuguchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yasunao Hattori
- Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Naho Ohara
- Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| | | | - Mika Iida
- Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Honami Ooe
- Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Yukako Yamazaki
- Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Minami Takata
- Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kenichi Akaji
- Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| |
Collapse
|
34
|
De Vleeschouwer M, Sinnaeve D, Matthijs N, Coenye T, Madder A, Martins JC. Synthesis of N-Methylated Pseudodesmin A Analogues: on the Structural Importance of N-H Hydrogen Bonds. ChemistrySelect 2017. [DOI: 10.1002/slct.201601791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthias De Vleeschouwer
- Organic and Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
- NMR and structure analysis unit; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| | - Davy Sinnaeve
- NMR and structure analysis unit; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| | - Nele Matthijs
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ottergemsesteenweg 460 9000 Ghent
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ottergemsesteenweg 460 9000 Ghent
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| | - José C. Martins
- NMR and structure analysis unit; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| |
Collapse
|
35
|
Strack M, Bedini A, Yip KT, Lombardi S, Siegmund D, Stoll R, Spampinato SM, Metzler-Nolte N. A Blocking Group Scan Using a Spherical Organometallic Complex Identifies an Unprecedented Binding Mode with Potent Activity In Vitro and In Vivo for the Opioid Peptide Dermorphin. Chemistry 2016; 22:14605-10. [PMID: 27553294 DOI: 10.1002/chem.201602432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 01/12/2023]
Abstract
Herein, the selective enforcement of one particular receptor-ligand interaction between specific domains of the μ-selective opioid peptide dermorphin and the μ opioid receptor is presented. For this, a blocking group scan is described which exploits the steric demand of a bis(quinolinylmethyl)amine rhenium(I) tricarbonyl complex conjugated to a number of different, strategically chosen positions of dermorphin. The prepared peptide conjugates lead to the discovery of two different binding modes: An expected N-terminal binding mode corresponds to the established view of opioid peptide binding, whereas an unexpected C-terminal binding mode is newly discovered. Surprisingly, both binding modes provide high affinity and agonistic activity at the μ opioid receptor in vitro. Furthermore, the unprecedented C-terminal binding mode shows potent dose-dependent antinociception in vivo. Finally, in silico docking studies support receptor activation by both dermorphin binding modes and suggest a biological relevance for dermorphin itself. Relevant ligand-protein interactions are similar for both binding modes, which is in line with previous protein mutation studies.
Collapse
Affiliation(s)
- Martin Strack
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Andrea Bedini
- Department of Pharmacy and Biochemistry, University of Bologna, Via Irnerio 48, Bologna, Italy
| | - King T Yip
- Biomolecular NMR, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Sara Lombardi
- Department of Pharmacy and Biochemistry, University of Bologna, Via Irnerio 48, Bologna, Italy
| | - Daniel Siegmund
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Santi M Spampinato
- Department of Pharmacy and Biochemistry, University of Bologna, Via Irnerio 48, Bologna, Italy
| | - Nils Metzler-Nolte
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
36
|
Hilimire TA, Bennett RP, Stewart RA, Garcia-Miranda P, Blume A, Becker J, Sherer N, Helms ED, Butcher SE, Smith HC, Miller BL. N-Methylation as a Strategy for Enhancing the Affinity and Selectivity of RNA-binding Peptides: Application to the HIV-1 Frameshift-Stimulating RNA. ACS Chem Biol 2016; 11:88-94. [PMID: 26496521 PMCID: PMC4720131 DOI: 10.1021/acschembio.5b00682] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Human Immunodeficiency
Virus (HIV) type 1 uses a −1 programmed
ribosomal frameshift (−1 PRF) event to translate its enzymes
from the same transcript used to encode the virus’ structural
proteins. The frequency of this event is highly regulated, and significant
deviation from the normal 5–10% frequency has been demonstrated
to decrease viral infectivity. Frameshifting is primarily regulated
by the Frameshift Stimulatory Signal RNA (FSS-RNA), a thermodynamically
stable, highly conserved stem loop that has been proposed as a therapeutic
target. We describe the design, synthesis, and testing of a series
of N-methyl peptides able to bind the HIV-1 FSS RNA
stem loop with low nanomolar affinity and high selectivity. Surface
plasmon resonance (SPR) data indicates increased affinity is a reflection
of a substantially enhanced on rate. Compounds readily penetrate cell
membranes and inhibit HIV infectivity in a pseudotyped virus assay.
Viral infectivity inhibition correlates with compound-dependent changes
in the ratios of Gag and Gag-Pol in virus particles. As the first
compounds with both single digit nanomolar affinities for the FSS
RNA and an ability to inhibit HIV in cells, these studies support
the use of N-methylation for enhancing the affinity,
selectivity, and bioactivity of RNA-binding peptides.
Collapse
Affiliation(s)
| | | | | | - Pablo Garcia-Miranda
- Department
of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Alex Blume
- Department
of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Jordan Becker
- McArdle
Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nathan Sherer
- McArdle
Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eric D. Helms
- Department
of Chemistry, SUNY Geneseo, Geneseo, New York 14454, United States
| | - Samuel E. Butcher
- Department
of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
37
|
Jobin S, Vézina-Dawod S, Herby C, Derson A, Biron E. Preparation of N-Substituted N-Arylsulfonylglycines and Their Use in Peptoid Synthesis. Org Lett 2015; 17:5626-9. [DOI: 10.1021/acs.orglett.5b02862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steve Jobin
- Faculty of Pharmacy, Université Laval, Québec, Québec G1V 0A6, Canada
- Laboratory
of Medicinal Chemistry, Centre de Recherche du Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier, Québec, Québec G1V 4G2, Canada
| | - Simon Vézina-Dawod
- Faculty of Pharmacy, Université Laval, Québec, Québec G1V 0A6, Canada
- Laboratory
of Medicinal Chemistry, Centre de Recherche du Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier, Québec, Québec G1V 4G2, Canada
| | - Claire Herby
- Faculty of Pharmacy, Université Laval, Québec, Québec G1V 0A6, Canada
- Laboratory
of Medicinal Chemistry, Centre de Recherche du Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier, Québec, Québec G1V 4G2, Canada
| | - Antoine Derson
- Faculty of Pharmacy, Université Laval, Québec, Québec G1V 0A6, Canada
- Laboratory
of Medicinal Chemistry, Centre de Recherche du Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier, Québec, Québec G1V 4G2, Canada
| | - Eric Biron
- Faculty of Pharmacy, Université Laval, Québec, Québec G1V 0A6, Canada
- Laboratory
of Medicinal Chemistry, Centre de Recherche du Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier, Québec, Québec G1V 4G2, Canada
| |
Collapse
|
38
|
Fülöpová V, Soural M. Mining the Chemical Space: Application of 2/4-Nitrobenzenesulfonamides in Solid-Phase Synthesis. ACS COMBINATORIAL SCIENCE 2015; 17:570-91. [PMID: 26325251 DOI: 10.1021/acscombsci.5b00089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymer-supported benzenesulfonamides prepared from various immobilized primary amines and 2/4-nitrobenzenesulfonyl chloride have been used as key intermediates in different chemical transformations, including unusual rearrangements to yield a number of diverse privileged scaffolds. This review summarizes individual strategies in their application to date.
Collapse
Affiliation(s)
- Veronika Fülöpová
- Department of Organic Chemistry,
Institute of Molecular and Translational Medicine, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry,
Institute of Molecular and Translational Medicine, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
39
|
Braun CR, Bird GH, Wuhr M, Erickson BK, Rad R, Walensky LD, Gygi SP, Haas W. Generation of multiple reporter ions from a single isobaric reagent increases multiplexing capacity for quantitative proteomics. Anal Chem 2015; 87:9855-63. [PMID: 26308379 PMCID: PMC4890644 DOI: 10.1021/acs.analchem.5b02307] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Isobaric labeling strategies for mass spectrometry-based proteomics enable multiplexed simultaneous quantification of samples and therefore substantially increase the sample throughput in proteomics. However, despite these benefits, current limits to multiplexing capacity are prohibitive for large sample sizes and impose limitations on experimental design. Here, we introduce a novel mechanism for increasing the multiplexing density of isobaric reagents. We present Combinatorial Isobaric Mass Tags (CMTs), an isobaric labeling architecture with the unique ability to generate multiple series of reporter ions simultaneously. We demonstrate that utilization of multiple reporter ion series improves multiplexing capacity of CMT with respect to a commercially available isobaric labeling reagent with preserved quantitative accuracy and depth of coverage in complex mixtures. We provide a blueprint for the realization of 16-plex reagents with 1 Da spacing between reporter ions and up to 28-plex at 6 mDa spacing using only 5 heavy isotopes per reagent. We anticipate that this improvement in multiplexing capacity will further advance the application of quantitative proteomics, particularly in high-throughput screening assays.
Collapse
Affiliation(s)
- Craig R. Braun
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
| | - Gregory H. Bird
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana–Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Martin Wuhr
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
- Department of Systems Biology, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
| | - Brian K. Erickson
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
| | - Ramin Rad
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
| | - Loren D. Walensky
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana–Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
40
|
Fernández-Llamazares AI, Spengler J, Albericio F. Review backboneN-modified peptides: How to meet the challenge of secondary amine acylation. Biopolymers 2015; 104:435-52. [DOI: 10.1002/bip.22696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Ana I. Fernández-Llamazares
- Institute for Research in Biomedicine; Deparment of Chemistry and Molecular Pharmacology, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- CIBER-BBN; Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
| | - Jan Spengler
- Institute for Research in Biomedicine; Deparment of Chemistry and Molecular Pharmacology, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- CIBER-BBN; Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine; Deparment of Chemistry and Molecular Pharmacology, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- CIBER-BBN; Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- Department of Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 Barcelona 08028 Spain
- School of Chemistry and Physics; University of KwaZulu-Natal; 4001 Durban South Africa
- School of Life Sciences, Department of Chemistry, Yachay Tech, Yachay City of Knowledge; Urcuquι 100119 Ecuador. Department of Chemistry; College of Science, King Saud University; P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
41
|
Solid phase synthesis of constrained 13-membered peptide macrocycles employing Fukuyama–Mitsunobu alkylations. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Schütznerová E, Krchňák V. Solid-phase synthesis of 2-aryl-3-alkylamino-1H-indoles from 2-nitro-N-(2-oxo-2-arylethyl)benzenesulfonamides via base-mediated C-arylation. ACS COMBINATORIAL SCIENCE 2015; 17:137-46. [PMID: 25547263 DOI: 10.1021/co500167g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polymer-supported 2-nitro-N-(2-oxo-2-arylethyl)benzenesulfonamides, prepared from resin-bound amines by sulfonylation with 2-nitrobenzenesulfonyl chlorides followed by alkylation with α-bromoacetophenones, represent advanced intermediates for the synthesis of different nitrogenous heterocycles. We report their application for the synthesis of 2-aryl-3-alkylamino-1H-indoles via base-mediated C-arylation reactions followed by the reduction of the C-arylated intermediates. Linear precursors for C-arylation were prepared on solid-phase support from simple, commercially available building blocks. The effects of different substituents on the amino and aryl groups were addressed.
Collapse
Affiliation(s)
- Eva Schütznerová
- Department of Organic
Chemistry, Faculty of Science, Palacký University, 17. Listopadu
12, 771 46 Olomouc, Czech Republic
| | - Viktor Krchňák
- Department of Organic
Chemistry, Faculty of Science, Palacký University, 17. Listopadu
12, 771 46 Olomouc, Czech Republic
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Center, Notre Dame, Indiana 46556, United States
| |
Collapse
|
43
|
Xiao W, Hu Y, Li W, Guan J, Liu F, Shan X, Sheng L. Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation. J Chem Phys 2015; 142:024306. [DOI: 10.1063/1.4905501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Weizhan Xiao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Weixing Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Jiwen Guan
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Fuyi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Xiaobin Shan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Liusi Sheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| |
Collapse
|
44
|
N-Substituted arylsulfonamide building blocks as alternative submonomers for peptoid synthesis. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Nabika R, Suyama TL, Hau AM, Misu R, Ohno H, Ishmael JE, McPhail KL, Oishi S, Fujii N. Synthesis and biological evaluation of the [d-MeAla(11)]-epimer of coibamide A. Bioorg Med Chem Lett 2014; 25:302-6. [PMID: 25488840 DOI: 10.1016/j.bmcl.2014.11.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
Abstract
Coibamide A is a highly potent antiproliferative cyclic depsipeptide, which was originally isolated from a Panamanian marine cyanobacterium. In this study, the synthesis of coibamide A has been investigated using Fmoc-based solid-phase peptide synthesis followed by the cleavage of the resulting linear peptide from the resin and its subsequent macrolactonization. The peptide sequence of the linear coibamide A precursor was constructed on a solid-support following the optimization of the coupling conditions, where numerous coupling agents were evaluated. The macrocyclization of the resulting linear peptide provided the [d-MeAla(11)]-epimer of coibamide A, which exhibited nanomolar cytotoxic activity towards a number of human cancer cell lines.
Collapse
Affiliation(s)
- Ryota Nabika
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi L Suyama
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew M Hau
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Ryosuke Misu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jane E Ishmael
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
46
|
Han J, Lian J, Tian X, Zhou S, Zhen X, Liu S. Total Synthesis of Micromide: a Marine Natural Product. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Malakoutikhah M, Guixer B, Arranz-Gibert P, Teixidó M, Giralt E. ‘À la Carte’ Peptide Shuttles: Tools to Increase Their Passage across the Blood-Brain Barrier. ChemMedChem 2014; 9:1594-601. [DOI: 10.1002/cmdc.201300575] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 11/11/2022]
|
48
|
Di Gioia ML, Barattucci A, Bonaccorsi P, Leggio A, Minuti L, Romio E, Temperini A, Siciliano C. Deprotection/reprotection of the amino group in α-amino acids and peptides. A one-pot procedure in [Bmim][BF4] ionic liquid. RSC Adv 2014. [DOI: 10.1039/c3ra46599c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Teixidó M, Zurita E, Mendieta L, Oller-Salvia B, Prades R, Tarragó T, Giralt E. Dual system for the central nervous system targeting and blood-brain barrier transport of a selective prolyl oligopeptidase inhibitor. Biopolymers 2013; 100:662-74. [DOI: 10.1002/bip.22275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/19/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
| | - Esther Zurita
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
| | - Laura Mendieta
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
| | - Benjamí Oller-Salvia
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
| | - Roger Prades
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
| | - Teresa Tarragó
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
- Department of Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 Barcelona 08028 Spain
| |
Collapse
|
50
|
Rigger L, Schmidt RL, Holman KM, Simonović M, Micura R. The synthesis of methylated, phosphorylated, and phosphonated 3'-aminoacyl-tRNA(Sec) mimics. Chemistry 2013; 19:15872-8. [PMID: 24127424 DOI: 10.1002/chem.201302188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Indexed: 11/12/2022]
Abstract
The twenty first amino acid, selenocysteine (Sec), is the only amino acid that is synthesized on its cognate transfer RNA (tRNA(Sec)) in all domains of life. The multistep pathway involves O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS), an enzyme that catalyzes the terminal chemical reaction during which the phosphoseryl-tRNA(Sec) intermediate is converted into selenocysteinyl-tRNA(Sec). The SepSecS architecture and the mode of tRNA(Sec) recognition have been recently determined at atomic resolution. The crystal structure provided valuable insights that gave rise to mechanistic proposals that could not be validated because of the lack of appropriate molecular probes. To further improve our understanding of the mechanism of the biosynthesis of selenocysteine in general and the mechanism of SepSecS in particular, stable tRNA(Sec) substrates carrying aminoacyl moieties that mimic particular reaction intermediates are needed. Here, we report on the accurate synthesis of methylated, phosphorylated, and phosphonated serinyl-derived tRNA(Sec) mimics that contain a hydrolysis-resistant ribose 3'-amide linkage instead of the natural ester bond. The procedures introduced allow for efficient site-specific methylation and/or phosphorylation directly on the solid support utilized in the automated RNA synthesis. For the preparation of (S)-2-amino-4-phosphonobutyric acid-oligoribonucleotide conjugates, a separate solid support was generated. Furthermore, we developed a three-strand enzymatic ligation protocol to obtain the corresponding full-length tRNA(Sec) derivatives. Finally, we developed an electrophoretic mobility shift assay (EMSA) for rapid, qualitative characterization of the SepSecS-tRNA interactions. The novel tRNA(Sec) mimics are promising candidates for further elucidation of the biosynthesis of selenocysteine by X-ray crystallography and other biochemical approaches, and could be attractive for similar studies on other tRNA-dependent enzymes.
Collapse
Affiliation(s)
- Lukas Rigger
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria), Fax: (+43) 512 507 57799
| | | | | | | | | |
Collapse
|