1
|
Dinda R, Panda A, Banerjee A, Mohanty M, Pasayat S, Tiekink ER. Investigation of DNA interaction and antiproliferative activity of mixed ligand dioxidomolybdenum(VI) complexes incorporating ONO donor aroylhydrazone ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
2
|
Dash SP, Panda AK, Pasayat S, Dinda R, Biswas A, Tiekink ERT, Mukhopadhyay S, Bhutia SK, Kaminsky W, Sinn E. Oxidovanadium(v) complexes of aroylhydrazones incorporating heterocycles: synthesis, characterization and study of DNA binding, photo-induced DNA cleavage and cytotoxic activities. RSC Adv 2015. [DOI: 10.1039/c4ra14369h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The interaction of four neutral oxidovanadium(v) complexes with DNA and their cytotoxic activities have been reported.
Collapse
Affiliation(s)
- Subhashree P. Dash
- Department of Chemistry
- National Institute of Technology
- Rourkela 769008
- India
| | - Alok K. Panda
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar 751 013
- India
| | - Sagarika Pasayat
- Department of Chemistry
- National Institute of Technology
- Rourkela 769008
- India
| | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela 769008
- India
| | - Ashis Biswas
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar 751 013
- India
| | | | | | - Sujit K. Bhutia
- Department of Life Science
- National Institute of Technology
- Rourkela 769008
- India
| | | | - Ekkehard Sinn
- Department of Chemistry
- Western Michigan University
- Kalamazoo
- USA
| |
Collapse
|
3
|
Wiseman B, Carpena X, Feliz M, Donald LJ, Pons M, Fita I, Loewen PC. Isonicotinic acid hydrazide conversion to Isonicotinyl-NAD by catalase-peroxidases. J Biol Chem 2010; 285:26662-73. [PMID: 20554537 PMCID: PMC2924108 DOI: 10.1074/jbc.m110.139428] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/28/2010] [Indexed: 11/06/2022] Open
Abstract
Activation of the pro-drug isoniazid (INH) as an anti-tubercular drug in Mycobacterium tuberculosis involves its conversion to isonicotinyl-NAD, a reaction that requires the catalase-peroxidase KatG. This report shows that the reaction proceeds in the absence of KatG at a slow rate in a mixture of INH, NAD(+), Mn(2+), and O(2), and that the inclusion of KatG increases the rate by >7 times. Superoxide, generated by either Mn(2+)- or KatG-catalyzed reduction of O(2), is an essential intermediate in the reaction. Elimination of the peroxidatic process by mutation slows the rate of reaction by 60% revealing that the peroxidatic process enhances, but is not essential for isonicotinyl-NAD formation. The isonicotinyl-NAD(*+) radical is identified as a reaction intermediate, and its reduction by superoxide is proposed. Binding sites for INH and its co-substrate, NAD(+), are identified for the first time in crystal complexes of Burkholderia pseudomallei catalase-peroxidase with INH and NAD(+) grown by co-crystallization. The best defined INH binding sites were identified, one in each subunit, on the opposite side of the protein from the entrance to the heme cavity in a funnel-shaped channel. The NAD(+) binding site is approximately 20 A from the entrance to the heme cavity and involves interactions primarily with the AMP portion of the molecule in agreement with the NMR saturation transfer difference results.
Collapse
Affiliation(s)
| | - Xavi Carpena
- the Institute for Research in Biomedicine and
- Institut de Biologia Molecular, Parc Científic, Baldiri Reixac 10, 08028 Barcelona, Spain, and
| | - Miguel Feliz
- the Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | - Miquel Pons
- the Institute for Research in Biomedicine and
- the Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignacio Fita
- the Institute for Research in Biomedicine and
- Institut de Biologia Molecular, Parc Científic, Baldiri Reixac 10, 08028 Barcelona, Spain, and
| | | |
Collapse
|
4
|
Singh R, Switala J, Loewen PC, Ivancich A. Two [Fe(IV)=O Trp*] intermediates in M. tuberculosis catalase-peroxidase discriminated by multifrequency (9-285 GHz) EPR spectroscopy: reactivity toward isoniazid. J Am Chem Soc 2007; 129:15954-63. [PMID: 18052167 DOI: 10.1021/ja075108u] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have characterized the intermediates formed in the peroxidase cycle of the multifunctional heme-containing enzyme KatG of M. tuberculosis. Selected Trp variants from the heme proximal (W321F) and distal (W107F and W91F) sides were analyzed together with the wild-type enzyme with regard to the reaction with peroxyacetic acid and hydrogen peroxide (in the catalase-inactive W107F). The 9 GHz EPR spectrum of the enzyme upon reaction with peroxyacetic acid showed the contribution of three protein-based radical species, two Trp* and a Tyr*, which could be discerned using a combined approach of multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy with selective deuterium labeling of tryptophan and tyrosine residues and site-directed mutagenesis. Trp321, a residue in H-bonding interactions with the iron through Asp381 and the heme axial ligand His270, was identified as one of the radical sites. The 9 GHz EPR signal of the Trp321 radical species was consistent with an exchange-coupled species similar to the oxoferryl-Trp radical intermediate in cytochrome c peroxidase. On the basis of the possibility of distinguishing among the different radical intermediates of the peroxidase cycle in M. tuberculosis KatG (MtKatG), we used EPR spectroscopy to monitor the reactivity of the enzyme and its W321F variant with isoniazid, the front-line drug used in the treatment of tuberculosis. The EPR experiments on the W321F variant preincubated with isoniazid allowed us to detect the short-lived [Fe(IV)=O Por*+] intermediate. Our results showed that neither the [Fe(IV)=O Por*+] nor the [Fe(IV)=O Trp321*+] intermediates were the reactive species with isoniazid. Accordingly, the subsequent intermediate (most probably the other Trp*) is proposed to be the oxidizing species. Our findings demonstrate that the protein-based radicals formed as alternative intermediates to the [Fe(IV)=O Por*+] can play the role of cofactors for substrate oxidation in the peroxidase cyle of KatGs.
Collapse
Affiliation(s)
- Rahul Singh
- Service de Bioénergétique, Biologie Structurale et Mécanismes, URA 2096 CNRS and iBiTec-S, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
5
|
Zhao X, Yu S, Magliozzo RS. Characterization of the Binding of Isoniazid and Analogues to Mycobacterium tuberculosis Catalase-Peroxidase. Biochemistry 2007; 46:3161-70. [PMID: 17309235 DOI: 10.1021/bi062218p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first-line antituberculosis drug isonicotinic hydrazide (INH) is a prodrug whose bactericidal function requires activation by Mycobacterium tuberculosis catalase-peroxidase (KatG) to produce an acyl-NAD adduct. Peroxidation of INH is considered a required catalytic process for drug action. The binding of INH and a series of hydrazide analogues to resting KatG was examined using optical and calorimetric techniques to provide thermodynamic parameters, binding stoichiometries, and kinetic constants (on and off rates). This work revealed high-affinity binding of these substrates to a small fraction of ferric enzyme in a six-coordinate heme iron form, a species most likely containing a weakly bound water molecule, which accumulates during storage of the enzyme. The binding of hydrazides is associated with a large enthalpy loss (>100 kcal/mol); dissociation constants are in the range of 0.05-1.6 microM, and optical stopped-flow measurements demonstrated kon values in the range of 0.5-27 x 10(3) M-1 s-1 with very small koff rates. Binding parameters did not depend on pH in the range 5-8. High-affinity binding of INH is disrupted in two mutant enzymes bearing replacements of key distal side residues, KatG[W107F] and KatG[Y229F]. The rates of reduction of KatG Compound I by hydrazides parallel the on rates for association with the resting enzyme. In a KatG-mediated biomimetic activation assay, only isoniazid generated in good yield the acyl-NAD adduct which is considered a key molecule in INH action, providing a better understanding of the action mechanism of INH.
Collapse
Affiliation(s)
- Xiangbo Zhao
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, USA
| | | | | |
Collapse
|
6
|
Ranguelova K, Girotto S, Gerfen GJ, Yu S, Suarez J, Metlitsky L, Magliozzo RS. Radical sites in Mycobacterium tuberculosis KatG identified using electron paramagnetic resonance spectroscopy, the three-dimensional crystal structure, and electron transfer couplings. J Biol Chem 2007; 282:6255-64. [PMID: 17204474 PMCID: PMC1885898 DOI: 10.1074/jbc.m607309200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catalase-peroxidase (KatG) from Mycobacterium tuberculosis, a Class I peroxidase, exhibits high catalase activity and peroxidase activity with various substrates and is responsible for activation of the commonly used antitubercular drug, isoniazid (INH). KatG readily forms amino acid-based radicals during turnover with alkyl peroxides, and this work focuses on extending the identification and characterization of radicals forming on the millisecond to second time scale. Rapid freeze-quench electron paramagnetic resonance spectroscopy (RFQ-EPR) reveals a change in the structure of the initially formed radical in the presence of INH. Heme pocket binding of the drug and knowledge that KatG[Y229F] lacks this signal provides evidence for radical formation on residue Tyr(229). High field RFQ-EPR spectroscopy confirmed a tryptophanyl radical signal, and new analyses of X-band RFQ-EPR spectra also established its presence. High field EPR spectroscopy also confirmed that the majority radical species is a tyrosyl radical. Site-directed mutagenesis, along with simulations of EPR spectra based on x-ray structural data for particular tyrosine and tryptophan residues, enabled assignments based on predicted hyperfine coupling parameters. KatG mutants W107F, Y229F, and the double mutant W107F/Y229F showed alteration in type and yield of radical species. Results are consistent with formation of a tyrosyl radical reasonably assigned to residue Tyr(229) within the first few milliseconds of turnover. This is followed by a mixture of tyrosyl and tryptophanyl radical species and finally to only a tyrosyl radical on residue Tyr(353), which lies more distant from the heme. The radical processing of enzyme lacking the Trp(107)-Tyr(229)-Met(255) adduct (found as a unique structural feature of catalase-peroxidases) is suggested to be a reasonable assignment of the phenomena.
Collapse
Affiliation(s)
- Kalina Ranguelova
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210 and The Graduate Center of the City University of New York, NY 10016, USA
| | - Stefania Girotto
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210 and The Graduate Center of the City University of New York, NY 10016, USA
| | - Gary J. Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Shengwei Yu
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210 and The Graduate Center of the City University of New York, NY 10016, USA
| | - Javier Suarez
- Department of Biochemistry, The Graduate Center of the City University of New York, NY 10016, USA
| | - Leonid Metlitsky
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210 and The Graduate Center of the City University of New York, NY 10016, USA
| | - Richard S. Magliozzo
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210 and The Graduate Center of the City University of New York, NY 10016, USA
- Department of Biochemistry, The Graduate Center of the City University of New York, NY 10016, USA
| |
Collapse
|
7
|
Kapetanaki SM, Chouchane S, Yu S, Zhao X, Magliozzo RS, Schelvis JPM. Mycobacterium tuberculosis KatG(S315T) catalase-peroxidase retains all active site properties for proper catalytic function. Biochemistry 2005; 44:243-52. [PMID: 15628865 DOI: 10.1021/bi048097f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis (Mtb) KatG is a catalase-peroxidase that is thought to activate the antituberculosis drug isoniazid (INH). The local environment of Mtb KatG and its most prevalent INH-resistant mutant, KatG(S315T), is investigated with the exogenous ligands CO and NO in the absence and presence of INH by using resonance Raman, FTIR, and transient absorption spectroscopy. The Fe-His stretching vibration is detected at 244 cm(-)(1) in the ferrous forms of both the wild-type enzyme and KatG(S315T). The ferrous-CO complex of both enzymes exhibits nu(CO), nu(Fe-CO), and delta(Fe-C-O) vibrations at 1925, 525, and 586 cm(-)(1), respectively, indicating a positive electrostatic environment for the CO complex, which is probably weakly hydrogen-bonded to a distal residue. The CO geometry is nonlinear as indicated by the unusually high intensity of the Fe-C-O bending vibration. The nu(Fe(III)-NO) and delta(Fe(III)-N-O) vibrations are detected at 596 and 571 cm(-)(1), respectively, in the ferric forms of wild-type and mutant enzyme and are indicative of a nonlinear binding geometry in support of the CO data. Although the presence of INH does not affect the vibrational frequencies of the CO- and NO-bound forms of either enzyme, it seems to perturb slightly their Raman intensities. Our results suggest a minimal, if any, perturbation of the distal heme pocket in the S315T mutant. Instead, the S315T mutation seems to induce small changes in the KatG conformation/dynamics of the ligand access channel as indicated by CO rebinding kinetics in flash photolysis experiments. The implications of these findings for the catalytic mechanism and mechanism of INH resistance in KatG(S315T) are discussed.
Collapse
Affiliation(s)
- Sofia M Kapetanaki
- Department of Chemistry, New York University, Room 1001, 31 Washington Place, New York, New York 10003, USA
| | | | | | | | | | | |
Collapse
|
8
|
Streiff JH, Juranic NO, Macura SI, Warner DO, Jones KA, Perkins WJ. Saturation Transfer Difference Nuclear Magnetic Resonance Spectroscopy As a Method for Screening Proteins for Anesthetic Binding. Mol Pharmacol 2004. [DOI: 10.1124/mol.66.4.929] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Bertrand T, Eady NAJ, Jones JN, Nagy JM, Jamart-Grégoire B, Raven EL, Brown KA. Crystal Structure of Mycobacterium tuberculosis Catalase-Peroxidase. J Biol Chem 2004; 279:38991-9. [PMID: 15231843 DOI: 10.1074/jbc.m402382200] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mycobacterium tuberculosis catalase-peroxidase is a multifunctional heme-dependent enzyme that activates the core anti-tuberculosis drug isoniazid. Numerous studies have been undertaken to elucidate the enzyme-dependent mechanism of isoniazid activation, and it is well documented that mutations that reduce activity or inactivate the catalase-peroxidase lead to increased levels of isoniazid resistance in M. tuberculosis. Interpretation of the catalytic activities and the effects of mutations upon the action of the enzyme to date have been limited due to the lack of a three-dimensional structure for this enzyme. In order to provide a more accurate model of the three-dimensional structure of the M. tuberculosis catalase-peroxidase, we have crystallized the enzyme and now report its crystal structure refined to 2.4-A resolution. The structure reveals new information about dimer assembly and provides information about the location of residues that may play a role in catalysis including candidates for protein-based radical formation. Modeling and computational studies suggest that the binding site for isoniazid is located near the delta-meso heme edge rather than in a surface loop structure as currently proposed. The availability of a crystal structure for the M. tuberculosis catalase-peroxidase also permits structural and functional effects of mutations implicated in causing elevated levels of isoniazid resistance in clinical isolates to be interpreted with improved confidence.
Collapse
Affiliation(s)
- Thomas Bertrand
- Department of Biological Sciences, Centre for Molecular Microbiology and Infection, Flowers Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
10
|
Timmins GS, Master S, Rusnak F, Deretic V. Nitric oxide generated from isoniazid activation by KatG: source of nitric oxide and activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004; 48:3006-9. [PMID: 15273113 PMCID: PMC478481 DOI: 10.1128/aac.48.8.3006-3009.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 03/08/2004] [Accepted: 04/02/2004] [Indexed: 11/20/2022] Open
Abstract
Isonicotinic acid hydrazide (INH) is a frontline antituberculosis agent. Once taken up by Mycobacterium tuberculosis, INH requires activation by the catalase-peroxidase KatG, converting INH from its prodrug form into a range of bactericidal reactive species. Here we used 15N-labeled INH together with electron paramagnetic resonance spin trapping techniques to demonstrate that nitric oxide (NO*) is generated from oxidation at the hydrazide nitrogens during the activation of INH by M. tuberculosis KatG. We also observed that a specific scavenger of NO* provided protection against the antimycobacterial activity of INH in bacterial culture. No significant increases in mycobacterial protein nitration were detected, suggesting that NOdot; and not peroxynitrite, a nitrating metabolite of NO*, is involved in antimycobacterial action. In conclusion, INH-derived NO* has biological activity, which directly contributes to the antimycobacterial action of INH.
Collapse
Affiliation(s)
- Graham S Timmins
- College of Pharmacy, Toxicology Program, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA.
| | | | | | | |
Collapse
|
11
|
Yu S, Girotto S, Lee C, Magliozzo RS. Reduced affinity for Isoniazid in the S315T mutant of Mycobacterium tuberculosis KatG is a key factor in antibiotic resistance. J Biol Chem 2003; 278:14769-75. [PMID: 12586821 DOI: 10.1074/jbc.m300326200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catalase-peroxidase (KatG) from Mycobacterium tuberculosis is responsible for the activation of the antitubercular drug isonicotinic acid hydrazide (INH) and is important for survival of M. tuberculosis in macrophages. Characterization of the structure and catalytic mechanism of KatG is being pursued to provide insights into drug (INH) resistance in M. tuberculosis. Site-directed mutagenesis was used to prepare the INH-resistant mutant KatG[S315T], and the overexpressed enzyme was characterized and compared with wild-type KatG. KatG[S315T] exhibits a reduced tendency to form six-coordinate heme, because of coordination of water to iron during purification and storage, and also forms a highly unstable Compound III (oxyferrous enzyme). Catalase activity and peroxidase activity measured using t-butylhydroperoxide and o-dianisidine were moderately reduced in the mutant compared with wild-type KatG. Stopped-flow spectrophotometric experiments revealed a rate of Compound I formation similar to wild-type KatG using peroxyacetic acid to initiate the catalytic cycle, but no Compound I was detected when bulkier peroxides (chloroperoxybenzoic acid, t-butylhydroperoxide) were used. The affinity of resting (ferric) KatG[S315T] for INH, measured using isothermal titration calorimetry, was greatly reduced compared with wild-type KatG, as were rates of reaction of Compound I with the drug. These observations reveal that although KatG[S315T] maintains reasonably good steady state catalytic rates, poor binding of the drug to the enzyme limits drug activation and brings about INH resistance.
Collapse
Affiliation(s)
- Shengwei Yu
- Department of Chemistry, Brooklyn College and The Graduate Center of the City University of New York, Brooklyn, New York 11210, USA
| | | | | | | |
Collapse
|
12
|
Kapetanaki S, Chouchane S, Girotto S, Yu S, Magliozzo RS, Schelvis JPM. Conformational differences in Mycobacterium tuberculosis catalase-peroxidase KatG and its S315T mutant revealed by resonance Raman spectroscopy. Biochemistry 2003; 42:3835-45. [PMID: 12667074 DOI: 10.1021/bi026992y] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
KatG from Mycobacterium tuberculosis is a heme-containing catalase-peroxidase, which belongs to the class I peroxidases and is important for activation of the prodrug isoniazid (INH), a front-line antituberculosis drug. In many clinical isolates, resistance to INH has been linked to mutations on the katG gene, and the most prevalent mutation, S315T, suggests that modification of the heme pocket has occurred. Electronic absorption and resonance Raman spectra of ferric wild-type (WT) KatG and its INH-resistant mutant KatG(S315T) at different pH values and their complexes with INH and benzohydroxamic acid (BHA) are reported. At neutral pH, a quantum mechanically mixed spin state (QS) is revealed, which coexists with five-coordinate and six-coordinate high-spin hemes in WT KatG. The QS heme is the major species in KatG(S315T). Addition of either INH or BHA to KatG induces only minor changes in the resonance Raman spectra, indicating that both compounds do not directly interact with the heme iron. New vibrational modes are observed at 430, 473, and 521 cm(-1), and these modes are indicative of a change in conformation in the KatG heme pocket. The intensity of these modes and the relative population of the QS heme are stable in KatG(S315T) but not in the WT enzyme. This indicates that there are differences in heme pocket stability between WT KatG and KatG(S315T). We will discuss the stabilization of the QS heme and propose a model for the inhibition of INH oxidation by KatG(S315T).
Collapse
Affiliation(s)
- Sofia Kapetanaki
- Department of Chemistry, New York University, 31 Washington Place, Room 1001, New York, New York 10003, USA
| | | | | | | | | | | |
Collapse
|
13
|
Chouchane S, Girotto S, Kapetanaki S, Schelvis JPM, Yu S, Magliozzo RS. Analysis of heme structural heterogeneity in Mycobacterium tuberculosis catalase-peroxidase (KatG). J Biol Chem 2003; 278:8154-62. [PMID: 12506108 DOI: 10.1074/jbc.m208256200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis catalase-peroxidase (KatG) is a heme enzyme considered important for virulence, which is also responsible for activation of the anti-tuberculosis pro-drug isoniazid. Here, we present an analysis of heterogeneity in KatG heme structure using optical, resonance Raman, and EPR spectroscopy. Examination of ferric KatG under a variety of conditions, including enzyme in the presence of fluoride, chloride, or isoniazid, and at different stages during purification in different buffers allowed for assignment of spectral features to both five- and six-coordinate heme. Five-coordinate heme is suggested to be representative of "native" enzyme, since this species was predominant in the enzyme examined immediately after one chromatographic protocol. Quantum mechanically mixed spin heme is the most abundant form in such partially purified enzyme. Reduction and reoxidation of six-coordinate KatG or the addition of glycerol or isoniazid restored five-coordinate heme iron, consistent with displacement of a weakly bound distal water molecule. The rate of formation of KatG Compound I is not retarded by the presence of six-coordinate heme either in wild-type KatG or in a mutant (KatG[Y155S]) associated with isoniazid resistance, which contains abundant six-coordinate heme. These results reveal a number of similarities and differences between KatG and other Class I peroxidases.
Collapse
Affiliation(s)
- Salem Chouchane
- Department of Chemistry, Brooklyn College and the Graduate Center of the City University of New York, 11210-2889, USA
| | | | | | | | | | | |
Collapse
|
14
|
Yu S, Chouchane S, Magliozzo RS. Characterization of the W321F mutant of Mycobacterium tuberculosis catalase-peroxidase KatG. Protein Sci 2002; 11:58-64. [PMID: 11742122 PMCID: PMC2368768 DOI: 10.1110/ps.09902] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A single amino acid mutation (W321F) in Mycobacterium tuberculosis catalase-peroxidase (KatG) was constructed by site-directed mutagenesis. The purified mutant enzyme was characterized using optical and electron paramagnetic resonance spectroscopy, and optical stopped-flow spectrophotometry. Reaction of KatG(W321F) with 3-chloroperoxybenzoic acid, peroxyacetic acid, or t-butylhydroperoxide showed formation of an unstable intermediate assigned as Compound I (oxyferryl iron:porphyrin pi-cation radical) by similarity to wild-type KatG, although second-order rate constants were significantly lower in the mutant for each peroxide tested. No evidence for Compound II was detected during the spontaneous or substrate-accelerated decay of Compound I. The binding of isoniazid, a first-line anti-tuberculosis pro-drug activated by catalase-peroxidase, was noncooperative and threefold weaker in KatG(W321F) compared with wild-type enzyme. An EPR signal assigned to a protein-based radical tentatively assigned as tyrosyl radical in wild-type KatG, was also observed in the mutant upon reaction of the resting enzyme with alkyl peroxide. These results show that mutation of residue W321 in KatG does not lead to a major alteration in the identity of intermediates formed in the catalytic cycle of the enzyme in the time regimes examined here, and show that this residue is not the site of stabilization of a radical as might be expected based on homology to yeast cytochrome c peroxidase. Furthermore, W321 is indicated to be important in KatG for substrate binding and subunit interactions within the dimer, providing insights into the origin of isoniazid resistance in clinically isolated KatG mutants.
Collapse
Affiliation(s)
- Shengwei Yu
- Department of Chemistry, Brooklyn College, and the Graduate Center of the City University of New York, Brooklyn, New York 11210-2889, USA
| | | | | |
Collapse
|
15
|
Donaldson LW, Skrynnikov NR, Choy WY, Muhandiram DR, Sarkar B, Forman-Kay JD, Kay LE. Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J Am Chem Soc 2001; 123:9843-7. [PMID: 11583547 DOI: 10.1021/ja011241p] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of a short, three-residue Cu(2+)-binding sequence, the ATCUN motif, is presented as an approach for extracting long-range distance restraints from relaxation enhancement NMR spectroscopy. The ATCUN motif is prepended to the N-termini of proteins and binds Cu(2+) with a very high affinity. Relaxation rates of amide protons in ATCUN-tagged protein in the presence and absence of Cu(2+) can be converted into distance restraints and used for structure refinement by using a new routine, PMAG, that has been written for the structure calculation program CNS. The utility of the approach is demonstrated with an application to ATCUN-tagged ubiquitin. Excellent agreement between measured relaxation rates and those calculated on the basis of the X-ray structure of the protein have been obtained.
Collapse
Affiliation(s)
- L W Donaldson
- Department of Medical Genetics, University of Toronto, Toronto, ON, Canada, M5S 1A8
| | | | | | | | | | | | | |
Collapse
|
16
|
Rai P, Cole TD, Wemmer DE, Linn S. Localization of Fe(2+) at an RTGR sequence within a DNA duplex explains preferential cleavage by Fe(2+) and H2O2. J Mol Biol 2001; 312:1089-101. [PMID: 11580252 DOI: 10.1006/jmbi.2001.5010] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nicking of duplex DNA by the iron-mediated Fenton reaction occurs preferentially at a limited number of sequences. Of these, purine-T-G-purine (RTGR) is of particular interest because it is a required element in the upstream regulatory regions of many genes involved in iron and oxidative-stress responses. In order to study the basis of this preferential nicking, NMR studies were undertaken on the RTGR-containing duplex oligonucleotide, d(CGCGATATGACACTAG)/d(CTAGTGTCATATCGCG). One-dimensional and two-dimensional 1H NMR measurements show that Fe(2+) interacts preferentially and reversibly at the ATGA site within the duplex at a rate that is rapid relative to the chemical-shift timescale, while selective paramagnetic NMR line-broadening of the ATGA guanine H8 suggests that Fe(2+) interacts with the guanine N7 moiety. Localization at this site is supported by Fe(2+) titrations of a duplex containing a 7-deazaguanine substitution in place of the guanine in the ATGA sequence. The addition of a 100-fold excess of Mg(2+) over Fe(2+) does not affect the Fe(2+)-dependent broadening. When the ATGA site in the duplex is replaced by ATGT, an RTGR site (GTGA) is created on the opposite strand. Preferential iron localization then takes place at the 3' guanine in GTGA but no longer at the guanine in ATGT, consistent with the lack of preferential cleavage of ATGT sites relative to ATGA sites.
Collapse
Affiliation(s)
- P Rai
- Biophysics Graduate Group, University of California, Berkeley, CA 94720-3206, USA
| | | | | | | |
Collapse
|
17
|
Wengenack NL, Rusnak F. Evidence for isoniazid-dependent free radical generation catalyzed by Mycobacterium tuberculosis KatG and the isoniazid-resistant mutant KatG(S315T). Biochemistry 2001; 40:8990-6. [PMID: 11467961 DOI: 10.1021/bi002614m] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antitubercular agent isoniazid can be activated by Mycobacterium tuberculosis KatG using either a peroxidase compound I/II or a superoxide-dependent oxyferrous pathway. The identity of activated isoniazid is unknown, but it has been suggested that it may be a free radical intermediate. In this work, EPR spin trapping experiments detected isoniazid-derived radicals generated during KatG-mediated oxidation via the peroxidase compound I/II pathway. On the basis of hyperfine splitting patterns and oxygen dependence, these radicals were identified as the acyl, acyl peroxo, and pyridyl radicals of isoniazid. Isoniazid-resistant KatG(S315T) produced the same radicals found with KatG, while the less potent antitubercular agent nicotinic acid hydrazide produced the corresponding nicotinyl radicals. The time course of radical production was similar for KatG and KatG(S315T), while a lower steady-state level of radicals was produced from nicotinic acid hydrazide. These results support an earlier finding that the peroxidase pathway does not correlate with isoniazid resistance conferred by KatG(S315T). Trace amounts of radicals were detected via the superoxide-dependent pathway. The low level of isoniazid-derived radicals found in the superoxide-dependent pathway may be due to scavenging by superoxide.
Collapse
Affiliation(s)
- N L Wengenack
- Department of Biochemistry and Molecular Biology and Section of Hematology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
18
|
Lukat-Rodgers GS, Wengenack NL, Rusnak F, Rodgers KR. Carbon monoxide adducts of KatG and KatG(S315T) as probes of the heme site and isoniazid binding. Biochemistry 2001; 40:7149-57. [PMID: 11401561 DOI: 10.1021/bi010369g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
KatG, the catalase peroxidase from Mycobacterium tuberculosis, is important in the activation of the antitubercular drug, isoniazid. About 50% of isoniazid-resistant clinical isolates contain a mutation in KatG wherein the serine at position 315 is substituted with threonine, KatG(S315T). The heme pockets of KatG and KatG(S315T) and their interactions with isoniazid are probed using resonance Raman (rR) spectroscopy to characterize their ferrous CO complexes. Three vibrational modes, C-O and Fe-C stretching and Fe-CO bending, are assigned using 12CO and 13CO isotope shifts. Two conformers are observed for KatG-CO and KatG(S315T)-CO. Resonance Raman features assigned to form I are consistent with it having a neutral proximal histidine ligand and the Fe-C-O moiety hydrogen bonded to a distal residue. The nu(C-O) band for form I is sharp, consistent with a conformationally homogeneous Fe-CO unit. Form II also has a neutral proximal histidine ligand but is not hydrogen bonded. This appears to result in a conformationally disordered Fe-CO unit, as evidenced by a comparatively broad C-O stretching band. The 13CO-sensitive bands assigned to form II are predominant in the KatG(S315T)-CO rR spectrum. Isoniazid binding is apparent from the resonance Raman signatures of both WT KatG-CO and KatG(S315T)-CO. Moreover, isoniazid binding elicits an increase in the form I population of wild-type KatG-CO while having little, if any, effect on the already low population of form I of KatG(S315T)-CO. Since oxyKatG (compound III) also contains a low-spin diatomic ligand-heme adduct (heme-O2), it is reasonable to suggest that it too would exist as a mixture of conformers. Because the small form I population of KatG(S315T)-CO correlates with its inability to activate INH, we hypothesize that form I plays a role in INH activation.
Collapse
Affiliation(s)
- G S Lukat-Rodgers
- Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105, USA
| | | | | | | |
Collapse
|
19
|
Lukat-Rodgers GS, Wengenack NL, Rusnak F, Rodgers KR. Spectroscopic comparison of the heme active sites in WT KatG and its S315T mutant. Biochemistry 2000; 39:9984-93. [PMID: 10933819 DOI: 10.1021/bi0006870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
KatG, the catalase-peroxidase from Mycobacterium tuberculosis, has been characterized by resonance Raman, electron spin resonance, and visible spectroscopies. The mutant KatG(S315T), which is found in about 50% of isoniazid-resistant clinical isolates, is also spectroscopically characterized. The electron spin resonance spectrum of ferrous nitrosyl KatG is consistent with a proximal histidine ligand. The Fe-His stretching vibration observed at 244 cm(-1) for ferrous wild-type KatG and KatG(S315T) confirms the imidazolate character of the proximal histidine in their five-coordinate high-spin complexes. The ferrous forms of wild-type KatG and KatG(S315T) are mixtures of six-coordinate low-spin and five-coordinate high-spin hemes. The optical and resonance Raman signatures of ferric wild-type KatG indicate that a majority of the heme exists in a five-coordinate high-spin state, but six-coordinate hemes are also present. At room temperature, more six-coordinate low-spin heme is observed in ferrous and ferric KatG(S315T) than in the WT enzyme. While the nature of the sixth ligand of LS ferric wild-type KatG is not completely clear, visible, resonance Raman, and electron spin resonance data of KatG(S315T) indicate that its sixth ligand is a neutral nitrogen donor. Possible effects of these differences on enzyme activity are discussed.
Collapse
Affiliation(s)
- G S Lukat-Rodgers
- Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105, USA.
| | | | | | | |
Collapse
|