1
|
Kweon DH, Baek JH, Park SO, Noh HJ, Jeon JP, Lee JH, Shin TJ, Kwak SK, Jeon IY, Baek JB. Platinum Nanoparticles on Metalloid Antimony Functionalized Graphitic Nanoplatelets for Enhanced Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501408. [PMID: 40347035 DOI: 10.1002/smll.202501408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/22/2025] [Indexed: 05/12/2025]
Abstract
Platinum (Pt) nanoparticles are considered to be the most efficient catalyst for acidic hydrogen evolution reaction (HER). However, they are expensive and unstable, because of agglomeration and Ostwald ripening. It is critically necessary for developing a better catalytic support to stabilize the Pt nanoparticles at low loading amounts. One efficient route to improving both catalytic activity and durability is metal catalysts stably anchored on heteroatom functionalized carbon supports via their strong interactions. Nevertheless, the interactions between "metallic" catalysts and "nonmetallic" heteroatom functionalized carbon supports are still unsatisfactory. Here, "metalloid" antimony (Sb) functionalized graphitic nanoplatelets (SbGnP) are reported to stably anchor Pt nanoparticles. The resulting Pt@SbGnP catalyst shows a record high acidic HER performance, attributable to the unique nature of Sb functional groups on SbGnP. Unlike typical low-period nonmetallic heteroatoms on carbon supports, high-period metalloid Sb with various oxidation states of SbOx provided strong binding sites to stably anchor Pt nanoparticles, suppressing particle aggregation, and thus sustaining catalytic activity and stability.
Collapse
Affiliation(s)
- Do Hyung Kweon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Hoon Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sung O Park
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Jong-Pil Jeon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Jeong Hyeon Lee
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae Joo Shin
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - In-Yup Jeon
- Department of Chemical Engineering, Wonkwang University, Iksandae-ro 460, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
2
|
Afsahi N, Zhang Z, Faez S, Noël JM, Panda MR, Majumder M, Naseri N, Lemineur JF, Kanoufi F. Seeing nanoscale electrocatalytic reactions at individual MoS 2 particles under an optical microscope: probing sub-mM oxygen reduction reaction. Faraday Discuss 2025; 257:107-125. [PMID: 39451059 PMCID: PMC11504976 DOI: 10.1039/d4fd00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 10/26/2024]
Abstract
MoS2 is a promising electrocatalytic material for replacing noble metals. Nanoelectrochemistry studies, such as using nanoelectrochemical cell confinement, have particularly helped in demonstrating the preferential electrocatalytic activity of MoS2 edges. These findings have been accompanied by considerable research efforts to synthesize edge-abundant nanomaterials. However, to fully apprehend their electrocatalytic performance, at the single particle level, new instrumental developments are also needed. Here, we feature a highly sensitive refractive index based optical microscopy technique, namely interferometric scattering microscopy (iSCAT), for monitoring local electrochemistry at single MoS2 petal-like sub-microparticles. This work focuses on the oxygen reduction reaction (ORR), which operates at low current densities and thus requires high-sensitivity imaging techniques. By employing a precipitation reaction to reveal the ORR activity and utilizing the high spatial resolution and contrast of iSCAT, we achieve the sensitivity required to evaluate the ORR activity at single MoS2 particles.
Collapse
Affiliation(s)
- Nikan Afsahi
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Zhu Zhang
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Sanli Faez
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Jean-Marc Noël
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Manas Ranjan Panda
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Naimeh Naseri
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
- Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran
| | | | | |
Collapse
|
3
|
Moghaddam M, Godeffroy L, Jasielec JJ, Kostopoulos N, Noël JM, Piquemal JY, Lemineur JF, Peljo P, Kanoufi F. Scanning Electrochemical Microscopy Meets Optical Microscopy: Probing the Local Paths of Charge Transfer Operando in Booster-Microparticles for Flow Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309607. [PMID: 38757541 DOI: 10.1002/smll.202309607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Understanding the oxidation/reduction dynamics of secondary microparticles formed from agglomerated nanoscale primary particles is crucial for advancing electrochemical energy storage technologies. In this study, the behavior of individual copper hexacyanoferrate (CuHCF) microparticles is explored at both global and local scales combining scanning electrochemical microscopy (SECM), for electrochemical interrogation of a single, but global-scale microparticle, and optical microscopy monitoring to obtain a higher resolution dynamic image of the local electrochemistry within the same particle. Chronoamperometric experiments unveil a multistep oxidation/reduction process with varying dynamics. On the one hand, the global SECM analysis enables quantifying the charge transfer as well as its dynamics at the single microparticle level during the oxidation/reduction cycles by a redox mediator in solution. These conditions allow mimicking the charge storage processes in these particles when they are used as solid boosters in redox flow batteries. On the other hand, optical imaging with sub-particle resolution allows the mapping of local conversion rates and state-of-charge within individual CuHCF particles. These maps reveal that regions of different material loadings exhibit varying charge storage capacities and conversion rates. The findings highlight the significance of porous nanostructures and provide valuable insights for designing more efficient energy storage materials.
Collapse
Affiliation(s)
- Mahdi Moghaddam
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turun Yliopisto, 20014, Finland
| | | | - Jerzy J Jasielec
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turun Yliopisto, 20014, Finland
- Department of Physical Chemistry and Modelling, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | | | - Jean-Marc Noël
- Université Paris Cité, CNRS, ITODYS, Paris, F-75013, France
| | | | | | - Pekka Peljo
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turun Yliopisto, 20014, Finland
| | | |
Collapse
|
4
|
Roehrich B, Sepunaru L. Impedimetric Measurement of Exchange Currents and Ionic Diffusion Coefficients in Individual Pseudocapacitive Nanoparticles. ACS MEASUREMENT SCIENCE AU 2024; 4:467-474. [PMID: 39184362 PMCID: PMC11342456 DOI: 10.1021/acsmeasuresciau.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024]
Abstract
Among electroanalytical techniques, electrochemical impedance spectroscopy (EIS) offers the unique advantage of a high degree of frequency resolution. This enables EIS to readily deconvolute between the capacitive, resistive, and diffusional processes that underlie electrochemical devices. Here, we report the measurement of impedance spectra of individual, pseudocapacitive nanoparticles. We chose Prussian blue as our model system, as it couples an electron-transfer reaction with sodium ion intercalation-processes which, while intrinsically convoluted, can be readily resolved using EIS. We used a scanning electrochemical cell microscope (SECCM) to isolate single Prussian blue particles in a microdroplet and measured their impedance spectra using the multi-sine, fast Fourier transform technique. In doing so, we were able to extract the exchange current density and sodium ion diffusivity for each particle, which respectively inform on their electronic and ionic conductivities. Surprisingly, these parameters vary by over an order of magnitude between particles and are not correlated to particle size nor to each other. The implication of this apparent heterogeneity is that in a hypothetical battery cathode, one active particle may transfer electrons 10 times faster than its neighbor; another may suffer from sluggish sodium ion transport and have restricted charging rate capabilities compared to a better-performing particle elsewhere in the same electrode. Our results inform on this intrinsic heterogeneity while demonstrating the utility of EIS in future single-particle studies.
Collapse
Affiliation(s)
- Brian Roehrich
- Department of Chemistry and
Biochemistry, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Lior Sepunaru
- Department of Chemistry and
Biochemistry, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
5
|
Wang SC, Ma J, Wang X, Xie RC, Wang W. Imaging Single Prussian Blue Nanoparticles with Extraordinary Low-Spin Iron Capacity. Anal Chem 2024. [PMID: 39090997 DOI: 10.1021/acs.analchem.4c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In attempts to obtain high-capacity Prussian blue nanomaterials, current efforts are predominantly focused on the particle-ensemble-level understanding of their structure-activity relationships. Complementarily, it would be insightful to screen out extraordinary individuals from the nanoparticle population. Using a simple and efficient technique of bright-field microscopy, this work enables, for the first time, quantitative characterization of the overall two-redox-center electrochemistry of single Prussian blue nanoparticles many at a time. Quantitative optical voltammograms with little interference from solvent breakdown and non-Faradaic electrode charging/discharging are extracted for each single nanoparticle, revealing clear heterogeneity among them. On this basis, the microscopic method allows a detailed comparative analysis between the two redox-active sites. It is found that while the synthesized nanoparticles show a similar specific capacity of the high-spin (HS-Fe) sites with STD/mean = 30%, most individual nanoparticles exhibit monodispersedly small capacities of the low-spin iron (LS-Fe) sites, only about 1 7 ± 1 of the HS-Fe capacity. Most importantly, it is discovered that there is always a small fraction (∼8%) of the single nanoparticles showing an impressively tripled LS-Fe capacity. Facilitated by optical imaging, the discovery of this easily overlooked extraordinary subpopulation confers alternative opportunities for targeted efforts for material chemists to improve synthesis and material design based on these unusual individuals, which in turn implies the general significance of nanoparticle screening.
Collapse
Affiliation(s)
- Si-Cong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China
| | - Junjie Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China
| | - Xinyue Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China
| | - Ruo-Chen Xie
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Wang F, Zhang C, Wu F, He Z, Huang Y. Investigation of the Single-Particle Scale Structure-Activity Relationship Providing New Insights for the Development of High-Performance Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400683. [PMID: 38747891 DOI: 10.1002/adma.202400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/11/2024] [Indexed: 05/21/2024]
Abstract
As electric vehicles, portable electronic devices, and tools have increasingly high requirements for battery energy density and power density, constantly improving battery performance is a research focus. Accurate measurement of the structure-activity relationship of active materials is key to advancing the research of high-performance batteries. However, conventional performance tests of active materials are based on the electrochemical measurement of porous composite electrodes containing active materials, polymer binders, and conductive carbon additives, which cannot establish an accurate structure-activity relationship with the physical characterization of microregions. In this review, in order to promote the accurate measurement and understanding of the structure-activity relationship of materials, the electrochemical measurement and physical characterization of energy storage materials at single-particle scale are reviewed. The potential problems and possible improvement schemes of the single particle electrochemical measurement and physical characterization are proposed. Their potential applications in single particle electrochemical simulation and machine learning are prospected. This review aims to promote the further application of single particle electrochemical measurement and physical characterization in energy storage materials, hoping to achieve 3D unified evaluation of physical characterization, electrochemical measurement, and theoretical simulation at the single particle scale to provide new inspiration for the development of high-performance batteries.
Collapse
Affiliation(s)
- Fei Wang
- Hebei Key Laboratory of Applied Chemistry, College of Environment and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Chong Zhang
- Hebei Key Laboratory of Applied Chemistry, College of Environment and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Fan Wu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China
| | - Zhichao He
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
7
|
Wang X, Wang SC, Ma J, Xie RC, Wang W. Near-infrared visualisation of single microparticle electrochemistry for batteries. Chem Sci 2024; 15:8536-8544. [PMID: 38846408 PMCID: PMC11151827 DOI: 10.1039/d4sc00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
While optical microscopy of single particle electrochemistry has proven insightful for future nanoparticle-based batteries, little is explored for micron-sized particles of more practical interest. This is largely hindered by the currently limited methodology. Accordingly, we report transmission optical microscopy using near-infrared light for accessing intra-particle electrochemistry in virtue of strong light penetration as compared to visible light. Using near-infrared (λ > 730 nm) bright-field microscopy, the redox electrochemistry of single LiCoO2 microparticles can be readily measured based on the measurements of optical contrast changes during electrochemical cycling. Further using the established methodology, we discover that the solid-state diffusion inside most single microparticles is distinctly directional, instead of in an isotropic manner from outer to inner as observed for the other particles. This phenomenon is also observed using dark field scattering microscopy with near-infrared light, suggesting non-uniform crystal inner structures responsible for the geometrically asymmetric heterogeneity of charge transfer kinetics within each single particle. These results indicate potential opportunities offered by the near-infrared optical methodology for operando studying practical battery materials.
Collapse
Affiliation(s)
- Xinyue Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Si-Cong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Junjie Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Ruo-Chen Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| |
Collapse
|
8
|
Feng Z, Ye J, Li X, Li L, Fang C, Wang R, Hu W. Optical Approach for Mapping the Intercalation Capacity of Porous Electrodes. Anal Chem 2024; 96:394-400. [PMID: 38149960 DOI: 10.1021/acs.analchem.3c04424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The intercalation capacity of a porous electrode in real batteries is not uniform spatially due to the inevitable structural and compositional inhomogeneity and site-dependent ion and electron transport features. Reliable methods to quantify the capacity distribution are highly desirable but absent so far in battery research. In this paper, a novel optical technique, oblique incident reflection difference (OIRD), was employed to monitor in situ the electrochemical ion (de)intercalation behavior of Prussian blue analogue (PBA) porous films. The OIRD signal responded synchronously to the ion (de)intercalation, and the change in the OIRD signal (ΔI) was positively correlated with the local electrochemical capacity, thereby enabling mapping of the spatially resolved ion storage capacity of the films. Optical analysis further showed that the OIRD response originated from the ion (de)intercalation-induced dielectric constant change of PBA films. This work therefore offers an intriguing in situ and spatially resolved tool for the study of rechargeable batteries.
Collapse
Affiliation(s)
- Zhihao Feng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| | - Jun Ye
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| | - Xiaoyi Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| | - Ling Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| | - Changxiang Fang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| | - Rongfei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| | - Weihua Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
9
|
Kang M, Bentley CL, Mefford JT, Chueh WC, Unwin PR. Multiscale Analysis of Electrocatalytic Particle Activities: Linking Nanoscale Measurements and Ensemble Behavior. ACS NANO 2023; 17:21493-21505. [PMID: 37883688 PMCID: PMC10655184 DOI: 10.1021/acsnano.3c06335] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Nanostructured electrocatalysts exhibit variations in electrochemical properties across different length scales, and the intrinsic catalytic characteristics measured at the nanoscale often differ from those at the macro-level due to complexity in electrode structure and/or composition. This aspect of electrocatalysis is addressed herein, where the oxygen evolution reaction (OER) activity of β-Co(OH)2 platelet particles of well-defined structure is investigated in alkaline media using multiscale scanning electrochemical cell microscopy (SECCM). Microscale SECCM probes of ∼50 μm diameter provide voltammograms from small particle ensembles (ca. 40-250 particles) and reveal increasing dispersion in the OER rates for samples of the same size as the particle population within the sample decreases. This suggests the underlying significance of heterogeneous activity at the single-particle level that is confirmed through single-particle measurements with SECCM probes of ∼5 μm diameter. These measurements of multiple individual particles directly reveal significant variability in the OER activity at the single-particle level that do not simply correlate with the particle size, basal plane roughness, or exposed edge plane area. In combination, these measurements demarcate a transition from an "individual particle" to an "ensemble average" response at a population size of ca. 130 particles, above which the OER current density closely reflects that measured in bulk at conventional macroscopic particle-modified electrodes. Nanoscale SECCM probes (ca. 120 and 440 nm in diameter) enable measurements at the subparticle level, revealing that there is selective OER activity at the edges of particles and highlighting the importance of the three-phase boundary where the catalyst, electrolyte, and supporting carbon electrode meet, for efficient electrocatalysis. Furthermore, subparticle measurements unveil heterogeneity in the OER activity among particles that appear superficially similar, attributable to differences in defect density within the individual particles, as well as to variations in electrical and physical contact with the support material. Overall this study provides a roadmap for the multiscale analysis of nanostructured electrocatalysts, directly demonstrating the importance of multilength scale factors, including particle structure, particle-support interaction, presence of defects, etc., in governing the electrochemical activities of β-Co(OH)2 platelet particles and ultimately guiding the rational design and optimization of these materials for alkaline water electrolysis.
Collapse
Affiliation(s)
- Minkyung Kang
- School
of Chemistry, The University of Sydney, Camperdown 2006 NSW, Australia
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | | | - J. Tyler Mefford
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - William C. Chueh
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Patrick R. Unwin
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
10
|
Zhao X, Li Y, Cui Y, Saqib M, Zhang X, Hao R, Zheng Z. Spatiotemporally and Chemically Resolved Imaging of Electrocatalytic Oxygen Evolution on Single Nanoplates of Cobalt-Layered Hydroxide. J Am Chem Soc 2023; 145:20897-20906. [PMID: 37721427 DOI: 10.1021/jacs.3c06062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Transition metal-layered hydroxides have been extensively studied in order to address the key challenge of slow kinetics of the oxygen evolution reaction (OER). However, how the catalytically active sites are evolved and the corresponding heterogeneous structure-property relationship remain unclear. Herein, using cobalt-layered hydroxide as a representative catalyst, we report a strategy for the comprehensive in situ investigation of the electrocatalytic OER process at the single electrocatalyst level using combined electrochemiluminescence (ECL) and vis-absorption microscopy. The stepwise heterogeneous electrocatalytic responses of single-cobalt hydroxide nanoplates are unveiled with ECL imaging, and the corresponding valence state changes are revealed by vis-absorption imaging. The correlated in situ and ex situ multimode analyses indicate that, during the oxidation process, the Co2+ cations in the tetrahedral sites (CoTd2+) turned into CoTd3+ and even the highly unstable CoTd4+, assisted by the interlayer water in a metastable CoOOH·xH2O phase. Crucially, the CoTd4+ sites are mainly distributed in the inner part of the nanoplates and show superior electrocatalytic properties. The correlative single-particle imaging approach for electrocatalytic process analysis with high spatiotemporal and chemical resolution enables in-depth mechanistic insights to be generated and, in turn, will benefit the rational design of electrocatalysts with enhanced performance.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Yanyan Li
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055 Shenzhen, China
- Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, 518055 Shenzhen, China
| | - Yu Cui
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Muhammad Saqib
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Xinyu Zhang
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055 Shenzhen, China
- Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, 518055 Shenzhen, China
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055 Shenzhen, China
- Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, 518055 Shenzhen, China
| |
Collapse
|
11
|
Gao C, Li Y, Zhao J, Sun W, Guang S, Chen Q. Measuring the Pseudocapacitive Behavior of Individual V 2O 5 Particles by Scanning Electrochemical Cell Microscopy. Anal Chem 2023. [PMID: 37392190 DOI: 10.1021/acs.analchem.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
V2O5 is a promising pseudocapacitive material for electrochemical energy storage with balanced power and energy density. Understanding the charge-storage mechanism is of significance to further improve the rate performance. Here, we report an electrochemical study of individual V2O5 particles using scanning electrochemical cell microscopy with colocalized electron microscopy. A carbon sputtering procedure is proposed for the pristine V2O5 particles to improve their structure stability and electronic conductivity. The achieved high-quality electrochemical cyclic voltammetry results, structural integrity, and high oxidation to reduction charge ratio (as high as 97.74%) assured further quantitative analysis of the pseudocapacitive behavior of single particles and correlation with local particle structures. A broad range of capacitive contribution is revealed, with an average ratio of 76% at 1.0 V/s. This study provides new opportunities for quantitative analysis of the electrochemical charge-storage process at single particles, especially for electrode materials with electrolyte-induced instability.
Collapse
Affiliation(s)
- Cong Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yingjian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Wei Sun
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shanyi Guang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
12
|
Yang R, Bao Z, Sun Y. Probing and Leveraging the Structural Heterogeneity of Nanomaterials for Enhanced Catalysis. ACS NANOSCIENCE AU 2023; 3:140-152. [PMID: 37101590 PMCID: PMC10125369 DOI: 10.1021/acsnanoscienceau.2c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 04/28/2023]
Abstract
The marriage between nanoscience and heterogeneous catalysis has introduced transformative opportunities for accessing better nanocatalysts. However, the structural heterogeneity of nanoscale solids stemming from distinct atomic configurations makes it challenging to realize atomic-level engineering of nanocatalysts in the way that is attained for homogeneous catalysis. Here, we discuss recent efforts in unveiling and exploiting the structural heterogeneity of nanomaterials for enhanced catalysis. Size and facet control of nanoscale domains produce well-defined nanostructures that facilitate mechanistic studies. Differentiation of surface and bulk characteristics for ceria-based nanocatalysts guides new thoughts toward lattice oxygen activation. Manipulating the compositional and species heterogeneity between local and average structures allows regulation of catalytically active sites via the ensemble effect. Studies on catalyst restructurings further highlight the necessity to assess the reactivity and stability of nanocatalysts under reaction conditions. These advances promote the development of novel nanocatalysts with expanded functionalities and bring atomistic insights into heterogeneous catalysis.
Collapse
Affiliation(s)
- Rui Yang
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Zhenghong Bao
- Biomaterials,
Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yifan Sun
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China
- E-mail:
| |
Collapse
|
13
|
Li F, Kweon DH, Han GF, Noh HJ, Che W, Ahmad I, Jeong HY, Fu Z, Lu Y, Baek JB. Merging Platinum Single Atoms to Achieve Ultrahigh Mass Activity and Low Hydrogen Production Cost. ACS NANO 2023; 17:2923-2931. [PMID: 36722955 DOI: 10.1021/acsnano.2c11338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single atom catalysts (SACs) with isolated active sites exhibit the highest reported mass activity for hydrogen evolution catalysis, which is crucial for practical applications. Here, we demonstrate that ultrahigh mass activity can also be achieved by rationally merging the isolated platinum (Pt) active sites in SAC. The catalyst was obtained by the thermodynamically driven diffusing and merging phosphorus-doped carbon (PC) supported Pt single atoms (Pt1@PC) into Pt nanoclusters (PtM@PC). X-ray absorption spectroscopy analysis revealed that the merged nanoclusters exhibit much stronger interactions with the support than the traditional method, enabling more efficient electron transfer. The optimized PtM@PC exhibited an order of magnitude higher mass activity (12.7 A mgPt-1) than Pt1@PC (0.9 A mgPt-1) at an overpotential of 10 mV in acidic media, which is the highest record to date, far exceeding reports for other outstanding SACs. Theoretical study revealed that the collective active sites in PtM@PC exhibit both favorable hydrogen binding energy and fast reaction kinetics, leading to the significantly enhanced mass activity. Despite its low Pt content (2.2 wt %), a low hydrogen production cost of ∼3 USD kg-1 was finally achieved in the full-water splitting at a laboratory scale.
Collapse
Affiliation(s)
- Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan, Shanghai 200433, P.R. China
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Do Hyung Kweon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Gao-Feng Han
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Wei Che
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Ishfaq Ahmad
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| | - Zhengping Fu
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 96 Jinzhai, Hefei, Anhui 230026, P.R. China
| | - Yalin Lu
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 96 Jinzhai, Hefei, Anhui 230026, P.R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
| |
Collapse
|
14
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
15
|
Lin Y, Cui Y, Huang W, Yu H, He Y. Operando Imaging of Crystallinity-Dependent Multicolor Thermochromic Processes for Single Hydrated Hybrid Perovskite Particles. J Phys Chem Lett 2022; 13:9195-9200. [PMID: 36170182 DOI: 10.1021/acs.jpclett.2c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The thermochromic properties of hydrated metal halide perovskites (MHPs) are promising for applications in smart windows, solar cells, optical sensors, and information storage. Traditional ensemble characterization methods always study the averaged thermochromic activity, lacking the accurate structure-activity correlation. Here we utilize dark-field microscopy (DFM) to in situ image the thermochromic processes of single isolated hydrated hybrid perovskite (CH3NH3)4PbI6-xClx·2H2O (MA4PbI6-xClx·2H2O) microparticles. The thermal-induced dehydration transition is demonstrated to alter the color of single MA4PbI6-xClx·2H2O particles. Operando single-particle mapping results reveal the significant intra- and interparticle variations of thermochromic behaviors, yielding unexpected single or multistep multicolor thermochromic processes. These phenomena are confirmed to be governed by the crystallinity of single MA4PbI6-xClx·2H2O particles that results in distinct composition-dependent bandgaps and thermal decomposition pathways. The present work highlights the important role of single-particle imaging for resolving the intrinsic thermochromic characteristic of hydrated MHPs, therefore opening a way for rational design of stimuli-responsive materials.
Collapse
Affiliation(s)
- Ying Lin
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yunyi Cui
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Wei Huang
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
| | - Haili Yu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yi He
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
16
|
Jiang B, Gu W, Jiang W, Lv M, Niu B, Wu X, Wang W, Wang H. Directly Imaging Dynamic Electronic Coupling during Electrochemical Oxidation of Single Silver Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209964. [DOI: 10.1002/anie.202209964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Wenjie Gu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing Jiangsu 210023 China
| | - Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Mengqi Lv
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Xue‐Jun Wu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
17
|
Liu C, Xu J, Gao H, Zhou M, Lu L. Nitrogen-skinned carbon nanocone enables non-dynamic electrochemistry of individual metal particles. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1305-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Jiang B, Gu W, Jiang W, Lv M, Niu B, Wu XJ, Wang W, Wang H. Directly Imaging Dynamic Electronic Coupling during Electrochemical Oxidation of Single Silver Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo Jiang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wenjie Gu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wenxuan Jiang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Mengqi Lv
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Ben Niu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Xue-Jun Wu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wei Wang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hui Wang
- Nanjing University Nanjing Xianlin road No. 163 CHINA
| |
Collapse
|
19
|
Lemineur JF, Wang H, Wang W, Kanoufi F. Emerging Optical Microscopy Techniques for Electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:57-82. [PMID: 35216529 DOI: 10.1146/annurev-anchem-061020-015943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An optical microscope is probably the most intuitive, simple, and commonly used instrument to observe objects and discuss behaviors through images. Although the idea of imaging electrochemical processes operando by optical microscopy was initiated 40 years ago, it was not until significant progress was made in the last two decades in advanced optical microscopy or plasmonics that it could become a mainstream electroanalytical strategy. This review illustrates the potential of different optical microscopies to visualize and quantify local electrochemical processes with unprecedented temporal and spatial resolution (below the diffraction limit), up to the single object level with subnanoparticle or single-molecule sensitivity. Developed through optically and electrochemically active model systems, optical microscopy is now shifting to materials and configurations focused on real-world electrochemical applications.
Collapse
Affiliation(s)
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China;
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China;
| | | |
Collapse
|
20
|
Wu G, Zhou X, Lv WL, Qian C, Liu XW. Real-Time Plasmonic Imaging of the Compositional Evolution of Single Nanoparticles in Electrochemical Reactions. NANO LETTERS 2022; 22:4383-4391. [PMID: 35549482 DOI: 10.1021/acs.nanolett.2c00831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Real-time probing of the compositional evolution of single nanoparticles during an electrochemical reaction is crucial for understanding the structure-performance relationship and rationally designing nanomaterials for desirable applications; however, it is consistently challenging to achieve high-throughput real-time tracking. Here, we present an optical imaging method, termed plasmonic scattering interferometry microscopy (PSIM), which is capable of imaging the compositional evolution of single nanoparticles during an aqueous electrochemical reaction in real time. By quantifying the plasmonic scattering interferometric pattern of nanoparticles, we establish the relationship between the pattern and composition of single nanoparticles. Using PSIM, we have successfully probed the compositional transformation dynamics of multiple individual nanoparticles during electrochemical reactions. PSIM could be used as a universal platform for exploring the compositional evolution of nanomaterials at the single-nanoparticle level and offers great potentials for addressing the extensive fundamental questions in nanoscience and nanotechnology.
Collapse
Affiliation(s)
- Gang Wu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoli Zhou
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Li Lv
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Molina NY, Pungsrisai T, O'Dell ZJ, Paranzino B, Willets KA. The Hidden Role of the Supporting Electrode for Creating Heterogeneity in Single Entity Electrochemistry. ChemElectroChem 2022. [DOI: 10.1002/celc.202200245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Natalia Y. Molina
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| | - Tipsiri Pungsrisai
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| | - Zachary J. O'Dell
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| | - Bianca Paranzino
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| | - Katherine A. Willets
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| |
Collapse
|
22
|
Unwin P. Concluding remarks: next generation nanoelectrochemistry - next generation nanoelectrochemists. Faraday Discuss 2022; 233:374-391. [PMID: 35229863 DOI: 10.1039/d2fd00020b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this paper is to describe the scientific journey taken to arrive at present-day nanoelectrochemistry and consider how the area might develop in the future, particularly in light of papers presented at this Faraday Discussion. By adopting a generational approach, this brief contribution traces the story of the nanoelectrochemistry family within the broader electrochemistry field, with a focus on scientific capability and themes that were important to each generation. I shall consider research questions and the impact of technology that was developed or available in each period. Nanoelectrochemistry is still somewhat niche, but is attracting increasing numbers of researchers. It is set to become a major part of electrochemistry and interfacial science. It is studied by people with a fairly unique skillset, and I shall speculate on the skills and expertise that will be needed by nanoelectrochemists to address the challenges and opportunities that lie ahead. I conclude by asking: who will be the nanoelectrochemists of the future and what will they do?
Collapse
Affiliation(s)
- Patrick Unwin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
23
|
Dong J, Xu Y, Zhang Z, Feng J. Operando Imaging of Chemical Activity on Gold Plates with Single-Molecule Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2022; 61:e202200187. [PMID: 35084097 DOI: 10.1002/anie.202200187] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/31/2022]
Abstract
Classical electrochemical characterization tools cannot avoid averaging between the active reaction sites and their support, thus obscuring their intrinsic roles. Single-molecule electrochemical techniques are thus in high demand. Here, we demonstrate super-resolution imaging of Ru(bpy)3 2+ based reactions on Au plates using single-molecule electrochemiluminescence microscopy. By converting electrochemical signals into optical signals, we manage to achieve the ultimate sensitivity of single-entity chemistry, that is directly resolving the single photons from individual electrochemical reactions. High spatial resolution, up to 37 nm, further enables mapping Au chemical activity and the reaction kinetics. The spatiotemporally resolved dynamic structure-activity relationship on Au plates shows that the restructuring of catalysts plays an important role in determining the reactivity. Our approach may lead to gaining new insights towards evaluating and designing electrocatalytic systems.
Collapse
Affiliation(s)
- Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Xu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ziqing Zhang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
24
|
Wang L, Zhang M, Sun C, Yin L, Kang B, Xu J, Chen H. Transient Plasmonic Imaging of Ion Migration on Single Nanoparticles and Insight for Double Layer Dynamics. Angew Chem Int Ed Engl 2022; 61:e202117177. [DOI: 10.1002/anie.202117177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Lu‐Xuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Miao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Li‐Xin Yin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
25
|
Shan Y, Deng X, Lu X, Gao C, Li Y, Chen Q. Surface facets dependent oxygen evolution reaction of single Cu2O nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Wang L, Zhang M, Sun C, Yin L, Kang B, Xu J, Chen H. Transient Plasmonic Imaging of Ion Migration on Single Nanoparticles and Insight for Double Layer Dynamics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lu‐Xuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Miao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Li‐Xin Yin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
27
|
Dong J, Xu Y, Zhang Z, Feng J. Operando Imaging of Chemical Activity on Gold Plates with Single‐Molecule Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinrun Dong
- Zhejiang University Department of Chemistry CHINA
| | - Yang Xu
- Zhejiang University Department of Chemistry CHINA
| | - Ziqing Zhang
- Zhejiang University Department of Chemistry CHINA
| | | |
Collapse
|
28
|
Huang K, Crooks RM. Enhanced electrocatalytic activity of Cu-modified, high-index single Pt NPs for formic acid oxidation. Chem Sci 2022; 13:12479-12490. [PMID: 36349269 PMCID: PMC9628932 DOI: 10.1039/d2sc03433f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
A key goal of nanoparticle-based catalysis research is to correlate the structure of nanoparticles (NPs) to their catalytic function. The most common approach for achieving this goal is to synthesize ensembles of NPs, characterize the ensemble, and then evaluate its catalytic properties. This approach is effective, but it excludes the certainty of structural heterogeneity in the NP ensemble. One means of addressing this shortcoming is to carry out analyses on individual NPs. This approach makes it possible to establish direct correlations between structures of single NPs and, in the case reported here, their electrocatalytic properties. Accordingly, we report on enhanced electrocatalytic formic acid oxidation (FAO) activity using individual Cu-modified, high-indexed Pt NPs. The results show that the Cu-modified Pt NPs exhibit significantly higher currents for FAO than the Pt-only analogs. The increased activity is enabled by the Cu submonolayer on the highly stepped Pt surface, which enhances the direct FAO pathway but not the indirect pathway which proceeds via surface-absorbed CO*. Single-crystal Pt nanoparticles with a diameter of ∼200 nm were electrosynthesized, covered with a single monolayer of Cu, and then fully characterized. The resulting materials exhibit excellent electrocatalytic properties for formic acid oxidation.![]()
Collapse
Affiliation(s)
- Ke Huang
- Department of Chemistry, Texas Materials Institute, The University of Texas at Austin, 100 E. 24th St., Stop A1590, Austin, Texas, 78712, USA
| | - Richard M. Crooks
- Department of Chemistry, Texas Materials Institute, The University of Texas at Austin, 100 E. 24th St., Stop A1590, Austin, Texas, 78712, USA
| |
Collapse
|
29
|
Defnet PA, Zhang B. Collision, Adhesion, and Oxidation of Single Ag Nanoparticles on a Polysulfide-Modified Microelectrode. J Am Chem Soc 2021; 143:16154-16162. [PMID: 34549950 DOI: 10.1021/jacs.1c07164] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the collision, adhesion, and oxidation behavior of single silver nanoparticles (Ag NPs) on a polysulfide-modified gold microelectrode. Despite its remarkable success in volume analysis for smaller Ag NPs, the method of NP-collision electrochemistry has failed to analyze particles greater than 50 nm due to uncontrollable collision behavior and incomplete NP oxidation. Herein, we describe the unique capability of an ultrathin polysulfide layer in controlling the collision behavior of Ag NPs by drastically improving their sticking probability on the electrode. The ultrathin sulfurous layer is formed on gold by sodium thiosulfate electro-oxidation and serves both as an adhesive interface for colliding NPs and as a preconcentrated reactive medium to chemically oxidize Ag to form Ag2S. Rapid particle dissolution is further promoted by the presence of bulk sodium thiosulfate serving as a Lewis base, which drastically improves the solubility of generated Ag2S by a factor of 1013. The combined use of polysulfide and sodium thiosulfate allows us to observe a 25× increase in NP detection frequency, a 3× increase in peak amplitude, and more complete oxidation for larger Ag NPs. By recognizing how volumetric analysis using transmission electron microscopy (TEM) may overestimate quasi-spherical NPs, we believe we can have full NP oxidation for particles up to 100 nm. By focusing on the electrode/solution interface for more effective NP-electrode contact, we expect that the knowledge learned from this study will greatly benefit future NP collision systems for mechanistic studies in single-entity electrochemistry as well as designing ultrasensitive biochemical sensors.
Collapse
Affiliation(s)
- Peter A Defnet
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
30
|
Ciocci P, Lemineur JF, Noël JM, Combellas C, Kanoufi F. Differentiating electrochemically active regions of indium tin oxide electrodes for hydrogen evolution and reductive decomposition reactions. An in situ optical microscopy approach. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Ngo G, Félix G, Dorandeu C, Devoisselle JM, Costa L, Milhiet PE, Guari Y, Larionova J, Chopineau J. A Novel Approach to the Facile Growth and Organization of Photothermal Prussian Blue Nanocrystals on Different Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1749. [PMID: 34361135 PMCID: PMC8308188 DOI: 10.3390/nano11071749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 01/16/2023]
Abstract
We report here a novel "one-pot" approach for the controlled growth and organization of Prussian blue nanostructures on three different surfaces: pure Au0, cysteamine-functionalized Au0, and SiO2-supported lipid bilayers with different natures of lipids. We demonstrate that fine control over the size, morphology, and the degree and homogeneity of the surface coverage by Prussian Blue (PB) nanostructures may be achieved by manipulating different parameters, which are the precursor concentration, the nature of the functional groups or the nature of lipids on the surfaces. This allows the growth of isolated PB nanopyramids and nanocubes or the design of thin dense films over centimeter square surfaces. The formation of unusual Prussian blue nanopyramids is discussed. Finally, we demonstrate, by using experimental techniques and theoretical modeling, that PB nanoparticles deposited on the gold surface exhibit strong photothermal properties, permitting a rapid temperature increase up to 90 °C with a conversion of the laser power of almost 50% for power source heat.
Collapse
Affiliation(s)
- Giang Ngo
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| | - Gautier Félix
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| | - Christophe Dorandeu
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| | - Jean-Marie Devoisselle
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| | - Luca Costa
- CBS, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France; (L.C.); (P.-E.M.)
| | | | - Yannick Guari
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| | - Joulia Larionova
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| | - Joël Chopineau
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| |
Collapse
|
32
|
Choi MH, Jeong S, Wang Y, Cho SJ, Park SI, Ye X, Baker LA. Characterization of Ligand Adsorption at Individual Gold Nanocubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7701-7711. [PMID: 34143943 DOI: 10.1021/acs.langmuir.1c00694] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cetyltrimethylammonium bromide (CTAB) is a widely used surfactant that aids the aqueous synthesis of colloidal nanoparticles. However, the presence of residual CTAB on nanoparticle surfaces can significantly impact nanoparticle applications, such as catalysis and sensing, under hydrated conditions. As such, consideration of the presence and quantity of CTAB on nanoparticle surfaces under hydrated conditions is of significance. Herein, as part of an integrated material characterization framework, we demonstrate the feasibility of in situ atomic force microscopy (AFM) to detect CTAB on the surface of Au nanocubes (Au NCs) under hydrated conditions, which enabled superior characterization compared to conventional spectroscopic methods. In situ force-distance (FD) spectroscopy and Kelvin probe force microscopy (KPFM) measurements support additional characterization of adsorbed CTAB, while correlative in situ AFM and scanning electron microscopy (SEM) measurements were used to evaluate sequential steps of CTAB removal from Au NCs across hydrated and dehydrated environments, respectively. Notably, a substantial quantity of CTAB remained on the Au NC surface after methanol washing, which was detected in AFM measurements but was not detected in infrared spectroscopy measurements. Subsequent electrochemical cleaning was found to be critically important to remove CTAB from the Au NC surface. Correlative measurements were also performed on individual nanoparticles, which further validate the method described here as a powerful tool to determine the extent and degree of CTAB removal from nanoparticle surfaces. This AFM-based method is broadly applicable to characterize the presence and removal of ligands from nanomaterial surfaces under hydrated conditions.
Collapse
Affiliation(s)
- Myung-Hoon Choi
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Soojin Jeong
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yi Wang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sang-Joon Cho
- Park Systems Corporation, KANC 4F, Gwanggyo-ro 109, Suwon 16229, Korea
| | - Sang-Il Park
- Park Systems Corporation, KANC 4F, Gwanggyo-ro 109, Suwon 16229, Korea
| | - Xingchen Ye
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
33
|
Jiang W, Wei W, Yuan T, Liu S, Niu B, Wang H, Wang W. Tracking the optical mass centroid of single electroactive nanoparticles reveals the electrochemically inactive zone. Chem Sci 2021; 12:8556-8562. [PMID: 34221337 PMCID: PMC8221172 DOI: 10.1039/d1sc01623g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The inevitable microstructural defects, including cracks, grain boundaries and cavities, make a portion of the material inaccessible to electrons and ions, becoming the incentives for electrochemically inactive zones in single entity. Herein, we introduced dark field microscopy to study the variation of scattering spectrum and optical mass centroid (OMC) of single Prussian blue nanoparticles during electrochemical reaction. The "dark zone" embedded in a single electroactive nanoparticle resulted in the incomplete reaction, and consequently led to the misalignment of OMC for different electrochemical intermediate states. We further revealed the dark zones such as lattice defects in the same entity, which were externally manifested as the fixed pathway for OMC for the migration of potassium ions. This method opens up enormous potentiality to optically access the heterogeneous intraparticle dark zones, with implications for evaluating the crystallinity and electrochemical recyclability of single electroactive nano-objects.
Collapse
Affiliation(s)
- Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| |
Collapse
|
34
|
Yuan T, Wei W, Jiang W, Wang W. Vertical Diffusion of Ions within Single Particles during Electrochemical Charging. ACS NANO 2021; 15:3522-3528. [PMID: 33560133 DOI: 10.1021/acsnano.1c00431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Determining the trajectory of ionic transport and diffusion within single electroactive nanomaterials is critical for understanding the charging kinetics and capacity fading associated with ion batteries, with implications for rational design of excellent-performance electrode materials. While the horizontal pathway of mass transport has been feasibly investigated by optical superlocalization methods and electron microscopes, determination on the vertical trajectory has proven a more challenging task. Herein, we developed dual-angle total internal reflection microscopy by simultaneously introducing different angle-dependent illumination depths to trace the optical centroid shifts of nano-objects in the vertical dimension. We first demonstrated the proof of concept by resolving the vertical moving trails of a nanosphere doing Brownian motion and subsequently explored the picture of mass transport in the interior of single Prussian blue (PB) particles during electrochemical cycling. The results indicated that the vertical centroids of single PB particles remained unchanged when ions were inserted or extracted, suggesting an outside-in ionic transport pathway instead of bottom-up trajectory that one would intuitively expect.
Collapse
Affiliation(s)
- Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
35
|
Lemineur JF, Ciocci P, Noël JM, Ge H, Combellas C, Kanoufi F. Imaging and Quantifying the Formation of Single Nanobubbles at Single Platinum Nanoparticles during the Hydrogen Evolution Reaction. ACS NANO 2021; 15:2643-2653. [PMID: 33523639 DOI: 10.1021/acsnano.0c07674] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While numerous efforts have been made toward the design of sustainable and efficient nanocatalysts of the hydrogen evolution reaction, there is a need for the operando observation and quantification of the formation of gas nanobubbles (NBs) involved in this electrochemical reaction. It is achieved herein through interference reflection microscopy coupled to electrochemistry and optical modeling. In addition to analyzing the geometry and growth rate of individual NBs at single nanocatalysts, the toolbox offered by superlocalization and quantitative label-free optical microscopy allows analyzing the geometry (contact angle and footprint with surface) of individual NBs and their growth rate. It turns out that, after a few seconds, NBs are steadily growing while they are fully covering the Pt nanoparticles that allowed their nucleation and their pinning on the electrode surface. It then raises relevant questions related to gas evolution catalysts, such as, for example, does the evaluation of NB growth at the single nanocatalyst really reflect its electrochemical activity?
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Hongxin Ge
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | | | | |
Collapse
|
36
|
Zhu H, Jiang D, Zhu JJ. High-resolution imaging of catalytic activity of a single graphene sheet using electrochemiluminescence microscopy. Chem Sci 2021; 12:4794-4799. [PMID: 34163732 PMCID: PMC8179586 DOI: 10.1039/d0sc06967a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Here, the electrocatalytic activity of a single graphene sheet is mapped using electrochemiluminescence (ECL) microscopy with a nanometer resolution. The achievement of this high-spatial imaging relies on the varied adsorption of hydrogen peroxide at different sites on the graphene surface, leading to unsynchronized ECL emission. By shortening the exposure time to 0.2 ms, scattered ECL spots are observed in the ECL image that are not overlaid with the spots in the consecutive images. Accordingly, after stacking all the images into a graph, the ECL intensity of each pixel could be used to reflect the electrocatalytic features of the graphene surface with a resolution of 400 nm. This novel ECL method efficiently avoids the long-standing problem of classic ECL microscopy regarding the overlap of ECL emissions from adjacent regions and enables the nanometer spatial resolution of ECL microscopy for the first time.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| |
Collapse
|