1
|
Escomel L, Le Dé Q, Benonie M, Vendier L, Simonneau A. Low-valent group 6 metals/Al(C 6F 5) 3 donor-acceptor systems for CO 2 activation and cleavage. Chem Commun (Camb) 2024; 60:13235-13238. [PMID: 39445414 DOI: 10.1039/d4cc02349h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Donor-acceptor systems for CO2 activation combining a formally zero-valent group 6 metal as the donor with the Lewis acid Al(C6F5)3 (AlCF) are reported. They were obtained from AlCF adducts of N2-complexes by N2-to-CO2 substitution. One species was capable of C-O cleavage. The boron analogues led to intractable mixtures.
Collapse
Affiliation(s)
- Léon Escomel
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.
| | - Quentin Le Dé
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.
| | - Maxime Benonie
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.
| |
Collapse
|
2
|
Kim T, Jin F, Titi HM, Tsantrizos YS. Diastereoselective Synthesis of Phosphinyl Peptides via Rh-Catalyzed 1,4-Addition in Coparticipation of a P-Chiral Moiety and Difluorphos. J Org Chem 2024; 89:13418-13428. [PMID: 39208077 DOI: 10.1021/acs.joc.4c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The asymmetric Rh-catalyzed 1,4-addition of aryl/heteroaryl moieties to α,β-unsaturated esters was achieved in high diastereoselectivity via the coparticipation of a P-chiral phosphinyl moiety at Cβ to the prochiral center and (R)- or (S)-Difluorphos. This methodology expands the synthetic toolbox available for the preparation of structurally diverse chiral phosphinyl peptides.
Collapse
Affiliation(s)
- Taeok Kim
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G8, Canada
| | - Fuqing Jin
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G8, Canada
| | - Hatem M Titi
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G8, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
3
|
Escomel L, Martins FF, Vendier L, Coffinet A, Queyriaux N, Krewald V, Simonneau A. Coordination of Al(C 6F 5) 3 vs. B(C 6F 5) 3 on group 6 end-on dinitrogen complexes: chemical and structural divergences. Chem Sci 2024; 15:11321-11336. [PMID: 39055009 PMCID: PMC11268509 DOI: 10.1039/d4sc02713b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The coordination of the Lewis superacid tris(pentafluorophenyl)alane (AlCF) to phosphine-supported, group 6 bis(dinitrogen) complexes [ML2(N2)2] is explored, with M = Cr, Mo or W and L = dppe (1,2-bis(diphenylphosphino)ethane), depe (1,2-bis(diethylphosphino)ethane), dmpe (1,2-bis(dimethylphosphino)ethane) or 2 × PMe2Ph. Akin to tris(pentafluorophenyl)borane (BCF), AlCF can form 1 : 1 adducts by coordination to one distal nitrogen of general formula trans-[ML2(N2){(μ-η1:η1-N2)Al(C6F5)3}]. The boron and aluminium adducts are structurally similar, showing a comparable level of N2 push-pull activation. A notable exception is a bent (BCF adducts) vs. linear (AlCF adducts) M-N-N-LA motif (LA = Lewis acid), explained computationally as the result of steric repulsion. A striking difference arose when the formation of two-fold adducts was conducted. While in the case of BCF the 2 : 1 Lewis pairs could be observed in equilibrium with the 1 : 1 adduct and free borane but resisted isolation, AlCF forms robust 2 : 1 adducts trans-[ML2{(μ-η1:η1-N2)Al(C6F5)3}2] that isomerise into a more stable cis configuration. These compounds could be isolated and structurally characterized, and represent the first examples of trinuclear heterometallic complexes formed by Lewis acid-base interaction exhibiting p and d elements. Calculations also demonstrate that from the bare complex to the two-fold aluminium adduct, substantial decrease of the HOMO-LUMO gap is observed, and, unlike the trans adducts (1 : 1 and 1 : 2) for which the HOMO was computed to be a pure d orbital, the one of the cis-trinuclear compounds mixes a d orbital with a π* one of each N2 ligands. This may translate into a more favourable electrophilic attack on the N2 ligands instead of the metal centre, while a stabilized N2-centered LUMO should ease electron transfer, suggesting Lewis acids could be co-activators for electro-catalysed N2 reduction. Experimental UV-vis spectra for the tungsten family of compounds were compared with TD-DFT calculations (CAM-B3LYP/def2-TZVP), allowing to assign the low extinction bands found in the visible spectrum to unusual low-lying MLCT involving N2-centered orbitals. As significant red-shifts are observed upon LA coordination, this could have important implications for the development of visible light-driven nitrogen fixation.
Collapse
Affiliation(s)
- Léon Escomel
- LCC-CNRS, Université de Toulouse, CNRS UPS 205 Route de Narbonne, BP44099 F-31077 Toulouse Cedex 4 France
| | - Frederico F Martins
- Department of Chemistry, Quantum Chemistry, TU Darmstadt Peter-Grünberg-Str. 4, 6 4287 Darmstadt Germany
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS UPS 205 Route de Narbonne, BP44099 F-31077 Toulouse Cedex 4 France
| | - Anaïs Coffinet
- LCC-CNRS, Université de Toulouse, CNRS UPS 205 Route de Narbonne, BP44099 F-31077 Toulouse Cedex 4 France
| | - Nicolas Queyriaux
- LCC-CNRS, Université de Toulouse, CNRS UPS 205 Route de Narbonne, BP44099 F-31077 Toulouse Cedex 4 France
| | - Vera Krewald
- Department of Chemistry, Quantum Chemistry, TU Darmstadt Peter-Grünberg-Str. 4, 6 4287 Darmstadt Germany
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS UPS 205 Route de Narbonne, BP44099 F-31077 Toulouse Cedex 4 France
| |
Collapse
|
4
|
Rinn N, Rojas-León I, Peerless B, Gowrisankar S, Ziese F, Rosemann NW, Pilgrim WC, Sanna S, Schreiner PR, Dehnen S. Adamantane-type clusters: compounds with a ubiquitous architecture but a wide variety of compositions and unexpected materials properties. Chem Sci 2024; 15:9438-9509. [PMID: 38939157 PMCID: PMC11206280 DOI: 10.1039/d4sc01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
The research into adamantane-type compounds has gained momentum in recent years, yielding remarkable new applications for this class of materials. In particular, organic adamantane derivatives (AdR4) or inorganic adamantane-type compounds of the general formula [(RT)4E6] (R: organic substituent; T: group 14 atom C, Si, Ge, Sn; E: chalcogenide atom S, Se, Te, or CH2) were shown to exhibit strong nonlinear optical (NLO) properties, either second-harmonic generation (SHG) or an unprecedented type of highly-directed white-light generation (WLG) - depending on their respective crystalline or amorphous nature. The (missing) crystallinity, as well as the maximum wavelengths of the optical transitions, are controlled by the clusters' elemental composition and by the nature of the organic groups R. Very recently, it has been additionally shown that cluster cores with increased inhomogeneity, like the one in compounds [RSi{CH2Sn(E)R'}3], not only affect the chemical properties, such as increased robustness and reversible melting behaviour, but that such 'cluster glasses' form a conceptually new basis for their use in light conversion devices. These findings are likely only the tip of the iceberg, as beside elemental combinations including group 14 and group 16 elements, many more adamantane-type clusters (on the one hand) and related architectures representing extensions of adamantane-type clusters (on the other hand) are known, but have not yet been addressed in terms of their opto-electronic properties. In this review, we therefore present a survey of all known classes of adanmantane-type compounds and their respective synthetic access as well as their optical properties, if reported.
Collapse
Affiliation(s)
- Niklas Rinn
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Irán Rojas-León
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Benjamin Peerless
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Saravanan Gowrisankar
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Ferdinand Ziese
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Nils W Rosemann
- Light Technology Institute, Karlsruhe Institute of Technology Engesserstr. 13 76131 Karlsruhe Germany
| | - Wolf-Christian Pilgrim
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Simone Sanna
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Peter R Schreiner
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Stefanie Dehnen
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
5
|
Leung JN, Mondori Y, Ogoshi S, Hoshimoto Y, Huynh HV. Electronic Profiling of N-Phosphine Oxide-Substituted Imidazolin-2-ylidenes (PoxIms) and Imidazolidin-2-ylidenes (SPoxIms). Inorg Chem 2024; 63:4344-4354. [PMID: 38387056 DOI: 10.1021/acs.inorgchem.3c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
A detailed electronic study of the N-phosphine oxide functionalized imidazolin-2-ylidenes (PoxIms) and imidazolidin-2-ylidenes (SPoxIms) has been performed experimentally using IR, 13C, and 77Se NMR spectroscopies. While the net donor/acceptor properties of the (S)PoxIms could not be differentiated via IR spectroscopy (TEP), NMR spectroscopic methods (HEP, Se) reveal that the (S)PoxIms are slightly weaker σ-donors but stronger π-acceptors compared to common NHCs. Moreover, backbone and substituent-effects could also be resolved by the latter, allowing for a ranking of their electronic properties. Finally, the donicities of these well-designed NHC ligands in their bidentate κ2-C,O modes were evaluated using HEP2 and compared to those of classical chelators.
Collapse
Affiliation(s)
- Jia Nuo Leung
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117453, Republic of Singapore
| | - Yutaka Mondori
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Future Innovation (CFi), Division of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Han Vinh Huynh
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117453, Republic of Singapore
| |
Collapse
|
6
|
Scott J, Maenaga ML, Woodside AJ, Guo VW, Cheriel AR, Gau MR, Rablen PR, Graves CR. Reversible O-H Bond Activation by Tripodal tris(Nitroxide) Aluminum and Gallium Complexes. Inorg Chem 2024; 63:4028-4038. [PMID: 38386423 PMCID: PMC10915791 DOI: 10.1021/acs.inorgchem.3c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Herein, we report the preparation and characterization of the Group 13 metal complexes of a tripodal tris(nitroxide)-based ligand, designated (TriNOx3-)M (M = Al (1), Ga (2), In (3)). Complexes 1 and 2 both activate the O-H bond of a range of alcohols spanning a ∼10 pKa unit range via an element-ligand cooperative pathway to afford the zwitterionic complexes (HTriNOx2-)M-OR. Structures of these alcohol adduct products are discussed. We demonstrate that the thermodynamic and kinetic aspects of the reactions are both influenced by the identity of the metal, with 1 having higher reaction equilibrium constants and proceeding at a faster rate relative to 2 for any given alcohol. These parameters are also influenced by the pKa of the alcohol, with more acidic alcohols reacting both to more completion and faster than their less acidic counterparts. Possible mechanistic pathways for the O-H activation are discussed.
Collapse
Affiliation(s)
- Joseph
S. Scott
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Mika L. Maenaga
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Audra J. Woodside
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Vivian W. Guo
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Alex R. Cheriel
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Michael R. Gau
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Paul R. Rablen
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Christopher R. Graves
- Department
of Chemistry & Biochemistry, Swarthmore
College, 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| |
Collapse
|
7
|
Timoshkin AY. The Field of Main Group Lewis Acids and Lewis Superacids: Important Basics and Recent Developments. Chemistry 2024; 30:e202302457. [PMID: 37752859 DOI: 10.1002/chem.202302457] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
New developments in the field of Lewis acidity are highlighted, with the focus of novel Lewis acids and Lewis superacids of group 2, 13, 14, and 15 elements. Several important basics, illustrated by modern examples (classification of Donor-Acceptor (DA) complexes, amphoteric nature of any compound in terms of DA interactions, reorganization energies of main group Lewis acids and the role of the energies of frontier orbitals) are presented and discussed. It is emphasized that the Lewis acidity phenomena are general and play vital role in different areas of chemistry: from weak "atomophilic" interactions to the complexes of Lewis superacids.
Collapse
Affiliation(s)
- Alexey Y Timoshkin
- Institute of Chemistry, St. Petersburg State University, 199034, Universitetskaya emb. 7/9, St. Petersburg, Russia
| |
Collapse
|
8
|
Yamauchi Y, Mondori Y, Uetake Y, Takeichi Y, Kawakita T, Sakurai H, Ogoshi S, Hoshimoto Y. Reversible Modulation of the Electronic and Spatial Environment around Ni(0) Centers Bearing Multifunctional Carbene Ligands with Triarylaluminum. J Am Chem Soc 2023. [PMID: 37467307 PMCID: PMC10401715 DOI: 10.1021/jacs.3c06267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Designing and modulating the electronic and spatial environments surrounding metal centers is a crucial issue in a wide range of chemistry fields that use organometallic compounds. Herein, we demonstrate a Lewis-acid-mediated reversible expansion, contraction, and transformation of the spatial environment surrounding nickel(0) centers that bear N-phosphine oxide-substituted N-heterocyclic carbenes (henceforth referred to as (S)PoxIms). Reaction between tetrahedral (syn-κ-C,O-(S)PoxIm)Ni(CO)2 and Al(C6F5)3 smoothly afforded heterobimetallic Ni/Al species such as trigonal-planar {κ-C-Ni(CO)2}(μ-anti-(S)PoxIm){κ-O-Al(C6F5)3} via a complexation-induced rotation of the N-phosphine oxide moieties, while the addition of 4-dimethylaminopyridine resulted in the quantitative regeneration of the former Ni complexes. The corresponding interconversion also occurred between (SPoxIm)Ni(η2:η2-diphenyldivinylsilane) and {κ-C-Ni(η2:η2-diene)}(μ-anti-SPoxIm){κ-O-Al(C6F5)3} via the coordination and dissociation of Al(C6F5)3. The shape and size of the space around the Ni(0) center was drastically changed through this Lewis-acid-mediated interconversion. Moreover, the multinuclear NMR, IR, and XAS analyses of the aforementioned carbonyl complexes clarified the details of the changes in the electronic states on the Ni centers; i.e., the electron delocalization was effectively enhanced among the Ni atom and CO ligands in the heterobimetallic Ni/Al species. The results presented in this work thus provide a strategy for reversibly modulating both the electronic and spatial environment of organometallic complexes, in addition to the well-accepted Lewis-base-mediated ligand-substitution methods.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaka Mondori
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuta Uetake
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Takeichi
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Kawakita
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Future Innovation (CFi), Division of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Xiong Z, Yang M, Chen X, Gong Y. Influence of Metal Coordination on the Gas-Phase Chemistry of the Positional Isomers of Fluorobenzoate Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2181-2190. [PMID: 36251055 DOI: 10.1021/jasms.2c00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The fragmentation behaviors of the o-, m-, and p-fluorobenzoate complexes of La3+, Ce3+, Fe3+, Cu2+, and UO22+ were investigated by electrospray ionization mass spectrometry, and the corresponding reaction mechanisms were explored by density functional theory (DFT) calculations. Fluoride transfer product LaIIIFCl3-/CeIIIFCl3- and decarboxylation product LaIIICl3(C6H4F)-/CeIIICl3(C6H4F)- were observed when the carboxylate precursors LaIIICl3(C6H4FCO2)-/CeIIICl3(C6H4FCO2)- were subjected to collision-induced dissociation. The variation in product ratios, which is not obvious in the meta and para cases, qualitatively follows the increasing overall energy barrier and reaction endothermicity of the two-step CO2/C6H4 elimination mechanism, and this aligns with the increase in U-F distance in the ortho, meta, and para decarboxylation product isomers. In contrast, the mass spectra of FeIIICl3(C6H4FCO2)-/CuIICl2(C6H4FCO2)- are dominated by the reduction product FeCl3-/CuCl2- regardless of the fluorobenzoate isomer. DFT/B3LYP calculations show that the two-step CO2/C6H4F elimination pathways are comparable in energy for all three positional isomers. It is energetically more favorable to give the reduction product than the fluoride transfer product, which is opposite to the lanthanum cases. Although the decarboxylation product was observed for all three UVIO2Cl2(C6H4FCO2)- isomers, the ortho isomer behaves more similarly to LaIIICl3(C6H4FCO2)-/CeIIICl3(C6H4FCO2)- as evidenced by the formation of UVIO2FCl2-, and the appearance of UVO2Cl2- in the cases of the meta and para isomers indicates the similarity with FeIIICl3(C6H4FCO2)-/CuIICl2(C6H4FCO2)-. The shorter U-F distance in UVIO2Cl2(o-C6H4F)- causes the decrease in the fluoride transfer barrier and thus makes this process more favorable over o-C6H4F radical loss to give UVO2Cl2-.
Collapse
Affiliation(s)
- Zhixin Xiong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixian Yang
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuting Chen
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yu Gong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
10
|
Yamauchi Y, Hoshimoto Y, Kawakita T, Kinoshita T, Uetake Y, Sakurai H, Ogoshi S. Room-Temperature Reversible Chemisorption of Carbon Monoxide on Nickel(0) Complexes. J Am Chem Soc 2022; 144:8818-8826. [PMID: 35504015 PMCID: PMC9348812 DOI: 10.1021/jacs.2c02870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chemisorption
on organometallic-based adsorbents is crucial for
the controlled separation and long-term storage of gaseous molecules.
The formation of covalent bonds between the metal centers in the adsorbents
and the targeted gases affects the desorption efficiency, especially
when the oxidation state of the metal is low. Herein, we report a
pressure-responsive nickel(0)-based system that is able to reversibly
chemisorb carbon monoxide (CO) at room temperature. The use of N-heterocyclic carbene ligands with hemi-labile N-phosphine oxide substituents facilitates both the adsorption
and desorption of CO on nickel(0) via ligand substitution. Ionic liquids
were used as the reaction medium to enhance the desorption rate and
establish a reusable system. These results showcase a way for the
sustainable chemisorption of CO using a zero-valent transition-metal
complex.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Kawakita
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuya Kinoshita
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuta Uetake
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
A boron-transfer mechanism mediating the thermally induced revival of frustrated carbene-borane pairs from their shelf-stable adducts. Commun Chem 2021; 4:137. [PMID: 36697789 PMCID: PMC9814311 DOI: 10.1038/s42004-021-00576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/06/2021] [Indexed: 01/28/2023] Open
Abstract
Chemists have designed strategies that trigger the conformational isomerization of molecules in response to external stimuli, which can be further applied to regulate the complexation between Lewis acids and bases. We have recently developed a system in which frustrated carbene-borane pairs are revived from shelf-stable but external-stimuli-responsive carbene-borane adducts comprised of N-phosphine-oxide-substituted imidazolylidenes (PoxIms) and triarylboranes. Herein, we report the detailed mechanism on this revival process. A thermally induced borane-transfer process from the carbene carbon atom to the N-phosphinoyl oxygen atom initiates the transformation of the carbene-borane adduct. Subsequent conformational isomerization via the rotation of the N-phosphinoyl group in PoxIm moieties eventually leads to the revival of frustrated carbene-borane pairs that can cleave H2. We believe that this work illustrates an essential role of dynamic conformational isomerization in the regulation of the reactivity of external-stimuli-responsive Lewis acid-base adducts that contain multifunctional substituents.
Collapse
|
12
|
Yamauchi Y, Nagai S, Terada T, Hoshimoto Y, Ogoshi S. Sm(II)-mediated Single-electron Reduction of Pentafluorophenylcopper(I). CHEM LETT 2021. [DOI: 10.1246/cl.210202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuhiro Yamauchi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shun Nagai
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoya Terada
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Yamauchi Y, Hoshimoto Y, Ogoshi S. <i>N</i>-Phosphine Oxide-Substituted Imidazolylidenes (PoxIms) as Multifunctional Multipurpose <i>N</i>-Heterocyclic Carbenes. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University
| |
Collapse
|
14
|
Hoshimoto Y, Nagai S, Hinogami T, Hazra S, Ogoshi S. N
‐Phosphine Imide‐Substituted Imidazolylidenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoichi Hoshimoto
- Department of Applied Chemistry Faculty of Engineering Osaka University Suita, Osaka 565-0871 Japan
| | - Shun Nagai
- Department of Applied Chemistry Faculty of Engineering Osaka University Suita, Osaka 565-0871 Japan
| | - Takaya Hinogami
- Department of Applied Chemistry Faculty of Engineering Osaka University Suita, Osaka 565-0871 Japan
| | - Sunit Hazra
- Department of Applied Chemistry Faculty of Engineering Osaka University Suita, Osaka 565-0871 Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry Faculty of Engineering Osaka University Suita, Osaka 565-0871 Japan
| |
Collapse
|
15
|
Yang X, Wei R, Shi Y, Liu LL, Wu Y, Zhao Y, Stephan DW. Oxyphosphoranes as precursors to bridging phosphate-catecholate ligands. Chem Commun (Camb) 2021; 57:1194-1197. [PMID: 33439178 DOI: 10.1039/d0cc07736d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Examples of chelating ligands that incorporate P-O donors are seldom encountered. Herein, a series of novel bridging diphosphate ligand supported bimetallic Zr(iv), V(iii) and Ni(ii) complexes have been derived from reactions of the oxyphosphorane (C6Cl4O2)P(OEt)3 with the corresponding metal halides. The mechanism is probed and shown to involve elimination of ethyl halide, and ring opening affording the chelating phosphate-catecholate ligands.
Collapse
Affiliation(s)
- Xin Yang
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Rui Wei
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yaping Shi
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yile Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. and Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S3H6, Canada.
| |
Collapse
|
16
|
Shcherbina NA, Kazakov IV, Spiridonova DV, Suslonov VV, Khoroshilova OV, Mikhailov VN, Timoshkin AY. Reaction of In(C6F5)3Et2O with Complexes of Copper and Silver Monochlorides with N,N′-Bis(isopropylphenyl)imidazol-2-ylidene. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363220120440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Hoshimoto Y, Ogoshi S. Development of Metal Complexes Equipped with Structurally Flexible Carbenes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Syntheses and Reactivity of New Zwitterionic Imidazolium Trihydridoborate and Triphenylborate Species. Molecules 2020; 25:molecules25143184. [PMID: 32668604 PMCID: PMC7397317 DOI: 10.3390/molecules25143184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/21/2023] Open
Abstract
In this study, four new N-(alkyl/aryl)imidazolium-borates were prepared, and their deprotonation reactions were investigated. Addition of BH3•THF to N-benzylimidazoles and N-mesitylimidazoles leads to imidazolium-trihydridoborate adducts. Ammonium tetraphenylborate reacts with benzyl- or mesityl-imidazoles with the loss of one of the phenyl groups yielding the corresponding imidazolium-triphenylborates. Their authenticity was confirmed by CHN analysis, 1H-NMR, 13C-NMR, 11B-NMR, FT-IR spectroscopy, and electrospray ionization mass spectrometry (ESI-MS). 3-Benzyl-imidazolium-1-yl)trihydridoborate, (HImBn)BH3, and (3-mesityl-imidazolium-1-yl)trihydridoborate, (HImMes)BH3, were also characterized by X-ray crystallography. The reactivity of these new compounds as carbene precursors in an effort to obtain borate-NHC complexes was investigated and a new carbene-borate adduct (which dimerizes) was obtained via a microwave-assisted procedure.
Collapse
|