1
|
Ryan DE, Fuller JT, Patrick EA, Erickson JD, Speelman AL, Carroll TG, Schenter GK, Ginovska B, Raugei S, Bullock RM, Tran BL. Mechanistic Insights into Molecular Copper Hydride Catalysis: the Kinetic Stability of CuH Monomers toward Aggregation is a Critical Parameter for Catalyst Performance. J Am Chem Soc 2025; 147:14280-14298. [PMID: 40163759 DOI: 10.1021/jacs.4c17955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The activity of molecular copper hydride (CuH) complexes toward the selective insertion of unsaturated hydrocarbons under mild conditions has contributed significantly to versatile methodologies for upgrading these feedstocks. However, these catalysts are particularly susceptible to deleterious aggregation, leading to the depletion of active CuH species. Little is known about the mechanisms of CuH aggregation, how it influences overall catalyst performance, and how it can be controlled. We address these challenges with mechanistic studies on a model reaction of unactivated alkene hydroboration catalyzed by (IPr*CPh3)CuH (LCuH). We report a comprehensive mechanistic investigation of this system, identifying an aggregation pathway that continuously depletes catalytically active LCuH to form inactive CuH clusters during turnover. Deactivation of LCuH is controlled primarily by the competition between the kinetics of the initial LCuH dimerization step and that of alkene insertion into LCuH. We therefore propose that a comprehensive understanding of CuH catalyst performance must account for the kinetics of the initial LCuH dimerization step, revising a previously explored thermodynamic understanding of CuH aggregation, where the concentration of active species is controlled by equilibria established between CuH clusters and monomers. With a series of (NHC)CuH congeners (NHC = N-heterocyclic carbene), we demonstrate that ostensibly minor structural modifications to the ligand peripheries can drastically affect the LCuH dimerization kinetics, while maintaining reactivity toward on-cycle alkene insertion. We employed a computational approach based on molecular dynamics simulations to provide an in-depth understanding of how specific structural ligand modifications can substantially increase the kinetic stability of monomeric CuH catalysts. Our combined experimental and computational studies suggest strategies for rational ligand design that can be broadly applied to molecular catalyst systems that are susceptible to deactivation via aggregation pathways.
Collapse
Affiliation(s)
- David E Ryan
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jack T Fuller
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Evan A Patrick
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeremy D Erickson
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Amy L Speelman
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Timothy G Carroll
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gregory K Schenter
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bojana Ginovska
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simone Raugei
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - R Morris Bullock
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ba L Tran
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
2
|
Lei ZJ, Ma YJ, Fan QQ, Wu ZX, Zheng YY, Sun G, Xi ZW, Shen C, Shen YM. Visible-Light-Mediated Three-Component Alkene 1,2-Alkylpyridylation Reaction Using Alkylboronic Acids as Radical Precursors for the Synthesis of 4-Alkylpyridines. J Org Chem 2025; 90:3563-3569. [PMID: 40029075 DOI: 10.1021/acs.joc.4c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We report the photocatalyzed three-component alkene 1,2-alkylpyridylation reaction between alkylboronic acids, 4-cyanopyridine, and an olefin to achieve the pyridination and alkylation of the olefin and the synthesis of structurally diversified 4-alkylpyridines. The readily available and easily manipulated alkylboronic acids were used as alkyl radical precursors. The reactions take place under mild conditions with a broad substrate scope and are easy to scale up to gram level, and they are therefore of potential practical value for the synthesis and structural modification of biologically active alkylpyridine derivatives.
Collapse
Affiliation(s)
- Zi-Jun Lei
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Yi-Jian Ma
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Qian-Qian Fan
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Zhi-Xiong Wu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Yi-Yang Zheng
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Guoming Sun
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| | - Zi-Wei Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| | - Yong-Miao Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
3
|
Seo M, Seo S, Jung J, Kim H. Copper-Catalyzed Regioselective and Enantioselective Hydropyridylation of Dienes for the Synthesis of Chiral Diaryl Compounds via Concerted Nucleophilic Aromatic Substitution. Angew Chem Int Ed Engl 2025; 64:e202420918. [PMID: 39592425 DOI: 10.1002/anie.202420918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
The synthesis of chiral 1,1-diaryl compounds, particularly those containing a pyridine moiety, is of significant interest due to their pharmaceutical applications. Here, we report the development of a copper-catalyzed enantioselective 1,4-hydropyridylation of conjugated dienes. Utilizing 2-fluoropyridine as the electrophile, CuOAc, and the chiral ligand Tol-BINAP, we optimized reaction conditions to achieve the desired chiral 1,1-diaryl products containing both a pyridine and a cis-crotyl group. Mechanistic studies and DFT calculations revealed that the 1,2-hydrocupration step is enantio-determining, and the concerted nucleophilic aromatic substitution proceeds via six-membered cyclic transition states.
Collapse
Affiliation(s)
- Minjeong Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanghyup Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Joonho Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Lei J, Xu ZG. Reaction strategies for the meta-selective functionalization of pyridine through dearomatization. Mol Divers 2025; 29:849-869. [PMID: 38647989 DOI: 10.1007/s11030-024-10861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The pyridine moiety is a crucial structural component in various pharmaceuticals. While the direct ortho- and para-functionalization of pyridines is relatively straightforward, the meta-selective C-H functionalization remains a significant challenge. This review highlights dearomatization strategies as a key area of interest in expanding the application of meta-C-H functionalization of pyridines. Dearomatization enables the meta-functionalization through various catalytic methods that directly generate dearomatization products, and some products can be rearomatized back to pyridine derivatives. Furthermore, this article also covers the dearomatization of multiple positions of pyridine in the synthesis of polycyclic compounds. It offers a comprehensive overview of the latest advancements in dearomatization at different positions of pyridine, aiming to provide a valuable resource for researchers in this field. It also highlights the advantages and limitations of existing technologies, aiming to inform a broader audience about this important field and foster its future development.
Collapse
Affiliation(s)
- Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
5
|
Beduru S, Huple DB, Kutateladze AG. Complexity-Building Exhaustive Dearomatization of Benzenoid Aromatics within an ESIPT-Initiated Three-Step Photochemical Cascade. Angew Chem Int Ed Engl 2025; 64:e202415176. [PMID: 39265085 DOI: 10.1002/anie.202415176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Dearomative cycloadditions offer rapid access to complex 3D molecular architectures, commonly via a sp2-to-sp3 rehybridization of two atoms of an aromatic ring. Here we report that the 6e π-system of a benzenoid aromatic pendant could be exhaustively depleted within a single photochemical cascade. An implementation of this approach involves the initial dearomative [4+2] cycloaddition of the Excited State Intramolecular Proton Transfer (ESIPT)-generated azaxylylene, followed by two consecutive [2+2] cycloadditions of auxiliary π moieties strategically positioned in the photoprecursor. Such photochemical cascade fully dearomatizes the benzenoid aromatic ring, saturating all six sp2 atoms to yield a complex sp3-rich scaffold with high control of its 3D molecular shape, rendering it a robust platform for rapid systematic mapping of underexplored chemical space. Significant growth of molecular complexity-starting with a modular synthesis of photoprecursors from readily available building blocks-is quantified by Böttcher score calculations.
Collapse
Affiliation(s)
- Srinivas Beduru
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| | - Deepak B Huple
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| |
Collapse
|
6
|
Shen Y, Zhang Y, Zhang C, Li H, Hu C, Yu Z, Zheng K, Su Z. Elucidating Mechanism and Selectivity in Pyridine Functionalization Through Silylium Catalysis. Chemistry 2024; 30:e202402078. [PMID: 38976314 DOI: 10.1002/chem.202402078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
The functionalization of aromatic N-heterocycles through silylium activation demonstrates exceptional selectivity and efficiency. Density functional theory (DFT) calculations unveil the detailed silylium catalysis mechanism and elucidate the origins of selectivity in this reaction. The phosphoramidimidate sulfonamide (PADI) precatalyst orchestrates of the catalytic cycle via three elementary steps. The Brønsted acidity of precatalyst significantly influences both the formation of silylium-based Lewis acid active species and the silylium activation of pyridine. Unlike disulfonimide (DSI)-type precatalysts, both Tf2NH and PADI precatalysts with strong acidities can easily promote the generation of activated silylium pyridine species. A semi-enclosed 'rigid' electronegative cavity in PADI-type anions constructs a well-defined recognition site, facilitating engagement with the positively charged silylium pyridine species. Due to the high electrophilicity and less steric demand at the C4-position of the pyridine substrate, the product with C4-regioselectivity was predominantly generated.
Collapse
Affiliation(s)
- Yanling Shen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Haoze Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
7
|
Xiao Y, Zhao ZY, Kemper S, Irran E, Oestreich M. Enantioselective Dearomatization of Pyridinium Salts by Copper-Catalyzed C4-Selective Addition of Silicon Nucleophiles. Angew Chem Int Ed Engl 2024; 63:e202407056. [PMID: 38728222 DOI: 10.1002/anie.202407056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
A copper-catalyzed C4-selective addition of silicon nucleophiles released from an Si-B reagent to prochiral pyridinium triflates is reported. The dearomatization proceeds with excellent enantioselectivity using Cu(CH3CN)4PF6 as the precatalyst and (R,R)-Ph-BPE (1,2-bis[(2R,5R)-2,5-diphenylphospholan-1-yl]ethane) as the chiral ligand. A carbonyl group at C3 is required for this, likely acting a weak donor group to preorganize and direct the nucleophilic attack towards C4. The resulting 4-silylated 1,4-dihydropyridines can be further converted into functionalized piperidine derivatives.
Collapse
Affiliation(s)
- Yao Xiao
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Zhi-Yuan Zhao
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Sebastian Kemper
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Elisabeth Irran
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
8
|
Mei P, Ma Z, Chen Y, Wu Y, Hao W, Fan QH, Zhang WX. Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis. Chem Soc Rev 2024; 53:6735-6778. [PMID: 38826108 DOI: 10.1039/d3cs00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Peifeng Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zibin Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
10
|
Combs JR, Carter DS, Gu F, Jin X, Martin CM, Resendiz ES, Van Vranken DL. Rhodium(II)-Catalyzed Hinsberg Dearomatization Using Trimethylsilyldiazomethane. Org Lett 2023; 25:8083-8088. [PMID: 37922494 DOI: 10.1021/acs.orglett.3c03130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Rhodium(II) catalyzes carbene transfer from trimethylsilyldiazomethane to arylmethyl thioethers, generating sulfonium ylides that undergo [2,3]-sigmatropic rearrangement, punching quaternary centers into aromatic rings. The reaction works well with naphthalene, indole, and benzofuran ring systems, but the reaction is unsuccessful with the monocyclic benzene homologue. For aryl thioethers, Rh2(OAc)4 gives good results. For alkyl thioethers, the yields improve with Rh2(cap)4. Surprisingly, thioesters and thiocarbamates are also competent substrates for the reaction.
Collapse
Affiliation(s)
- Jason R Combs
- Department of Chemistry, University of California, Irvine, California 92617-2025, United States
| | - David S Carter
- Department of Chemistry, University of California, Irvine, California 92617-2025, United States
| | - Fengyi Gu
- Department of Chemistry, University of California, Irvine, California 92617-2025, United States
| | - Xiaokang Jin
- Department of Chemistry, University of California, Irvine, California 92617-2025, United States
| | - Connor M Martin
- Department of Chemistry, University of California, Irvine, California 92617-2025, United States
| | - Elizabeth S Resendiz
- Department of Chemistry, University of California, Irvine, California 92617-2025, United States
| | - David L Van Vranken
- Department of Chemistry, University of California, Irvine, California 92617-2025, United States
| |
Collapse
|
11
|
Comparini LM, Pineschi M. Recent Progresses in the Catalytic Stereoselective Dearomatization of Pyridines. Molecules 2023; 28:6186. [PMID: 37687015 PMCID: PMC10488975 DOI: 10.3390/molecules28176186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
1,2- and 1,4-dihydropyridines and N-substituted 2-pyridones are very important structural motifs due to their synthetic versatility and vast presence in a variety of alkaloids and bioactive molecules. In this article, we gather and summarize the catalytic and stereoselective synthesis of partially hydrogenated pyridines and pyridones via the dearomative reactions of pyridine derivatives up to mid-2023. The material is fundamentally organized according to the type of reactivity (electrophilic/nucleophilic) of the pyridine nucleus. The material is further sub-divided taking into account the nucleophilic species when dealing with electrophilic pyridines and considering the reactivity manifold of pyridine derivatives behaving as nucleophiles at the nitrogen site. The latter more recent approach allows for an unconventional entry to chiral N-substituted 2- and 4-pyridones in non-racemic form.
Collapse
Affiliation(s)
| | - Mauro Pineschi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy;
| |
Collapse
|
12
|
Liu MM, Xu Y, He C. Catalytic Asymmetric Dehydrogenative Si-H/N-H Coupling: Synthesis of Silicon-Stereogenic Silazanes. J Am Chem Soc 2023; 145:11727-11734. [PMID: 37204933 DOI: 10.1021/jacs.3c02263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite growing progress in the construction of silazanes, the catalytic asymmetric synthesis of silicon-stereogenic silazanes is significantly less explored and remains a considerable challenge. Herein, we report a highly enantioselective synthesis of silicon-stereogenic silazanes via catalytic dehydrogenative coupling of dihydrosilanes with anilines. The reaction readily produces a wide range of chiral silazanes and bis-silazanes in excellent yields and stereoselectivities (up to 99% ee). Further utility of this process is demonstrated by the construction of polycarbosilazanes featuring configurational main chain silicon-stereogenic chirality. In addition, the straightforward transformation of the enantioenriched silazanes delivers various chiral silane compounds in a stereospecific fashion, illustrating their potential utilities as synthons for the synthesis of novel silicon-containing functional molecules.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yankun Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
13
|
Zheng H, Cai L, Pan M, Uyanik M, Ishihara K, Xue XS. Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization. J Am Chem Soc 2023; 145:7301-7312. [PMID: 36940192 DOI: 10.1021/jacs.2c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
Collapse
Affiliation(s)
- Hanliang Zheng
- Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Liu Cai
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ming Pan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
14
|
Kutateladze DA, Wagen CC, Jacobsen EN. Chloride-Mediated Alkene Activation Drives Enantioselective Thiourea and Hydrogen Chloride Co-Catalyzed Prins Cyclizations. J Am Chem Soc 2022; 144:15812-15824. [PMID: 35994741 PMCID: PMC9437134 DOI: 10.1021/jacs.2c06688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism of chiral hydrogen-bond donor (HBD) and hydrogen chloride (HCl) co-catalyzed Prins cyclizations was analyzed through a combination of experimental and computational methods and revealed to involve an unexpected and previously unrecognized mode of alkene activation. Kinetic and spectroscopic studies support the participation of a catalytically active HCl·HBD complex that displays reduced Brønsted acidity relative to HCl alone. Nevertheless, rate acceleration relative to the HCl-catalyzed background reaction as well as high levels of enantioselectivity are achieved. This inverse Brønsted correlation is ascribed to chloride-mediated substrate activation in the rate-limiting and enantiodetermining cyclization transition state. Density functional theory (DFT) calculations, distortion-interaction analysis, and quasiclassical dynamics simulations support a stepwise mechanism in which rate acceleration and enantioselectivity are achieved through the precise positioning of the chloride anion within the active site of the chiral thiourea to enhance the nucleophilicity of the alkene and provide transition-state stabilization through local electric field effects. This mode of selective catalysis through anion positioning likely has general implications for the design of enantioselective Brønsted acid-catalyzed reactions involving π-nucleophiles.
Collapse
Affiliation(s)
| | | | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
15
|
Wang Y, Yin J, Li Y, Yuan X, Xiong T, Zhang Q. Copper-Catalyzed Asymmetric Conjugate Addition of Alkene-Derived Nucleophiles to Alkenyl-Substituted Heteroarenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - JianJun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Ni Q, Xu F, Song X. Diastereoselective and E/Z-Selective Synthesis of Functionalized Quinolizine Scaffolds via the Dearomative Annulation of 2-Pyridylacetates with Nitroenynes. J Org Chem 2022; 87:9507-9517. [PMID: 35801688 DOI: 10.1021/acs.joc.2c00448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An organocatalytic Michael/aza-Michael cascade reaction was developed to build the functionalized quinolizine scaffolds in 60-82% yields, excellent diastereoselectivities, and E/Z selectivities. This protocol involves the [3 + 3] annulations of 2-pyridylacetates with nitroenynes through the dearomative strategy in the presence of an organic base under mild conditions. The versatile late-stage derivatizations further demonstrated the synthetic utility of this methodology.
Collapse
Affiliation(s)
- Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Fangfang Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
17
|
Fey N, Lynam JM. Computational mechanistic study in organometallic catalysis: Why prediction is still a challenge. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Natalie Fey
- School of Chemistry University of Bristol, Cantock's Close Bristol UK
| | | |
Collapse
|
18
|
Wang D, Xu L, Zheng S, Yang X. Transition‐Metal‐Free Regioselective Direct C2, C4 Difunctionalization and C2, C4, C6 Trifunctionalization of Pyridines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Shixin Zheng
- Tianjin University of Science and Technology CHINA
| | | |
Collapse
|
19
|
Dong Y, Schuppe AW, Mai BK, Liu P, Buchwald SL. Confronting the Challenging Asymmetric Carbonyl 1,2-Addition Using Vinyl Heteroarene Pronucleophiles: Ligand-Controlled Regiodivergent Processes through a Dearomatized Allyl-Cu Species. J Am Chem Soc 2022; 144:5985-5995. [PMID: 35341240 PMCID: PMC9202959 DOI: 10.1021/jacs.2c00734] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The selective reductive coupling of vinyl heteroarenes with aldehydes and ketones represents a versatile approach for the rapid construction of enantiomerically enriched secondary and tertiary alcohols, respectively. Herein, we demonstrate a CuH-catalyzed regiodivergent coupling of vinyl heteroarenes with carbonyl-containing electrophiles, in which the selectivity is controlled by the ancillary ligand. This approach leverages an in situ generated benzyl- or dearomatized allyl-Cu intermediate, yielding either the dearomatized or exocyclic addition products, respectively. The method exhibits excellent regio-, diastereo-, and enantioselectivity and tolerates a range of common functional groups and heterocycles. The dearomative pathway allows direct access to a variety of functionalized saturated heterocyclic structures. The reaction mechanism was probed using a combination of experimental and computational approach. Density functional theory studies suggest that the ligand-controlled regioselectivity results from the C-H/π interaction and steric repulsion in transition states, leading to the major and minor regioisomers, respectively. Hydrocupration of vinyl heteroarene pronucleophile is the enantiodetermining step, whereas the diastereoselectivity is enforced by steric interactions between the benzylic or allyl-Cu intermediate and carbonyl-containing substrates in a six-membered cyclic transition state.
Collapse
Affiliation(s)
- Yuyang Dong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander W Schuppe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Zheng S, Wang D, Huang M, Yu P. Rapid Generation of Tetrahydropyridines and Tetrahydroquinolines by Dearomative Cyanation/Grignard Addition. Chem Asian J 2022; 17:e202200077. [PMID: 35322570 DOI: 10.1002/asia.202200077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/15/2022] [Indexed: 11/06/2022]
Abstract
A rapid, practical and scalable method for the reductant and tansition-metal-free synthesis of a variety of novel 2,4-disubstituted tetrahydropyridines and tetrahydroquinolines is disclosed. The method is based upon dearomative functionalization of pyridines or quinolines to generate amino nitrile intermediates as masked iminium ions, which then reacted rapidly with various Grignard reagents in complete stereocontrol.
Collapse
Affiliation(s)
- Shixin Zheng
- Tianjin University of Science and Technology, Department of Chemistry, Tianjin, CHINA
| | - Dong Wang
- Xinjiang University, College of Chemistry, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, CHINA
| | - Mindong Huang
- Tianjin University of Science and Technology, Department of Chemistry, Tianjin, CHINA
| | - Peng Yu
- Tianjin University of Science and Technology, Department of Chemistry, Tianjin, CHINA
| |
Collapse
|
21
|
Yang P, Wang Q, Cui BH, Zhang XD, Liu H, Zhang YY, Liu JL, Huang WY, Liang RX, Jia YX. Enantioselective Dearomative [3 + 2] Umpolung Annulation of N-Heteroarenes with Alkynes. J Am Chem Soc 2022; 144:1087-1093. [PMID: 35007081 DOI: 10.1021/jacs.1c11092] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enantioselective [3 + 2] annulation of N-heteroarenes with alkynes has been developed via a cobalt-catalyzed dearomative umpolung strategy in the presence of chiral ligand and reducing reagent. A variety of electron-deficient N-heteroarenes, including quinolines, isoquinolines, quinoxaline, and pyridines, and internal or terminal alkynes are employed in this reaction, showing a broad substrate scope and good functionality tolerance. Annulation of electron-rich indoles with alkynes is also developed. This protocol provides a straightforward access to a variety of N-spiroheterocyclic molecules in excellent enantioselectivities (76 examples, up to 99% ee).
Collapse
Affiliation(s)
- Peng Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Qiang Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Bing-Hui Cui
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Xiao-Dong Zhang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Hang Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yue-Yuan Zhang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Jia-Liang Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Wen-Yu Huang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
22
|
Min XL, Zhang XL, Yi W, He Y. Brønsted acid-enhanced copper-catalyzed atroposelective cycloisomerization to axially chiral arylquinolizones via dearomatization of pyridine. Nat Commun 2022; 13:373. [PMID: 35042873 PMCID: PMC8766466 DOI: 10.1038/s41467-022-27989-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 01/17/2023] Open
Abstract
The construction of axially chiral N-heterobiaryls is of great interest as a result of their occurrence in organocatalysts, chiral ligands, natural products, and biologically active molecules. Despite remarkable achievements in this area, strategies for the preparation of new classes of axially chiral N-heterobiaryls remain to be further explored. Herein, we report the enantioselective synthesis of axially chiral arylquinolizones through an intramolecular atroposelective cycloisomerization. The reaction proceeds via the Brønsted acid-enhanced dearomatization of pyridine by a copper catalyst that allows for the formation of the desired products in excellent yields and enantioselectivities. The utility of this methodology is illustrated by a synthesis on gram scale production and transformation of the products into chiral thiourea catalysts. Mechanistic studies demonstrate that Brønsted acid plays a significant role in promoting the reactivity of the reaction, while both the steric and electronic effects of aryl substituents in substrate play a role in controlling the stereoselectivity.
Collapse
Affiliation(s)
- Xiao-Long Min
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Xiu-Lian Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
23
|
Wei L, Wang M, Zhao Y, Fang Y, Zhao Z, Xia B, Yu W, Chang J. Synthesis of 1,4-Dihydropyridines and Related Heterocycles by Iodine-Mediated Annulation Reactions of N-Cyclopropyl Enamines. Org Lett 2021; 23:9625-9630. [PMID: 34846145 DOI: 10.1021/acs.orglett.1c03859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The annulation of N-cyclopropyl enamines to produce 1,4-dihydropyridine (1,4-DHP) derivatives is described. In the presence of molecular iodine (I2), an N-cyclopropyl enamine substrate undergoes iodination, opening of the cyclopropyl ring, and annulation with a second molecule of the substrate to form the 1,4-DHP product. This reaction is amenable to gram-scale operations under mild reaction conditions with no transition metals being required. Further transformations of the 1,4-DHPs leads to related pyridine and bicyclic frameworks.
Collapse
Affiliation(s)
- Lanlan Wei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Manman Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Yifei Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Yingchao Fang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Zongxiang Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Biao Xia
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Wenquan Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Junbiao Chang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| |
Collapse
|
24
|
Hou CJ, Schuppe AW, Knippel JL, Ni AZ, Buchwald SL. A Dual CuH- and Pd-Catalyzed Stereoselective Synthesis of Highly Substituted 1,3-Dienes. Org Lett 2021; 23:8816-8821. [PMID: 34726414 PMCID: PMC9212073 DOI: 10.1021/acs.orglett.1c03324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conjugated dienes are versatile building blocks and prevalent substructures in synthetic chemistry. Herein, we report a method for the stereoselective hydroalkenylation of alkynes, utilizing readily available enol triflates. We leveraged an in situ-generated and geometrically pure vinyl-Cu(I) species to form the Z,Z- or Z,E-1,3-dienes in excellent stereoselectivity and yield. This approach allowed for the synthesis of highly substituted Z-dienes, including pentasubstituted 1,3-dienes, which are difficult to prepare by existing approaches.
Collapse
Affiliation(s)
- Chuan-Jin Hou
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander W Schuppe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - James Levi Knippel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anton Z Ni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Boldrini C, Harutyunyan SR. Pd-catalyzed allylative dearomatisation using Grignard reagents. Chem Commun (Camb) 2021; 57:11807-11810. [PMID: 34693941 PMCID: PMC8577247 DOI: 10.1039/d1cc05609c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022]
Abstract
Pd-catalyzed allylative dearomatisation of naphthyl halides is shown to be feasible by employing Grignard reagents. The high reactivity of the nucleophile allows for fast reactions and low catalyst loading, while a plethora of successfully substituted compounds illustrate the broad scope. Five membered heteroaromatic compounds are also demonstrated to be reactive under similar conditions.
Collapse
Affiliation(s)
- Cosimo Boldrini
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands.
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands.
| |
Collapse
|
26
|
Wan Q, Xie JH, Zheng C, Yuan YF, You SL. Silver-Catalyzed Asymmetric Dearomatization of Electron-Deficient Heteroarenes via Interrupted Barton-Zard Reaction. Angew Chem Int Ed Engl 2021; 60:19730-19734. [PMID: 34196074 DOI: 10.1002/anie.202107767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Herein we report a catalytic asymmetric dearomatization reaction of electron-deficient heteroarenes with α-substituted isocyanoacetates through an interrupted Barton-Zard reaction. A range of optically active pyrrolo[3,4-b]indole derivatives was obtained in good yields (up to 97 %) with high stereoselectivities (up to >20:1 dr and 97 % ee), using a catalytic system consisting of a cinchona-derived amino-phosphine and silver oxide. This reaction features wide substrate scope and mild conditions, and provides a new strategy for developing asymmetric dearomatization reactions.
Collapse
Affiliation(s)
- Qian Wan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.,College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yao-Feng Yuan
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
27
|
Choi J, Laudadio G, Godineau E, Baran PS. Practical and Regioselective Synthesis of C-4-Alkylated Pyridines. J Am Chem Soc 2021; 143:11927-11933. [PMID: 34318659 PMCID: PMC8721863 DOI: 10.1021/jacs.1c05278] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direct position-selective C-4 alkylation of pyridines has been a long-standing challenge in heterocyclic chemistry, particularly from pyridine itself. Historically this has been addressed using prefunctionalized materials to avoid overalkylation and mixtures of regioisomers. This study reports the invention of a simple maleate-derived blocking group for pyridines that enables exquisite control for Minisci-type decarboxylative alkylation at C-4 that allows for inexpensive access to these valuable building blocks. The method is employed on a variety of different pyridines and carboxylic acid alkyl donors, is operationally simple and scalable, and is applied to access known structures in a rapid and inexpensive fashion. Finally, this work points to an interesting strategic departure for the use of Minisci chemistry at the earliest possible stage (native pyridine) rather than current dogma that almost exclusively employs Minisci chemistry as a late-stage functionalization technique.
Collapse
Affiliation(s)
- Jin Choi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gabriele Laudadio
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Edouard Godineau
- Process Research, Syngenta Crop Protection, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
28
|
Wan Q, Xie J, Zheng C, Yuan Y, You S. Silver‐Catalyzed Asymmetric Dearomatization of Electron‐Deficient Heteroarenes via Interrupted Barton–Zard Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qian Wan
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jia‐Hao Xie
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yao‐Feng Yuan
- College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
29
|
Guo Y, Castiñeira Reis M, Kootstra J, Harutyunyan SR. Enantioselective Catalytic Dearomative Addition of Grignard Reagents to 4-Methoxypyridinium Ions. ACS Catal 2021; 11:8476-8483. [PMID: 34306813 PMCID: PMC8291581 DOI: 10.1021/acscatal.1c01544] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/16/2021] [Indexed: 11/28/2022]
Abstract
![]()
We describe a general
catalytic methodology for the enantioselective
dearomative alkylation of pyridine derivatives with Grignard reagents,
allowing direct access to nearly enantiopure chiral dihydro-4-pyridones
with yields up to 98%. The methodology involves dearomatization of
in situ-formed N-acylpyridinium salts, employing
alkyl organomagnesium reagents as nucleophiles and a chiral copper
(I) complex as the catalyst. Computational and mechanistic studies
provide insights into the origin of the reactivity and enantioselectivity
of the catalytic process.
Collapse
Affiliation(s)
- Yafei Guo
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marta Castiñeira Reis
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Johanan Kootstra
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Syuzanna R. Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
30
|
Abstract
![]()
Practical, efficient,
and general methods for the diversification
of N-heterocycles have been a recurrent goal in chemical
synthesis due to the ubiquitous influence of these motifs within bioactive
frameworks. Here, we describe a direct, catalytic, and selective functionalization
of azines via silylium activation. Our catalyst design enables mild
conditions and a remarkable functional group tolerance in a one-pot
setup.
Collapse
Affiliation(s)
- Carla Obradors
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|
31
|
Ito T, Harada S, Homma H, Takenaka H, Hirose S, Nemoto T. Asymmetric Intramolecular Dearomatization of Nonactivated Arenes with Ynamides for Rapid Assembly of Fused Ring System under Silver Catalysis. J Am Chem Soc 2021; 143:604-611. [PMID: 33382259 DOI: 10.1021/jacs.0c10682] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arene dearomatization is a straightforward method for converting an aromatic feedstock into functionalized carbocycles. Enantioselective dearomatizations of chemically inert arenes, however, are quite limited and underexplored relative to those of phenols and indoles. We developed a method for diazo-free generation of silver-carbene species from an ynamide and applied it to the dearomatization of nonactivated arenes. Transiently generated norcaradiene could be trapped by intermolecular [4 + 2] cycloaddition, synthesizing polycycles with five consecutive stereogenic centers. This protocol constitutes the first highly enantioselective reaction based on the diazo-free generation of silver-carbene species. Mechanistic investigations revealed a dearomatization followed by two different classes of pericyclic reactions, as well as the origin of the chemo- and enantioselectivity.
Collapse
Affiliation(s)
- Tsubasa Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Haruka Homma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroki Takenaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shumpei Hirose
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.,Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
32
|
Wang Y, Li R, Guan W, Li Y, Li X, Yin J, Zhang G, Zhang Q, Xiong T, Zhang Q. Organoborohydride-catalyzed Chichibabin-type C4-position alkylation of pyridines with alkenes assisted by organoboranes. Chem Sci 2020; 11:11554-11561. [PMID: 34094401 PMCID: PMC8162492 DOI: 10.1039/d0sc04808a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The first NaBEt3H-catalyzed intermolecular Chichibabin-type alkylation of pyridine and its derivatives with alkenes as the latent nucleophiles is presented with the assistance of BEt3, and a series of branched C4-alkylation pyridines, even highly congested all-carbon quaternary center-containing triarylmethanes can be obtained in a regiospecific manner. Therefore, the conventional reliance on high cost and low availability transition metal catalysts, prior formation of N-activated pyridines, organometallic reagents, and extra oxidation operation for the construction of a C–C bond at the C4-position of the pyridines in previous methods are not required. The corresponding mechanism and the key roles of the organoborane were elaborated by the combination of H/D scrambling experiments, 11B NMR studies, intermediate trapping experiments and computational studies. This straightforward and mechanistically distinct organocatalytic technology not only opens a new door for the classical but still far less well-developed Chichibabin-type reaction, but also sets up a new platform for the development of novel C–C bond-forming methods. The first NaBEt3H-catalyzed intermolecular Chichibabin-type alkylation of pyridines with alkenes as the latent nucleophiles is presented in the presence of BEt3, and a series of branched C4-alkylated pyridines were obtained in a regiospecific manner.![]()
Collapse
Affiliation(s)
- Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University Changchun 130024 China
| | - Runhan Li
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University Changchun 130024 China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University Changchun 130024 China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University Changchun 130024 China
| | - Xiaohong Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University Changchun 130024 China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University Changchun 130024 China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University Changchun 130024 China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University Changchun 130024 China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|