1
|
Li SL, Tsao C, Yang SY, Chan JCC. Structural order of Mg-stabilized amorphous calcium carbonate and its associated phase transformation. Chem Commun (Camb) 2025; 61:6567-6578. [PMID: 40223802 DOI: 10.1039/d5cc00602c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Biominerals formed by marine organisms exhibit intricate structures and support a remarkable range of functionalities. Recent advances in our understanding of biomineralization highlight the pivotal role of magnesium-stabilized amorphous calcium carbonate (Mg-ACC) as a transient precursor in the formation of calcareous biominerals. This feature article reviews recent in vitro studies of Mg-ACC, illustrating the concepts of particle attachment, secondary nucleation, domain segregation, and mesocrystal formation. Some conceptual issues associated with the ongoing debate between classical nucleation theory and non-classical nucleation theory are discussed. We suggest that solid-state NMR measurements of the van Vleck second moment provide a stringent test for any proposed atomic model of Mg-ACC. The coordination environment of Mg2+ ions and the significance of bicarbonate ions in Mg-ACC are discussed. The diffusion of Mg2+ ions within the calcitic lattice of high-Mg calcite offers a mechanistic insight into the 'dolomite problem'. The fusion of neighboring high-Mg calcite spherulites highlights their potential role as versatile building blocks for calcareous biomineral skeletal frameworks. Altogether, this article aims to provide a comprehensive understanding of the structural complexity and transformation pathways of Mg-ACC.
Collapse
Affiliation(s)
- Shu-Li Li
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Chieh Tsao
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Sheng-Yu Yang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
2
|
Schmidt CA, Tambutté E, Venn AA, Zou Z, Castillo Alvarez C, Devriendt LS, Bechtel HA, Stifler CA, Anglemyer S, Breit CP, Foust CL, Hopanchuk A, Klaus CN, Kohler IJ, LeCloux IM, Mezera J, Patton MR, Purisch A, Quach V, Sengkhammee JS, Sristy T, Vattem S, Walch EJ, Albéric M, Politi Y, Fratzl P, Tambutté S, Gilbert PUPA. Myriad Mapping of nanoscale minerals reveals calcium carbonate hemihydrate in forming nacre and coral biominerals. Nat Commun 2024; 15:1812. [PMID: 38418834 PMCID: PMC10901822 DOI: 10.1038/s41467-024-46117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Calcium carbonate (CaCO3) is abundant on Earth, is a major component of marine biominerals and thus of sedimentary and metamorphic rocks and it plays a major role in the global carbon cycle by storing atmospheric CO2 into solid biominerals. Six crystalline polymorphs of CaCO3 are known-3 anhydrous: calcite, aragonite, vaterite, and 3 hydrated: ikaite (CaCO3·6H2O), monohydrocalcite (CaCO3·1H2O, MHC), and calcium carbonate hemihydrate (CaCO3·½H2O, CCHH). CCHH was recently discovered and characterized, but exclusively as a synthetic material, not as a naturally occurring mineral. Here, analyzing 200 million spectra with Myriad Mapping (MM) of nanoscale mineral phases, we find CCHH and MHC, along with amorphous precursors, on freshly deposited coral skeleton and nacre surfaces, but not on sea urchin spines. Thus, biomineralization pathways are more complex and diverse than previously understood, opening new questions on isotopes and climate. Crystalline precursors are more accessible than amorphous ones to other spectroscopies and diffraction, in natural and bio-inspired materials.
Collapse
Affiliation(s)
- Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Alexander A Venn
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | | | - Laurent S Devriendt
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hans A Bechtel
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Carolyn P Breit
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Connor L Foust
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Andrii Hopanchuk
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Connor N Klaus
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Isaac J Kohler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Jaiden Mezera
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Madeline R Patton
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Annie Purisch
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Virginia Quach
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Tarak Sristy
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Shreya Vattem
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Evan J Walch
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Marie Albéric
- Sorbonne Université/CNRS, Laboratoire de chimie de la matière condensée, 75005, Paris, France
| | - Yael Politi
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sylvie Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Departments of Chemistry, Materials Science and Engineering, and Geoscience, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
3
|
Milita S, Zaquin T, Fermani S, Montroni D, Pinkas I, Barba L, Falini G, Mass T. Assembly of the Intraskeletal Coral Organic Matrix during Calcium Carbonate Formation. CRYSTAL GROWTH & DESIGN 2023; 23:5801-5811. [PMID: 37547884 PMCID: PMC10401569 DOI: 10.1021/acs.cgd.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/01/2023] [Indexed: 08/08/2023]
Abstract
Scleractinia coral skeleton formation occurs by a heterogeneous process of nucleation and growth of aragonite in which intraskeletal soluble organic matrix molecules, usually referred to as SOM, play a key role. Several studies have demonstrated that they influence the shape and polymorphic precipitation of calcium carbonate. However, the structural aspects that occur during the growth of aragonite have received less attention. In this research, we study the deposition of calcium carbonate on a model substrate, silicon, in the presence of SOM extracted from the skeleton of two coral species representative of different living habitats and colonization strategies, which we previously characterized. The study is performed mainly by grazing incidence X-ray diffraction with the support of Raman spectroscopy and electron and optical microscopies. The results show that SOM macromolecules once adsorbed on the substrate self-assembled in a layered structure and induced the oriented growth of calcite, inhibiting the formation of vaterite. Differently, when SOM macromolecules were dispersed in solution, they induced the deposition of amorphous calcium carbonate (ACC), still preserving a layered structure. The entity of these effects was species-dependent, in agreement with previous studies. In conclusion, we observed that in the setup required by the experimental procedure, the SOM from corals appears to present a 2D lamellar structure. This structure is preserved when the SOM interacts with ACC but is lost when the interaction occurs with calcite. This knowledge not only is completely new for coral biomineralization but also has strong relevance in the study of biomineralization on other organisms.
Collapse
Affiliation(s)
- Silvia Milita
- CNR—Institute
for Microelectronic and Microsystems, via Gobetti 101, Bologna 40129, Italy
| | - Tal Zaquin
- Department
of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Simona Fermani
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, Bologna 40126, Italy
- Interdepartmental
Centre for Industrial Research Health Sciences & Technologie, University of Bologna, Bologna 40064, Italy
| | - Devis Montroni
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, Bologna 40126, Italy
| | - Iddo Pinkas
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Luisa Barba
- CNR
-Institute
of Crystallography, Elettra Synchrotron, Trieste I-34100, Italy
| | - Giuseppe Falini
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, Bologna 40126, Italy
- CNR,
Institute for Nanostructured
Materials, via Gobetti
101, Bologna 40129, Italy
| | - Tali Mass
- Department
of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| |
Collapse
|
4
|
Doyle ME, Dalgarno K, Masoero E, Ferreira AM. Advances in biomimetic collagen mineralisation and future approaches to bone tissue engineering. Biopolymers 2023; 114:e23527. [PMID: 36444710 PMCID: PMC10078151 DOI: 10.1002/bip.23527] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
With an ageing world population and ~20% of adults in Europe being affected by bone diseases, there is an urgent need to develop advanced regenerative approaches and biomaterials capable to facilitate tissue regeneration while providing an adequate microenvironment for cells to thrive. As the main components of bone are collagen and apatite mineral, scientists in the tissue engineering field have attempted in combining these materials by using different biomimetic approaches to favour bone repair. Still, an ideal bone analogue capable of mimicking the distinct properties (i.e., mechanical properties, degradation rate, porosity, etc.) of cancellous bone is to be developed. This review seeks to sum up the current understanding of bone tissue mineralisation and structure while providing a critical outlook on the existing biomimetic strategies of mineralising collagen for bone tissue engineering applications, highlighting where gaps in knowledge exist.
Collapse
Affiliation(s)
| | - Kenny Dalgarno
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
| | | | | |
Collapse
|
5
|
Juramy M, Vioglio PC, Ziarelli F, Viel S, Thureau P, Mollica G. Monitoring the influence of additives on the crystallization processes of glycine with dynamic nuclear polarization solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101836. [PMID: 36327551 DOI: 10.1016/j.ssnmr.2022.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Crystallization is fundamental in many domains, and the investigation of the sequence of solid phases produced as a function of crystallization time is thus key to understand and control crystallization processes. Here, we used a solid-state nuclear magnetic resonance strategy to monitor the crystallization process of glycine, which is a model compound in polymorphism, under the influence of crystallizing additives, such as methanol or sodium chloride. More specifically, our strategy is based on a combination of low-temperatures and dynamic nuclear polarization (DNP) to trap and detect transient crystallizing forms, which may be present only in low quantities. Interestingly, our results show that these additives yield valuable DNP signal enhancements even in the absence of glycerol within the crystallizing solution.
Collapse
Affiliation(s)
- Marie Juramy
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | | | - Fabio Ziarelli
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Marseille, France
| | - Stéphane Viel
- Aix Marseille Univ, CNRS, ICR, Marseille, France; Institut Universitaire de France, Paris, France
| | | | | |
Collapse
|
6
|
Mehta N, Gaëtan J, Giura P, Azaïs T, Benzerara K. Detection of biogenic amorphous calcium carbonate (ACC) formed by bacteria using FTIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121262. [PMID: 35526437 DOI: 10.1016/j.saa.2022.121262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
While the formation of intracellular amorphous calcium carbonate (ACC) by living organisms is widespread, its detection in prokaryotes remains difficult owing to its susceptibility to transform or dissolve upon sample preparation. Because of these challenges, a large number of ACC-forming prokaryotes may have been undetected and their abundance in the natural environment is possibly underestimated. This study identifies diagnostic spectral markers of ACC-forming prokaryotes that facilitate their detection in the environment. Accordingly, ACC formed by cyanobacteria was characterized using Fourier transform infrared (FTIR) spectroscopy in near-IR, mid-IR, and far-IR spectral regions. Two characteristic FTIR vibrations of ACC, at ∼ 860 cm-1and ∼ 306 cm-1, were identified as reliable spectral probes to rapidly detect prokaryotic ACC. Using these spectral probes, several Microcystis strains whose ACC-forming capability was unknown, were tested. Four out of eight Microcystis strains were identified as possessing ACC-forming capability and these findings were confirmed by scanning electron microscopy (SEM) observations. Overall, our findings provide a systematic characterization of prokaryotic ACC that facilitate rapid detection of ACC forming prokaryotes in the environment, a prerequisite to shed light on the role of ACC-forming prokaryotes in the geochemical cycle of Ca in the environment.
Collapse
Affiliation(s)
- Neha Mehta
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu, 75005 Paris, France
| | - Juliette Gaëtan
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu, 75005 Paris, France
| | - Paola Giura
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu, 75005 Paris, France
| | - Thierry Azaïs
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
7
|
Mao LB, Meng YF, Meng XS, Yang B, Yang YL, Lu YJ, Yang ZY, Shang LM, Yu SH. Matrix-Directed Mineralization for Bulk Structural Materials. J Am Chem Soc 2022; 144:18175-18194. [PMID: 36162119 DOI: 10.1021/jacs.2c07296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mineral-based bulk structural materials (MBSMs) are known for their long history and extensive range of usage. The inherent brittleness of minerals poses a major problem to the performance of MBSMs. To overcome this problem, design principles have been extracted from natural biominerals, in which the extraordinary mechanical performance is achieved via the hierarchical organization of minerals and organics. Nevertheless, precise and efficient fabrication of MBSMs with bioinspired hierarchical structures under mild conditions has long been a big challenge. This Perspective provides a panoramic view of an emerging fabrication strategy, matrix-directed mineralization, which imitates the in vivo growth of some biominerals. The advantages of the strategy are revealed by comparatively analyzing the conventional fabrication techniques of artificial hierarchically structured MBSMs and the biomineral growth processes. By introducing recent advances, we demonstrate that this strategy can be used to fabricate artificial MBSMs with hierarchical structures. Particular attention is paid to the mass transport and the precursors that are involved in the mineralization process. We hope this Perspective can provide some inspiring viewpoints on the importance of biomimetic mineralization in material fabrication and thereby spur the biomimetic fabrication of high-performance MBSMs.
Collapse
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Feng Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Sen Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Lu Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Jie Lu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Yuan Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Chen Z, Higashi K, Ueda K, Moribe K. Multistep Crystallization of Pharmaceutical Amorphous Nanoparticles via a Cognate Pathway of Oriented Attachment: Direct Evidence of Nonclassical Crystallization for Organic Molecules. NANO LETTERS 2022; 22:6841-6846. [PMID: 35830610 DOI: 10.1021/acs.nanolett.2c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Crystallization of organic molecules is important in a wide range of scientific disciplines. However, in contrast to maturely studied crystallization of inorganic materials, the crystallization mechanisms of organic molecules involving nucleation and crystal growth are still poorly understood. Here, we used time-resolved cryogenic transmission electron microscopy to directly map the morphological evolution of amorphous cyclosporin A (CyA) nanoparticles during CyA crystallization. We successfully observed its initial nucleation and found that the amorphous CyA nanoparticles crystallized via a pathway cognate with oriented attachment, which is the nonclassical crystallization mechanism usually reported for inorganic compounds. Crystalline mesostructured intermediates (mesocrystals) were formed during crystallization. This study revealed clear and direct evidence of mesocrystal formation and oriented attachment in organic pharmaceuticals, providing new insights into the crystallization of organic molecules and theories of nonclassical crystallization.
Collapse
Affiliation(s)
- Ziqiao Chen
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
9
|
Zhang X, Lea AS, Chaka AM, Loring JS, Mergelsberg ST, Nakouzi E, Qafoku O, De Yoreo JJ, Schaef HT, Rosso KM. In situ imaging of amorphous intermediates during brucite carbonation in supercritical CO 2. NATURE MATERIALS 2022; 21:345-351. [PMID: 34845364 DOI: 10.1038/s41563-021-01154-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/15/2021] [Indexed: 05/25/2023]
Abstract
Progress in understanding crystallization pathways depends on the ability to unravel relationships between intermediates and final crystalline products at the nanoscale, which is a particular challenge at elevated pressure and temperature. Here we exploit a high-pressure atomic force microscope to directly visualize brucite carbonation in water-bearing supercritical carbon dioxide (scCO2) at 90 bar and 50 °C. On introduction of water-saturated scCO2, in situ visualization revealed initial dissolution followed by nanoparticle nucleation consistent with amorphous magnesium carbonate (AMC) on the surface. This is followed by growth of nesquehonite (MgCO3·3H2O) crystallites. In situ imaging provided direct evidence that the AMC intermediate acts as a seed for crystallization of nesquehonite. In situ infrared and thermogravimetric-mass spectrometry indicate that the stoichiometry of AMC is MgCO3·xH2O (x = 0.5-1.0), while its structure is indicated to be hydromagnesite-like according to density functional theory and X-ray pair distribution function analysis. Our findings thus provide insight for understanding the stability, lifetime and role of amorphous intermediates in natural and synthetic systems.
Collapse
Affiliation(s)
- Xin Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Alan S Lea
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Anne M Chaka
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John S Loring
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sebastian T Mergelsberg
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Elias Nakouzi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Odeta Qafoku
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - James J De Yoreo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Herbert T Schaef
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Kevin M Rosso
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
10
|
Chang R, Liu Y, Zhang Y, Zhang S, Han B, Chen F, Chen Y. Phosphorylated and Phosphonated Low-Complexity Protein Segments for Biomimetic Mineralization and Repair of Tooth Enamel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103829. [PMID: 34978158 PMCID: PMC8867149 DOI: 10.1002/advs.202103829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Indexed: 05/03/2023]
Abstract
Biomimetic mineralization based on self-assembly has made great progress, providing bottom-up strategies for the construction of new organic-inorganic hybrid materials applied in the treatment of hard tissue defects. Herein, inspired by the cooperative effects of key components in biomineralization microenvironments, a new type of biocompatible peptide scaffold based on flexibly self-assembling low-complexity protein segments (LCPSs) containing phosphate or phosphonate groups is developed. These LCPSs can retard the transformation of amorphous calcium phosphate into hydroxyapatite (HAP), leading to merged mineralization structures. Moreover, the application of phosphonated LCPS over phosphorylated LCPS can prevent hydrolysis by phosphatases that are enriched in extracellular mineralization microenvironments. After being coated on the etched tooth enamel, these LCPSs facilitate the growth of HAP to generate new enamel layers comparable to the natural layers and mitigate the adhesion of Streptococcus mutans. In addition, they can effectively stimulate the differentiation pathways of osteoblasts. These results shed light on the potential biomedical applications of two LCPSs in hard tissue repair.
Collapse
Affiliation(s)
- Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Yang‐Jia Liu
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yun‐Lai Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Shi‐Ying Zhang
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Bei‐Bei Han
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Feng Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yong‐Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
11
|
Bi S, Zhu P, Tian P, Zhong J, Ye J, Ning G. Construction of coral-like architectures of boron-containing compounds: coral-like boric acid and its application performances. CrystEngComm 2022; 24:2383-2387. [DOI: 10.1039/d2ce00111j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coral-like structures have been widely investigated for practical applications owing to their special porous architectures and surface activity. Here we report a simple strategy for the preparation of coral-like architectures of boric acid.
Collapse
Affiliation(s)
- Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Peihan Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Peng Tian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Jianchu Zhong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| |
Collapse
|
12
|
Fairley M, Felton DE, Sigmon GE, Szymanowski JES, Poole NA, Nyman M, Burns PC, LaVerne JA. Radiation-Induced Solid-State Transformations of Uranyl Peroxides. Inorg Chem 2021; 61:882-889. [PMID: 34965099 DOI: 10.1021/acs.inorgchem.1c02603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-crystal X-ray diffraction studies of pristine and γ-irradiated Ca2[UO2(O2)3]·9H2O reveal site-specific atomic-scale changes during the solid-state progression from a crystalline to X-ray amorphous state with increasing dose. Following γ-irradiation to 1, 1.5, and 2 MGy, the peroxide group not bonded to Ca2+ is progressively replaced by two hydroxyl groups separated by 2.7 Å (with minor changes in the unit cell), whereas the peroxide groups bonded to Ca2+ cations are largely unaffected by irradiation prior to amorphization, which occurs by a dose of 3 MGy. The conversion of peroxide to hydroxyl occurs through interaction of neighboring lattice H2O molecules and ionization of the peroxide O-O bond, which produces two hydroxyls, and allows isolation of the important monomer building block, UO2(O2)2(OH)24-, that is ubiquitous in uranyl capsule polyoxometalates. Steric crowding in the equatorial plane of the uranyl ion develops and promotes transformation to an amorphous phase. In contrast, γ-irradiation of solid Li4[(UO2)(O2)3]·10H2O results in a solid-state transformation to a well-crystallized peroxide-free uranyl oxyhydrate containing sheets of equatorial edge and vertex-sharing uranyl pentagonal bipyramids with likely Li and H2O in interlayer positions. The irradiation products of these two uranyl triperoxide monomers are compared via X-ray diffraction (single-crystal and powder) and Raman spectroscopy, with a focus on the influence of the Li+ and Ca2+ countercations. Highly hydratable and mobile Li+ yields to uranyl hydrolysis reactions, while Ca2+ provides lattice rigidity, allowing observation of the first steps of radiation-promoted transformation of uranyl triperoxide.
Collapse
Affiliation(s)
- Melissa Fairley
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Daniel E Felton
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ginger E Sigmon
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer E S Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nicholas A Poole
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
13
|
Wang Z, Chu W, Zhao Z, Liu Z, Chen H, Xiao D, Gong K, Li F, Li X, Hou G. The Role of Organic and Inorganic Structure-Directing Agents in Selective Al Substitution of Zeolite. J Phys Chem Lett 2021; 12:9398-9406. [PMID: 34553943 DOI: 10.1021/acs.jpclett.1c01448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic and inorganic structure-directing agents (SDAs) impact Al distributions in zeolite, but the insights into how SDAs manipulate Al distribution have not been elucidated yet. Herein, the roles of different SDAs such as cyclohexylamine (CHA), hexamethylenimine (HMI), and Na+ in selective Al substitution of MCM-49 zeolite are investigated comprehensively by multinuclear solid-state NMR. The results demonstrate that MCM-49 synthesized with HMI shows relatively more T6 and T7 Al, while more T2 Al is observed using CHA. The formation of T2 Al in both MCM-49(HMI) and MCM-49(CHA) is derived from Na+, while protonated HMIs show bias in incorporation of T6 and T7 Al. Most HMIs are occluded in protonated status, and about half of CHAs are occluded in nonprotonated status. The close spatial proximity between nonprotonated CHAs and Na+ synergistically promotes the formation of zeolite structure, leading to more Na+ ions occluded in the zeolite channel with preferential T2 Al substitution.
Collapse
Affiliation(s)
- Zhili Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weifeng Chu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhengmao Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ke Gong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiujie Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
14
|
Kubo S. Insights into the Formation Pathway of Templated Ordered Nanostructured Carbonaceous Particles under Hydrothermal Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10866-10874. [PMID: 34463515 DOI: 10.1021/acs.langmuir.1c01871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ordered nanostructured materials and their porous counterparts are important for numerous applications in sorption and separation sciences, electrochemistry, catalysis, and photonics. They can be synthesized by introducing surfactant or amphiphilic polymer template(s) into the condensation stage of a developing solid. Understanding the pathways involved in the formation of these materials is of great interest and will help in the development of future synthesis schemes for designing nanomaterials with controlled nanostructures, pore sizes and shapes, and particle morphologies. In this work, the formation pathway of carbonaceous particles, with cubic-type ordered nanostructures, in the polymer amphiphile-templated hydrothermal condensation of sugar was investigated. A detailed transmission electron microscopy study revealed the initial formation of ∼50 nm sized nanoparticles and the structure attributable to assembled nanoparticles to form larger microparticle volumes. Small-angle X-ray scattering analysis showed the time-dependent development of the ordered structures in the carbonaceous particles. A dynamic stabilization-destabilization of the ordered phase was suggested through the analysis of the liquid crystalline gel-like matrix. The growing carbonaceous body inherited the final liquid crystalline phase, giving the microparticles a well-ordered cubic nanostructure. An additional internal domain texture was also revealed inside the microparticles. The proposed pathway will contribute toward establishing strategies for precisely manipulating nanostructured bodies as well as acquiring an in-depth understanding of the templated precipitations, including those in the natural systems.
Collapse
Affiliation(s)
- Shiori Kubo
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Japan
| |
Collapse
|
15
|
Schoeppler V, Stier D, Best RJ, Song C, Turner J, Savitzky BH, Ophus C, Marcus MA, Zhao S, Bustillo K, Zlotnikov I. Crystallization by Amorphous Particle Attachment: On the Evolution of Texture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101358. [PMID: 34337782 PMCID: PMC11468020 DOI: 10.1002/adma.202101358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Crystallization by particle attachment (CPA) is a gradual process where each step has its own thermodynamic and kinetic constrains defining a unique pathway of crystal growth. An important example is biomineralization of calcium carbonate through amorphous precursors that are morphed into shapes and textural patterns that cannot be envisioned by the classical monomer-by-monomer approach. Here, a mechanistic link between the collective kinetics of mineral deposition and the emergence of crystallographic texture is established. Using the prismatic ultrastructure in bivalve shells as a model, a fundamental leap is made in the ability to analytically describe the evolution of form and texture of biological mineralized tissues and to design the structure and crystallographic properties of synthetic materials formed by CPA.
Collapse
Affiliation(s)
- Vanessa Schoeppler
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
- Department of PhysicsUniversity of CaliforniaBerkeleyCA94720USA
| | - Deborah Stier
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| | - Richard J. Best
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| | - Chengyu Song
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - John Turner
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Benjamin H. Savitzky
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Matthew A. Marcus
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Shiteng Zhao
- Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Karen Bustillo
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Igor Zlotnikov
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| |
Collapse
|
16
|
Xu Y, Nudelman F, Eren ED, Wirix MJM, Cantaert B, Nijhuis WH, Hermida-Merino D, Portale G, Bomans PHH, Ottmann C, Friedrich H, Bras W, Akiva A, Orgel JPRO, Meldrum FC, Sommerdijk N. Intermolecular channels direct crystal orientation in mineralized collagen. Nat Commun 2020; 11:5068. [PMID: 33033251 PMCID: PMC7545172 DOI: 10.1038/s41467-020-18846-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022] Open
Abstract
The mineralized collagen fibril is the basic building block of bone, and is commonly pictured as a parallel array of ultrathin carbonated hydroxyapatite (HAp) platelets distributed throughout the collagen. This orientation is often attributed to an epitaxial relationship between the HAp and collagen molecules inside 2D voids within the fibril. Although recent studies have questioned this model, the structural relationship between the collagen matrix and HAp, and the mechanisms by which collagen directs mineralization remain unclear. Here, we use XRD to reveal that the voids in the collagen are in fact cylindrical pores with diameters of ~2 nm, while electron microscopy shows that the HAp crystals in bone are only uniaxially oriented with respect to the collagen. From in vitro mineralization studies with HAp, CaCO3 and γ-FeOOH we conclude that confinement within these pores, together with the anisotropic growth of HAp, dictates the orientation of HAp crystals within the collagen fibril.
Collapse
Affiliation(s)
- YiFei Xu
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Center for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Fabio Nudelman
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Center for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,School of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - E Deniz Eren
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Department of Chemical Engineering and Chemistry, Laboratory of Physical Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Maarten J M Wirix
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Center for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bram Cantaert
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Wouter H Nijhuis
- Department of Orthopaedic Surgery, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Daniel Hermida-Merino
- Netherlands Organization for Scientific Research (NWO), DUBBLE@ESRF, BP220, F38043, Grenoble, France
| | - Giuseppe Portale
- Netherlands Organization for Scientific Research (NWO), DUBBLE@ESRF, BP220, F38043, Grenoble, France.,Macromolecular Science and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijemborg 4, 9747, Groningen, The Netherlands
| | - Paul H H Bomans
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Center for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Christian Ottmann
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Heiner Friedrich
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Department of Chemical Engineering and Chemistry, Laboratory of Physical Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Wim Bras
- Netherlands Organization for Scientific Research (NWO), DUBBLE@ESRF, BP220, F38043, Grenoble, France.,Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Anat Akiva
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Center for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein, 6525 GA, Nijmegen, The Netherlands
| | - Joseph P R O Orgel
- Departments of Biology, Physics and Biomedical Engineering, Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Nico Sommerdijk
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Center for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands. .,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands. .,Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|