1
|
Bamford JT, Gordon LW, Clément RJ, Segalman RA. Converting a Metal-Coordinating Polymer to a Polymerized Ionic Liquid Improves Li + Transport. ACS Macro Lett 2025; 14:87-92. [PMID: 39749941 DOI: 10.1021/acsmacrolett.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li+ batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li+ conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li+ coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im+) more efficiently solvates lithium salts and plasticizes the polymer. In addition, inverse Haven ratios as high as 10 indicate positively correlated Li+ transport, possibly due to percolation of nanochannels that significantly improve battery-relevant conductivity. From these combined effects, Li+ conductivity in PMS-Im+ (2.1 × 10-5 S/cm) is over an order of magnitude greater than in PMS-Im at 90 °C (1.6 × 10-6 S/cm).
Collapse
Affiliation(s)
- James T Bamford
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Leo W Gordon
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Raphaële J Clément
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Rachel A Segalman
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Sujanani R, Nguyen PH, Gordon LW, Bamford JT, Zele A, Pedretti BJ, Lynd NA, Clément RJ, Segalman RA. Influence of Water Sorption on Ionic Conductivity in Polyether Electrolytes at Low Hydration. ACS Macro Lett 2025; 14:64-71. [PMID: 39711369 DOI: 10.1021/acsmacrolett.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Ion-containing polymers are subject to a wide range of hydration conditions across electrochemical and water treatment applications. Significant work on dry polymer electrolytes for batteries and highly swollen membranes for water purification has informed our understanding of ion transport under extreme conditions. However, knowledge of intermediate conditions (i.e., low hydration) is essential to emerging applications (e.g., electrolyzers, fuel cells, and lithium extraction). Ion transport under low levels of hydration is distinct from the extreme conditions typically investigated, and the relevant physics cannot be extrapolated from existing knowledge, stifling materials design. In this study, we conducted ion transport measurements in LiTFSI-doped polyethers that were systematically hydrated from dry conditions. A semiautomated apparatus that performs parallel measurements of water uptake and ionic conductivity in thin-film polymers under controlled humidity was developed. For the materials and swelling range considered in this study (i.e., <0.07 g water/g dry polymer electrolyte), ionic conductivity depends nonlinearly on water uptake, with the initial sorbed water weakly affecting conductivity. With additional increases in swelling, more significant increases in conductivity were observed. Remarkably, changes in conductivity induced by water sorption were correlated with the number of water molecules per lithium ion, with the normalized molar conductivity of different samples effectively collapsing onto one another until this unit of hydration exceeded the solvation number of lithium ions under aqueous conditions. These results provide important knowledge regarding the effects of trace water contamination on conductivity measurements in polymer electrolytes and demonstrate that the lithium-ion solvation number marks a key transition point regarding the influence of water on ion transport in ion-containing polymers.
Collapse
Affiliation(s)
- Rahul Sujanani
- Department of Chemical Engineering, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Phong H Nguyen
- Department of Chemical Engineering, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Leo W Gordon
- Materials Department, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory (MRL), The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - James T Bamford
- Materials Department, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alexandra Zele
- Materials Department, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Benjamin J Pedretti
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel A Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raphaële J Clément
- Materials Department, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory (MRL), The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Rachel A Segalman
- Department of Chemical Engineering, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, The University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory (MRL), The University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Yiming B, Hubert S, Cartier A, Bresson B, Mello G, Ringuede A, Creton C. Elastic, strong and tough ionically conductive elastomers. Nat Commun 2025; 16:431. [PMID: 39762246 PMCID: PMC11704283 DOI: 10.1038/s41467-024-55472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Stretchable elastic materials with high strength, toughness, and good ionic conductivity are highly desirable for wearable devices and stretchable batteries. Unfortunately, limited success has been reported to attain all of these properties simultaneously. Here, we report a family of ionically conductive elastomers (ICEs) without compromise between mechanical properties (high stiffness, reversible elasticity, fracture resistance) and ionic conductivity, by introducing a multiple network elastomer (MNE) architecture into a lowT g polymer. The ICEs with the MNE architecture exhibit a room temperature ionic conductivity of the order of10 - 6 S . cm - 1 and stress at break of ~8 MPa, whereas the simple networks without an MNE architecture show two orders magnitude lower ionic conductivity (10 - 8 S . cm - 1 ) and comparably low strength (<1.5 MPa) at 25 °C than their MNE architecture based counterparts. The MNE architecture with a lowT g monomer combines the stiffness and fracture toughness given by sacrificial bond breakage while improving ionic conductivity through increased segmental mobility.
Collapse
Affiliation(s)
- Burebi Yiming
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Simon Hubert
- Chimie Paris Tech, CNRS, Institut de Recherche de Chimie Paris, PSL University, Paris, France
| | - Alex Cartier
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Bruno Bresson
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Gabriel Mello
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Armelle Ringuede
- Chimie Paris Tech, CNRS, Institut de Recherche de Chimie Paris, PSL University, Paris, France
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France.
| |
Collapse
|
4
|
Chen K, Song I, You L, Mei J. Organic Iono-Optoelectronics: From Electrochromics to Artificial Retina. Acc Chem Res 2024. [PMID: 39721599 DOI: 10.1021/acs.accounts.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
ConspectusOrganic mixed ionic electronic conductors (OMIECs) represent an exciting and emerging class of materials that have recently revitalized the field of organic semiconductors. OMIECs are particularly attractive because they allow both ionic and electronic transport while retaining the inherent benefits of organic semiconducting materials such as mechanical conformability and biocompatibility. These combined properties make the OMIECs ideal for applications in bioelectronics, energy storage, neuromorphic computing, and electrochemical transistors for sensing. Within the realm of OMIECs, a subset of materials and devices known as organic iono-optoelectronics (OIOEs) further leverage the optoelectronic properties of organic semiconductors and functions based on ionic-electronic-photonic interactions. Ionic-electronic coupling can regulate the bandgap of organic semiconducting materials, allowing the tuning of optical properties, which forms the basis for organic electrochromic technology. Additionally, light, as a form of energy, can modulate ionic-electronic coupling, enabling applications such as machine vision and artificial retina.Among these applications, organic electrochromic devices have demonstrated their practical and commercial value due to their rapid, high-contrast color switching capabilities and potential for cost-effective mass production and roll-to-roll manufacturing. Ambilight Inc. has spearheaded this technology, introducing the first organic electrochromic sunroof product, now used in hundreds of thousands of vehicles. Despite these promising advancements, organic electrochromic devices face several challenges. These include achieving optical contrast higher than 90%, improving color switching speed to meet the demands of dynamic display applications, and enhancing durability to ensure stability in extreme environmental conditions, such as prolonged exposure to sunlight. Growing research on light-modulated ionic-electronic coupling suggests that this fundamental process can be used to mimic the ion-flux-dependent light-capturing processes found in biological retina systems, offering a promising approach for constructing future artificial retina (vision). The intrinsic softness and biocompatibility of the OIOEs further enhance the potential of the artificial retina to interface with biological systems for applications in biomedical optoelectronics and human-machine interfaces. Compared to electrochromic technology, artificial retinas and biomedical optoelectronics are still in their infancy. In this Account, we use two representative technologies─electrochromic devices and artificial retina─to introduce the fundamental processes, advancements, and challenges in the field of OIOEs. We begin with an overview of the fundamental processes shared by and unique to these two technologies. Next, we discuss their respective challenges and the approaches taken by our group and others to improve their performance. Finally, we suggest future research directions. We hope this Account will introduce readers to these fascinating materials and devices and inspire further interest in these research areas.
Collapse
Affiliation(s)
- Ke Chen
- Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Inho Song
- Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Liyan You
- Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Shen J, Tian W, Liu S, Pan H, Yang C, Quan H, Zhu S. Halogen-Bonding Nanoarchitectonics in Supramolecular Plasticizers for Breaking the Trade-Off between Ion Transport and Mechanical Strength of Polymer Electrolytes for High-Voltage Li-Metal Batteries. ACS NANO 2024; 18:30716-30727. [PMID: 39446656 DOI: 10.1021/acsnano.4c09878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The low ionic conductivity of poly(ethylene oxide) (PEO)-based polymer electrolytes at room temperature impedes their practical applications. The addition of a plasticizer into polymer electrolytes could significantly promote ion transport while inevitably decreasing their mechanical strength. Herein, we report a supramolecular plasticizer (SMP) to break the trade-off effect between ionic conductivity and mechanical properties in PEO-based polymer electrolytes. Accordingly, the SMP is constructed by tetraethylene glycol dimethyl ether (G4) and SbF3 through halogen bonds. The SMP-plasticized PEO electrolyte (PEO/SMP) presents a simultaneously enhanced ionic conductivity of 2.4 × 10-4 S cm-1 (25 °C) and a high mechanical strength of 8.1 MPa, compared to those of pristine PEO-based electrolytes. Benefiting from the halogen bonds between G4 and SbF3, the Li-O coordination in PEO/SMP is evidently weakened, and thus rapid Li+ transport is achieved. Furthermore, the PEO/SMP electrolyte possesses a wide electrochemical stability window of 4.5 V and, importantly, derives an inorganic-rich SEI with a low interfacial resistance on a lithium metal surface. By using PEO/SMP, the lithium-metal battery with the LiNi0.5Co0.2Mn0.3O2 cathode exhibits a good rate and long-term cycling performance with a capacity retention of 75.3% (500 cycles). This work offers a rational guideline for the design of polymer electrolytes suitable for high-performance lithium-metal batteries.
Collapse
Affiliation(s)
- Jieqing Shen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wensheng Tian
- State Key Laboratory of Space Power-Sources, Shanghai Institute of Space Power-Sources, 2965 Dongchuan Road, Shanghai 200245, China
| | - Shuohan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hui Pan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Cheng Yang
- State Key Laboratory of Space Power-Sources, Shanghai Institute of Space Power-Sources, 2965 Dongchuan Road, Shanghai 200245, China
| | - Hengdao Quan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
6
|
Park J, Seong H, Yuk C, Lee D, Byun Y, Lee E, Lee W, Kim BJ. Design of Fluorinated Elastomeric Electrolyte for Solid-State Lithium Metal Batteries Operating at Low Temperature and High Voltage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403191. [PMID: 38713915 DOI: 10.1002/adma.202403191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/28/2024] [Indexed: 05/09/2024]
Abstract
This work demonstrates the low-temperature operation of solid-state lithium metal batteries (LMBs) through the development of a fluorinated and plastic-crystal-embedded elastomeric electrolyte (F-PCEE). The F-PCEE is formed via polymerization-induced phase separation between the polymer matrix and plastic crystal phase, offering a high mechanical strain (≈300%) and ionic conductivity (≈0.23 mS cm-1) at -10 °C. Notably, strong phase separation between two phases leads to the selective distribution of lithium (Li) salts within the plastic crystal phase, enabling superior elasticity and high ionic conductivity at low temperatures. The F-PCEE in a Li/LiNi0.8Co0.1Mn0.1O2 full cell maintains 74.4% and 42.5% of discharge capacity at -10 °C and -20 °C, respectively, compared to that at 25 °C. Furthermore, the full cell exhibits 85.3% capacity retention after 150 cycles at -10 °C and a high cut-off voltage of 4.5 V, representing one of the highest cycling performances among the reported solid polymer electrolytes for low-temperature LMBs. This work attributes the prolonged cycling lifetime of F-PCEE at -10 °C to the great mechanical robustness to suppress the Li-dendrite growth and ability to form superior LiF-rich interphases. This study establishes the design strategies of elastomeric electrolytes for developing solid-state LMBs operating at low temperatures and high voltages.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeonseok Seong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Chanho Yuk
- Department of Polymer Science and Engineering, Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Dongkyu Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Youyoung Byun
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Wonho Lee
- Department of Polymer Science and Engineering, Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
7
|
Shao Y, Gudla H, Mindemark J, Brandell D, Zhang C. Ion Transport in Polymer Electrolytes: Building New Bridges between Experiment and Molecular Simulation. Acc Chem Res 2024; 57:1123-1134. [PMID: 38569004 PMCID: PMC11025026 DOI: 10.1021/acs.accounts.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
ConspectusPolymer electrolytes constitute a promising type of material for solid-state batteries. However, one of the bottlenecks for their practical implementation lies in the transport properties, often including restricted Li+ self-diffusion and conductivity and low cationic transference numbers. This calls for a molecular understanding of ion transport in polymer electrolytes in which molecular dynamics (MD) simulation can provide both new physical insights and quantitative predictions. Although efforts have been made in this area and qualitative pictures have emerged, direct and quantitative comparisons between experiment and simulation remain challenging because of the lack of a unified theoretical framework to connect them.In our work, we show that by computing the glass transition temperature (Tg) of the model system and using the normalized inverse temperature 1000/(T - Tg + 50), the Li+ self-diffusion coefficient can be compared quantitatively between MD simulations and experiments. This allows us to disentangle the effects of Tg and the polymer dielectric environment on ion conduction in polymer electrolytes, giving rise to the identification of an optimal solvating environment for fast ion conduction.Unlike Li+ self-diffusion coefficients and ionic conductivity, the transference number, which describes the fraction of current carried by Li+ ions, depends on the boundary conditions or the reference frame (RF). This creates a non-negligible gap when comparing experiment and simulation because the fluxes in the experimental measurements and in the linear response theory used in MD simulation are defined in different RFs. We show that by employing the Onsager theory of ion transport and applying a proper RF transformation, a much better agreement between experiment and simulation can be achieved for the PEO-LiTFSI system. This further allows us to derive the theoretical expression for the Bruce-Vincent transference number in terms of the Onsager coefficients and make a direct comparison to experiments. Since the Bruce-Vincent method is widely used to extract transference numbers from experimental data, this opens the door to calibrating MD simulations via reproducing the Bruce-Vincent transference number and using MD simulations to predict the true transference number.In addition, we also address several open questions here such as the time-scale effects on the ion-pairing phenomenon, the consistency check between different types of experiments, the need for more accurate force fields used in MD simulations, and the extension to multicomponent systems. Overall, this Account focuses on building new bridges between experiment and simulation for quantitative comparison, warnings of pitfalls when comparing apples and oranges, and clarifying misconceptions. From a physical chemistry point of view, it connects to concentrated solution theory and provides a unified theoretical framework that can maximize the power of MD simulations. Therefore, this Account will be useful for the electrochemical energy storage community at large and set examples of how to approach experiments from theory and simulation (and vice versa).
Collapse
Affiliation(s)
- Yunqi Shao
- Department of Chemistry—Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 751 21 Uppsala, Sweden
| | - Harish Gudla
- Department of Chemistry—Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 751 21 Uppsala, Sweden
| | - Jonas Mindemark
- Department of Chemistry—Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 751 21 Uppsala, Sweden
| | - Daniel Brandell
- Department of Chemistry—Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 751 21 Uppsala, Sweden
| | - Chao Zhang
- Department of Chemistry—Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 751 21 Uppsala, Sweden
| |
Collapse
|
8
|
Min J, Bae S, Kawaguchi D, Tanaka K, Park MJ. Enhanced ionic conductivity in block copolymer electrolytes through interfacial passivation using mixed ionic liquids. J Chem Phys 2023; 159:174906. [PMID: 37921254 DOI: 10.1063/5.0173322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
We present a strategic approach for enhancing the ionic conductivity of block copolymer electrolytes. This was achieved by introducing mixed ionic liquids (ILs) with varying molar ratios, wherein the imidazolium cation was paired with either tetrafluoroborate (BF4) anion or bis(trifluoromethylsulfonyl)imide (TFSI) anion. Two polymer matrices, poly(4-styrenesulfonate)-b-polymethylbutylene (SSMB) and poly(4-styrenesulfonyl (trifluoromethanesulfonyl)imide)-b-polymethylbutylene (STMB), were synthesized for this purpose. All the SSMB and STMB containing mixed ILs showed hexagonal cylindrical structures, but the type of tethered acid group significantly influenced the interfacial properties. STMB electrolytes demonstrated enhanced segregation strength, which was attributed to strengthened Coulomb and hydrogen bonding interactions in the ionic domains, where the ILs were uniformly distributed. In contrast, the SSMB electrolytes exhibited increased concentration fluctuations because the BF4 anions were selectively sequestered at the block interfaces. This resulted in the effective confinement of imidazolium TFSI along the ionic domains, thereby preventing ion trapping in dead zones and facilitating rapid ion diffusion. Consequently, the SSMB electrolytes with mixed ILs demonstrated significantly improved ionic conductivities, surpassing the expected values based on the arithmetic average of the conductivities of each IL, whereas the ionic conductivity of the STMB was aligned with the expected average. The methodology explored in this study holds great promise for the development of solid-state polymer electrolytes.
Collapse
Affiliation(s)
- Jaemin Min
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suhyun Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Daisuke Kawaguchi
- Department of Applied Chemistry, Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Moon Jeong Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
9
|
Fang C, Chakraborty S, Li Y, Lee J, Balsara NP, Wang R. Ion Solvation Cage Structure in Polymer Electrolytes Determined by Combining X-ray Scattering and Simulations. ACS Macro Lett 2023; 12:1244-1250. [PMID: 37639325 DOI: 10.1021/acsmacrolett.3c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Solvation structure plays a crucial role in determining ion transport in electrolytes. We combine wide-angle X-ray scattering (WAXS) and molecular dynamics (MD) simulation to identify the solvation cage structure in two polymer electrolytes, poly(pentyl malonate) (PPM) and poly(ethylene oxide) (PEO) mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. As the salt concentration increases, the amorphous halo in the pure polymers is augmented by an additional peak at low scattering angles. The location of this peak and its height are, however, different in the two electrolytes. By decoupling the total intensity into species contributions and mapping scattering peaks to position-space molecular correlations, we elucidate distinct origins of the additional peak. In PPM, it arises from long-range charge-ordering between solvation cages and anions, while in PEO it is dominated by correlations between anions surrounding the same cage. TFSI- ions are present in the PPM solvation cage, but expelled from the PEO solvation cage.
Collapse
Affiliation(s)
- Chao Fang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States of America
| | - Saheli Chakraborty
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States of America
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States of America
| | - Yunhao Li
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States of America
| | - Jaeyong Lee
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States of America
| | - Nitash P Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States of America
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States of America
| |
Collapse
|
10
|
Zhu C, Pedretti BJ, Kuehster L, Ganesan V, Sanoja GE, Lynd NA. Ionic Conductivity, Salt Partitioning, and Phase Separation in High-Dielectric Contrast Polyether Blends and Block Polymer Electrolytes. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Congzhi Zhu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin J. Pedretti
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Louise Kuehster
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gabriel E. Sanoja
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Wang RY, Jeong S, Ham H, Kim J, Lee H, Son CY, Park MJ. Superionic Bifunctional Polymer Electrolytes for Solid-State Energy Storage and Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203413. [PMID: 35861998 DOI: 10.1002/adma.202203413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Achieving superionic conductivity from solid-state polymer electrolytes is an important task in the development of future energy storage and conversion technologies. Herein, a platform for innovative electrolyte technologies based on a bifunctional polymer, poly(3-hydroxy-4-sulfonated styrene) (PS-3H4S), is presented. By incorporating OH and SO3 H functional groups at adjacent positions in the styrene repeating unit, "intra-monomer" hydrogen bonds are formed to effectively weaken the electrostatic interactions of the SO3 - moieties in the polymer matrix with embedded ions, promoting rich structural and dynamic heterogeneity in the PS-3H4S electrolyte. Upon the incorporation of an ionic liquid, interconnected rod-like ion channels, which allow the decoupling of ion relaxation from polymer relaxation, are formed in the stiff motif of the polymeric domains passivated by interfacial ionic layers. This results in accelerated proton hopping through the glassy polymer matrix, and proton hopping becomes more pronounced at cryogenic temperatures down to -35 °C. The PS-3H4S/ionic liquid composite electrolytes exhibit a high ionic conductivity of 10-3 S cm-1 and high storage modulus of ≈100 MPa at 25 °C, and can be successfully applied in soft actuators and lithium-metal batteries.
Collapse
Affiliation(s)
- Rui-Yang Wang
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seungwon Jeong
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeonseong Ham
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jihoon Kim
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hojun Lee
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chang Yun Son
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Moon Jeong Park
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
12
|
Jones S, Bamford J, Fredrickson GH, Segalman RA. Decoupling Ion Transport and Matrix Dynamics to Make High Performance Solid Polymer Electrolytes. ACS POLYMERS AU 2022; 2:430-448. [PMID: 36561285 PMCID: PMC9761859 DOI: 10.1021/acspolymersau.2c00024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/25/2022]
Abstract
Transport of ions through solid polymeric electrolytes (SPEs) involves a complicated interplay of ion solvation, ion-ion interactions, ion-polymer interactions, and free volume. Nonetheless, prevailing viewpoints on the subject promote a significantly simplified picture, likening ion transport in a polymer to that in an unstructured fluid at low solute concentrations. Although this idealized liquid transport model has been successful in guiding the design of homogeneous electrolytes, structured electrolytes provide a promising alternate route to achieve high ionic conductivity and selectivity. In this perspective, we begin by describing the physical origins of the idealized liquid transport mechanism and then proceed to examine known cases of decoupling between the matrix dynamics and ionic transport in SPEs. Specifically we discuss conditions for "decoupled" mobility that include a highly polar electrolyte environment, a percolated path of free volume elements (either through structured or unstructured channels), high ion concentrations, and labile ion-electrolyte interactions. Finally, we proceed to reflect on the potential of these mechanisms to promote multivalent ion conductivity and the need for research into the interfacial properties of solid polymer electrolytes as well as their performance at elevated potentials.
Collapse
Affiliation(s)
- Seamus
D. Jones
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States,Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States
| | - James Bamford
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States,Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States,Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States,Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States,Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States,Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States,
| |
Collapse
|
13
|
Lee J, Gao KW, Shah NJ, Kang C, Snyder RL, Abel BA, He L, Teixeira SCM, Coates GW, Balsara NP. Relationship between Ion Transport and Phase Behavior in Acetal-Based Polymer Blend Electrolytes Studied by Electrochemical Characterization and Neutron Scattering. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jaeyong Lee
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Kevin W. Gao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Neel J. Shah
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Cheol Kang
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14850, United States
| | - Rachel L. Snyder
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14850, United States
| | - Brooks A. Abel
- Department of Chemistry, University of California, Berkeley, Berkeley, California94720, United States
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, Knoxville, Tennessee37830, United States
| | - Susana C. M. Teixeira
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Geoffrey W. Coates
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14850, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| |
Collapse
|
14
|
Poon L, Hum JR, Weiss RG. Ion-Transport Properties of Polydimethylsiloxane-Based Ionomers with Amidinium or Imidazolinium Alkyldithiocarbamate Pendant Groups in Low Dielectric Solvents or as Neat Liquids. J Phys Chem B 2022; 126:10481-10489. [DOI: 10.1021/acs.jpcb.2c05431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Louis Poon
- Department of Chemistry and Institute for Soft Matter Science and Metrology Georgetown University, Washington, D.C. 20057-1227, United States
| | - Jacob R. Hum
- Department of Chemistry and Institute for Soft Matter Science and Metrology Georgetown University, Washington, D.C. 20057-1227, United States
| | - Richard G. Weiss
- Department of Chemistry and Institute for Soft Matter Science and Metrology Georgetown University, Washington, D.C. 20057-1227, United States
| |
Collapse
|
15
|
Xie S, Nikolaev A, Nordness OA, C. Llanes L, Jones SD, Richardson PM, Wang H, Clément RJ, Read de Alaniz J, Segalman RA. Polymer Electrolyte Based on Cyano-Functionalized Polysiloxane with Enhanced Salt Dissolution and High Ionic Conductivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuyi Xie
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Andrei Nikolaev
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Oscar A. Nordness
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Luana C. Llanes
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Seamus D. Jones
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Peter M. Richardson
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Hengbin Wang
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Raphaële J. Clément
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
16
|
Wong CY, Wong WY, Loh KS, Lim KL. Protic ionic liquids as next-generation proton exchange membrane materials: Current status & future perspectives. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Nikolaev A, Richardson PM, Xie S, Canzian Llanes L, Jones SD, Nordness O, Wang H, Bazan GC, Segalman RA, Clément RJ, Read de Alaniz J. Role of Electron-Deficient Imidazoles in Ion Transport and Conductivity in Solid-State Polymer Electrolytes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrei Nikolaev
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Peter M. Richardson
- Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Shuyi Xie
- Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Luana Canzian Llanes
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Seamus D. Jones
- Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Oscar Nordness
- Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Hengbin Wang
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Guillermo C. Bazan
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Raphaële J. Clément
- Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
18
|
Gordievskaya YD, Kramarenko EY, Gavrilov AA. The effect of explicit polarity on the conformational behavior of a single polyelectrolyte chain. Phys Chem Chem Phys 2021; 23:26296-26305. [PMID: 34787619 DOI: 10.1039/d1cp03167h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work using dissipative particle dynamics simulations with explicit treatment of polar species we demonstrate that the molecular nature of dielectric media has a significant impact on swelling and collapse of a polyelectrolyte chain in a dilute solution. We show that the small-scale effects related to the presence of polar species lead to the intensification of the electrostatic interactions when the charges are close to each other and/or their density is high enough. As a result, the electrostatic strength , usually regarded as the main parameter governing the polyelectrolyte chain collapse, does not have a universal meaning: the value of λ at which the coil-to-globule transition occurs is found to be dependent on the specific fixed value of the solvent bulk permittivity ε while varying the monomer unit charge Q and vice versa. This effect is observed even when the backbone and the counterions have the same polarity as the solvent beads, i.e. no dielectric mismatch is present. The reason for such behavior is rationalized in terms of the "effective" dielectric permittivity εeff which depends on the volume fraction φ of charged units inside the polymer chain volume; using εeff instead of ε collapses all data onto one master curve describing the chain shrinking with λ. Furthermore, it is shown that a polar chain adopts less swollen conformations in the polyelectrolyte regime and collapses more easily compared to a non-polar chain.
Collapse
Affiliation(s)
- Yulia D Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia. .,A. N. Nesmeyanov Institute of Organoelement Compounds RAS, 119991 Moscow, Russia
| | - Elena Yu Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia. .,A. N. Nesmeyanov Institute of Organoelement Compounds RAS, 119991 Moscow, Russia
| | - Alexey A Gavrilov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
19
|
Zhao S, Song S, Wang Y, Keum J, Zhu J, He Y, Sokolov AP, Cao PF. Unraveling the Role of Neutral Units for Single-Ion Conducting Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51525-51534. [PMID: 34693714 DOI: 10.1021/acsami.1c15641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the cationic transference number close to unity, single-ion conducting polymer electrolytes (SICPEs) are recognized as an advanced electrolyte system with improved energy efficiency for battery application. The relatively low ionic conductivity for most of the SICPEs in comparison with liquid electrolytes remains the major "bottleneck" for their practical applications. Polyethylene oxide (PEO) has been recognized as a benchmark for solid polymer electrolytes due to its high salt solubility and reasonable ionic conductivity. PEO has two advantages: (i) the polar ether groups coordinate well with lithium ions (Li+) providing good dissociation from anions, and (ii) the low Tg provides fast segmental dynamics at ambient temperature and assists rapid charge transport. These properties lead to active use of PEO as neutral plasticizing units in SICPEs. Herein, we present a detailed comparison of new SICPEs copolymerized with PEO units vs SICPEs copolymerized with other types of neutral units possessing either flexible or polar structures. The presented analysis revealed that the polarity of side chains has a limited influence on ion dissociation for copolymer-type SICPEs. The Li+-ion dissociation seems to be controlled by the charge delocalization on the polymerized anion. With good miscibility between plasticizing neutral units and ionic conductive units, the ambient ionic conductivity of synthesized SICPEs is still mainly controlled by the Tg of the copolymer. This work sheds light on the dominating role of PEO in SICPE systems and provides helpful guidance for designing polymer electrolytes with new functionalities and structures. Furthermore, based on the presented results, we propose that designing polyanions with a highly delocalized charge may be another promising route for achieving sufficient lithium ionic conductivity in solvent-free SICPEs.
Collapse
Affiliation(s)
- Sheng Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Shenghan Song
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yingqi Wang
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jong Keum
- Center for Nanophase Materials Science and Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jiadeng Zhu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Peng-Fei Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
20
|
Imbrogno J, Maruyama K, Rivers F, Baltzegar JR, Zhang Z, Meyer PW, Ganesan V, Aoshima S, Lynd NA. Relationship between Ionic Conductivity, Glass Transition Temperature, and Dielectric Constant in Poly(vinyl ether) Lithium Electrolytes. ACS Macro Lett 2021; 10:1002-1007. [PMID: 35549112 DOI: 10.1021/acsmacrolett.1c00305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a partial elucidation of the relationship between polymer polarity and ionic conductivity in polymer electrolyte mixtures comprising a homologous series of nine poly(vinyl ether)s (PVEs) and lithium bis(trifluoromethylsulfonyl)imide. Recent simulation studies have suggested that low dielectric polymer hosts with glass transition temperatures far below ambient conditions are expected to have ionic conductivity limited by salt solubility and dissociation. In contrast, high dielectric hosts are expected to have the potential for high ion solubility but slow segmental dynamics due to strong polymer-polymer and polymer-ion interactions. We report results for PVEs in the low polarity regime with dielectric constants of about 1.3 to 9.0. Ionic conductivity measured for the PVE and salt mixtures ranged from about 10-10 to 10-3 S/cm. In agreement with the predictions from computer simulations, the ionic conductivity increased with dielectric constant and plateaued as the dielectric approached 9.0, comparable to the dielectric constant of the widely used poly(ethylene oxide).
Collapse
Affiliation(s)
| | - Kazuya Maruyama
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | |
Collapse
|
21
|
Abstract
We present a general theory of ionic conductivity in polymeric materials consisting of percolated ionic pathways. Identifying two key length scales corresponding to inter-path permeation distance ξ and one-dimensional hopping conduction path length mλ, we have derived closed-form formulas in terms of the energy U required to unbind a conductive ion from its bound state and the partition ratio ξ/mλ between the three-dimensional permeation and one-dimensional hopping pathways. The results provide design strategies to significantly enhance ionic conductivity in single-ion conductors. For large barriers to dissociate an ion, corrections to the Arrhenius law are presented. The predicted dependence of ionic conductivity on the unbinding time is in agreement with results in the literature based on simulations and experiments. This theory is generally applicable to conductive systems where the two mechanisms of permeation and hopping occur concurrently.
Collapse
Affiliation(s)
- Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
22
|
Park J, Staiger A, Mecking S, Winey KI. Structure–Property Relationships in Single-Ion Conducting Multiblock Copolymers: A Phase Diagram and Ionic Conductivities. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00493] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anne Staiger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
23
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
24
|
Influence of counteranion and humidity on the thermal, mechanical and conductive properties of covalently crosslinked ionenes. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Grzetic DJ, Delaney KT, Fredrickson GH. Electrostatic Manipulation of Phase Behavior in Immiscible Charged Polymer Blends. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Douglas J. Grzetic
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Departments of Chemical Engineering and Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
26
|
Shen KH, Fan M, Hall LM. Molecular Dynamics Simulations of Ion-Containing Polymers Using Generic Coarse-Grained Models. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02557] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Nie H, Schauser NS, Self JL, Tabassum T, Oh S, Geng Z, Jones SD, Zayas MS, Reynolds VG, Chabinyc ML, Hawker CJ, Han S, Bates CM, Segalman RA, Read de Alaniz J. Light-Switchable and Self-Healable Polymer Electrolytes Based on Dynamic Diarylethene and Metal-Ion Coordination. J Am Chem Soc 2021; 143:1562-1569. [PMID: 33439016 DOI: 10.1021/jacs.0c11894] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self-healing polymer electrolytes are reported with light-switchable conductivity based on dynamic N-donor ligand-containing diarylethene (DAE) and multivalent Ni2+ metal-ion coordination. Specifically, a polystyrene polymer grafted with poly(ethylene glycol-r-DAE)acrylate copolymer side chains was effectively cross-linked with nickel(II) bis(trifluoromethanesulfonimide) (Ni(TFSI)2) salts to form a dynamic network capable of self-healing with fast exchange kinetics under mild conditions. Furthermore, as a photoswitching compound, the DAE undergoes a reversible structural and electronic rearrangement that changes the binding strength of the DAE-Ni2+ complex under irradiation. This can be observed in the DAE-containing polymer electrolyte where irradiation with UV light triggers an increase in the resistance of solid films, which can be recovered with subsequent visible light irradiation. The increase in resistance under UV light irradiation indicates a decrease in ion mobility after photoswitching, which is consistent with the stronger binding strength of ring-closed DAE isomers with Ni2+. 1H-15N heteronuclear multiple-bond correlation nuclear magnetic resonance (HMBC NMR) spectroscopy, continuous wave electron paramagnetic resonance (cw EPR) spectroscopy, and density functional theory (DFT) calculations confirm the increase in binding strength between ring-closed DAE with metals. Rheological and in situ ion conductivity measurements show that these polymer electrolytes efficiently heal to recover their mechanical properties and ion conductivity after damage, illustrating potential applications in smart electronics.
Collapse
Affiliation(s)
- Hui Nie
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | | | - Jeffrey L Self
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Tarnuma Tabassum
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Saejin Oh
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | | | - Seamus D Jones
- Department of Chemical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Manuel S Zayas
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | | | | | - Craig J Hawker
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States.,Department of Chemical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Christopher M Bates
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Rachel A Segalman
- Department of Chemical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
28
|
Schauser NS, Nikolaev A, Richardson PM, Xie S, Johnson K, Susca EM, Wang H, Seshadri R, Clément R, Read de Alaniz J, Segalman RA. Glass Transition Temperature and Ion Binding Determine Conductivity and Lithium-Ion Transport in Polymer Electrolytes. ACS Macro Lett 2021; 10:104-109. [PMID: 35548991 DOI: 10.1021/acsmacrolett.0c00788] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymer electrolytes with high Li+-ion conductivity provide a route toward improved safety and performance of Li+-ion batteries. However, most polymer electrolytes suffer from low ionic conduction and an even lower Li+-ion contribution to the conductivity (the transport number, t+), with the anion typically transporting over 80% of the charge. Here, we show that subtle and potentially undetected associations within a polymer electrolyte can entrain both the anion and the cation. When removed, the conductivity performance of the electrolyte can be improved by almost 2 orders of magnitude. Importantly, while some of this improvement can be attributed to a decreased glass transition temperature, Tg, the removal of the amide functional group reduces interactions between the polymer and the Li+ cations, doubling the Li+ t+ to 0.43, as measured using pulsed-field-gradient NMR. This work highlights the importance of strategic synthetic design and emphasizes the dual role of Tg and ion binding for the development of polymer electrolytes with increased total ionic conductivity and the Li+ ion contribution to it.
Collapse
Affiliation(s)
- Nicole S. Schauser
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Andrei Nikolaev
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Peter M. Richardson
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Shuyi Xie
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Keith Johnson
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Ethan M. Susca
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Hengbin Wang
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Ram Seshadri
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Raphaële J. Clément
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
29
|
Yu L, Zhang Y, Wang J, Gan H, Li S, Xie X, Xue Z. Lithium Salt-Induced In Situ Living Radical Polymerizations Enable Polymer Electrolytes for Lithium-Ion Batteries. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02032] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Liping Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yong Zhang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Huihui Gan
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shaoqiao Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
30
|
Nie H, Schauser NS, Dolinski ND, Geng Z, Oh S, Chabinyc ML, Hawker CJ, Segalman RA, Read de Alaniz J. The role of anions in light-driven conductivity in diarylethene-containing polymeric ionic liquids. Polym Chem 2021. [DOI: 10.1039/d0py01603a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The role of anion character in the photostationary state, magnitude of conductivity, and light-responsive properties of diarylethene-containing polymeric ionic liquids was investigated.
Collapse
Affiliation(s)
- Hui Nie
- Department of Chemistry and Biochemistry
- University of California–Santa Barbara
- Santa Barbara
- USA
| | - Nicole S. Schauser
- Materials Department and Materials Research Laboratory
- University of California–Santa Barbara
- Santa Barbara
- USA
| | - Neil D. Dolinski
- Materials Department and Materials Research Laboratory
- University of California–Santa Barbara
- Santa Barbara
- USA
| | - Zhishuai Geng
- Materials Department and Materials Research Laboratory
- University of California–Santa Barbara
- Santa Barbara
- USA
| | - Saejin Oh
- Department of Chemistry and Biochemistry
- University of California–Santa Barbara
- Santa Barbara
- USA
| | - Michael L. Chabinyc
- Materials Department and Materials Research Laboratory
- University of California–Santa Barbara
- Santa Barbara
- USA
| | - Craig J. Hawker
- Department of Chemistry and Biochemistry
- University of California–Santa Barbara
- Santa Barbara
- USA
- Materials Department and Materials Research Laboratory
| | - Rachel A. Segalman
- Materials Department and Materials Research Laboratory
- University of California–Santa Barbara
- Santa Barbara
- USA
- Department of Chemical Engineering
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry
- University of California–Santa Barbara
- Santa Barbara
- USA
| |
Collapse
|
31
|
Jones SD, Schauser NS, Fredrickson GH, Segalman RA. The Role of Polymer–Ion Interaction Strength on the Viscoelasticity and Conductivity of Solvent-Free Polymer Electrolytes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Seamus D. Jones
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Nicole S. Schauser
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
32
|
Choi UH, Price TL, Schoonover DV, Xie R, Gibson HW, Colby RH. Role of Chain Polarity on Ion and Polymer Dynamics: Molecular Volume-Based Analysis of the Dielectric Constant for Polymerized Norbornene-Based Ionic Liquids. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- U Hyeok Choi
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Korea
| | - Terry L. Price
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Daniel V. Schoonover
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Renxuan Xie
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Harry W. Gibson
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Ralph H. Colby
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
33
|
Shen KH, Hall LM. Effects of Ion Size and Dielectric Constant on Ion Transport and Transference Number in Polymer Electrolytes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
34
|
Gudla H, Zhang C, Brandell D. Effects of Solvent Polarity on Li-ion Diffusion in Polymer Electrolytes: An All-Atom Molecular Dynamics Study with Charge Scaling. J Phys Chem B 2020; 124:8124-8131. [PMID: 32840375 PMCID: PMC7503542 DOI: 10.1021/acs.jpcb.0c05108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Indexed: 11/29/2022]
Abstract
We herein report an all-atom molecular dynamics study on the role of solvent polarity for Li+ diffusion in polymer electrolytes using PEO-LiTFSI (poly(ethylene oxide)-lithium bis(trifluoromethane)sulfonimide) as a model system. By separating the effect of Tg and the effect of solvent polarity in our simulations, we show that the maximum in the diffusion coefficient of Li+ with respect to the dielectric constant of polymer solvent εp is due to transitions in the transport mechanism. In particular, it is found that the frequent interchain hopping involves the coordination of both PEO and TFSI. This optimal solvating ability of PEO at an intermediate value of εp leads to the fast ion conduction. These findings highlight the synergetic effect of solvent polarity and bond polarity on Li-ion diffusion in solid polymer electrolytes.
Collapse
Affiliation(s)
- Harish Gudla
- Department of Chemistry—Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 75121 Uppsala, Sweden
| | - Chao Zhang
- Department of Chemistry—Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 75121 Uppsala, Sweden
| | - Daniel Brandell
- Department of Chemistry—Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 75121 Uppsala, Sweden
| |
Collapse
|