1
|
Rodriguez-Leon AI, Ordóñez C, Santamaria R. Simulating the Helicase Enzymatic Action on ds-DNA: A First-Principles Molecular Dynamics Study. ACS OMEGA 2025; 10:3627-3639. [PMID: 39926521 PMCID: PMC11800039 DOI: 10.1021/acsomega.4c08555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025]
Abstract
Understanding DNA replication is fundamental for advancements in fields such as genetics, molecular biology, and medical research. In this study, we investigate the mechanical characteristics of three distinct double-stranded DNA molecules (ds-DNA) as each of them is unwound into two individual single strands. To simulate the helicase action, the double strands are subjected to Langevin forces. By use of sequential and helical steering harmonic forces that simulate the enzymatic action of a helicase, each strand of ds-DNA is opened. The research focuses on determining thermal fluctuations, energy changes, charge variations, and individual forces associated with the separation of each base pair in the examined sequences. The findings emphasize the importance of combining quantum mechanical techniques with an implicit force model. This integrative approach is versatile and provides valuable insights into the essential processes governing DNA mechanisms, particularly in relation to cellular functioning, thereby enhancing our understanding of biological molecules.
Collapse
Affiliation(s)
- Angel Ivan Rodriguez-Leon
- Department
of Theoretical Physics, Institute of Physics, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Cristian Ordóñez
- Department
of Condensed Matter, Universidad Nacional
Autónoma de Honduras, Tegucigalpa 11101, Honduras
| | - Ruben Santamaria
- Department
of Theoretical Physics, Institute of Physics, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Li YY, Li J, Li Y, Long HP, Lin W, Wang YK, Tang R, Liu XW, Jiang D, Liu S, Cao D, Tan GS, Xu KP, Wang WX. Binding uric acid: a pure chemical solution for the treatment of hyperuricemia. RSC Adv 2024; 14:24165-24174. [PMID: 39101063 PMCID: PMC11294985 DOI: 10.1039/d4ra04626a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024] Open
Abstract
Hyperuricemia, characterized by elevated uric acid levels and subsequent crystal deposition, contributing to conditions such as gout, cardiovascular events, and kidney injury, poses a significant health threat, particularly in developed countries. Current drug options for treatment are limited, with safety concerns, leading to suboptimal therapeutic outcomes in symptomatic hyperuricemia patients and a lack of pharmaceutical interventions for asymptomatic cases. Distinguishing from the previous drug design strategies, we directly target uric acid, the pathological molecule of hyperuricemia, resulting in a pyrimidine derivative capable of increasing the solubility and excretion of uric acid by forming a complex with it. Its prodrug showed an anti-hyperuricemia activity comparable to benzbromarone and a favorable safety profile in vivo. Our finding provides a strategy purely based on organic chemistry to address the largely unmet therapeutic needs on novel anti-hyperuricemia drugs.
Collapse
Affiliation(s)
- Yun-Yun Li
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410008 PR China
| | - Jing Li
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University Changsha Hunan 410008 PR China
| | - Yan Li
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410008 PR China
| | - Hong-Ping Long
- The First Hospital of Hunan University of Chinese Medicine Changsha Hunan 410007 PR China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University Changsha Hunan 410008 PR China
| | - Yi-Kun Wang
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410008 PR China
| | - Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University Changsha Hunan 410008 PR China
| | - Xue-Wu Liu
- Hunan Prima Drug Research Center Co., Ltd, Hunan Research Center for Drug Safety Evaluation, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs Changsha Hunan 410331 PR China
| | - Dejian Jiang
- Hunan Prima Drug Research Center Co., Ltd, Hunan Research Center for Drug Safety Evaluation, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs Changsha Hunan 410331 PR China
| | - Shao Liu
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University Changsha Hunan 410008 PR China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410008 PR China
| | - Gui-Shan Tan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University Changsha Hunan 410008 PR China
| | - Kang-Ping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410008 PR China
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410008 PR China
- Hunan Prima Drug Research Center Co., Ltd, Hunan Research Center for Drug Safety Evaluation, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs Changsha Hunan 410331 PR China
| |
Collapse
|
3
|
Tolokh IS, Folescu DE, Onufriev AV. Inclusion of Water Multipoles into the Implicit Solvation Framework Leads to Accuracy Gains. J Phys Chem B 2024; 128:5855-5873. [PMID: 38860842 PMCID: PMC11194828 DOI: 10.1021/acs.jpcb.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
The current practical "workhorses" of the atomistic implicit solvation─the Poisson-Boltzmann (PB) and generalized Born (GB) models─face fundamental accuracy limitations. Here, we propose a computationally efficient implicit solvation framework, the Implicit Water Multipole GB (IWM-GB) model, that systematically incorporates the effects of multipole moments of water molecules in the first hydration shell of a solute, beyond the dipole water polarization already present at the PB/GB level. The framework explicitly accounts for coupling between polar and nonpolar contributions to the total solvation energy, which is missing from many implicit solvation models. An implementation of the framework, utilizing the GAFF force field and AM1-BCC atomic partial charges model, is parametrized and tested against the experimental hydration free energies of small molecules from the FreeSolv database. The resulting accuracy on the test set (RMSE ∼ 0.9 kcal/mol) is 12% better than that of the explicit solvation (TIP3P) treatment, which is orders of magnitude slower. We also find that the coupling between polar and nonpolar parts of the solvation free energy is essential to ensuring that several features of the IWM-GB model are physically meaningful, including the sign of the nonpolar contributions.
Collapse
Affiliation(s)
- Igor S. Tolokh
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Dan E. Folescu
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Mathematics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Alexey V. Onufriev
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center
for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Mak CH. Hydration Waters Make Up for the Missing Third Hydrogen Bond in the A·T Base Pair. ACS PHYSICAL CHEMISTRY AU 2024; 4:180-190. [PMID: 38560756 PMCID: PMC10979491 DOI: 10.1021/acsphyschemau.3c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 04/04/2024]
Abstract
Base pairing complementarity is central to DNA function. G·C and A·T pair specificity is thought to originate from the different number of hydrogen bonds the pairs make. Quantifying how many hydrogen bonds exist can be difficult because water molecules in the surrounding can make up for or disrupt direct hydrogen bonds, and the hydration structures around A·T and G·C pairs on duplex DNA are distinct. Large-scale computer simulations have been used here to create a detailed map for the hydration structure on A·T and G·C base pairs in water. The contributions of specific hydration waters to the free energy of each of the hydrogen bonds in the A·T and G·C pairs were computed. Using the equilibrium fractions of hydrated versus unhydrated states from the hydration profiles, the impact of specific bound waters on each hydrogen bond can be uniquely quantified using a thermodynamic construction. The findings suggest that hydration water in the minor groove of an A·T pair can provide up to about 2 kcal/mol of free energy advantage, effectively making up for the missing third hydrogen bond in the A·T pair compared to G·C, rendering the intrinsic thermodynamic stability of the A·T pair almost synonymous with G·C.
Collapse
Affiliation(s)
- Chi H. Mak
- Departments of Chemistry
and Quantitative and Computational Biology, and Center of Applied
Mathematical Sciences, University of Southern
California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Li D, Chen Q, Chun J, Fichthorn K, De Yoreo J, Zheng H. Nanoparticle Assembly and Oriented Attachment: Correlating Controlling Factors to the Resulting Structures. Chem Rev 2023; 123:3127-3159. [PMID: 36802554 DOI: 10.1021/acs.chemrev.2c00700] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Nanoparticle assembly and attachment are common pathways of crystal growth by which particles organize into larger scale materials with hierarchical structure and long-range order. In particular, oriented attachment (OA), which is a special type of particle assembly, has attracted great attention in recent years because of the wide range of material structures that result from this process, such as one-dimensional (1D) nanowires, two-dimensional (2D) sheets, three-dimensional (3D) branched structures, twinned crystals, defects, etc. Utilizing in situ transmission electron microscopy techniques, researchers observed orientation-specific forces that act over short distances (∼1 nm) from the particle surfaces and drive the OA process. Integrating recently developed 3D fast force mapping via atomic force microscopy with theories and simulations, researchers have resolved the near-surface solution structure, the molecular details of charge states at particle/fluid interfaces, inhomogeneity of surface charges, and dielectric/magnetic properties of particles that influence short- and long-range forces, such as electrostatic, van der Waals, hydration, and dipole-dipole forces. In this review, we discuss the fundamental principles for understanding particle assembly and attachment processes, and the controlling factors and resulting structures. We review recent progress in the field via examples of both experiments and modeling, and discuss current developments and the future outlook.
Collapse
Affiliation(s)
- Dongsheng Li
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Levich Institute and Department of Chemical Engineering, CUNY City College of New York; New York, New York 10031, United States
| | - Kristen Fichthorn
- Department of Chemical Engineering, The Pennsylvania State University; University Park, Pennsylvania 16802, United States
| | - James De Yoreo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle Washington 98195, United States
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Gao A, Remsing RC, Weeks JD. Local Molecular Field Theory for Coulomb Interactions in Aqueous Solutions. J Phys Chem B 2023; 127:809-821. [PMID: 36669139 DOI: 10.1021/acs.jpcb.2c06988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Coulomb interactions play a crucial role in a wide array of processes in aqueous solutions but present conceptual and computational challenges to both theory and simulations. We review recent developments in an approach addressing these challenges─local molecular field (LMF) theory. LMF theory exploits an exact and physically suggestive separation of intermolecular Coulomb interactions into strong short-range and uniformly slowly varying long-range components. This allows us to accurately determine the averaged effects of the long-range components on the short-range structure using effective single particle fields and analytical corrections, greatly reducing the need for complex lattice summation techniques used in most standard approaches. The simplest use of these ideas in aqueous solutions leads to the short solvent (SS) model, where both solvent-solvent and solute-solvent Coulomb interactions have only short-range components. Here we use the SS model to give a simple description of pairing of nucleobases and biologically relevant ions in water.
Collapse
Affiliation(s)
- Ang Gao
- Department of Physics, Beijing University of Posts and Telecommunications, Beijing, China 100876
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - John D Weeks
- Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
8
|
Ordóñez C, Martínez-Zapata D, Santamaria R. Dissociation of the Watson-Crick base pairs in vacuum and in aqueous solution: a first-principles molecular dynamics study. J Biomol Struct Dyn 2022; 40:13207-13217. [PMID: 34629032 DOI: 10.1080/07391102.2021.1987988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The damage of the DNA structure can affect the correct functioning of the cellular processes. This work investigates the required forces to dissociate the Watson-Crick (WC) base pairs AT into A and T, and GC into G and C. The WC base pairs are immersed in water under realistic conditions of temperature, volume, and density that reproduce the main characteristics of a biological system. The simulations are based on first-principles molecular dynamics combined with steering atomic forces. In addition to the force intensities, the charge transfers between the nucleic acid bases, energy variations, and temperature fluctuations in the cleavage moments are reported. With the purpose of evaluating the effects of the aqueous medium, simulations of the WC base pairs in vacuum are included. The results considering the solvated medium are consistent with the experimental measurements, and show the importance of the aqueous solution to regulate the structural modifications of the nucleic acid bases. The investigation contributes with a novel molecular model in molecular simulations, and to better understand the biological processes where the DNA compounds play an active role in life forms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Cristian Ordóñez
- Department of Theoretical Physics, Institute of Physics, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Daniel Martínez-Zapata
- Department of Theoretical Physics, Institute of Physics, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ruben Santamaria
- Department of Theoretical Physics, Institute of Physics, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
9
|
Hart SM, Banal JL, Castellanos MA, Markova L, Vyborna Y, Gorman J, Häner R, Willard AP, Bathe M, Schlau-Cohen GS. Activating charge-transfer state formation in strongly-coupled dimers using DNA scaffolds. Chem Sci 2022; 13:13020-13031. [PMID: 36425503 PMCID: PMC9667922 DOI: 10.1039/d2sc02759c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/04/2022] [Indexed: 09/16/2023] Open
Abstract
Strongly-coupled multichromophoric assemblies orchestrate the absorption, transport, and conversion of photonic energy in natural and synthetic systems. Programming these functionalities involves the production of materials in which chromophore placement is precisely controlled. DNA nanomaterials have emerged as a programmable scaffold that introduces the control necessary to select desired excitonic properties. While the ability to control photophysical processes, such as energy transport, has been established, similar control over photochemical processes, such as interchromophore charge transfer, has not been demonstrated in DNA. In particular, charge transfer requires the presence of close-range interchromophoric interactions, which have a particularly steep distance dependence, but are required for eventual energy conversion. Here, we report a DNA-chromophore platform in which long-range excitonic couplings and short-range charge-transfer couplings can be tailored. Using combinatorial screening, we discovered chromophore geometries that enhance or suppress photochemistry. We combined spectroscopic and computational results to establish the presence of symmetry-breaking charge transfer in DNA-scaffolded squaraines, which had not been previously achieved in these chromophores. Our results demonstrate that the geometric control introduced through the DNA can access otherwise inaccessible processes and program the evolution of excitonic states of molecular chromophores, opening up opportunities for designer photoactive materials for light harvesting and computation.
Collapse
Affiliation(s)
- Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - James L Banal
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Maria A Castellanos
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Larysa Markova
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3, CH-3012 Bern Switzerland
| | - Yuliia Vyborna
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3, CH-3012 Bern Switzerland
| | - Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3, CH-3012 Bern Switzerland
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | | |
Collapse
|
10
|
Rational design of hairpin RNA excited states reveals multi-step transitions. Nat Commun 2022; 13:1523. [PMID: 35314698 PMCID: PMC8938425 DOI: 10.1038/s41467-022-29194-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022] Open
Abstract
RNA excited states represent a class of high-energy-level and thus low-populated conformational states of RNAs that are sequestered within the free energy landscape until being activated by cellular cues. In recent years, there has been growing interest in structural and functional studies of these transient states, but the rational design of excited states remains unexplored. Here we developed a method to design small hairpin RNAs with predefined excited states that exchange with ground states through base pair reshuffling, and verified these transient states by combining NMR relaxation dispersion technique and imino chemical shift prediction. Using van’t Hoff analysis and accelerated molecular dynamics simulations, a mechanism of multi-step sequential transition has been revealed. The efforts made in this study will expand the scope of RNA rational design, and also contribute towards improved predictions of RNA secondary structure. RNA molecules exhibit conformational fluctuations between ground states and excited states. Here the authors designed and verified small hairpin RNAs with predefined secondary structure reshufflings. In light of Van’t Hoff analysis and accelerated molecular dynamics simulation, a mechanism of multistep sequential transition has been revealed.
Collapse
|
11
|
Pant P, Aggarwal L. Assessing the DNA structural integrity via selective annihilation of Watson-Crick hydrogen bonds: Insights from molecular dynamics simulations. Biophys Chem 2022; 282:106758. [DOI: 10.1016/j.bpc.2021.106758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023]
|
12
|
Adendorff MR, Tang GQ, Millar D, Bathe M, Bricker W. Computational investigation of the impact of core sequence on immobile DNA four-way junction structure and dynamics. Nucleic Acids Res 2022; 50:717-730. [PMID: 34935970 PMCID: PMC8789063 DOI: 10.1093/nar/gkab1246] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Immobile four-way junctions (4WJs) are core structural motifs employed in the design of programmed DNA assemblies. Understanding the impact of sequence on their equilibrium structure and flexibility is important to informing the design of complex DNA architectures. While core junction sequence is known to impact the preferences for the two possible isomeric states that junctions reside in, previous investigations have not quantified these preferences based on molecular-level interactions. Here, we use all-atom molecular dynamics simulations to investigate base-pair level structure and dynamics of four-way junctions, using the canonical Seeman J1 junction as a reference. Comparison of J1 with equivalent single-crossover topologies and isolated nicked duplexes reveal conformational impact of the double-crossover motif. We additionally contrast J1 with a second junction core sequence termed J24, with equal thermodynamic preference for each isomeric configuration. Analyses of the base-pair degrees of freedom for each system, free energy calculations, and reduced-coordinate sampling of the 4WJ isomers reveal the significant impact base sequence has on local structure, isomer bias, and global junction dynamics.
Collapse
Affiliation(s)
- Matthew R Adendorff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guo Qing Tang
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William P Bricker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
13
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
14
|
Nikam RR, Harikrishna S, Gore KR. Synthesis, Structural, and Conformational Analysis of 4′‐
C
‐Alkyl‐2′‐
O
‐Ethyl‐Uridine Modified Nucleosides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rahul R. Nikam
- Department of Chemistry University of Mumbai Mumbai 400098 India
| | - S. Harikrishna
- Center for Structural Biology Vanderbilt University Nashville, Tennessee 37232 United States
| | - Kiran R. Gore
- Department of Chemistry University of Mumbai Mumbai 400098 India
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur, West Bengal 721302 India
| |
Collapse
|
15
|
Tolosa S, Sansón J, Hidalgo A. A procedure to understanding the C-G to A-T transversion. SMD simulations from guanine oxidation pathways assisted by one H2O2 molecule in the C-G basis pair. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Abstract
Base pairing plays a pivotal role in DNA functions and replication fidelity. But while the complementarity between Watson-Crick matched bases is generally believed to arise from the different number of hydrogen bonds in G|C pairs versus A|T, the energetics of these interactions are heavily renormalized by the aqueous solvent. Employing large-scale Monte Carlo simulations, we have extracted the solvent contribution to the free energy for canonical and some noncanonical and stacked base pairs. For all of them, the solvent's contribution to the base pairing free energy is exclusively destabilizing. While the direct hydrogen bonding interactions in the G|C pair is much stronger than A|T, the thermodynamic resistance produced by the solvent also pushes back much stronger against G|C compared to A|T, generating an only ∼1 kcal/mol free energy difference between them. We have profiled the density of water molecules in the solvent adjacent to the bases and observed a "freezing" behavior where waters are recruited into the gap between the bases to compensate for the unsatisfied hydrogen bonds between them. A very small number of water molecules that are associated with the Watson-Crick donor/acceptor atoms turn out to be responsible for the majority of the solvent's thermodynamic resistance to base pairing. The absence or presence of these near-field waters can be used to enhance fidelity during DNA replication.
Collapse
|
17
|
Tolosa S, Sansón J, Hidalgo A. Mechanisms of the T-A to C-G transition studied by SMD simulations: Deamination vs tautomerisation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Kognole AA, MacKerell AD. Mg 2+ Impacts the Twister Ribozyme through Push-Pull Stabilization of Nonsequential Phosphate Pairs. Biophys J 2020; 118:1424-1437. [PMID: 32053774 PMCID: PMC7091459 DOI: 10.1016/j.bpj.2020.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 11/15/2022] Open
Abstract
RNA molecules perform a variety of biological functions for which the correct three-dimensional structure is essential, including as ribozymes where they catalyze chemical reactions. Metal ions, especially Mg2+, neutralize these negatively charged nucleic acids and specifically stabilize RNA tertiary structures as well as impact the folding landscape of RNAs as they assume their tertiary structures. Specific binding sites of Mg2+ in folded conformations of RNA have been studied extensively; however, the full range of interactions of the ion with compact intermediates and unfolded states of RNA is challenging to investigate, and the atomic details of the mechanism by which the ion facilitates tertiary structure formation is not fully known. Here, umbrella sampling combined with oscillating chemical potential Grand Canonical Monte Carlo/molecular dynamics simulations are used to capture the energetics and atomic-level details of Mg2+-RNA interactions that occur along an unfolding pathway of the Twister ribozyme. The free energy profiles reveal stabilization of partially unfolded states by Mg2+, as observed in unfolding experiments, with this stabilization being due to increased sampling of simultaneous interactions of Mg2+ with two or more nonsequential phosphate groups. Notably, these results indicate a push-pull mechanism in which the Mg2+-RNA interactions actually lead to destabilization of specific nonsequential phosphate-phosphate interactions (i.e., pushed apart), whereas other interactions are stabilized (i.e., pulled together), a balance that stabilizes unfolded states and facilitates the folding of Twister, including the formation of hydrogen bonds associated with the tertiary structure. This study establishes a better understanding of how Mg2+-ion interactions contribute to RNA structural properties and stability.
Collapse
Affiliation(s)
- Abhishek A Kognole
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland.
| |
Collapse
|
19
|
Maffeo C, Chou HY, Aksimentiev A. Molecular Mechanisms of DNA Replication and Repair Machinery: Insights from Microscopic Simulations. ADVANCED THEORY AND SIMULATIONS 2019; 2:1800191. [PMID: 31728433 PMCID: PMC6855400 DOI: 10.1002/adts.201800191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Reproduction, the hallmark of biological activity, requires making an accurate copy of the genetic material to allow the progeny to inherit parental traits. In all living cells, the process of DNA replication is carried out by a concerted action of multiple protein species forming a loose protein-nucleic acid complex, the replisome. Proofreading and error correction generally accompany replication but also occur independently, safeguarding genetic information through all phases of the cell cycle. Advances in biochemical characterization of intracellular processes, proteomics and the advent of single-molecule biophysics have brought about a treasure trove of information awaiting to be assembled into an accurate mechanistic model of the DNA replication process. In this review, we describe recent efforts to model elements of DNA replication and repair processes using computer simulations, an approach that has gained immense popularity in many areas of molecular biophysics but has yet to become mainstream in the DNA metabolism community. We highlight the use of diverse computational methods to address specific problems of the fields and discuss unexplored possibilities that lie ahead for the computational approaches in these areas.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Han-Yi Chou
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Non-dissociative structural transitions of the Watson-Crick and reverse Watson-Crick А·Т DNA base pairs into the Hoogsteen and reverse Hoogsteen forms. Sci Rep 2018; 8:10371. [PMID: 29991693 PMCID: PMC6039495 DOI: 10.1038/s41598-018-28636-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/21/2018] [Indexed: 11/08/2022] Open
Abstract
In this study it was theoretically shown that discovered by us recently (Brovarets' et al., Frontiers in Chemistry, 2018, 6:8; doi: 10.3389/fchem.2018.00008) high-energetical, significantly non-planar (symmetry C1), short-lived wobbled conformers of the classical Watson-Crick А·Т(WC), reverse Watson-Crick А·Т(rWC), Hoogsteen А·Т(Н) and reverse Hoogsteen А·Т(rН) DNA base pairs are the intermediates of their pairwise А∙Т(WC)/А∙Т(rWC) ↔ А∙Т(H)/А∙Т(rH) conformational transformations. These transitions do not require for their realization the energy-consumable anisotropic rotation of the amino group of A around the exocyclic C6-N6 bond. They are controlled by the non-planar transition states with quasi-orthogonal geometry (symmetry C1) joined by the single intermolecular (Т)N3H···N6(А) H-bond (~4 kcal∙mol-1). The Gibbs free energies of activation for these non-dissociative, dipole-active conformational transitions consist 7.33 and 7.81 kcal∙mol-1, accordingly. Quantum-mechanical (QM) calculations in combination with Bader's quantum theory of "Atoms in Molecules" (QTAIM) have been performed at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of QM theory in the continuum with ε = 4 under normal conditions.
Collapse
|
21
|
Wang KW, Barker K, Benner S, Betancourt T, Hall CK. Development of a simple coarse-grained DNA model for analysis of oligonucleotide complex formation. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1469753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kye Won Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Karolyn Barker
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX, USA
| | - Steven Benner
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Tania Betancourt
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX, USA
| | - Carol K. Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
22
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
23
|
Brovarets' OO, Tsiupa KS, Hovorun DM. Surprising Conformers of the Biologically Important A·T DNA Base Pairs: QM/QTAIM Proofs. Front Chem 2018; 6:8. [PMID: 29536003 PMCID: PMC5835050 DOI: 10.3389/fchem.2018.00008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
For the first time novel high-energy conformers-A·T(wWC) (5.36), A·T(wrWC) (5.97), A·T(wH) (5.78), and A·T(wrH) (ΔG = 5.82 kcal·mol-1) (See Graphical Abstract) were revealed for each of the four biologically important A·T DNA base pairs - Watson-Crick A·T(WC), reverse Watson-Crick A·T(rWC), Hoogsteen A·T(H) and reverse Hoogsteen A·T(rH) at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of quantum-mechanical theory in the continuum with ε = 4 under normal conditions. Each of these conformers possesses substantially non-planar wobble (w) structure and is stabilized by the participation of the two anti-parallel N6H/N6H'…O4/O2 and N3H…N6 H-bonds, involving the pyramidalized amino group of the A DNA base as an acceptor and a donor of the H-bonding. The transition states - TSA·T(WC)↔A·T(wWC), TSA·T(rWC)↔A·T(wrWC), TSA·T(H)↔A·T(wH), and TSA·T(rH)↔A·T(wrH), controlling the dipole-active transformations of the conformers from the main plane-symmetric state into the high-energy, significantly non-planar state and vice versa, were localized. They also possess wobble structures similarly to the high-energy conformers and are stabilized by the participation of the N6H/N6H'…O4/O2 and N3H…N6 H-bonds. Discovered conformers of the A·T DNA base pairs are dynamically stable short-lived structures [lifetime τ = (1.4-3.9) ps]. Their possible biological significance and future perspectives have been briefly discussed.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
24
|
Onufriev AV, Izadi S. Water models for biomolecular simulations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1347] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alexey V. Onufriev
- Department of Physics; Virginia Tech; Blacksburg VA USA
- Department of Computer Science; Virginia Tech; Blacksburg VA USA
- Center for Soft Matter and Biological Physics; Virginia Tech; Blacksburg VA USA
| | - Saeed Izadi
- Early Stage Pharmaceutical Development; Genentech Inc.; South San Francisco, CA USA
| |
Collapse
|
25
|
Membrane protein crystallization in micelles conjugated by nucleoside base-pairing: A different concept. J Struct Biol 2016; 195:379-386. [DOI: 10.1016/j.jsb.2016.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 11/24/2022]
|
26
|
Abstract
Base stacking is a key determinant of nucleic acid structures, but the precise origin of the thermodynamic driving force behind the stacking of nucleobases remains open. The rather mild stacking free energy measured experimentally, roughly a kcal/mol depending on the identity of the bases, is physiologically significant because while base stacking confers stability to the genome in its double helix form, the duplex also has to be unwound in order to be replicated or transcribed. A stacking free energy that is either too high or too low will over- or understabilize the genome, impacting the storage of genetic information and also its retrieval. While the molecular origin of stacking driving force has been attributed to many different sources including dispersion, electrostatics, and solvent hydrogen bonding, here we show via a systematic decomposition of the stacking free energy using large-scale computer simulations that the dominant driving force stabilizing base stacking is nonhydrophobic solvent entropy. Counteracting this is the conformational entropic penalty on the sugar-phosphate backbone against stacking, while solvent hydrogen-bonding, charge-charge interactions, and dispersive forces produce only secondary perturbations. Solvent entropic forces and DNA backbone conformational strains therefore work against each other, leading to a very mild composite stacking free energy in agreement with experiments.
Collapse
Affiliation(s)
- Chi H Mak
- Department of Chemistry and Center of Applied Mathematical Sciences, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
27
|
Gerlach C, Claasen B, Richert C. High-fidelity recognition of RNA: solution structure of a DNA:RNA hybrid duplex with a molecular cap. Chembiochem 2014; 15:2584-9. [PMID: 25318665 DOI: 10.1002/cbic.201402409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 11/08/2022]
Abstract
Binding RNA targets, such as microRNAs, with high fidelity is challenging, particularly when the nucleobases to be bound are located at the terminus of the duplex between probe and target. Recently, a peptidyl chain terminating in a quinolone, called ogOA, was shown to act as a cap that enhances affinity and fidelity for RNAs, stabilizing duplexes with Watson-Crick pairing at their termini. Here we report the three-dimensional structure of an intramolecular complex between a DNA strand featuring the ogOA cap and an RNA segment, solved by NMR and restrained torsion angle molecular dynamics. The quinolone stacks on the terminal base pair of the hybrid duplex, positioned by the peptidyl chain, whose prolinol residue induces a sharp bend between the 5' terminus of the DNA chain and the glycine linked to the oxolinic acid residue. The structure explains why canonical base pairing is favored over hard-to-suppress mismatched base combinations, such as T:G and A:A, and helps to design improved high-fidelity probes for RNA.
Collapse
Affiliation(s)
- Claudia Gerlach
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart (Germany)
| | | | | |
Collapse
|
28
|
Gore KR, Harikrishna S, Pradeepkumar PI. Influence of 2'-fluoro versus 2'-O-methyl substituent on the sugar puckering of 4'-C-aminomethyluridine. J Org Chem 2013; 78:9956-62. [PMID: 24016294 DOI: 10.1021/jo4012333] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we report the synthesis of 4'-C-aminomethyl-2'-deoxy-2'-fluorouridine, a therapeutically appealing RNA modification. Conformational analysis by DFT calculations and molecular dynamics simulations using trinucleotide model systems revealed that modified sugar adopts C3'-endo conformation. In this conformer, a weak intramolecular C-H···F H-bond between the hydrogen atom of the 4'-C-CH2 group and the F atom at the 2' position is observed. Comparative studies with unmodified, 2'-fluoro-, 2'-O-methyl-, and 4'-C-aminomethyl-2'-O-methyluridine showed the chemical nature of 2'-substituent dictates the sugar puckering of 2',4'-modified nucleotides.
Collapse
Affiliation(s)
- Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | | | | |
Collapse
|
29
|
Muddana HS, Sapra NV, Fenley AT, Gilson MK. The electrostatic response of water to neutral polar solutes: implications for continuum solvent modeling. J Chem Phys 2013; 138:224504. [PMID: 23781802 PMCID: PMC3695974 DOI: 10.1063/1.4808376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/10/2013] [Indexed: 12/20/2022] Open
Abstract
Continuum solvation models are widely used to estimate the hydration free energies of small molecules and proteins, in applications ranging from drug design to protein engineering, and most such models are based on the approximation of a linear dielectric response by the solvent. We used explicit-water molecular dynamics simulations with the TIP3P water model to probe this linear response approximation in the case of neutral polar molecules, using miniature cucurbituril and cyclodextrin receptors and protein side-chain analogs as model systems. We observe supralinear electrostatic solvent responses, and this nonlinearity is found to result primarily from waters' being drawn closer and closer to the solutes with increased solute-solvent electrostatic interactions; i.e., from solute electrostriction. Dielectric saturation and changes in the water-water hydrogen bonding network, on the other hand, play little role. Thus, accounting for solute electrostriction may be a productive approach to improving the accuracy of continuum solvation models.
Collapse
Affiliation(s)
- Hari S Muddana
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0736, USA
| | | | | | | |
Collapse
|
30
|
Zamora-Chimal C, Santillán M, Rodríguez-González J. Influence of the feedback loops in the trp operon of B. subtilis on the system dynamic response and noise amplitude. J Theor Biol 2012; 310:119-31. [PMID: 22713856 DOI: 10.1016/j.jtbi.2012.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/07/2012] [Accepted: 06/09/2012] [Indexed: 12/30/2022]
Abstract
In this paper we introduce a mathematical model for the tryptophan operon regulatory pathway in Bacillus subtilis. This model considers the transcription-attenuation, and the enzyme-inhibition regulatory mechanisms. Special attention is paid to the estimation of all the model parameters from reported experimental data. With the aid of this model we investigate, from a mathematical-modeling point of view, whether the existing multiplicity of regulatory feedback loops is advantageous in some sense, regarding the dynamic response and the biochemical noise in the system. The tryptophan operon dynamic behavior is studied by means of deterministic numeric simulations, while the biochemical noise is analyzed with the aid of stochastic simulations. The model feasibility is tested comparing its stochastic and deterministic results with experimental reports. Our results for the wildtype and for a couple of mutant bacterial strains suggest that the enzyme-inhibition feedback loop, dynamically accelerates the operon response, and plays a major role in the reduction of biochemical noise. Also, the transcription-attenuation feedback loop makes the trp operon sensitive to changes in the endogenous tryptophan level, and increases the amplitude of the biochemical noise.
Collapse
Affiliation(s)
- Criseida Zamora-Chimal
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Vía del Conocimiento 201, Parque de Investigación e Innovación Tecnológica, 66600 Apodaca NL, Mexico
| | | | | |
Collapse
|
31
|
Affiliation(s)
- Emil Paleček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| | - Martin Bartošík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| |
Collapse
|
32
|
Abstract
Recent experiments [Nakata, M. et al., End-to-end stacking and liquid crystal condensation of 6 to 20 basepair DNA duplexes. Science 2007; 318:1276–1279] have demonstrated spontaneous end-to-end association of short duplex DNA fragments into long rod-like structures. By means of extensive all-atom molecular dynamic simulations, we characterized end-to-end interactions of duplex DNA, quantitatively describing the forces, free energy and kinetics of the end-to-end association process. We found short DNA duplexes to spontaneously aggregate end-to-end when axially aligned in a small volume of monovalent electrolyte. It was observed that electrostatic repulsion of 5′-phosphoryl groups promoted the formation of aggregates in a conformation similar to the B-form DNA double helix. Application of an external force revealed that rupture of the end-to-end assembly occurs by the shearing of the terminal base pairs. The standard binding free energy and the kinetic rates of end-to-end association and dissociation processes were estimated using two complementary methods: umbrella sampling simulations of two DNA fragments and direct observation of the aggregation process in a system containing 458 DNA fragments. We found the end-to-end force to be short range, attractive, hydrophobic and only weakly dependent on the ion concentration. The relation between the stacking free energy and end-to-end attraction is discussed as well as possible roles of the end-to-end interaction in biological and nanotechnological systems.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801, USA
| | | | | |
Collapse
|
33
|
Qi W, Song B, Lei X, Wang C, Fang H. DNA base pair hybridization and water-mediated metastable structures studied by molecular dynamics simulations. Biochemistry 2011; 50:9628-32. [PMID: 21980999 DOI: 10.1021/bi2002778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The base pair hybridization of a DNA segment was studied using molecular dynamics simulation. The results show the obvious correlation between the probability of successful hybridization and the accessible surface area to water of two successive base pairs, including the unpaired base pair adjacent to paired base pair and this adjacent paired base pair. Importantly, two metastable structures in an A-T base pair were discovered by the analysis of the free energy landscape. Both structures involved addition of a water molecule to the linkage between the two nucleobases in one base pair. The existence of the metastable structures provide potential barriers to the Watson-Crick base pair, and numerical simulations show that those potential barriers can be surmounted by thermal fluctuations at higher temperatures. These studies contribute an important step toward the understanding of the mechanism in DNA hybridization, particularly the effect of temperature on DNA hybridization and polymerase chain reaction. These observations are expected to be helpful for facilitating experimental bio/nanotechnology designs involving fast hybridization.
Collapse
Affiliation(s)
- Wenpeng Qi
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | | | | | | | | |
Collapse
|
34
|
Roxbury D, Jagota A, Mittal J. Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube. J Am Chem Soc 2011; 133:13545-50. [PMID: 21797248 DOI: 10.1021/ja204413v] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The DNA-single-walled carbon nanotube (SWCNT) hybrid molecule has attracted significant attention recently for its ability to disperse and sort SWCNTs according to their chirality. Key for utilizing their unique properties is an understanding of the structure of DNA adsorbed on the SWCNT surface, which we study here using molecular simulations. Using replica exchange molecular dynamics (REMD), we explore equilibrium structures formed by single strands of 12-mer oligonucleotides, of varying sequence, adsorbed on a (6,5)-SWCNT. We find a consistent motif in which the DNA strand forms a right-handed helical wrap around the SWCNT, stabilized by "stitches" (hydrogen bonding between distant bases) to itself. Variability among equilibrium populations of DNA self-stitched structures was observed and shown to be directly influenced by DNA sequence and composition. Competition between conformational entropy and hydrogen bonding between bases is predicted to be responsible for the formation of random versus stitched configurations.
Collapse
Affiliation(s)
- Daniel Roxbury
- Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | | | | |
Collapse
|
35
|
Roxbury D, Tu X, Zheng M, Jagota A. Recognition ability of DNA for carbon nanotubes correlates with their binding affinity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8282-8293. [PMID: 21650196 DOI: 10.1021/la2007793] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The ability to sort mixtures of carbon nanotubes (CNTs) based on chirality has recently been demonstrated using special short DNA sequences that recognize certain matching CNTs of specific chirality. In this work, we report on a study of the relationship between recognition sequences and the strength of their binding to the recognized CNT. We have chosen the (6,5) CNT and its corresponding DNA recognition sequences for investigation in this study. Binding strength is quantified by studying the kinetics of DNA replacement by a surfactant, which is monitored by following shifts in the absorption spectrum. We find that recognition ability correlates strongly with binding strength thus measured; addition or subtraction of just one base from the recognition sequence can enhance the kinetics of DNA displacement some 20-fold. The surfactant displaces DNA in two steps: a rapid first stage lasting less than a few seconds, followed by progressive removal lasting tens of minutes. The kinetics of the second stage is analyzed to extract activation energies. Fluorescence studies support the finding that the DNA sequence that recognizes the (6,5)-CNT forms a more stable hybrid than its close relatives.
Collapse
Affiliation(s)
- Daniel Roxbury
- Department of Chemical Engineering and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | | | | |
Collapse
|
36
|
Kolář M, Kubař T, Hobza P. On the role of London dispersion forces in biomolecular structure determination. J Phys Chem B 2011; 115:8038-46. [PMID: 21574645 DOI: 10.1021/jp202878d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A DNA dodecamer and the methyladenine···methylthymine (mA···mT) complex in aqueous environment have been studied by means of molecular dynamics simulation, with a modified force field accounting for the hypothetical absence of London dispersion forces. Under these conditions, the mA···mT complex is preserved, while the double-helical DNA oligomer passes via an extended, ladder-like intermediate to a collapsed structure. The results are interpreted in terms of stability and specificity of the structure of studied complexes. While the hydrophobic effect of the solvent accounts for the sufficient stabilization of the complex, the appearance of the native biomolecular conformation is attributed to the London dispersion forces. Thus, the London dispersion seems to provide the native structure of a biomolecular complex with the largest additional stabilization, preferring it among several (or many) possible aggregated structures. The observations are affected by the construction of the modified force field, and this effect is discussed thoroughly. The fundamental issues are the coupling of the components of the Lennard-Jones potential and the way to separate them. Based on the observations, the description of nonbonded interactions with the current biomolecular force fields is discussed. It is proposed that a novel force field composed of physically correct components to describe nonbonded interactions could exhibit more favorable performance in certain up-to-date applications.
Collapse
Affiliation(s)
- Michal Kolář
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | |
Collapse
|
37
|
Agarwal A, Koppstein D, Rozowsky J, Sboner A, Habegger L, Hillier LW, Sasidharan R, Reinke V, Waterston RH, Gerstein M. Comparison and calibration of transcriptome data from RNA-Seq and tiling arrays. BMC Genomics 2010; 11:383. [PMID: 20565764 PMCID: PMC3091629 DOI: 10.1186/1471-2164-11-383] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 06/17/2010] [Indexed: 11/25/2022] Open
Abstract
Background Tiling arrays have been the tool of choice for probing an organism's transcriptome without prior assumptions about the transcribed regions, but RNA-Seq is becoming a viable alternative as the costs of sequencing continue to decrease. Understanding the relative merits of these technologies will help researchers select the appropriate technology for their needs. Results Here, we compare these two platforms using a matched sample of poly(A)-enriched RNA isolated from the second larval stage of C. elegans. We find that the raw signals from these two technologies are reasonably well correlated but that RNA-Seq outperforms tiling arrays in several respects, notably in exon boundary detection and dynamic range of expression. By exploring the accuracy of sequencing as a function of depth of coverage, we found that about 4 million reads are required to match the sensitivity of two tiling array replicates. The effects of cross-hybridization were analyzed using a "nearest neighbor" classifier applied to array probes; we describe a method for determining potential "black list" regions whose signals are unreliable. Finally, we propose a strategy for using RNA-Seq data as a gold standard set to calibrate tiling array data. All tiling array and RNA-Seq data sets have been submitted to the modENCODE Data Coordinating Center. Conclusions Tiling arrays effectively detect transcript expression levels at a low cost for many species while RNA-Seq provides greater accuracy in several regards. Researchers will need to carefully select the technology appropriate to the biological investigations they are undertaking. It will also be important to reconsider a comparison such as ours as sequencing technologies continue to evolve.
Collapse
Affiliation(s)
- Ashish Agarwal
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Koller AN, Bozilovic J, Engels JW, Gohlke H. Aromatic N versus aromatic F: bioisosterism discovered in RNA base pairing interactions leads to a novel class of universal base analogs. Nucleic Acids Res 2010; 38:3133-46. [PMID: 20081201 PMCID: PMC2875010 DOI: 10.1093/nar/gkp1237] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The thermodynamics of base pairing is of fundamental importance. Fluorinated base analogs are valuable tools for investigating pairing interactions. To understand the influence of direct base-base interactions in relation to the role of water, pairing free energies between natural nucleobases and fluorinated analogs are estimated by potential of mean force calculations. Compared to pairing of AU and GC, pairing involving fluorinated analogs is unfavorable by 0.5-1.0 kcal mol(-1). Decomposing the pairing free energies into enthalpic and entropic contributions reveals fundamental differences for Watson-Crick pairs compared to pairs involving fluorinated analogs. These differences originate from direct base-base interactions and contributions of water. Pairing free energies of fluorinated base analogs with natural bases are less unfavorable by 0.5-1.0 kcal mol(-1) compared to non-fluorinated analogs. This is attributed to stabilizing C-F(...)H-N dipolar interactions and stronger N(...)H-C hydrogen bonds, demonstrating direct and indirect influences of fluorine. 7-methyl-7H-purine and its 9-deaza analog (Z) have been suggested as members of a new class of non-fluorinated base analogs. Z is found to be the least destabilizing universal base in the context of RNA known to date. This is the first experimental evidence for nitrogen-containing heterocylces as bioisosteres of aromatic rings bearing fluorine atoms.
Collapse
Affiliation(s)
- Alrun N Koller
- Department of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
39
|
Vendeix FAP, Munoz AM, Agris PF. Free energy calculation of modified base-pair formation in explicit solvent: A predictive model. RNA (NEW YORK, N.Y.) 2009; 15:2278-87. [PMID: 19861423 PMCID: PMC2779691 DOI: 10.1261/rna.1734309] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The maturation of RNAs includes site-specific post-transcriptional modifications that contribute significantly to hydrogen bond formation within RNA and between different RNAs, especially in formation of mismatch base pairs. Thus, an understanding of the geometry and strength of the base-pairing of modified ribonucleoside 5'-monophosphates, previously not defined, is applicable to investigations of RNA structure and function and of the design of novel RNAs. The geometry and free energies of base-pairings were calculated in aqueous solution under neutral conditions with AMBER force fields and molecular dynamics simulations (MDSs). For example, unmodified uridines were observed to bind to uridine and cytidine with significant stability, but the ribose C1'-C1' distances were far short ( approximately 8.9 A) of distances observed for canonical A-form RNA helices. In contrast, 5-oxyacetic acid uridine, known to bind adenosine, wobble to guanosine, and form mismatch base pairs with uridine and cytidine, bound adenosine and guanosine with geometries and energies comparable to an unmodified uridine. However, the 5-oxyacetic acid uridine base paired to uridine and cytidine with a C1'-C1' distance comparable to that of an A-form helix, approximately 11 A, when a H(2)O molecule migrated between and stably hydrogen bonded to both bases. Even in formation of canonical base pairs, intermediate structures with a second energy minimum consisted of transient H(2)O molecules forming hydrogen bonded bridges between the two bases. Thus, MDS is predictive of the effects of modifications, H(2)O molecule intervention in the formation of base-pair geometry, and energies that are important for native RNA structure and function.
Collapse
Affiliation(s)
- Franck A P Vendeix
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, USA.
| | | | | |
Collapse
|
40
|
Šponer J, Zgarbová M, Jurečka P, Riley KE, Šponer JE, Hobza P. Reference Quantum Chemical Calculations on RNA Base Pairs Directly Involving the 2′-OH Group of Ribose. J Chem Theory Comput 2009; 5:1166-79. [DOI: 10.1021/ct800547k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Marie Zgarbová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Petr Jurečka
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Kevin E. Riley
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Judit E. Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Pavel Hobza
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| |
Collapse
|
41
|
Li Y, Lee J, Lal J, An L, Huang Q. Effects of pH on the Interactions and Conformation of Bovine Serum Albumin: Comparison between Chemical Force Microscopy and Small-Angle Neutron Scattering. J Phys Chem B 2008; 112:3797-806. [DOI: 10.1021/jp077392h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yunqi Li
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, and Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Jooyoung Lee
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, and Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Jyotsana Lal
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, and Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Lijia An
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, and Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, and Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, Illinois 60439
| |
Collapse
|
42
|
Paragi G, Szájli E, Bogár F, Kovács L, Guerra CF, Bickelhaupt FM. Hydrogen bonding of 3- and 5-methyl-6-aminouracil with natural DNA bases. NEW J CHEM 2008. [DOI: 10.1039/b803593h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Tan C, Yang L, Luo R. How well does Poisson-Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis. J Phys Chem B 2007; 110:18680-7. [PMID: 16970499 DOI: 10.1021/jp063479b] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have quantitatively studied the performance of a finite-difference Poisson-Boltzmann implicit solvent with respect to the TIP3P explicit solvent in a range of systems of biochemical interest. An overall agreement was found between the tested implicit and explicit solvents for hydrogen-bonding/salt-bridging dimers and peptide monomers and dimers of different conformations and different lengths. These comparative analyses also indicate a good transferability of empirically optimized parameters for the implicit solvent from small training molecules to large testing peptides. However, deviations between the two tested solvents are also apparent. Specifically, a consistent deviation was observed when hydrogen-bonding or salt-bridging dimers are within 4-6 A. The deviation reaches a maximum at about 5.5 A, the so-called water-bridging distance. The tested implicit solvent, even with optimized parameters, cannot capture the subtle fluctuation in the distance-dependent reaction field energy profiles, although smoothed profiles can still be obtained and are in overall agreement with those in the explicit solvent. Interestingly, the same mechanism underlining the above discrepancy is also responsible for the larger deviations of certain peptide conformations, such as parallel beta-strand dimers. It is likely that the observed discrepancy may cause improper conformational distributions in simulations with the implicit solvent when hydrogen-bonding or salt-bridging interactions are crucial, such as secondary structure populations in proteins. Validation of the implicit solvent with optimized parameters in dynamics simulations will be the next step to study the influences of the observed discrepancy at biological conditions.
Collapse
Affiliation(s)
- Chunhu Tan
- Department of Molecular Biology and Biochemistry, University of California-Irvine, CA 92697-3900, USA
| | | | | |
Collapse
|
44
|
Gorb L, Podolyan Y, Dziekonski P, Sokalski WA, Leszczynski J. Double-proton transfer in adenine-thymine and guanine-cytosine base pairs. A post-Hartree-Fock ab initio study. J Am Chem Soc 2004; 126:10119-29. [PMID: 15303888 DOI: 10.1021/ja049155n] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The results of a comprehensive study on the double-proton transfer in Adenine-Thymine (AT) and Guanine-Cytosine (GC) base pairs at room temperature in gas phase and with the inclusion of environmental effects are obtained. The double-proton-transfer process has been investigated in the AT and GC base pairs at the B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory. It has been predicted that the hydrogen-bonded bases possess nonplanar geometries due to sp3 hybridization of nitrogen atoms and because of the soft intermolecular vibrations in the molecular complexes. An analysis of the energetic parameters of the local minima suggests that rare AT base pair conformation is not populated due to the shallowness of this minimum, which completely disappears from the Gibbs free energy surface. The stabilization of canonic or rare forms of the DNA bases by water molecules and metal cations has been predicted by calculating the optimal configuration of charges (using differential product/transition state stabilization approach) followed by calculations of the interactions between the base pair and a water/sodium cation.
Collapse
Affiliation(s)
- Leonid Gorb
- Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1325 J.R. Lynch St., P.O. Box 17910, Jackson, Mississippi 39217-0510, USA
| | | | | | | | | |
Collapse
|
45
|
Coutinho K, Ludwig V, Canuto S. Combined Monte Carlo and quantum mechanics study of the hydration of the guanine-cytosine base pair. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 69:061902. [PMID: 15244612 DOI: 10.1103/physreve.69.061902] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Indexed: 05/24/2023]
Abstract
We present a computer simulation study of the hydration of the guanine-cytosine (GC) hydrogen-bonded complex. Using first principles density-functional theory, with gradient-corrected exchange-correlation and Monte Carlo simulation, we include thermal contribution, structural effects, solvent polarization, and the water-water and water-GC hydrogen bond interaction to show that the GC interaction in an aqueous environment is weakened to about 70% of the value obtained for an isolated complex. We also analyze in detail the preferred hydration sites of the GC pair and show that on the average it makes around five hydrogen bonds with water.
Collapse
Affiliation(s)
- Kaline Coutinho
- Universidade de Mogi das Cruzes, CP 411, 08701-970, Mogi das Cruzes, São Paulo, Brazil
| | | | | |
Collapse
|
46
|
Contreras JG, Madariaga ST. Structure and the energy of base pairing in non-natural bases of nucleic acids: the azaguanine-cytosine and azaadenine-thymine base pairs. Bioorg Chem 2003; 31:367-77. [PMID: 12941289 DOI: 10.1016/s0045-2068(03)00083-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Watson-Crick optimized geometries and the energies of base pairing for the natural pairs of nucleic bases: adenine-thymine (AT) and guanine-cytosine (GC) have been recalculated by ab initio methods in order to compare results to those found for the non-natural azaadenine-thymine (AAT) and azaguanine-cytosine (AGC) pairs. Geometry optimizations carried out at the HF/6-31G** level and energies obtained at MP2/6-31G**, show that AAT and AGC have hydrogen bonding patterns similar to the natural AT and GC and that the interaction energies (DeltaH0int) for the former are ca. 7 kcal/mol more stable than the latter. Accordingly, the pairs based on azapurines would be favored with respect to the natural pairs. Some possible explanations why nature does not use extensively the azabases in base pairing are given.
Collapse
Affiliation(s)
- J Guillermo Contreras
- Facultad de Ciencias Quimicas, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile.
| | | |
Collapse
|
47
|
Banavali NK, Roux B. Atomic Radii for Continuum Electrostatics Calculations on Nucleic Acids. J Phys Chem B 2002. [DOI: 10.1021/jp025852v] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nilesh K. Banavali
- Department of Biochemistry and Structural Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021
| | - Benoıt Roux
- Department of Biochemistry and Structural Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021
| |
Collapse
|
48
|
Abstract
Recent years have seen considerable progress in simulations of nucleic acids. Improvements in force fields, simulation techniques and protocols, and increasing computer power have all contributed to making nanosecond-scale simulations of both DNA and RNA commonplace. The results are already helping to explain how nucleic acids respond to their environment and to their base sequence and to reveal the factors underlying recognition processes by probing biologically important nucleic acid-protein interactions and medically important nucleic acid-drug complexation. This Account summarizes methodological progress and applications of molecular dynamics to nucleic acids over the past few years and tries to identify remaining challenges.
Collapse
Affiliation(s)
- Emmanuel Giudice
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris 75005, France
| | | |
Collapse
|
49
|
Chelli R, Gervasio FL, Procacci P, Schettino V. Stacking and T-shape competition in aromatic-aromatic amino acid interactions. J Am Chem Soc 2002; 124:6133-43. [PMID: 12022848 DOI: 10.1021/ja0121639] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The potential of mean force of interacting aromatic amino acids is calculated using molecular dynamics simulations. The free energy surface is determined in order to study stacking and T-shape competition for phenylalanine-phenylalanine (Phe-Phe), phenylalanine-tyrosine (Phe-Tyr), and tyrosine-tyrosine (Tyr-Tyr) complexes in vacuo, water, carbon tetrachloride, and methanol. Stacked structures are favored in all solvents with the exception of the Tyr-Tyr complex in carbon tetrachloride, where T-shaped structures are also important. The effect of anchoring the two alpha-carbons (C(alpha)) at selected distances is investigated. We find that short and large C(alpha)-C(alpha) distances favor stacked and T-shaped structures, respectively. We analyze a set of 2396 protein structures resolved experimentally. Comparison of theoretical free energies for the complexes to the experimental analogue shows that Tyr-Tyr interaction occurs mainly at the protein surface, while Phe-Tyr and Phe-Phe interactions are more frequent in the hydrophobic protein core. This is confirmed by the Voronoi polyhedron analysis on the database protein structures. As found from the free energy calculation, analysis of the protein database has shown that proximal and distal interacting aromatic residues are predominantly stacked and T-shaped, respectively.
Collapse
Affiliation(s)
- Riccardo Chelli
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
50
|
Banavali NK, MacKerell AD. Free energy and structural pathways of base flipping in a DNA GCGC containing sequence. J Mol Biol 2002; 319:141-60. [PMID: 12051942 DOI: 10.1016/s0022-2836(02)00194-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Structural distortions of DNA are essential for its biological function due to the genetic information of DNA not being physically accessible in the duplex state. Base flipping is one of the simplest structural distortions of DNA and may represent an initial event in strand separation required to access the genetic code. Flipping is also utilized by DNA-modifying and repair enzymes to access specific bases. It is typically thought that base flipping (or base-pair opening) occurs via the major groove whereas minor groove flipping is only possible when mediated by DNA-binding proteins. Here, umbrella sampling with a novel center-of-mass pseudodihedral reaction coordinate was used to calculate the individual potentials of mean force (PMF) for flipping of the Watson-Crick (WC) paired C and G bases in the CCATGCGCTGAC DNA dodecamer. The novel reaction coordinate allowed explicit investigation of the complete flipping process via both the minor and major groove pathways. The minor and major groove barriers to flipping are similar for C base flipping while the major groove barrier is slightly lower for G base flipping. Minor groove flipping requires distortion of the WC partner while the flipping base pulls away from its partner during major groove flipping. The flipped states are represented by relatively flat free energy surfaces, with a small, local minimum observed for the flipped G base. Conserved patterns of phosphodiester backbone dihedral distortions during flipping indicate their essential role in the flipping process. During flipping, the target base tracks along the respective grooves, leading to hydrogen-bonding interactions with neighboring base-pairs. Such hydrogen-bonding interactions with the neighboring sequence suggest a novel mechanism of sequence dependence in DNA dynamics.
Collapse
Affiliation(s)
- Nilesh K Banavali
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 North Pine Street, Baltimore, MD 21201, USA
| | | |
Collapse
|