1
|
Tang H, Zhang S, Yang B, Qiu X, Wang H, Li Y. Metal-Organic Framework Sub-Nanochannels within the Confined Micropipettes: Precise Construction Makes It a Universal Aptamer-Based Sensing Platform. Anal Chem 2024; 96:17649-17656. [PMID: 39437322 DOI: 10.1021/acs.analchem.4c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
It is crucial to precisely construct metal-organic framework (MOF) sub-nanochannels at the tip of micro/nanopipettes for fundamental research and sensing applications. The quality of the MOF modification plays a significant role in influencing subsequent research, particularly in sensing applications. In this work, we present a precise method of constructing MOF sub-nanochannels at the tip of glass micropipettes, which serve as a universal aptamer-based sensing platform for the selective detection of proteins. In situ scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) mapping, and fluorescence microscopy results demonstrate that the synthesized MOF (UiO-66) nanocrystals fully block the orifice of glass micropipettes (UiO-66-GMs) without forming any nanometer-scale cracks and remain confined within the geometric boundaries of the orifice. The terminal phosphate-modified aptamer readily binds to the surface of UiO-66-GMs through metal (Zr)-phosphate coordination, ultimately forming the aptamer sensor (Apt-UiO-66-GMs). The selective quantification of proteins is achieved via a decrease in current resulting from protein binding to the aptamer. Our results indicate that the precisely constructed Apt-UiO-66-GMs sensor enables highly selective and sensitive detection of SARS-CoV-2 nucleocapsid protein and holds potential for real sample detection. Furthermore, given the sharp tip of the micropipets and the external sensing interface we have constructed, our aptamer-based sensing platform also opens avenues for single-cell analysis and in vivo sensing.
Collapse
Affiliation(s)
- Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Shuai Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Binbin Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Xia Qiu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Yongxin Li
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
2
|
Allegretto JA, Laucirica G, Huamani AL, Wagner MF, Albesa AG, Toimil-Molares ME, Rafti M, Marmisollé W, Azzaroni O. Manipulating Ion Transport Regimes in Nanomembranes via a "Pore-in-Pore" Approach Enabled by the Synergy of Metal-Organic Frameworks and Solid-State Nanochannels. ACS NANO 2024; 18:18572-18583. [PMID: 38941562 DOI: 10.1021/acsnano.4c04435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Solid-state nanochannels (SSNs) have emerged as promising platforms for controlling ionic transport at the nanoscale. SSNs are highly versatile, and this feature can be enhanced through their combination with porous materials such as Metal-Organic Frameworks (MOF). By selection of specific building blocks and experimental conditions, different MOF architectures can be obtained, and this can influence the ionic transport properties through the nanochannel. Herein, we study the effects of confined synthesis of Zr-based UiO-66 MOF on the ion transport properties of single bullet-shaped poly(ethylene terephthalate) (PET) nanochannels. We have found that emerging textural properties from the MOF phase play a determinant role in controlling ionic transport through the nanochannel. We demonstrate that a transition from ion current saturation regimes to diode-like regimes can be obtained by employing different synthetic approaches, namely, counterdiffusion synthesis, where MOF precursors are kept separate and forced to diffuse through the nanochannel, and one-pot synthesis, where both precursors are placed at both ends of the channel. Also, by considering the dependence of the charge state of the UiO-66 MOF on the protonation degree, pH changes offered a mechanism to tune the iontronic output (and selectivity) among different regimes, including anion-driven rectification, cation-driven rectification, ion current saturation, and ohmic behavior. Furthermore, Poisson-Nernst-Planck (PNP) simulations were employed to rationalize the different iontronic outputs observed experimentally for membranes modified by different methods. Our results demonstrate a straightforward tool to synthesize MOF-based SSN membranes with tunable ion transport regimes.
Collapse
Affiliation(s)
- Juan A Allegretto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, 30107 Murcia, Spain
| | - Angel L Huamani
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
- 3IA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de Mayo y Francia, San Martín CP1650, Buenos Aires, Argentina
| | - Michael F Wagner
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Maria Eugenia Toimil-Molares
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
- Department of Materials and Geosciences, Technical University of Darmstadt, 64291 Darmstadt, Germany
| | - Matías Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| |
Collapse
|
3
|
Liu J, Yan W, Ma Y, Li X, Zhong J, Zheng X, Liu Z. Improving Proton-Conducting Stability by Regulating Pore Size of MOF Materials through Mixed Grinding. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34240-34253. [PMID: 38914052 DOI: 10.1021/acsami.4c07876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An effective strategy to improve the proton conductivity of metal-organic frameworks (MOFs) is to regulate the pore size of composite materials. In this work, composite materials of MOF-808@MOG-808-X (X is the mass ratios of MOF-808 to MOG-808) was successfully prepared by grinding and blending. MOF-808@MOG-808-1:2 was optimal for its suitable pore structure, which facilitates the practical construction of hydrogen bonding networks, promotes rapid and stable proton conduction, and enables the proton conductivity, achieving a 1 + 1 > 2 effect. At 353 K and 93% relative humidity (RH), the maximum proton conductivity of MOF-808@MOG-808-1:2 reaches 1.08 × 10-1 S·cm-1. Next, MOF-808@MOG-808-1:2 was blended with chitosan (CS) to obtain composite proton exchange membranes (PEMs), namely, CS@MOF-808@MOG-808-1:2-Y (Y = 5%, 10%, or 15%) with the maximum proton conductivity reaching 1.19 × 10-2 S·cm-1 at 353 K and 93% RH for CS@MOF-808@MOG-808-1:2-10% with additional stability. The conductive mechanisms of the composite materials were revealed by activation energy calculation. This investigation not only proposes a simple grinding-blending method for the development of MOF-doped composite materials for proton conductivity but also provides a producting material basis for future applications of MOFs in proton exchange membrane fuel cells (PEMFCs).
Collapse
Affiliation(s)
- Jie Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Wenxuan Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Yingying Ma
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Xinran Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Jiajun Zhong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Xiaofeng Zheng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Zhe Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| |
Collapse
|
4
|
Zhao C, Feng F, Hou J, Hu J, Su Y, Liu JZ, Hill M, Freeman BD, Wang H, Zhang H. Unlocking Direct Lithium Extraction in Harsh Conditions through Thiol-Functionalized Metal-Organic Framework Subnanofluidic Membranes. J Am Chem Soc 2024; 146:14058-14066. [PMID: 38733559 DOI: 10.1021/jacs.4c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Metal-organic framework (MOF) membranes with high ion selectivity are highly desirable for direct lithium-ion (Li+) separation from industrial brines. However, very few MOF membranes can efficiently separate Li+ from brines of high Mg2+/Li+ concentration ratios and keep stable in ultrahigh Mg2+-concentrated brines. This work reports a type of MOF-channel membranes (MOFCMs) by growing UiO-66-(SH)2 into the nanochannels of polymer substrates to improve the efficiency of MOF membranes for challenging Li+ extraction. The resulting membranes demonstrate excellent monovalent metal ion selectivity over divalent metal ions, with Li+/Mg2+ selectivity up to 103 since Mg2+ should overcome a higher energy barrier than Li+ when transported through the MOF pores, as confirmed by molecular dynamics simulations. Under dual-ion diffusion, as the Mg2+/Li+ mole ratio of the feed solution increases from 0.2 to 30, the membrane Li+/Mg2+ selectivity decreases from 1516 to 19, corresponding to the purity of lithium products between 99.9 and 95.0%. Further research on multi-ion diffusion that involves Mg2+ and three monovalent metal ions (K+, Na+, and Li+, referred to as M+) in the feed solutions shows a significant improvement in Li+/Mg2+ separation efficiency. The Li+/Mg2+ selectivity can go up to 1114 when the Mg2+/M+ molar concentration ratio is 1:1, and it remains at 19 when the ratio is 30:1. The membrane selectivity is also stable for 30 days in a highly concentrated solution with a high Mg2+/Li+ concentration ratio. These results indicate the feasibility of the MOFCMs for direct lithium extraction from brines with Mg2+ concentrations up to 3.5 M. This study provides an alternative strategy for designing efficient MOF membranes in extracting valuable minerals in the future.
Collapse
Affiliation(s)
- Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Fan Feng
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jian Hu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Yuyu Su
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew Hill
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Benny D Freeman
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Liu Y, Qian Y, Fu L, Zhu C, Li X, Wang Q, Ling H, Du H, Zhou S, Kong XY, Jiang L, Wen L. Archaea-Inspired Switchable Nanochannels for On-Demand Lithium Detection by pH Activation. ACS CENTRAL SCIENCE 2024; 10:469-476. [PMID: 38435527 PMCID: PMC10906035 DOI: 10.1021/acscentsci.3c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 03/05/2024]
Abstract
With the rapid development of the lithium ion battery industry, emerging lithium (Li) enrichment in nature has attracted ever-growing attention due to the biotoxicity of high Li levels. To date, fast lithium ion (Li+) detection remains urgent but is limited by the selectivity, sensitivity, and stability of conventional technologies based on passive response processes. In nature, archaeal plasma membrane ion exchangers (NCLX_Mj) exhibit Li+-gated multi/monovalent ion transport behavior, activated by different stimuli. Inspired by NCLX_Mj, we design a pH-controlled biomimetic Li+-responsive solid-state nanochannel system for on-demand Li+ detection using 2-(2-hydroxyphenyl)benzoxazole (HPBO) units as Li+ recognition groups. Pristine HPBO is not reactive to Li+, whereas negatively charged HPBO enables specific Li+ coordination under alkaline conditions to decrease the ion exchange capacity of nanochannels. On-demand Li+ detection is achieved by monitoring the decline in currents, thereby ensuring precise and stable Li+ recognition (>0.1 mM) in the toxic range of Li+ concentration (>1.5 mM) for human beings. This work provides a new approach to constructing Li+ detection nanodevices and has potential for applications of Li-related industries and medical services.
Collapse
Affiliation(s)
- Yang Liu
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Yongchao Qian
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
| | - Lin Fu
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Congcong Zhu
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
| | - Xin Li
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Qingchen Wang
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Haoyang Ling
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Huaqing Du
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Shengyang Zhou
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
| | - Xiang-Yu Kong
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
- Suzhou
Institute for Advanced Research, University
of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Jiang
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Liping Wen
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
- Suzhou
Institute for Advanced Research, University
of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
6
|
Ghosh A, Karmakar S, Dey A, Maji TK. Modular Gating of Ion Transport by Postsynthetic Charge Transfer Complexation in a Metal-Organic Framework. J Am Chem Soc 2023. [PMID: 38051543 DOI: 10.1021/jacs.3c11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Nature's design of biological ion channels that demonstrates efficient gating and selectivity brings to light a very promising model to mimic and design for achieving selective and tunable ion transport. Functionalized nanopores that permit modulation of the pore wall charges are a compelling approach to gain control over the ion transport mechanism through the pores. This makes way for employing a noncovalent supramolecular approach for attaining charge reversal of the MOF pore walls using donor-acceptor pairs that can demonstrate strong charge transfer interactions. Herein, robust Zr4+-based mesoporous MOF-808 was postsynthetically modified into an anion-selective nanochannel (MOF-808-MV) by modification with dicationic viologen-based motifs. Charge modulation and even reversal of the MOF-808-MV pore walls were then explored taking advantage of strong charge transfer interactions between the grafted dicationic viologen acceptor moieties and anionic, π-electron-rich donor guest molecules such as pyranine (PYR) and tetrathiafulvalene tetrabenzoic acid (TTF-TA). Tunability of the MOF pore charge from positive to neutral to negative was achieved via simple methodologies such as diffusion control in case of guest molecule like PYR and by pH modulation for pH-responsive guest like TTF-TA. This results in a concomitant modulation in the selectivity of the nanochannel, rendering it from anion-selective to ambipolar to cation-selective. Furthermore, as a real-time application of this ion channel, Na+ ion conductivity (σ = 3.5 × 10-5 S cm-1) was studied at ambient temperature.
Collapse
|
7
|
Li C, Liu P, Zhi Y, Zhai Y, Liu Z, Gao L, Jiang L. Ultra-mechanosensitive Chloride Ion Transport through Bioinspired High-Density Elastomeric Nanochannels. J Am Chem Soc 2023; 145:19098-19106. [PMID: 37603884 DOI: 10.1021/jacs.3c07675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Mechanosensitive ion channels play crucial roles in physiological activities, where small mechanical stimuli induce the membrane tension, trigger the ion channels' deformation, and are further transformed into significant electrochemical signals. Artificial ion channels with stiff moduli have been developed to mimic mechanosensory behaviors, exhibiting an electrochemical response by the high-pressure-induced flow. However, fabricating flexible mechanosensitive channels capable of regulating specific ion transporting upon dramatic deformation has remained a challenge. Here, we demonstrate bioinspired high-density elastomeric channels self-assembled by polyisoprene-b-poly4-vinylpyridine, which exhibit ultra-mechanosensitive chloride ion transport resulting from nanochannel deformation. The PI-formed continuous elastic matrix can transmit external forces into internal tensions, while P4VP forms transmembrane chloride channels that undergo dramatic deformation and respond to mechanical stimuli. The integrated and flexible chloride channels present a dramatic and stable electrochemical signal toward a low pressure of 0.2 mbar. This research first demonstrates the artificial mechanosensory chloride channels, which could provide a promising avenue for designing flexible and responsive channel systems.
Collapse
Affiliation(s)
- Chao Li
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Pengxiang Liu
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yafang Zhi
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yi Zhai
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zhiwen Liu
- Oxford Instrument Technology China, Beijing 100034, P. R China
| | - Longcheng Gao
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Lei Jiang
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
8
|
Tachimoto K, Ohata T, Takeno KJ, Nomoto A, Watanabe T, Hirosawa I, Makiura R. Assembling Triphenylene-Based Metal-Organic Framework Nanosheets at the Air/Liquid Interface: Modification by Tuning the Spread Solution Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37326601 DOI: 10.1021/acs.langmuir.2c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs)─crystalline coordination polymers─with unique characteristics such as structural designability accompanied by tunable electronic properties and intrinsic uniform nanopores have become the platform for applications in diverse scientific areas ranging from nanotechnology to energy/environmental sciences. To utilize the superior features of MOF in potential applications, the fabrication and integration of thin films are of importance and have been actively sought. Especially, downsized MOFs into nanosheets can act as ultimately thin functional components in nanodevices and potentially display unique chemical/physical properties rarely seen in bulk MOFs. Assembling nanosheets by aligning amphiphilic molecules at the air/liquid interface has been known as the Langmuir technique. By utilizing the air/liquid interface as a reaction field between metal ions and organic ligands, MOFs are readily formed into the nanosheet state. The expected features in MOF nanosheets including electrical conduction largely depend on the nanosheet characteristics such as lateral size, thickness, morphology, crystallinity, and orientation. However, their control has not been achieved as yet. Here, we demonstrate how changing the concentration of a ligand spread solution can modify the assembly of MOF nanosheets, composed of 2,3,6,7,10,11-hexaiminotriphenylene (HITP) and Ni2+ ions (HITP-Ni-NS), at the air/liquid interface. A systematic increase in the concentration of the ligand spread solution leads to the enlargement of both the lateral size and the thickness of the nanosheets while retaining their perfect alignment and preferred orientation. On the other hand, at much higher concentrations, we find that unreacted ligand molecules are included in HITP-Ni-NS, introducing disorder in HITP-Ni-NS. These findings can develop further sophisticated control of MOF nanosheet features, accelerating fundamental and applied studies on MOFs.
Collapse
Affiliation(s)
- Kazuaki Tachimoto
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Nakaku, Sakai, Osaka 599-8570 Japan
| | - Takashi Ohata
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Nakaku, Sakai, Osaka 599-8570 Japan
| | - Kanokwan Jumtee Takeno
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Nakaku, Sakai, Osaka 599-8570 Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Takeshi Watanabe
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Ichiro Hirosawa
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Rie Makiura
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Nakaku, Sakai, Osaka 599-8570 Japan
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Nakaku, Sakai, Osaka 599-8570 Japan
| |
Collapse
|
9
|
Liu Y, Chen Y, Guo Y, Wang X, Ding S, Sun X, Wang H, Zhu Y, Jiang L. Photo-controllable Ion-Gated Metal-Organic Framework MIL-53 Sub-nanochannels for Efficient Osmotic Energy Generation. ACS NANO 2022; 16:16343-16352. [PMID: 36226827 DOI: 10.1021/acsnano.2c05498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
By closing and opening ion channels, electric eels are able to convert ion concentration gradients into electricity. Inspired by electric eels, considerable artificial sub-nanoscale ion channels with high ion selectivity and transportation efficiency have been designed for harvesting the osmotic energy between ionic solutions of different salinities, but constructing smart ion-gated sub-nanochannels for effective ion transport is still a huge challenge. Herein, photo-controllable sub-nanochannels of metal-organic framework (MOF) NH2-MIL-53 encapsulated with spiropyrans (SP-MIL-53) were fabricated by a facile in situ growth strategy. Interestingly, the highly ordered sub-nanochannels of SP-MIL-53 were switched on and off to efficiently regulate the ion flux by the light-driven isomerization of SP, which made it a smart ionic gate with a high on-off ratio of 16.2 in 10 mM KCl aqueous solution via UV irradiation. Moreover, the ion-gated sub-nanochannel membrane yielded a high power density of 8.3 W m-2 under a 50-fold KCl concentration gradient in the open state. Density functional theory calculations revealed that K+ ions in SP-MIL-53 sub-nanochannels had a higher mobility constant (3.61 × 10-2) with UV irradiation than without UV illumination (2.33 × 10-22). This work provides an effective way to develop smart ion-gating sub-nanochannels for capturing salinity gradient power.
Collapse
Affiliation(s)
- You Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria3800, Australia
| | - Yalan Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
| | - Yumeng Guo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria3800, Australia
| | - Xingpu Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
| | - Shaosong Ding
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
| | - Xiang Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria3800, Australia
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria3800, Australia
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
10
|
Andrei IM, Barboiu M. Biomimetic Artificial Proton Channels. Biomolecules 2022; 12:biom12101473. [PMID: 36291682 PMCID: PMC9599858 DOI: 10.3390/biom12101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most common biochemical processes is the proton transfer through the cell membranes, having significant physiological functions in living organisms. The proton translocation mechanism has been extensively studied; however, mechanistic details of this transport are still needed. During the last decades, the field of artificial proton channels has been in continuous growth, and understanding the phenomena of how confined water and channel components mediate proton dynamics is very important. Thus, proton transfer continues to be an active area of experimental and theoretical investigations, and acquiring insights into the proton transfer mechanism is important as this enlightenment will provide direct applications in several fields. In this review, we present an overview of the development of various artificial proton channels, focusing mostly on their design, self-assembly behavior, proton transport activity performed on bilayer membranes, and comparison with protein proton channels. In the end, we discuss their potential applications as well as future development and perspectives.
Collapse
|
11
|
Xu T, Wu B, Hou L, Zhu Y, Sheng F, Zhao Z, Dong Y, Liu J, Ye B, Li X, Ge L, Wang H, Xu T. Highly Ion-Permselective Porous Organic Cage Membranes with Hierarchical Channels. J Am Chem Soc 2022; 144:10220-10229. [PMID: 35586909 DOI: 10.1021/jacs.2c00318] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membranes of high ion permselectivity are significant for the separation of ion species at the subnanometer scale. Here, we report porous organic cage (i.e., CC3) membranes with hierarchical channels including discrete internal cavities and cage-aligned external cavities connected by subnanometer-sized windows. The windows of CC3 sieve monovalent ions from divalent ones and the dual nanometer-sized cavities provide pathways for fast ion transport with a flux of 1.0 mol m-2 h-1 and a mono-/divalent ion selectivity (e.g., K+/Mg2+) up to 103, several orders of magnitude higher than the permselectivities of reported membranes. Molecular dynamics simulations illustrate the ion transport trajectory from the external to internal cavity via the CC3 window, where ions migrate in diverse hydration states following the energy barrier sequence of K+ < Na+ < Li+ ≪ Mg2+. This work sheds light on ion transport properties in porous organic cage channels of discrete frameworks and offers guidelines for developing membranes with hierarchical channels for efficient ion separation.
Collapse
Affiliation(s)
- Tingting Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Bin Wu
- School of Chemistry & Chemical Engineering, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Linxiao Hou
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yun Dong
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Jiandang Liu
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Ma L, Han X, Zhang S, Zeng Z, Song R, Chen X, Hou D, Wang L. Artificial Monovalent Metal Ion-Selective Fluidic Devices Based on Crown Ether@Metal-Organic Frameworks with Subnanochannels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13611-13621. [PMID: 35259870 DOI: 10.1021/acsami.1c24573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Precise regulation of ion transport through nanoscale pores will profoundly impact diverse fields from separation to energy conversion but is still challenging to achieve in artificial ion channels. Herein, inspired by the exquisite ion selectivity of biological Na+ channels, we have successfully fabricated hierarchically grown metal-organic frameworks (MOFs) on an asymmetrical substrate assisted by atomically thin nanoporous graphene. Efficient separation of monovalent metal ions is realized by encapsulating 18-crown-6 into MOF crystals. The resulting 18-crown-6@ZIF-67/ZIF-8 device, with subnanochannels and specific K+ binding sites, shows an ultrahigh Li+ conductivity of 1.46 × 10-2 S cm-1 and selectivities of 9.56 and 6.43 for Li+/K+ and Na+/K+, respectively. The Li+ conductivity is around 1-2 orders of magnitude higher than reported values for the other MOF materials. It is the first time that MOFs with subnanochannels realize selective transport of Na+ (ionic diameter of 1.9 Å) over K+ (2.6 Å) based on subangstrom differences in their ionic diameter. Our work opens new avenues to develop crown ether@MOF platforms toward efficient ion transistors, fluidic logic devices, and biosensors.
Collapse
Affiliation(s)
- Liang Ma
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
| | - Xiao Han
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Shengping Zhang
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Zhiyang Zeng
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
| | - Ruiyang Song
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
| | - Xiaobo Chen
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
| | - Dandan Hou
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
| | - Luda Wang
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| |
Collapse
|
13
|
Lu J, Jiang Y, Xiong T, Yu P, Jiang W, Mao L. Light-Regulated Nanofluidic Ionic Diodes with Heterogeneous Channels Stemming from Asymmetric Growth of Metal-Organic Frameworks. Anal Chem 2022; 94:4328-4334. [PMID: 35245019 DOI: 10.1021/acs.analchem.1c05025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanofluidic ionic diodes have attracted much attention, because of the unique property of asymmetric ion transport and promising applications in molecular sensing and biosensing. However, it remains a challenge to fabricate diode-like nanofluidic system with molecular-size pores. Herein, we report a new and facile approach to construct nanofluidic ionic diode by in situ asymmetric growth of metal-organic frameworks (MOFs) in nanochannels. We implement microwave-assisted strategy to obtain asymmetric distribution of MOFs in porous anodic aluminum oxide with barrier layer on one side. After etching the barrier layer and modifying with positively charged molecules, the nanofluidic device possesses asymmetric geometry and surface charge, performing the ionic current rectification (ICR) behavior in different electrolyte concentrations. Moreover, the ICR ratio is readily regulated with visible light illumination mainly due to the enhancement of surface charge of MOFs, which is further confirmed by finite element simulation. This study provides a reliable way to build the nanofluidic platform for investigating the asymmetric ion transport through the molecular-size pores, which is envisaged to be important for molecular sensing based on ICR with molecular-size pores.
Collapse
Affiliation(s)
- Jiahao Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yanan Jiang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Wang Y, Luo T, Li Y, Wang A, Wang D, Bao JL, Mohanty U, Tsung CK. Molecular-Level Insights into Selective Transport of Mg 2+ in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51974-51987. [PMID: 34328727 DOI: 10.1021/acsami.1c08392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOF) are promising media for achieving solid-state Mg2+ conduction and developing a magnesium-based battery. To this end, the chemical behavior and transport properties of an Mg(TFSI)2/DME electrolyte system inside Mg-MOF-74 were studied by density functional theory (DFT). We found that inside the MOF chemical environment, solvent and anion molecules occupy the coordinatively unsaturated open metal sites of Mg-MOF-74, while Mg2+ ions adsorb directly onto the carboxylate group of the MOF organic linker. These predicted binding geometries were further corroborated by IR spectroscopy. We computed the free energies of desolvation of Mg2+ ions inside MOF to investigate the capacity of Mg-MOF-74 thin film to act as a separator for selective Mg2+ transport. We showed that Mg-MOF-74 could facilitate partial, but not full, desolvation of Mg2+. We found that the dominant minimum-energy pathway (MEP) for Mg2+ conduction inside Mg-MOF-74 corresponds to a "solvent hopping" mechanism, with an energy barrier of 4.4 kcal/mol. The molar conductivity of Mg2+ associated with the idealized solvent hopping mechanism along the MOF one-dimensional channel was predicted to be 2.4 × 10-3 S cm-1 M-1, which is one to two orders of magnitude greater than the experimentally measured value of 1.2 × 10-4 S cm-1 M-1 (with an estimated Mg2+ concentration). We have discussed several possible factors contributing to this apparent discrepancy. The current work demonstrates the validity of the computational strategies applied and the structural models constructed for the understanding of fast and selective Mg2+ transport in Mg-MOF-74, which serves as a cornerstone for studying transport of multivalent ions in MOFs. Furthermore, it provides detailed molecular-level insights that are not yet accessible experimentally.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tongtong Luo
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yang Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Ailun Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Dunwei Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chia-Kuang Tsung
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
15
|
Cheng SQ, Liu XQ, Han ZL, Rong Y, Qin SY, Sun Y, Li H. Tailoring CO 2-Activated Ion Nanochannels Using Macrocyclic Pillararenes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27255-27261. [PMID: 34029047 DOI: 10.1021/acsami.1c03329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas-responsive nanochannels have great relevance for applications in many fields. Inspired by CO2-sensitive ion channels, herein we present an approach for designing solid-state nanochannels that allow controlled regulation of ion transport in response to alternate CO2/N2 stimuli. The pillar[5]arene (P5N) bearing diethylamine groups can convert into the water-soluble host P5C, containing cationic tertiary ammonium salt groups after absorbing CO2. Subsequently, the nanochannel walls are tailored using P5N-based host-guest chemistry. The ion transport rate of K+ in the P5N nanochannels under CO2 was 1.66 × 10-4 mol h-1 m-2, whereas that under N2 was 7.98 × 10-4 mol h-1 m-2. Notably, there was no significant change to the ion current after eight cycles, which may indicate the stability and repeatability of CO2-activated ion nanochannels. It is speculated that the difference in ion conductance resulted from the change in wettability and surface charge within the nanochannels in response to the gas stimuli. Achieving CO2-activated ion transport in solid-state nanochannels opens new avenues for biomimetic nanopore systems and advanced separation processes.
Collapse
Affiliation(s)
- Shi-Qi Cheng
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Xue-Qing Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, P.R. China
| | - Zhi-Liang Han
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, P.R. China
| | - Yu Rong
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Si-Yong Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 P.R. China
| |
Collapse
|
16
|
Xu Z, Fang N, Zhao Y. Calix[4]trap: A Bioinspired Host Equipped with Dual Selection Mechanisms. J Am Chem Soc 2021; 143:3162-3168. [PMID: 33606533 DOI: 10.1021/jacs.0c12223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Regulation of recognition events evolving in time and space is vital for living organisms. During evolution, organisms have developed distinct and orthogonal mechanisms to achieve selective recognition, avoiding mutual interference. Although the merging of multiple selection mechanisms into a single artificial host may lead to a more adaptable recognition system with unparalleled selectivity, successful implementation of this strategy is rare. Inspired by the intriguing structures and recognition properties of two well-known biological ion binders-valinomycin and K+ channels-we herein report a series of hosts equipped with dual guest selection mechanisms. These hosts simultaneously possess a preorganized binding cavity and a confined ion translocation tunnel, which are crucial to the record-setting K+/Na+ selectivity and versatile capabilities to discriminate against a wide range of ion pairs, such as K+/Rb+, K+/Ba2+, and Rb+/Cs+. Mechanistic studies verify that the host's portal is capable of discriminating cations by their size, enabling varied ion uptake rates. The confined tunnel bearing consecutive binding sites promotes complete desolvation of ions during their inclusion into the buried cavity, mimicking the ion translocation within ion channels. Our results demonstrate that the capability to manipulate guest recognition both in equilibrium and out-of-equilibrium states allows the host to effectively discriminate diverse guests via distinct mechanisms. The strategy to merge orthogonal selection mechanisms paves a new avenue to creating more robust hosts that may function in complex biological environments where many recognition events occur concurrently.
Collapse
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Nie Fang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
17
|
Ruan H, Pan N, Wang C, Yu L, Liao J, Shen J. Functional UiO-66 Series Membranes with High Perm Selectivity of Monovalent and Bivalent Anions for Electrodialysis Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nengxiu Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lu Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
18
|
Lu J, Zhang H, Hu X, Qian B, Hou J, Han L, Zhu Y, Sun C, Jiang L, Wang H. Ultraselective Monovalent Metal Ion Conduction in a Three-Dimensional Sub-1 nm Nanofluidic Device Constructed by Metal-Organic Frameworks. ACS NANO 2021; 15:1240-1249. [PMID: 33332960 DOI: 10.1021/acsnano.0c08328] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Construction of nanofluidic devices with an ultimate ion selectivity analogue to biological ion channels has been of great interest for their versatile applications in energy harvesting and conversion, mineral extraction, and ion separation. Herein, we report a three-dimensional (3D) sub-1 nm nanofluidic device to achieve high monovalent metal ion selectivity and conductivity. The 3D nanofluidic channel is constructed by assembly of a carboxyl-functionalized metal-organic framework (MOF, UiO-66-COOH) crystals with subnanometer pores into an ethanediamine-functionalized polymer nanochannel via a nanoconfined interfacial growth method. The 3D UiO-66-COOH nanofluidic channel achieves an ultrahigh K+/Mg2+ selectivity up to 1554.9, and the corresponding K+ conductivity is one to three orders of magnitude higher than that in bulk. Drift-diffusion experiments of the nanofluidic channel further reveal an ultrahigh charge selectivity (K+/Cl-) up to 112.1, as verified by the high K/Cl content ratio in UiO-66-COOH. The high metal ion selectivity is attributed to the size-exclusion, charge selectivity, and ion binding of the negatively charged MOF channels. This work will inspire the design of diverse MOF-based nanofluidic devices for ultimate ion separation and energy conversion.
Collapse
Affiliation(s)
- Jun Lu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoyi Hu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Binbin Qian
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Li Han
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
19
|
Hou J, Wang H, Zhang H. Zirconium Metal–Organic Framework Materials for Efficient Ion Adsorption and Sieving. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02683] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jue Hou
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|