1
|
Yao SY, Ying AK, Geng WC, Chen FY, Hu XY, Cai K, Guo DS. High-affinity 1 : 2 recognition based on naphthyl-azocalix[4]arene and its application as a cleavable noncovalent connector in constructing responsive supramolecular polymeric materials. Chem Sci 2025; 16:7066-7076. [PMID: 40144498 PMCID: PMC11934056 DOI: 10.1039/d5sc00075k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Macrocyclic hosts which can bind two guests simultaneously with high affinity, such as cucurbit[8]uril, are highly useful for a wide range of applications by acting as noncovalent connectors. However, the integration of stimuli-controlled release properties into such robust noncovalent connectors would be even more desirable. Here, we introduce Naph-SAC4A, a naphthyl-extended deep-cavity azocalix[4]arene with hypoxia-responsiveness, which exhibits exceptional 1 : 2 hosting abilities for organic dyes in aqueous solution with affinities ranging from 1014 to 1016 M-2. Furthermore, Naph-SAC4A was employed as a robust hypoxia-cleavable noncovalent connector to construct linear supramolecular polymers and crosslinked supramolecular hydrogels. Both structures exhibit responsiveness to hypoxic stimuli. With its high-affinity 1 : 2 recognition, unique hypoxia-responsiveness, and easy accessibility, Naph-SAC4A holds great potential for smart supramolecular polymeric materials.
Collapse
Affiliation(s)
- Shun-Yu Yao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University 300071 Tianjin China
| | - An-Kang Ying
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University 300071 Tianjin China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University 300071 Tianjin China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University 300071 Tianjin China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University 300071 Tianjin China
| | - Kang Cai
- College of Chemistry, Nankai University Tianjin 300071 China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University 300071 Tianjin China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University Kashi 844000 China
| |
Collapse
|
2
|
Gutiérrez-Gálvez L, García-Mendiola T, Lorenzo E, Nuez-Martinez M, Ocal C, Yan S, Teixidor F, Pinheiro T, Marques F, Viñas C. Compelling DNA intercalation through 'anion-anion' anti-coulombic interactions: boron cluster self-vehicles as promising anticancer agents. J Mater Chem B 2024; 12:9550-9565. [PMID: 39141010 DOI: 10.1039/d4tb01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Anticancer drugs inhibit DNA replication by intercalating between DNA base pairs, forming covalent bonds with nucleotide bases, or binding to the DNA groove. To develop safer drugs, novel molecular structures with alternative binding mechanisms are essential. Stable boron hydrides offer a promising alternative for cancer therapy, opening up additional options like boron neutron capture therapy based on 10B and thermal neutron beams or proton boron fusion therapy using 11B and proton beams. These therapies are more efficient when the boron compound is ideally located inside cancer cells, particularly in the nucleus. Current cancer treatments often utilize small, polycyclic, aromatic, planar molecules that intercalate between ds-DNA base pairs, requiring only a spacing of approximately 0.34 nm. In this paper, we demonstrate another type of intercalation. Notably, [3,3'-Fe(1,2-C2B9H11)2]-, ([o-FESAN]-), a compact 3D molecule measuring 1.1 nm × 0.6 nm, can as well intercalate by strong non-bonding interactions preferentially with guanine. Unlike known intercalators, which are positive or neutral, [o-FESAN]- is a negative species and when an [o-FESAN]- molecule approaches the negatively charged DNA phosphate chain an anion-anion interaction consistently anti-electrostatic via Ccluster-H⋯O-P bonds occurs. Then, when more molecules approach, an elongated outstandingly self-assembled structure of [o-FESAN]--[o-FESAN]- forms moving anions towards the interthread region to interact with base pairs and form aggregates of four [o-FESAN]- anions per base pair. These aggregates, in this environment, are generated by Ccluster-H⋯O-C, N-H⋯H-B and Ccluster-H⋯H-B interactions. The ferrabis(dicarbollide) boron-rich small molecules not only effectively penetrate the nucleus but also intercalate with ds-DNA, making them promising for cancer treatment. This amphiphilic anionic molecule, used as a carrier-free drug, can enhance radiotherapy in a multimodal perspective, providing healthcare professionals with improved tools for cancer treatment. This work demonstrates these findings with a plethora of techniques.
Collapse
Affiliation(s)
- Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Miquel Nuez-Martinez
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Carmen Ocal
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Shunya Yan
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Teresa Pinheiro
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Fernanda Marques
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
3
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
4
|
Wang S, Yang Y, Yang Y, Li H, Chen DDY. Quantitative characterization of human oncogene promoter G-quadruplex DNA-ligand interactions using a combination of mass spectrometry and capillary electrophoresis. Electrophoresis 2021; 42:1450-1460. [PMID: 33990994 DOI: 10.1002/elps.202100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/08/2022]
Abstract
Human c-KIT oncogene is known to regulate cell growth and proliferation, and thus, acts as a probable target in the treatment of gastrointestinal tumors (GIST). To identify small molecule ligands which can specifically bind with the G-quadruplex (G4) in the c-KIT promoter region as potential antitumor agents, we propose the combination of electrospray ionization-mass spectrometry (ESI-MS), capillary electrophoresis frontal analysis (CE-FA), and Taylor dispersion analysis (TDA) to accurately investigate the G4/ligands binding properties. First, ESI-MS was used for initial screening of natural products (NPs). CE-FA was then used to calculate specific binding constants and the stoichiometry of the native state binding pair in solution. Next, TDA, a micro-capillary flow technique was used to examine the effect of the ligand binding on the diffusivity and particle size of the c-KIT G4. Two of the screened NPs, scopolamine butylbromide (L1) and isorhamnetin-3-O-neohesperidoside (L3), were found to specifically bind to the c-KIT G4 with binding constants of around 104 M-1 and 1:1 stoichiometry in a free solution. TDA data showed that ligand binding (both L1 and L3) induced the c-KIT strands to fold into a tightly structured G4 with a decreased hydrodynamic radius. These ligands have the potential to be drug candidates for the regulation of c-KIT gene transcription by stabilizing the G4 structure. This methodology not only increased the speed of analysis but also improved its accuracy and specificity compared with the conventional binding approaches.
Collapse
Affiliation(s)
- Shuangshuang Wang
- National and local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Changzhou Institute of Innovation and Development, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Yang Yang
- National and local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Changzhou Institute of Innovation and Development, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Yunhe Yang
- National and local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Changzhou Institute of Innovation and Development, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Huihui Li
- National and local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Changzhou Institute of Innovation and Development, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
García-Álvarez F, Martínez-García M. Dendrimer Porphyrins: Applications in Nanomedicine. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201026203527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nanomedicine is a fascinating field of multidisciplinary study focused on developing
techniques that fight various diseases using nanoparticles. Among the various nanoparticles
used in nanomedicine, dendrimers have received increasing interest in recent years because
of the versatility that their structural characteristics give them. Specifically, dendrimer
porphyrins are compounds that incorporate macro heterocyclic-aromatic units within the dendritic
architecture and exhibit interesting photodynamic properties that are used to combat
various diseases using non-invasive methods. In the past 17 years, few studies of the application
of dendrimer porphyrins in nanomedicine have been published. This review focuses on
presenting recent studies of dendrimer porphyrins with possible applications in the field of
nanomedicine.
Collapse
Affiliation(s)
- Fernando García-Álvarez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F., Mexico
| | - Marcos Martínez-García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F., Mexico
| |
Collapse
|
6
|
Helminth infection-induced carcinogenesis: spectrometric insights from the liver flukes, Opisthorchis and Fasciola. EXPERIMENTAL RESULTS 2020. [DOI: 10.1017/exp.2020.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractEarlier reports revealed oxysterol metabolites of Opisthorchis spp. liver fluke origin conjugated with DNA bases, suggesting that the generation of these DNA-adducts may underlie the mutagenicity and carcinogenicity of the infection with these food-borne pathogens. Here, we employed liquid chromatography-mass spectrometry to investigate, compare and contrast spectrograms of soluble extracts from Fasciola hepatica adult worms from bile ducts of cattle with those from O. viverrini and O.felineus from experimentally infected hamsters. F. hepatica and Opisthorchis spp. shared common compounds including oxysterol-like metabolites, bile acids and DNA-adducts, but the spectrometric profiles of F. hepatica included far fewer compounds than Opisthorchis species. These findings support the postulate that parasitic oxysterol-like metabolites could be related to carcinogenesis associated to infection and they point to a molecular basis for the differences among major groups of liver flukes concerning infection-induced malignancy.
Collapse
|
7
|
Peccati F. NCIPLOT4 Guide for Biomolecules: An Analysis Tool for Noncovalent Interactions. J Chem Inf Model 2020; 60:6-10. [DOI: 10.1021/acs.jcim.9b00950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Francesca Peccati
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 4 Place Jussieu, 75005 Paris, France
- Sorbonne Université, Institut des Sciences du Calcul et des Données, ISCD, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
8
|
Chen G, Fan M, Liu Y, Sun B, Liu M, Wu J, Li N, Guo M. Advances in MS Based Strategies for Probing Ligand-Target Interactions: Focus on Soft Ionization Mass Spectrometric Techniques. Front Chem 2019; 7:703. [PMID: 31709232 PMCID: PMC6819514 DOI: 10.3389/fchem.2019.00703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
The non-covalent interactions between small drug molecules and disease-related proteins (ligand-target interactions) mediate various pharmacological processes in the treatment of different diseases. The development of the analytical methods to assess those interactions, including binding sites, binding energies, stoichiometry and association-dissociation constants, could assist in clarifying the mechanisms of action, precise treatment of targeted diseases as well as the targeted drug discovery. For the last decades, mass spectrometry (MS) has been recognized as a powerful tool to study the non-covalent interactions of the ligand-target complexes with the characteristics of high sensitivity, high-resolution, and high-throughput. Soft ionization mass spectrometry, especially the electrospray mass spectrometry (ESI-MS) and matrix assisted laser desorption ionization mass spectrometry (MALDI-MS), could achieve the complete transformation of the target analytes into the gas phase, and subsequent detection of the small drug molecules and disease-related protein complexes, and has exerted great advantages for studying the drug ligands-protein targets interactions, even in case of identifying active components as drug ligands from crude extracts of medicinal plants. Despite of other analytical techniques for this purpose, such as the NMR and X-ray crystallography, this review highlights the principles, research hotspots and recent applications of the soft ionization mass spectrometry and its hyphenated techniques, including hydrogen-deuterium exchange mass spectrometry (HDX-MS), chemical cross-linking mass spectrometry (CX-MS), and ion mobility spectrometry mass spectrometry (IMS-MS), in the study of the non-covalent interactions between small drug molecules and disease-related proteins.
Collapse
Affiliation(s)
- Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ye Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meixian Liu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
9
|
Chen JC, Jockusch RA. Protomers of DNA-binding dye fluoresce different colours: intrinsic photophysics of Hoechst 33258. Phys Chem Chem Phys 2019; 21:16848-16858. [DOI: 10.1039/c9cp02421b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new form of DNA-binder Hoechst 33258 is stabilised upon desolvation. Altered optical properties include a distinct green fluorescence.
Collapse
Affiliation(s)
- JoAnn C. Chen
- Department of Chemistry
- University of Toronto
- Toronto
- Canada M5S 3H6
| | | |
Collapse
|
10
|
Abstract
Mass spectrometry (MS) is an analytical tool complimentary for being sensitive, accurate, and versatile in its application, such as the identification of multistranded nucleic acid assemblies, including G-quadruplex. More specifically, electrospray ionization mass spectrometry (ESI-MS) has been successfully applied to probe various G-quadruplex formations and G-quadruplex-ligand interactions. The benefit of the ESI process is that the noncovalent interactions, which typically stabilize the multistranded motifs of G-quadruplex in solution, are preserved in the gas phase. Here we use ESI-MS to describe the structural characterization of G-quadruplex structures found in three G-rich sequences, as well as the ligand binding. Detailed structural information of G-quadruplexes and their ligand-bound complexes (such as the cation/ligand binding stoichiometry, and the number of strands and G-quartets) can be obtained from a single spectrum using this ESI-MS-based method.
Collapse
Affiliation(s)
- Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China.
| |
Collapse
|
11
|
Fu H, Yang P, Hai J, Li H. Utilization of circular dichroism and electrospray ionization mass spectrometry to understand the formation and conversion of G-quadruplex DNA at the human c-myb proto-oncogene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:70-76. [PMID: 29860170 DOI: 10.1016/j.saa.2018.05.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
G-quadruplex DNAs are involved in a number of key biological processes, including gene expression, transcription, and apoptosis. The c-myb oncogene contains a number of GGA repeats in its promoter which forms G-quadruplex, thus it could be used as a target in cancer therapeutics. Several in-vitro studies have used Circular Dichroism (CD) spectroscopy or electrospray ionization mass spectrometry (ESI-MS) to demonstrate formation and stability of G-quadruplex DNA structure in the promoter region of human c-myb oncogene. The factors affecting the c-myb G-quadruplex structures were investigated, such as cations (i.e. K+, NH4+ and Na+) and co-solutes (methanol and polyethylene glycol). The results indicated that the presence of cations and co-solutes could change the G-quadruplex structural population and promote its thermodynamic stabilization as indicated by CD melting curves. It indicated that the co-solutes preferentially stabilize the c-myb G-quadruplex structure containing both homo- and hetero-stacking. In addition, protopine was demonstrated as a binder of c-myb G-quadruplex as screened from a library of natural alkaloids using ESI-MS method. CD spectra showed that it could selectively stabilize the c-myb G-quadruplex structure compared to other six G-quadruplexes from tumor-related G-rich sequences and the duplex DNAs (both long and short-chain ones). The binding of protopine could induce the change in the G-quadruplex structural populations. Therefore, protopine with its high binding specificity could be considered as a precursor for the design of drugs to target and regulate c-myb oncogene transcription.
Collapse
Affiliation(s)
- Hengqing Fu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pengfei Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinhui Hai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
12
|
Gouveia MJ, Pakharukova MY, Laha T, Sripa B, Maksimova GA, Rinaldi G, Brindley PJ, Mordvinov VA, Amaro T, Santos LL, Costa JMCD, Vale N. Infection with Opisthorchis felineus induces intraepithelial neoplasia of the biliary tract in a rodent model. Carcinogenesis 2017; 38:929-937. [PMID: 28910999 DOI: 10.1093/carcin/bgx042] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 05/04/2017] [Indexed: 12/21/2022] Open
Abstract
The liver fluke Opisthorchis felineus is a member of the triad of epidemiologically relevant species of the trematode family Opisthorchiidae, and the causative agent of opisthorchiasis felinea over an extensive range that spans regions of Eurasia. The International Agency for Research on Cancer classifies the infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis as group 1 agents and a major risk factor for cholangiocarcinoma. However, the carcinogenic potential of the infection with O. felineus is less clear. Here, we present findings that support the inclusion of O. felineus in the Group 1 list of biological carcinogens. Two discrete lines of evidence support the notion that infection with this liver fluke is carcinogenic. First, novel oxysterol-like metabolites detected by liquid chromatography-mass spectroscopy in the egg and adult developmental stages of O. felineus, and in bile, sera, and urine of liver fluke-infected hamsters exhibited marked similarity to oxysterol-like molecules known from O. viverrini. Numerous oxysterols and related DNA-adducts detected in the liver fluke eggs and in bile from infected hamsters suggested that infection-associated oxysterols induced chromosomal lesions in host cells. Second, histological analysis of liver sections from hamsters infected with O. felineus confirmed portal area enlargement, inflammation with severe periductal fibrosis and changes in the epithelium of the biliary tract characterized as biliary intraepithelial neoplasia, BilIN. The consonance of these biochemical and histopathological changes revealed that O. felineus infection in this rodent model induced precancerous lesions conducive to malignancy.
Collapse
Affiliation(s)
- Maria João Gouveia
- Center for the Study in Animal Science, ICETA, University of Porto, Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal.,UCBIO/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Maria Y Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, 630090 Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogov Street, 630090 Novosibirsk, Russia
| | - Thewarach Laha
- Department of Parasitology.,Department of Pathology.,Tropical Diseases Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- Department of Parasitology.,Department of Pathology.,Tropical Diseases Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Galina A Maksimova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Viatcheslav A Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, 630090 Novosibirsk, Russia.,Laboratory of Drug Metabolism and Pharmacokinetics, Institute of Molecular Biology and Biophysics, 2/12 Tymakov Street, 630055 Novosibirsk, Russia
| | - Teresina Amaro
- Experimental Pathology and Therapeutics Group, Research Center of Instituto Português de Oncologia, Rua Dr. António de Almeida 4200-072 Porto, Portugal
| | - Lucio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of Instituto Português de Oncologia, Rua Dr. António de Almeida 4200-072 Porto, Portugal
| | - José Manuel Correia da Costa
- Center for the Study in Animal Science, ICETA, University of Porto, Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal.,Centre for Parasite Immunology and Biology, Infectious Diseases Department, INSA, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Nuno Vale
- UCBIO/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.,Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| |
Collapse
|
13
|
Qian C, Fu H, Kovalchik KA, Li H, Chen DDY. Specific Binding Constant and Stoichiometry Determination in Free Solution by Mass Spectrometry and Capillary Electrophoresis Frontal Analysis. Anal Chem 2017; 89:9483-9490. [DOI: 10.1021/acs.analchem.7b02443] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Qian
- National
and Local Joint Engineering Research Center of Biomedical Functional
Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional
Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Hengqing Fu
- National
and Local Joint Engineering Research Center of Biomedical Functional
Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional
Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Kevin A. Kovalchik
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Huihui Li
- National
and Local Joint Engineering Research Center of Biomedical Functional
Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional
Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - David Da Yong Chen
- National
and Local Joint Engineering Research Center of Biomedical Functional
Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional
Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
14
|
Li H, Hai J, Zhou J, Yuan G. The formation and characteristics of the i-motif structure within the promoter of the c-myb proto-oncogene. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:625-632. [PMID: 27487467 DOI: 10.1016/j.jphotobiol.2016.07.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 12/11/2022]
Abstract
C-myb proto-oncogene is a potential therapeutic target for some human solid tumors and leukemias. A long cytosine-rich sequence, which locates the downstream of the transcription initiation site, is demonstrated to fold into an intramolecular i-motif DNA using electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. Effects of factors, including the pH value, the number of C:C(+) dimers, the concentration of buffer, the molecular crowding condition, and the coexistence of the complementary DNA, on the formation and the structural stability of the i-motif DNA are systematically studied. We have demonstrated that the i-motif folding in the c-myb promoter could be accelerated upon synergistic physiological stimuli including intracellular molecular crowding and low pH values, as well as the large number of the i-motif C:C(+) dimers. Meanwhile, various inputs, such as acids/bases and metal ions, have exhibited their abilities in controlling the conformational switch of the c-myb GC-rich DNA. Acidic pH values and the presence of K(+) ions can induce the dissociation of the double helix. Our present strategy can greatly extend the potential usages of i-motif DNA molecules with specific sequences as conformational switch-controlled devices. Moreover, this work demonstrates the superiority of CD spectroscopy associated with ESI-MS as a rapid, more cost-effective and sensitive structural change responsive method in the research of DNA conformational switching.
Collapse
Affiliation(s)
- Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1, Canada.
| | - Jinhui Hai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Wang Y, Chan HW, Chan W. Facile Formation of a DNA Adduct of Semicarbazide on Reaction with Apurinic/Apyrimidinic Sites in DNA. Chem Res Toxicol 2016; 29:834-40. [DOI: 10.1021/acs.chemrestox.6b00011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yinan Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ho Wai Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
16
|
Xu N, Lei J, Wang Q, Yang Q, Ju H. Dendritic DNA-porphyrin as mimetic enzyme for amplified fluorescent detection of DNA. Talanta 2016; 150:661-5. [PMID: 26838456 DOI: 10.1016/j.talanta.2016.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/24/2015] [Accepted: 01/03/2016] [Indexed: 12/21/2022]
Abstract
In this work, a novel dendritic DNA-porphyrin superstructure was designed as mimetic enzyme for the amplified fluorescent detection of DNA. The dendritic DNA superstructure was in situ assembled with three auxiliary DNAs via hybridization chain reaction. With groove interaction between iron porphyrin (FeTMPyP) and double-stranded DNA, the dendritic DNA superstructure is capable to gather abundant FeTMPyP molecules to form dendritic DNA-FeTMPyP mimetic enzyme. Using tyramine as a substrate, the dendritic DNA-FeTMPyP demonstrated excellent peroxidase-like catalytic oxidation of tyramine into fluorescent dityramine in the presence of H2O2. Based on an amplified fluorescence signal, a signal on strategy is proposed for DNA detection with high sensitivity, good specificity and practicability. The assembly of porphyrin with dendritic DNA not only provided the new avenue to construct mimetic enzyme but also established label-free sensing platform for a wide range of analytes.
Collapse
Affiliation(s)
- Nan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.
| | - Quanbo Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Qianhui Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
17
|
Preparation of ds-DNA functionalized magnetic nanobaits for screening of bioactive compounds from medicinal plant. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:401-8. [DOI: 10.1016/j.msec.2015.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/23/2015] [Accepted: 06/25/2015] [Indexed: 11/22/2022]
|
18
|
Li W, Hu Q, Chan W. Mass Spectrometric and Spectrofluorometric Studies of the Interaction of Aristolochic Acids with Proteins. Sci Rep 2015; 5:15192. [PMID: 26471474 PMCID: PMC4608009 DOI: 10.1038/srep15192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/21/2015] [Indexed: 01/04/2023] Open
Abstract
Aristolochic acid (AA) is a potent carcinogen and nephrotoxin and is associated with the development of "Chinese herb nephropathy" and Balkan endemic nephropathy. Despite decades of research, the specific mechanism of the observed nephrotoxicity has remained elusive and the potential effects on proteins due to the observed toxicity of AA are not well-understood. To better understand the pharmacotoxicological features of AA, we investigated the non-covalent interactions of AA with proteins. The protein-binding properties of AA with bovine serum albumin (BSA) and lysozyme were characterized using spectrofluorometric and mass spectrometric (MS) techniques. Moreover, the protein-AA complexes were clearly identified by high-resolution MS analyses. To the best of our knowledge, this is the first direct evidence of non-covalently bound protein-AA complexes. An analysis of the spectrofluorometric data by a modified Stern-Volmer plot model also revealed that both aristolochic acid I (AAI) and aristolochic acid II (AAII) were bound to BSA and lysozyme in 1:1 stoichiometries. A significantly stronger protein binding property was observed in AAII than in AAI as evidenced by the spectrofluorometric and MS analyses, which may explain the observed higher mutagenicity of AAII.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Qin Hu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
19
|
Laughlin S, Wilson WD. May the Best Molecule Win: Competition ESI Mass Spectrometry. Int J Mol Sci 2015; 16:24506-31. [PMID: 26501262 PMCID: PMC4632762 DOI: 10.3390/ijms161024506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/18/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023] Open
Abstract
Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences.
Collapse
Affiliation(s)
- Sarah Laughlin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
20
|
Doan PH, Pitter DRG, Kocher A, Wilson JN, Goodson T. Two-Photon Spectroscopy as a New Sensitive Method for Determining the DNA Binding Mode of Fluorescent Nuclear Dyes. J Am Chem Soc 2015; 137:9198-201. [DOI: 10.1021/jacs.5b02674] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Phi H. Doan
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Demar R. G. Pitter
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Andrea Kocher
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James N. Wilson
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Theodore Goodson
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Estrogen-like metabolites and DNA-adducts in urogenital schistosomiasis-associated bladder cancer. Cancer Lett 2015; 359:226-32. [PMID: 25615421 DOI: 10.1016/j.canlet.2015.01.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 01/26/2023]
Abstract
An estrogen-DNA adduct mediated pathway may be involved in the pathogenesis of the squamous cell carcinoma of the bladder associated with infection with the blood fluke Schistosoma haematobium. Extracts from developmental stages of S. haematobium, including eggs, induce tumor-like phenotypes in cultured cells. In addition, estrogen-derived, reactive metabolites occur in this pathogen and in sera of infected persons. Liquid chromatography-mass spectrometry analysis was performed on urine from 40 Angolans diagnosed with urogenital schistosomiasis (UGS), half of who also presented UGS-associated squamous cell carcinoma and/or urothelial cell carcinoma. The analysis revealed numerous estrogen-like metabolites, including seven specifically identified in UGS cases, but not reported in the database of metabolites in urine of healthy humans. These schistosome infection-associated metabolites included catechol estrogen quinones (CEQ) and CEQ-DNA-adducts, two of which had been identified previously in S. haematobium. In addition, novel metabolites derived directly from 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) were identified in urine of all 40 cases of UGS. These metabolites can be expected to provide deeper insights into the carcinogenesis UGS-induced bladder cancer, and as biomarkers for diagnosis and/or prognosis of this neglected tropical disease-linked cancer.
Collapse
|
22
|
Leriche ED, Hubert-Roux M, Afonso C, Lange CM, Grossel MC, Maire F, Loutelier-Bourhis C. Investigation of dendriplexes by ion mobility-mass spectrometry. Molecules 2014; 19:20731-50. [PMID: 25514219 PMCID: PMC6271531 DOI: 10.3390/molecules191220731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 11/21/2022] Open
Abstract
Highly branched polyamidoamine (PAMAM) dendrimers presenting biological activities have been envisaged as non-viral gene delivery vectors. They are known to associate with nucleic acid (DNA) in non-covalent complexes via electrostatic interactions. Although their transfection efficiency has been proved, PAMAMs present a significant cytotoxicity due to their cationic surface. To overcome such a drawback, different chemical modifications of the PAMAM surface have been reported such as the attachment of hydrophobic residues. In the present work, we studied the complexation of DNA duplexes with different low-generation PAMAM; ammonia-cored G0(N) and G1(N) PAMAM, native or chemically modified with aromatic residues, i.e., phenyl-modified-PAMAM G0(N) and phenylalanine-modified-PAMAM G1(N). To investigate the interactions involved in the PAMAM/DNA complexes, also called dendriplexes, we used electrospray ionization (ESI) coupled to ion mobility spectrometry-mass-spectrometry (IM-MS). ESI is known to allow the study of non-covalent complexes in native conditions while IM-MS is a bidimensional separation technique particularly useful for the characterization of complex mixtures. IM-MS allows the separation of the expected complexes, possible additional non-specific complexes and the free ligands. Tandem mass spectrometry (MS/MS) was also used for the structural characterization. This work highlights the contribution of IM-MS and MS/MS for the study of small dendriplexes. The stoichiometries of the complexes and the equilibrium dissociation constants were determined. The [DNA/native PAMAM] and [DNA/modified-PAMAM] dendriplexes were compared.
Collapse
Affiliation(s)
- Emma-Dune Leriche
- Normandie Université, COBRA, UMR6014 and FR3038, Université de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Marie Hubert-Roux
- Normandie Université, COBRA, UMR6014 and FR3038, Université de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Carlos Afonso
- Normandie Université, COBRA, UMR6014 and FR3038, Université de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Catherine M Lange
- Normandie Université, COBRA, UMR6014 and FR3038, Université de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Martin C Grossel
- School of Chemistry, University of Southampton, Highfield, Hants SO17 1BJ Southampton, UK
| | - Florian Maire
- Normandie Université, COBRA, UMR6014 and FR3038, Université de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Corinne Loutelier-Bourhis
- Normandie Université, COBRA, UMR6014 and FR3038, Université de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France.
| |
Collapse
|
23
|
Wright EP, Padula MP, Higgins VJ, Aldrich-Wright JR, Coorssen JR. A Systems Biology Approach to Understanding the Mechanisms of Action of an Alternative Anticancer Compound in Comparison to Cisplatin. Proteomes 2014; 2:501-526. [PMID: 28250393 PMCID: PMC5302693 DOI: 10.3390/proteomes2040501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 09/19/2014] [Accepted: 10/29/2014] [Indexed: 01/22/2023] Open
Abstract
Many clinically available anticancer compounds are designed to target DNA. This commonality of action often yields overlapping cellular response mechanisms and can thus detract from drug efficacy. New compounds are required to overcome resistance mechanisms that effectively neutralise compounds like cisplatin and those with similar chemical structures. Studies have shown that 56MESS is a novel compound which, unlike cisplatin, does not covalently bind to DNA, but is more toxic to many cell lines and active against cisplatin-resistant cells. Furthermore, a transcriptional study of 56MESS in yeast has implicated iron and copper metabolism as well as the general yeast stress response following challenge with 56MESS. Beyond this, the cytotoxicity of 56MESS remains largely uncharacterised. Here, yeast was used as a model system to facilitate a systems-level comparison between 56MESS and cisplatin. Preliminary experiments indicated that higher concentrations than seen in similar studies be used. Although a DNA interaction with 56MESS had been theorized, this work indicated that an effect on protein synthesis/ degradation was also implicated in the mechanism(s) of action of this novel anticancer compound. In contrast to cisplatin, the different mechanisms of action that are indicated for 56MESS suggest that this compound could overcome cisplatin resistance either as a stand-alone treatment or a synergistic component of therapeutics.
Collapse
Affiliation(s)
- Elise P Wright
- Molecular Physiology Department, and the Molecular Medicine Research Group, School of Medicine, University of Western Sydney, Campbelltown, NSW 2751, Australia.
| | - Matthew P Padula
- Proteomics Core Facility, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia.
| | - Vincent J Higgins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Janice R Aldrich-Wright
- Molecular Physiology Department, and the Molecular Medicine Research Group, School of Medicine, University of Western Sydney, Campbelltown, NSW 2751, Australia.
- School of Science and Health, University of Western Sydney, Campbelltown, NSW 2751, Australia.
| | - Jens R Coorssen
- Molecular Physiology Department, and the Molecular Medicine Research Group, School of Medicine, University of Western Sydney, Campbelltown, NSW 2751, Australia.
| |
Collapse
|
24
|
Abstract
Nucleic acids are diverse polymeric macromolecules that are essential for all life forms. These biomolecules possess a functional three-dimensional structure under aqueous physiological conditions. Mass spectrometry-based approaches have on the other hand opened the possibility to gain structural information on nucleic acids from gas-phase measurements. To correlate gas-phase structural probing results with solution structures, it is therefore important to grasp the extent to which nucleic acid structures are preserved, or altered, when transferred from the solution to a fully anhydrous environment. We will review here experimental and theoretical approaches available to characterize the structure of nucleic acids in the gas phase (with a focus on oligonucleotides and higher-order structures), and will summarize the structural features of nucleic acids that can be preserved in the gas phase on the experiment time scale.
Collapse
|
25
|
QM/MM modeling of Harmane cation fluorescence spectrum in water solution and interacting with DNA. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Çelikbıçak Ö, Salih B, Wesdemiotis C. Strong ionic interactions in noncovalent complexes between poly(ethylene imine), a cationic electrolyte, and Cibacron Blue, a nucleotide mimic--implications for oligonucleotide vectors. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:597-607. [PMID: 25044844 DOI: 10.1002/jms.3379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Cationic polymers can bind DNA to form polyplexes, which are noncovalent complexes used for gene delivery into the targeted cells. For more insight on such biologically relevant systems, the noncovalent complexes between the cationic polymer poly(ethylene imine) (PEI) and the nucleotide mimicking dye Cibacron Blue F3G-A (CB) were investigated using mass spectrometry methods. Two PEIs of low molecular weight were utilized (Mn ≈ 423 and 600 Da). The different types of CB anions produced by Na(+)/H(+) exchanges on the three sulfonic acid groups of CB and their dehydrated counterparts were responsible for complex formation with PEI. The CB anions underwent noncovalent complex formation with protonated, but not with sodiated PEI. A higher proportion of cyclic oligomers were detected in PEI423 than PEI600, but both architectures formed association products with CB. Tandem mass spectrometry studies revealed a significantly stronger noncovalent interaction between PEI and dehydrated CB than between PEI and intact CB.
Collapse
Affiliation(s)
- Ömür Çelikbıçak
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA; Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | | | | |
Collapse
|
27
|
Zubatiuk TA, Shishkin OV, Gorb L, Hovorun DM, Leszczynski J. B-DNA characteristics are preserved in double stranded d(A)3·d(T)3 and d(G)3·d(C)3 mini-helixes: conclusions from DFT/M06-2X study. Phys Chem Chem Phys 2014; 15:18155-66. [PMID: 24065071 DOI: 10.1039/c3cp51584b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the results of the first comprehensive DFT study on the d(A)3·d(T)3 and d(G)3·d(C)3 nucleic acid duplexes. The ability of mini-helixes to preserve the conformation of B-DNA in the gas phase and under the influence of such factors as: solvent, uncompensated charge, and counter-ions was evaluated using M06-2X functional with 6-31G(d,p) basis set. The accuracy of the models was ascertained based on their ability to reproduce key structural features of natural B-DNA. Analysis of the helicity suggests that the helical conformations adopt geometrical parameters which are close to those of the B-DNA form. The torsion angles fall somewhere between the values observed for BI/BII conformational classes. The comparative analysis of parameters of isolated Watson-Crick base pairs versus B-DNA-like conformations indicates the same tendency of base-pair polarization and hydration. Specifically, effects of polarization of nucleobases in continuum type dielectric medium mimicking water are stronger than those caused by the presence of backbone. Polar environment as well as the presence of counterions stabilizes duplexes, facilitating helix formation. Substantial conformational changes of nucleotides upon duplex formation decrease the binding energy. In spite of structural and energetic changes, the placement of a mini-helix into the gas phase does not lead to significant disruption of the structure. On the contrary, the duplex preserves its helicity and the strands remain bound.
Collapse
Affiliation(s)
- Tetiana A Zubatiuk
- Division of Functional Materials Chemistry, SSI "Institute for Single Crystals" National Academy of Science of Ukraine, 60 Lenina Ave., Kharkiv, 61001, Ukraine
| | | | | | | | | |
Collapse
|
28
|
A method for sensitive staining of DNA in polyacrylamide gels using basic fuchsin. Bioanalysis 2014; 5:1545-54. [PMID: 23795932 DOI: 10.4155/bio.13.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND PAGE is a widely used analytical method to resolve components of a DNA mixture based on their size. Various DNA visualization methods including fluorescence, visible dye and silver have been used for the detection of gel-separated DNA, with each having different advantages and disadvantages in terms of sensitivity, safety and simplicity. RESULTS A fast and sensitive visible dye-based staining method for DNA in polyacrylamide gels using basic fuchsin (BF) is described. As low as 10-20 pg of DNA can be visualized within 10 min; the sensitivity is fourfold more sensitive than that of SYBR® Gold stain, the most sensitive commercial fluorescent probe, but similar to silver staining kit from GE Healthcare. In addition, the mechanism studies suggest that the interaction of BF with DNA is mainly contributed by non-intercalative binding mode. CONCLUSION By comprehensive studies of this visible dye-based protocol, we concluded that BF stain is a fast and sensitive method currently available for detecting DNA in polyacrylamide gels.
Collapse
|
29
|
Beck JL, Urathamakul T, Watt SJ, Sheil MM, Schaeffer PM, Dixon NE. Proteomic dissection of DNA polymerization. Expert Rev Proteomics 2014; 3:197-211. [PMID: 16608433 DOI: 10.1586/14789450.3.2.197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA polymerases replicate the genome by associating with a range of other proteins that enable rapid, high-fidelity copying of DNA. This complex of proteins and nucleic acids is termed the replisome. Proteins of the replisome must interact with other networks of proteins, such as those involved in DNA repair. Many of the proteins involved in DNA polymerization and the accessory proteins are known, but the array of proteins they interact with, and the spatial and temporal arrangement of these interactions, are current research topics. Mass spectrometry is a technique that can be used to identify the sites of these interactions and to determine the precise stoichiometries of binding partners in a functional complex. A complete understanding of the macromolecular interactions involved in DNA replication and repair may lead to discovery of new targets for antibiotics against bacteria and biomarkers for diagnosis of diseases, such as cancer, in humans.
Collapse
Affiliation(s)
- Jennifer L Beck
- Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Madureira J, Ramos CIV, Marques M, Maia C, de Sousa B, Campino L, Santana-Marques MG, Farrell N. Nonclassic Metallointercalators with Dipyridophenazine: DNA Interaction Studies and Leishmanicidal Activity. Inorg Chem 2013; 52:8881-94. [DOI: 10.1021/ic401067d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- João Madureira
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond,
Virginia 23284, United States
- Departamento de Química e Bioquímica, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa,
Portugal
| | - Catarina I. V. Ramos
- Departamento de
Química, Universidade de Aveiro,
Campus de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | - Lenea Campino
- Departamento Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8000-117
Faro, Portugal
| | | | - Nicholas Farrell
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond,
Virginia 23284, United States
| |
Collapse
|
31
|
Wen LN, Xie MX. Evidence of different G-quadruplex DNA binding with biogenic polyamines probed by electrospray ionization-quadrupole time of flight mass spectrometry, circular dichroism and atomic force microscopy. Biochimie 2013; 95:1185-1195. [PMID: 23352964 DOI: 10.1016/j.biochi.2013.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/14/2013] [Indexed: 12/14/2022]
Abstract
The binding properties of five G-quadruplex oligonucleotides (humtel24, k-ras32, c-myc22, c-kit1 and c-kit2) with polyamines have been investigated by electrospray ionization-quadrupole time of flight mass spectrometry, circular dichroism, melting temperature, atomic force microscopy (AFM) and molecular simulation. The MS results demonstrated that the polyamines and G-quadruplex DNA can form complexes with high affinity, and one molecule of G-quadruplex DNA can combine several molecules (1-5) of polyamines. The binding affinities of the polyamines to DNA were in the order of spermine > spermidine > putrescine. After binding with polyamines, the conformations of the G-quadruplex DNA were significantly changed, and spermine can induce the configurations of k-ras32 and c-kit1 to deviate from their G-quadruplex structures at high concentrations. In the presence of K(+), the conformations of G-quadruplex DNA were stabilized, while polyamines can also induced alterations of their configurations. Melting temperature experiments suggested that the Tm of the DNA-polyamine complexes obviously increased both in the absence and presence of K(+). The AFM results indicated that polyamines can induce aggregation of G-quadruplex DNA. Above results illustrated that the polyamines bound with the phosphate backbone and the base-pairs of G-quadruplex structures. Combining with the molecular simulation, the binding mode of the G-quadruplex DNA and polyamines were discussed. The results obtained would be beneficial for understanding the biological and physiological functions of polyamines and provide useful information for development of antitumor drugs.
Collapse
Affiliation(s)
- Li-Na Wen
- Analytical & Testing Center of Beijing Normal University, Xinjiekouwaidajie No. 19, Beijing 100875, People's Republic of China
| | | |
Collapse
|
32
|
Nei YW, Hallowita N, Steill JD, Oomens J, Rodgers MT. Infrared multiple photon dissociation action spectroscopy of deprotonated DNA mononucleotides: gas-phase conformations and energetics. J Phys Chem A 2013; 117:1319-35. [PMID: 23289585 DOI: 10.1021/jp3077936] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The gas phase structures of the deprotonated 2'-deoxymononucleotides including 2'-deoxyadenosine-5'-monophosphate (dA5'p), 2'-deoxycytidine-5'-monophosphate (dC5'p), 2'-deoxyguanosine-5'-monophosphate (dG5'p), and thymidine-5'-monophosphate (T5'p) are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical electronic structure calculations. The measured IRMPD action spectra of all four deprotonated DNA mononucleotides exhibit unique spectral features in the region extending from ~600 to 1800 cm(-1) such that they can be readily differentiated from one another. The measured IRMPD action spectra are compared to the linear IR spectra calculated at the B3LYP/6-311+G(d,p) level of theory to determine the conformations of these species accessed in the experiments. On the basis of these comparisons and the computed energetic information, the most stable conformations of the deprotonated forms of dA5'p, dC5'p, and T5'p are conformers where the ribose moiety adopts a C3' endo conformation and the nucleobase is in an anti conformation. By contrast, the most stable conformations of the deprotonated form of dG5'p are conformers where the ribose adapts a C3' endo conformation and the nucleobase is in a syn conformation. In addition to the ground-state conformers, several stable low-energy excited conformers that differ slightly in the orientation of the phosphate ester moiety were also accessed in the experiments.
Collapse
Affiliation(s)
- Y-w Nei
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
33
|
Ma L, Song F, Liu Z, Liu S. Study on noncovalent complexes of alkaloids with DNA duplex using electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:51-58. [PMID: 23239316 DOI: 10.1002/rcm.6424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/27/2012] [Accepted: 09/29/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE DNA is an important molecular target in modern medicine research. Some DNA-binding ligands have been used to treat numerous diseases. Therefore, understanding the interactions of different ligands with DNA and looking for new DNA agents are necessary to develop new drugs. METHODS Electrospray ionization mass spectrometry (ESI-MS) in the negative ion mode was used to screen the noncovalent complexes between 11 alkaloids with double helix oligonucleotides at molar ratios 1:1 to 1:4. The relative binding affinities based on the fraction of bound DNA and sequence selectivities of alkaloids towards the duplex were also investigated by ESI-MS. Moreover, tandem mass spectrometry of 5-charged complex ions was used to try to determine DNA-binding modes. RESULTS Six alkaloids showed complexation with the selected DNA duplex, i.e., berberine, coptisine, peimine, aconitine, oxysophoridine and cytisine. They showed their binding affinities with d(AACTCCCGGCACAC/GTGTGCCGGGAGTT) in the order of berberine > coptisine > peimine > aconitine, oxysophoridine > cytosine; additional experiments involving collision energy proved this result. Sequence selectivities were not apparent for coptisine, peimine, aconitine and oxysophoridine with four DNA duplexes. The complexes containing berberine and coptisine underwent the predominant loss of the G base. However, for complexes containing the other four alkaloids, they dissociated via the loss of neutral drug. The results confirmed that they may have different binding modes. CONCLUSIONS According to experiment data and structural information, the binding mode of individual drugs with DNA was speculated. It was noted that the bindings of alkaloids peimine, aconitine and oxysophoridine with DNA are discovered firstly. This may give a clue to design duplex-binding ligands and be helpful for understanding biological activities of these alkaloids.
Collapse
Affiliation(s)
- Lei Ma
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun Center of Mass Spectrometry, Changchun, 130022, PR China
| | | | | | | |
Collapse
|
34
|
Bai LP, Ho HM, Ma DL, Yang H, Fu WC, Jiang ZH. Aminoglycosylation can enhance the G-quadruplex binding activity of epigallocatechin. PLoS One 2013; 8:e53962. [PMID: 23335983 PMCID: PMC3545880 DOI: 10.1371/journal.pone.0053962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/04/2012] [Indexed: 01/16/2023] Open
Abstract
With the aim of enhancing G-quadruplex binding activity, two new glucosaminosides (16, 18) of penta-methylated epigallocatechin were synthesized by chemical glycosylation. Subsequent ESI-TOF-MS analysis demonstrated that these two glucosaminoside derivatives exhibit much stronger binding activity to human telomeric DNA and RNA G-quadruplexes than their parent structure (i.e., methylated EGC) (14) as well as natural epigallocatechin (EGC, 6). The DNA G-quadruplex binding activity of 16 and 18 is even more potent than strong G-quadruplex binder quercetin, which has a more planar structure. These two synthetic compounds also showed a higher binding strength to human telomeric RNA G-quadruplex than its DNA counterpart. Analysis of the structure-activity relationship revealed that the more basic compound, 16, has a higher binding capacity with DNA and RNA G-quadruplexes than its N-acetyl derivative, 18, suggesting the importance of the basicity of the aminoglycoside for G-quadruplex binding activity. Molecular docking simulation predicted that the aromatic ring of 16 π-stacks with the aromatic ring of guanine nucleotides, with the glucosamine moiety residing in the groove of G-quadruplex. This research indicates that glycosylation of natural products with aminosugar can significantly enhance their G-quadruplex binding activities, thus is an effective way to generate small molecules targeting G-quadruplexes in nucleic acids. In addition, this is the first report that green tea catechin can bind to nucleic acid G-quadruplex structures.
Collapse
Affiliation(s)
- Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Hing-Man Ho
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Hui Yang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Wai-Chung Fu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
35
|
Arai S, Hirosawa S, Oguchi Y, Suzuki M, Murata A, Ishiwata S, Takeoka S. Mass spectrometric screening of ligands with lower off-rate from a clicked-based pooled library. ACS COMBINATORIAL SCIENCE 2012; 14:451-5. [PMID: 22809242 DOI: 10.1021/co300028n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper describes a convenient screening method using ion trap electrospray ionization mass spectrometry to classify ligands to a target molecule in terms of kinetic parameters. We demonstrate this method in the screening of ligands to a hexahistidine tag from a pooled library synthesized by click chemistry. The ion trap mass spectrometry analysis revealed that higher stabilities of ligand-target complexes in the gas phase were related to lower dissociation rate constants, i.e., off-rates in solution. Finally, we prepared a fluorescent probe utilizing the ligand with lowest off-rate and succeeded in performing single molecule observations of hexahistidine-tagged myosin V walking on actin filaments.
Collapse
Affiliation(s)
- Satoshi Arai
- Consolidated Research Institute
for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Tokyo 162-0041, Japan
| | - Shota Hirosawa
- Department of Life Science and
Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Yusuke Oguchi
- Department
of Physics, Faculty
of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- Waseda Bioscience Research Institute
in Singapore, Waseda University, 11 Biopolis
Way, #05-01/02 Helios, Singapore 138667, Republic of Singapore
| | - Atsushi Murata
- Department of Life Science and
Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Shin’ichi Ishiwata
- Department
of Physics, Faculty
of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Bioscience Research Institute
in Singapore, Waseda University, 11 Biopolis
Way, #05-01/02 Helios, Singapore 138667, Republic of Singapore
| | - Shinji Takeoka
- Department of Life Science and
Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku,
Tokyo 162-8480, Japan
- Waseda Bioscience Research Institute
in Singapore, Waseda University, 11 Biopolis
Way, #05-01/02 Helios, Singapore 138667, Republic of Singapore
| |
Collapse
|
36
|
Silva EM, Ramos CI, Pereira PM, Giuntini F, Faustino MA, Tomé JP, Tomé AC, Silva AM, Santana-Marques MG, Neves MGP, Cavaleiro JA. Cationic β-vinyl substitutedmeso-tetraphenylporphyrins: synthesis and non-covalent interactions with a short poly(dGdC) duplex. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424611004373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several cationic beta-vinyl-pyridinium and beta-vinyl-quinolinium-meso-tetraphenylporphyrin derivatives were synthesized starting from 2-formyl-meso-tetraphenylporphyrin, and the corresponding Zn(II) complex, and different N-alkyl derivatives of 2- and 4-methylpyridine and 2- and 4-methylquinoline. The new compounds were obtained in a one-step process via base catalyzed aldol-type condensation reactions. Electrospray ionization mass spectrometry (ESI-MS) and ultraviolet-visible (UV-vis) spectroscopy were used to investigate the binding mode of the synthesized cationic beta-vinyl-pyridinium and beta-vinyl-quinolinium-meso-tetraphenylporphyrin derivatives with a short GC duplex oligonucleotide. Analysis of the obtained mass spectrometry results indicates the probable occurrence of outside binding. UV-vis spectroscopy data also points to non-intercalation. The potential photosensitizing capacity of these compounds was also ascertained from preliminary photophysical studies.
Collapse
Affiliation(s)
- Eduarda M.P. Silva
- Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina I.V. Ramos
- Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Francesca Giuntini
- Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria A.F. Faustino
- Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P.C. Tomé
- Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Augusto C. Tomé
- Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M.S. Silva
- Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - José A.S. Cavaleiro
- Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
37
|
Arcella A, Portella G, Ruiz ML, Eritja R, Vilaseca M, Gabelica V, Orozco M. Structure of Triplex DNA in the Gas Phase. J Am Chem Soc 2012; 134:6596-606. [DOI: 10.1021/ja209786t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Annalisa Arcella
- Joint IRB BSC Research Program
in Computational Biology, Institute for Research in Biomedicine, Baldiri Reixach 10, Barcelona 08028, Spain
| | - Guillem Portella
- Joint IRB BSC Research Program
in Computational Biology, Institute for Research in Biomedicine, Baldiri Reixach 10, Barcelona 08028, Spain
| | - Maria Luz Ruiz
- Chemistry and Molecular Pharmacology
Program, Institute for Research in Biomedicine, IQAC-CSIC, CIBER-BBN, Barcelona 08028, Spain
| | - Ramon Eritja
- Chemistry and Molecular Pharmacology
Program, Institute for Research in Biomedicine, IQAC-CSIC, CIBER-BBN, Barcelona 08028, Spain
| | - Marta Vilaseca
- Mass Spectrometry Core Facility, Institute for Research in Biomedicine, Barcelona 08028,
Spain
| | - Valérie Gabelica
- Department of Chemistry, University of Liège, Allée de la Chimie,
Building B6c, B-4000 Liège, Belgium
| | - Modesto Orozco
- Joint IRB BSC Research Program
in Computational Biology, Institute for Research in Biomedicine, Baldiri Reixach 10, Barcelona 08028, Spain
- Departament de Bioquímica
i Biología Molecular, Facultat de Biología, Universitat de Barcelona, Avgda Diagonal 645, Barcelona
08028, Spain
| |
Collapse
|
38
|
Riccardi Sirtori F, Aldini G, Colombo M, Colombo N, Malyszko J, Vistoli G, D'Alessio R. Molecular Recognition of T:G Mismatched Base Pairs in DNA as Studied by Electrospray Ionization Mass Spectrometry. ChemMedChem 2012; 7:1112-22. [DOI: 10.1002/cmdc.201100526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 03/09/2012] [Indexed: 01/04/2023]
|
39
|
Williams AK, Dasilva SC, Bhatta A, Rawal B, Liu M, Korobkova EA. Determination of the drug–DNA binding modes using fluorescence-based assays. Anal Biochem 2012; 422:66-73. [DOI: 10.1016/j.ab.2011.12.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 12/12/2011] [Accepted: 12/29/2011] [Indexed: 01/04/2023]
|
40
|
Zheng B, Liu Y, Yuan G. Polyamide recognition-mass spectrometry for distinguishing hairpin DNA from coil DNA. J Mol Recognit 2012; 24:1018-24. [PMID: 22038808 DOI: 10.1002/jmr.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The discrimination between hairpin DNA and coil DNA has been well achieved through polyamides as probes by electrospray ionization (ESI) mass spectrometry. ESI mass spectra showed that polyamides bind to hairpin DNA with high selectivity, and almost no binding with coil DNA. In addition, the noncovalent interaction between polyamides and hairpin DNA was also studied; the results show that hairpin DNA with longer stem and polyamides with more heterocycles have higher binding affinity and stability in gas phase.
Collapse
Affiliation(s)
- Bo Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | |
Collapse
|
41
|
Studies of a mispaired DNA recognized by a rhodium intercalator based on the ABEEMσπ/MM method. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
QSAR study on the interactions between antibiotic compounds and DNA by a hybrid genetic-based support vector machine. MONATSHEFTE FUR CHEMIE 2011. [DOI: 10.1007/s00706-011-0493-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
He X, Li S, Xu M, Lin S, Zhou J, Yuan G. Investigation of non-covalent interaction of ANF promoter DNA and polyamides containing N-methylimidazole and N-methylpyrrole amino acids by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:993-996. [PMID: 21416537 DOI: 10.1002/rcm.4953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/03/2010] [Accepted: 01/21/2011] [Indexed: 05/30/2023]
|
44
|
Beck JL. Developments in Electrospray Ionization Mass Spectrometry of Non-Covalent DNA–Ligand Complexes. Aust J Chem 2011. [DOI: 10.1071/ch11046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many anti-cancer drugs function by binding non-covalently to double-stranded (ds) DNA. Electrospray ionization mass spectrometry (ESI-MS) has emerged over the past decade as a sensitive technique for the determination of stoichiometries and relative binding affinities of DNA–ligand interactions. The chromosome contains nucleotide sequences, for example, guanosine-rich regions, that predispose them to the formation of higher order structures such as quadruplex DNA (qDNA). Sequences that form qDNA are found in the telomeres. The proposal that ligands that stabilize qDNA might interfere with the activity of telomerase in cancer cells has stimulated the search for ligands that are selective for qDNA over dsDNA. The insights gained from the development of ESI-MS methods for analysis of non-covalent dsDNA–ligand complexes are now being applied in the search for qDNA-selective ligands. ESI-MS is a useful first-pass screening technique for qDNA-binding ligands. This short review describes some experimental considerations for ESI-MS analysis of DNA–ligand complexes, briefly addresses the question of whether non-covalent DNA–ligand complexes are faithfully transferred from solution to the gas phase, discusses ion mobility mass spectrometry as a technique for probing this issue, and highlights some recent ESI-MS studies of qDNA-selective ligands.
Collapse
|
45
|
Murata A, Arai S, Yoon SI, Takabayashi M, Ozaki M, Takeoka S. Construction of a ‘turn-on’ fluorescent probe system for His-tagged proteins. Bioorg Med Chem Lett 2010; 20:6905-8. [DOI: 10.1016/j.bmcl.2010.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 10/19/2022]
|
46
|
Schug KA, Serrano C, Frycák P. Controlled band dispersion for quantitative binding determination and analysis with electrospray ionization-mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:806-829. [PMID: 19890977 DOI: 10.1002/mas.20267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review discusses recent emerging techniques that have been used to couple flow-injection analysis (FIA) and electrospray ionization-mass spectrometry (ESI-MS) for the quantitation of noncovalent binding interactions. Focus is placed predominantly on two such methods. Diffusion-based measurements, developed by Konermann and co-workers, uses controlled-band dispersion prior to ESI-MS to determine diffusion constants and binding constants based on the temporal variation of ligand signal measured in the mass spectrum (an indirect technique). Dynamic titration, developed by Schug and co-workers, is a direct method, where a temporal compositional gradient of a guest molecule is induced in the presence of host in solution to monitor the concentration dependence of complex formation as a function of observed complex ion abundance after ESI-MS. Further discussion places these techniques in the context of a variety of other direct and indirect ESI-MS-based binding determination methods, and highlights advantages, disadvantages, and practical considerations for their proper use to investigate a broad range of macromolecular and small-molecule interaction systems.
Collapse
Affiliation(s)
- Kevin A Schug
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, USA.
| | | | | |
Collapse
|
47
|
Li H, Yuan G. Electrospray ionization mass spectrometry probing of formation and recognition of the G-quadruplex in the proximal promoter of the human vascular endothelial growth factor gene. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2030-2034. [PMID: 20552697 DOI: 10.1002/rcm.4613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The formation of the G-quadruplex of the vascular endothelial growth factor (VEGF) gene was probed by electrospray ionization mass spectrometry (ESI-MS). It found that cations (K(+) and NH(4)(+)), CH(3)OH and pH influence significantly the formation of the G-quadruplex structure. Additionally, a perylene derivative (P3) and polydatin (P4) have shown to be potential G-quadruplex binding agents with structurally specific recognition.
Collapse
Affiliation(s)
- Huihui Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | |
Collapse
|
48
|
Ni Y, Wang Y, Kokot S. Voltammetric, UV-Vis Spectrometric and Fluorescence Study of the Interaction of Ractopamine and DNA with the Aid of Multivariate Curve Resolution-Alternating Least Squares. ELECTROANAL 2010. [DOI: 10.1002/elan.200900596] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Sun X, Lee JK. Stability of DNA Duplexes Containing Hypoxanthine (Inosine): Gas versus Solution Phase and Biological Implications. J Org Chem 2010; 75:1848-54. [DOI: 10.1021/jo9023683] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuejun Sun
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - Jeehiun K. Lee
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| |
Collapse
|
50
|
Brodbelt JS. Evaluation of DNA/Ligand interactions by electrospray ionization mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:67-87. [PMID: 20636034 DOI: 10.1146/annurev.anchem.111808.073627] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) has enabled the detection and characterization of DNA/ligand complexes, including evaluation of both relative binding affinities and selectivities of DNA-interactive ligands. The noncovalent complexes that are transferred from the solution to the gas phase retain the signature of the native species, thus allowing the use of MS to screen DNA/ligand complexes, reveal the stoichiometries of the complexes, and provide insight into the nature of the interactions. Ligands that bind to DNA via metal-mediated modes and those that bind to unusual DNA structures, such as quadruplexes, are amenable to ESI. Chemical probe methods applied to DNA/ligand complexes with ESI-MS detection afford information about ligand-binding sites and conformational changes of DNA that occur upon ligand binding.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry and Biochemistry, University of Texas, Austin, 78712, USA.
| |
Collapse
|