1
|
Ozbey S, Keles G, Kurbanoglu S. Innovations in graphene-based electrochemical biosensors in healthcare applications. Mikrochim Acta 2025; 192:290. [PMID: 40205234 PMCID: PMC11982133 DOI: 10.1007/s00604-025-07141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
The isolation of a single atomic layer of graphite, known as graphene, marked a fundamental moment that transformed the field of materials science. Graphene-based nanomaterials are recognized for their superior biocompatibility compared with many other types of nanomaterials. Moreover, one of the main reasons for the growing interest in graphene is its potential applications in emerging technologies. Its key characteristics, including high electrical conductivity, excellent intrinsic charge carrier mobility, optical transparency, substantial specific surface area, and remarkable mechanical flexibility, position it as an ideal candidate for applications in solar cells and touch screens. Its durability further establishes graphene as a strong contender for developing robust materials. To date, a variety of methods, such as traditional spectroscopic techniques and chromatographic approaches, have been developed for detecting biomolecules, drugs, and heavy metals. Electrochemical methods, known for their portability, selectivity, and impressive sensitivity, offer considerable convenience for both patients and professionals in point-of-care diagnostics. Recent advancements have significantly improved the capacity for rapid and accurate detection of analytes in trace amounts, providing substantial benefits in biosensor technology. Additionally, the integration of nanotechnology has markedly enhanced the sensitivity and selectivity of electrochemical sensors, yielding significantly improved results. Innovations such as point-of-care, lab-on-a-chip, implantable devices, and wearable sensors are discussed in this review.
Collapse
Affiliation(s)
- Sudenur Ozbey
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Türkiye
| | - Gulsu Keles
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Türkiye
- The Graduate School of Health Sciences, Ankara University, 06110, Ankara, Türkiye
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Türkiye.
| |
Collapse
|
2
|
Shin S, Kim H, Ha JH, Eun KY, Kim J, Kim Y, Choe W, Kang SJ, Min SK, Bielawski CW, Park YS. Achieving Precise Control Over the Molecular Periphery of Dibenzoixenes Through Modular Synthesis. Chemistry 2025; 31:e202404189. [PMID: 39714809 DOI: 10.1002/chem.202404189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured. The single-crystal structures of dibenzo[a,p]ixene and dibenzo[j,y]ixene reveal enantiomeric pairs with helically twisted cove edges and packing structures. The molecular edge structures are identified from the C-H bonds of the dibenzoixenes using Fourier transform infrared spectroscopy with different vibrational modes, which were further explained using density functional theory calculations. Electron spin resonance spectroscopy indicates that the zigzag-edged molecular periphery significantly affects the magnetic properties of the material. Furthermore, the electrochemical characteristics, examined using dibenzoixenes as anode materials in Li-ion batteries, reveal that the dibenzo[a,p]ixene exhibits promising Li intercalation behaviors with a specific capacity of ~120 mAh g-1. The findings of this study could facilitate the synthesis of larger π ${\pi }$ -extended systems with engineered molecular peripheries and potential application in organic electronics.
Collapse
Affiliation(s)
- Seongrok Shin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Hwon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jee Ho Ha
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Kyung Yeon Eun
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jiyeon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Yeram Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Graduate School of Artificial Intelligence, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seok Ju Kang
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Christopher W Bielawski
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Young S Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
3
|
Zhu H, Wen G, Zheng W, Rees NH, Stawski W, Wang HI, Bonn M, Anderson HL. High Charge Carrier Mobility in Porphyrin Nanoribbons. Angew Chem Int Ed Engl 2025; 64:e202417429. [PMID: 39532665 DOI: 10.1002/anie.202417429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Polydisperse edge-fused nickel(II) porphyrin nanoribbons have been synthesized by Yamamoto coupling followed by gold(III)-mediated fusion, with average degrees of polymerization of up to 37 repeat units (length 31 nm). Time-resolved optical-pump terahertz spectroscopy measurements indicate that photo-generated charge carriers have dc mobilities of up to 205 cm2 V-1 s-1 in these nanoribbons, exceeding the values previously reported for most other types of nanoribbon or π-conjugated polymer.
Collapse
Affiliation(s)
- He Zhu
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Guanzhao Wen
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Wenhao Zheng
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Nicholas H Rees
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Wojciech Stawski
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Hai I Wang
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| |
Collapse
|
4
|
Gu Y, Xiang F, Liang Y, Bai P, Qiu Z, Chen Q, Narita A, Xie Y, Fasel R, Müllen K. A Poly(2,7-anthrylene) with peri-Fused Porphyrin Edges. Angew Chem Int Ed Engl 2025; 64:e202417129. [PMID: 39449108 DOI: 10.1002/anie.202417129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Anthracene has served as an important building block of conjugated polymers with the connecting positions playing a crucial role for the electronic structures. Herein, anthracene units have been coupled through their 2,7-carbons to develop an unprecedented, conjugated polymer, namely, poly(2,7-anthrylene) featuring additional peri-fused porphyrin edges. The synthesis starts from a 2,7-dibromo-9-nickel(II) porphyrinyl-anthracene as the pivotal precursor. Polymerization is achieved by an AA-type Yamamoto coupling, followed by a polymer-analogous oxidative cyclodehydrogenation to obtain a peri-fusion between porphyrin and anthracene moieties. Although further cyclodehydrogenation between the repeating units cannot be achieved in solution, the thermal treatment of the precursor polymer derived from 2,7-dibromo-9-porphyrinyl-anthracene on a metal surface realizes the full cyclodehydrogenation. The difference between solution and on-surface reactivity can be rationalized by the larger dihedral angle between repeat units in solution, which is reduced under the pronounced interaction with the metal surface. The peri-fusion in the title polymer gives rise to a narrow electronic band gap optical absorptions extending far into the near-infrared region. Oligomeric models are synthesized as well to support the analyses of the electronic and photophysical properties.
Collapse
Affiliation(s)
- Yanwei Gu
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Feifei Xiang
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Yamei Liang
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Peizhi Bai
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hongkong, Shenzhen (CUHK-Shenzhen, Guangdong, 518172, P.R. China
| | - Qiang Chen
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Akimitsu Narita
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yinjun Xie
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Roman Fasel
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Klaus Müllen
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
5
|
Reinhard D, Schuldt MP, Elbert SM, Ueberricke L, Hengefeld K, Rominger F, Mastalerz M. Substituent Effects in Scholl-Type Reactions of 1,2-Terphenyls to Triphenylenes. Chemistry 2024; 30:e202402821. [PMID: 39253989 DOI: 10.1002/chem.202402821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
A series of 3,3''- and 4,4''-dimethoxy terphenyls with different second substituents on their ortho-positions have been synthesized and investigated upon the possibility to be oxidatively cyclodehydrogenated to the corresponding triphenylenes under Scholl-type conditions. The experimentally obtained selectivities were supported and explained by quantum chemical calculations and conclusions on the involved mechanisms (acid catalyzed arenium-ion mechanism (AIM) vs radical cation mechanism) were drawn.
Collapse
Affiliation(s)
- Dennis Reinhard
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Moritz P Schuldt
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Lucas Ueberricke
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Karsten Hengefeld
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Obermann S, Zhou X, Guerrero-León LA, Serra G, Böckmann S, Fu Y, Dmitrieva E, Zhang JJ, Liu F, Popov AA, Lucotti A, Hansen MR, Tommasini M, Li Y, Blom PWM, Ma J, Feng X. Wavy Graphene Nanoribbons Containing Periodic Eight-Membered Rings for Light-Emitting Electrochemical Cells. Angew Chem Int Ed Engl 2024:e202415670. [PMID: 39268646 DOI: 10.1002/anie.202415670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Precision graphene nanoribbons (GNRs) offer distinctive physicochemical properties that are highly dependent on their geometric topologies, thereby holding great potential for applications in carbon-based optoelectronics and spintronics. While the edge structure and width control has been a popular strategy for engineering the optoelectronic properties of GNRs, non-hexagonal-ring-containing GNRs remain underexplored due to synthetic challenges, despite offering an equally high potential for tailored properties. Herein, we report the synthesis of a wavy GNR (wGNR) by embedding periodic eight-membered rings into its carbon skeleton, which is achieved by the A2B2-type Diels-Alder polymerization between dibenzocyclooctadiyne (6) and dicyclopenta[e,l]pyrene-5,11-dione derivative (8), followed by a selective Scholl reaction of the obtained ladder-type polymer (LTP) precursor. The obtained wGNR, with a length of up to 30 nm, has been thoroughly characterized by solid-state NMR, FT-IR, Raman, and UV/Vis spectroscopy with the support of DFT calculations. The non-planar geometry of wGNR efficiently prevents the inter-ribbon π-π aggregation, leading to photoluminescence in solution. Consequently, the wGNR can function as an emissive layer for organic light-emitting electrochemical cells (OLECs), offering a proof-of-concept exploration in implementing luminescent GNRs into optoelectronic devices. The fast-responding OLECs employing wGNR will pave the way for advancements in OLEC technology and other optoelectronic devices.
Collapse
Affiliation(s)
- Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
| | - Xin Zhou
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - L Andrés Guerrero-León
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
| | - Gianluca Serra
- Department of Chemistry, Materials, Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Steffen Böckmann
- Institute of Physical Chemistry, University of Münster, 48149, Münster, Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Jin-Jiang Zhang
- Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Andrea Lucotti
- Department of Chemistry, Materials, Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, University of Münster, 48149, Münster, Germany
| | - Matteo Tommasini
- Department of Chemistry, Materials, Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Yungui Li
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Paul W M Blom
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, 100049, Beijing, P. R. China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
- Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| |
Collapse
|
7
|
Swain A, Radacki K, Braunschweig H, Ravat P. Helically twisted nanoribbons via stereospecific annulative π-extension reaction employing [7]helicene as a molecular wrench. Chem Sci 2024; 15:11737-11747. [PMID: 39092091 PMCID: PMC11290328 DOI: 10.1039/d4sc01814a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 08/04/2024] Open
Abstract
Over the past decade, significant progress has been made in synthesizing atomically precise carbon nanostructures, particularly graphene nanoribbons (NRs), employing advanced synthetic methodologies. Despite these advancements, achieving control over the stereochemistry of twisted NRs has proven to be a formidable challenge. This manuscript presents a strategic approach to achieve absolute control over the single-handed helical conformation in a cove-edged NR. This strategy leverages enantiopure helicenes as a molecular wrench, intricately influencing the overall conformation of the NR. [7]helicenes stitched to the terminal K-regions of a conjugated pyrene NR through a stereospecific annulative π-extension reaction to produce a helically twisted NR with an end-to-end twist of 171°. Furthermore, a detailed investigation of the impact of twisting on the conformational population was studied by quantum chemical calculations.
Collapse
Affiliation(s)
- Asim Swain
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
| | - Krzysztof Radacki
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie Am Hubland 97074 Würzburg Germany
| | - Prince Ravat
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
| |
Collapse
|
8
|
Liu B, Ma S. Precise synthesis of graphene by chemical vapor deposition. NANOSCALE 2024; 16:4407-4433. [PMID: 38291992 DOI: 10.1039/d3nr06041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Graphene, a typical representative of the family of two-dimensional (2D) materials, possesses a series of phenomenal physical properties. To date, numerous inspiring discoveries have been made on its structures, properties, characterization, synthesis, transfer and applications. The real practical applications of this magic material indeed require large-scale synthesis and precise control over its structures, such as size, crystallinity, layer number, stacking order, edge type and contamination levels. Nonetheless, studies on the precise synthesis of graphene are far from satisfactory currently. Our review aims to deal with the precise synthesis of four critical graphene structures, including single-crystal graphene (SCG), AB-stacked bilayer graphene (AB-BLG), etched graphene and clean graphene. Meanwhile, existing problems and future directions in the precise synthesis of graphene are also briefly discussed.
Collapse
Affiliation(s)
- Bing Liu
- Ji Hua Laboratory, Foshan, 528200, P. R. China.
| | - Siguang Ma
- Ji Hua Laboratory, Foshan, 528200, P. R. China.
| |
Collapse
|
9
|
Liu K, Zheng W, Osella S, Qiu ZL, Böckmann S, Niu W, Meingast L, Komber H, Obermann S, Gillen R, Bonn M, Hansen MR, Maultzsch J, Wang HI, Ma J, Feng X. Cove-Edged Chiral Graphene Nanoribbons with Chirality-Dependent Bandgap and Carrier Mobility. J Am Chem Soc 2024; 146:1026-1034. [PMID: 38117539 DOI: 10.1021/jacs.3c11975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Graphene nanoribbons (GNRs) have garnered significant interest due to their highly customizable physicochemical properties and potential utility in nanoelectronics. Besides controlling widths and edge structures, the inclusion of chirality in GNRs brings another dimension for fine-tuning their optoelectronic properties, but related studies remain elusive owing to the absence of feasible synthetic strategies. Here, we demonstrate a novel class of cove-edged chiral GNRs (CcGNRs) with a tunable chiral vector (n,m). Notably, the bandgap and effective mass of (n,2)-CcGNR show a distinct positive correlation with the increasing value of n, as indicated by theory. Within this GNR family, two representative members, namely, (4,2)-CcGNR and (6,2)-CcGNR, are successfully synthesized. Both CcGNRs exhibit prominently curved geometries arising from the incorporated [4]helicene motifs along their peripheries, as also evidenced by the single-crystal structures of the two respective model compounds (1 and 2). The chemical identities and optoelectronic properties of (4,2)- and (6,2)-CcGNRs are comprehensively investigated via a combination of IR, Raman, solid-state NMR, UV-vis, and THz spectroscopies as well as theoretical calculations. In line with theoretical expectation, the obtained (6,2)-CcGNR possesses a low optical bandgap of 1.37 eV along with charge carrier mobility of ∼8 cm2 V-1 s-1, whereas (4,2)-CcGNR exhibits a narrower bandgap of 1.26 eV with increased mobility of ∼14 cm2 V-1 s-1. This work opens up a new avenue to precisely engineer the bandgap and carrier mobility of GNRs by manipulating their chiral vector.
Collapse
Affiliation(s)
- Kun Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Zhen-Lin Qiu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Steffen Böckmann
- Institute of Physical Chemistry, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Wenhui Niu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| | - Laura Meingast
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany
| | - Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Roland Gillen
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Janina Maultzsch
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| |
Collapse
|
10
|
Wang MW, Fan W, Li X, Liu Y, Li Z, Jiang W, Wu J, Wang Z. Molecular Carbons: How Far Can We Go? ACS NANO 2023; 17:20734-20752. [PMID: 37889626 DOI: 10.1021/acsnano.3c07970] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The creation and development of carbon nanomaterials promoted material science significantly. Bottom-up synthesis has emerged as an efficient strategy to synthesize atomically precise carbon nanomaterials, namely, molecular carbons, with various sizes and topologies. Different from the properties of the feasibly obtained mixture of carbon nanomaterials, numerous properties of single-component molecular carbons have been discovered owing to their well-defined structures as well as potential applications in various fields. This Perspective introduces recent advances in molecular carbons derived from fullerene, graphene, carbon nanotube, carbyne, graphyne, and Schwarzite carbon acquired with different synthesis strategies. By selecting a variety of representative examples, we elaborate on the relationship between molecular carbons and carbon nanomaterials. We hope these multiple points of view presented may facilitate further advancement in this field.
Collapse
Affiliation(s)
- Ming-Wei Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xiaonan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuoyu Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronic Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Liu Y, Zhang H, Yu H, Liao Z, Paasch S, Xu S, Zhao R, Brunner E, Bonn M, Wang HI, Heine T, Wang M, Mai Y, Feng X. A Thiophene Backbone Enables Two-Dimensional Poly(arylene vinylene)s with High Charge Carrier Mobility. Angew Chem Int Ed Engl 2023; 62:e202305978. [PMID: 37271733 DOI: 10.1002/anie.202305978] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
Linear conjugated polymers have attracted significant attention in organic electronics in recent decades. However, despite intrachain π-delocalization, interchain hopping is their transport bottleneck. In contrast, two-dimensional (2D) conjugated polymers, as represented by 2D π-conjugated covalent organic frameworks (2D c-COFs), can provide multiple conjugated strands to enhance the delocalization of charge carriers in space. Herein, we demonstrate the first example of thiophene-based 2D poly(arylene vinylene)s (PAVs, 2DPAV-BDT-BT and 2DPAV-BDT-BP, BDT=benzodithiophene, BT=bithiophene, BP=biphenyl) via Knoevenagel polycondensation. Compared with 2DPAV-BDT-BP, the fully thiophene-based 2DPAV-BDT-BT exhibits enhanced planarity and π-delocalization with a small band gap (1.62 eV) and large electronic band dispersion, as revealed by the optical absorption and density functional calculations. Remarkably, temperature-dependent terahertz spectroscopy discloses a unique band-like transport and outstanding room-temperature charge mobility for 2DPAV-BDT-BT (65 cm2 V-1 s-1 ), which far exceeds that of the linear PAVs, 2DPAV-BDT-BP, and the reported 2D c-COFs in the powder form. This work highlights the great potential of thiophene-based 2D PAVs as candidates for high-performance opto-electronics.
Collapse
Affiliation(s)
- Yamei Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Heng Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hongde Yu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), 01109, Dresden, Germany
| | - Silvia Paasch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Shunqi Xu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Ruyan Zhao
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Eike Brunner
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thomas Heine
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Forschungsstelle Leipzig, 04318, Leipzig, Germany
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, (Germany)
| |
Collapse
|
12
|
Niu W, Fu Y, Serra G, Liu K, Droste J, Lee Y, Ling Z, Xu F, Cojal González JD, Lucotti A, Rabe JP, Ryan Hansen M, Pisula W, Blom PWM, Palma CA, Tommasini M, Mai Y, Ma J, Feng X. Bottom-up Solution Synthesis of Graphene Nanoribbons with Precisely Engineered Nanopores. Angew Chem Int Ed Engl 2023; 62:e202305737. [PMID: 37335764 DOI: 10.1002/anie.202305737] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR (pGNR) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor (P1) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds (1 a, 1 b) containing the same pore size as the shortcuts of pGNR, are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the π-conjugation degree and alleviate the inter-ribbon π-π interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.
Collapse
Affiliation(s)
- Wenhui Niu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yubin Fu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Gianluca Serra
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Kun Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Jörn Droste
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Yeonju Lee
- Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Zhitian Ling
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - José D Cojal González
- Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Andrea Lucotti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Jürgen P Rabe
- Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Carlos-Andres Palma
- Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
13
|
Obermann S, Zheng W, Melidonie J, Böckmann S, Osella S, Arisnabarreta N, Guerrero-León LA, Hennersdorf F, Beljonne D, Weigand JJ, Bonn M, De Feyter S, Hansen MR, Wang HI, Ma J, Feng X. Curved graphene nanoribbons derived from tetrahydropyrene-based polyphenylenes via one-pot K-region oxidation and Scholl cyclization. Chem Sci 2023; 14:8607-8614. [PMID: 37592977 PMCID: PMC10430550 DOI: 10.1039/d3sc02824k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 08/19/2023] Open
Abstract
Precise synthesis of graphene nanoribbons (GNRs) is of great interest to chemists and materials scientists because of their unique opto-electronic properties and potential applications in carbon-based nanoelectronics and spintronics. In addition to the tunable edge structure and width, introducing curvature in GNRs is a powerful structural feature for their chemi-physical property modification. Here, we report an efficient solution synthesis of the first pyrene-based GNR (PyGNR) with curved geometry via one-pot K-region oxidation and Scholl cyclization of its corresponding well-soluble tetrahydropyrene-based polyphenylene precursor. The efficient A2B2-type Suzuki polymerization and subsequent Scholl reaction furnishes up to ∼35 nm long curved GNRs bearing cove- and armchair-edges. The construction of model compound 1, as a cutout of PyGNR, from a tetrahydropyrene-based oligophenylene precursor proves the concept and efficiency of the one-pot K-region oxidation and Scholl cyclization, which is clearly revealed by single crystal X-ray diffraction analysis. The structure and optical properties of PyGNR are investigated by Raman, FT-IR, solid-state NMR, STM and UV-Vis analysis with the support of DFT calculations. PyGNR exhibits a narrow optical bandgap of ∼1.4 eV derived from a Tauc plot, qualifying as a low-bandgap GNR. Moreover, THz spectroscopy on PyGNR estimates its macroscopic charge mobility μ as ∼3.6 cm2 V-1 s-1, outperforming several other curved GNRs reported via conventional Scholl reaction.
Collapse
Affiliation(s)
- Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden D-01069 Dresden Germany
| | - Wenhao Zheng
- Max-Planck-Institute for Polymer Research D-55128 Mainz Germany
| | - Jason Melidonie
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden D-01069 Dresden Germany
| | - Steffen Böckmann
- Institute of Physical Chemistry, Westfählische Wilhelms-Universität (WWU) Münster D-48149 Münster Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies University of Warsaw Banacha 2C Warsaw 02-097 Poland
| | - Nicolás Arisnabarreta
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - L Andrés Guerrero-León
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden D-01069 Dresden Germany
| | - Felix Hennersdorf
- Chair of Inorganic Molecular Chemistry, Technische Universität Dresden Dresden Germany
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons Mons 7000 Belgium
| | - Jan J Weigand
- Chair of Inorganic Molecular Chemistry, Technische Universität Dresden Dresden Germany
| | - Mischa Bonn
- Max-Planck-Institute for Polymer Research D-55128 Mainz Germany
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Westfählische Wilhelms-Universität (WWU) Münster D-48149 Münster Germany
| | - Hai I Wang
- Max-Planck-Institute for Polymer Research D-55128 Mainz Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden D-01069 Dresden Germany
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden D-01069 Dresden Germany
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
| |
Collapse
|
14
|
Hsu TC, Wu BX, Lin RT, Chien CJ, Yeh CY, Chang TH. Electron-phonon interaction toward engineering carrier mobility of periodic edge structured graphene nanoribbons. Sci Rep 2023; 13:5781. [PMID: 37031224 PMCID: PMC10082836 DOI: 10.1038/s41598-023-32655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Graphene nanoribbons have many extraordinary electrical properties and are the candidates for semiconductor industry. In this research, we propose a design of Coved GNRs with periodic structure ranged from 4 to 8 nm or more, of which the size is within practical feature sizes by advanced lithography tools. The carrier transport properties of Coved GNRs with the periodic coved shape are designed to break the localized electronic state and reducing electron-phonon scattering. In this way, the mobility of Coved GNRs can be enhanced by orders compared with the zigzag GNRs in same width. Moreover, in contrast to occasional zero bandgap transition of armchair and zigzag GNRs without precision control in atomic level, the Coved GNRs with periodic edge structures can exclude the zero bandgap conditions, which makes practical the mass production process. The designed Coved-GNRs is fabricated over the Germanium (110) substrate where the graphene can be prepared in the single-crystalline and single-oriented formants and the edge of GNRs is later repaired under "balanced condition growth" and we demonstrate that the propose coved structures are compatible to current fabrication facility.
Collapse
Affiliation(s)
- Teng-Chin Hsu
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
| | - Bi-Xian Wu
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
| | - Rong-Teng Lin
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
| | - Chia-Jen Chien
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Yeh
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsuan Chang
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Reale M, Sciortino A, Cannas M, Maçoas E, David AHG, Cruz CM, Campaña AG, Messina F. Atomically Precise Distorted Nanographenes: The Effect of Different Edge Functionalization on the Photophysical Properties down to the Femtosecond Scale. MATERIALS (BASEL, SWITZERLAND) 2023; 16:835. [PMID: 36676571 PMCID: PMC9867459 DOI: 10.3390/ma16020835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Nanographenes (NGs) have been attracting widespread interest since they combine peculiar properties of graphene with molecular features, such as bright visible photoluminescence. However, our understanding of the fundamental properties of NGs is still hampered by the high degree of heterogeneity usually characterizing most of these materials. In this context, NGs obtained by atomically precise synthesis routes represent optimal benchmarks to unambiguously relate their properties to well-defined structures. Here we investigate in deep detail the optical response of three curved hexa-peri-hexabenzocoronene (HBC) derivatives obtained by atomically precise synthesis routes. They are constituted by the same graphenic core, characterized by the presence of a heptagon ring determining a saddle distortion of their sp2 network, and differ from each other for slightly different edge functionalization. The quite similar structure allows for performing a direct comparison of their spectroscopic features, from steady-state down to the femtosecond scale, and precisely disentangling the role played by the different edge chemistry.
Collapse
Affiliation(s)
- Marco Reale
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Alice Sciortino
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
- Advanced Technologies Network Center, Università degli Studi di Palermo, Viale delle Scienze Ed. 18/A, 90128 Palermo, Italy
| | - Marco Cannas
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Ermelinda Maçoas
- Centro de Química Estrutural e Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa (Portugal), Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Arthur H. G. David
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Carlos M. Cruz
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Araceli G. Campaña
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Fabrizio Messina
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
- Advanced Technologies Network Center, Università degli Studi di Palermo, Viale delle Scienze Ed. 18/A, 90128 Palermo, Italy
| |
Collapse
|
16
|
Scherb S, Hinaut A, Yao X, Götz A, Al-Hilfi SH, Wang XY, Hu Y, Qiu Z, Song Y, Müllen K, Glatzel T, Narita A, Meyer E. Solution-Synthesized Extended Graphene Nanoribbons Deposited by High-Vacuum Electrospray Deposition. ACS NANO 2023; 17:597-605. [PMID: 36542550 PMCID: PMC9835822 DOI: 10.1021/acsnano.2c09748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Solution-synthesized graphene nanoribbons (GNRs) facilitate various interesting structures and functionalities, like nonplanarity and thermolabile functional groups, that are not or not easily accessible by on-surface synthesis. Here, we show the successful high-vacuum electrospray deposition (HVESD) of well-elongated solution-synthesized GNRs on surfaces maintained in ultrahigh vacuum. We compare three distinct GNRs, a twisted nonplanar fjord-edged GNR, a methoxy-functionalized "cove"-type (or also called gulf) GNR, and a longer "cove"-type GNR both equipped with alkyl chains on Au(111). Nc-AFM measurements at room temperature with submolecular imaging combined with Raman spectroscopy allow us to characterize individual GNRs and confirm their chemical integrity. The fjord-GNR and methoxy-GNR are additionally deposited on nonmetallic HOPG and SiO2, and fjord-GNR is deposited on a KBr(001) surface, facilitating the study of GNRs on substrates, as of now not accessible by on-surface synthesis.
Collapse
Affiliation(s)
- Sebastian Scherb
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Antoine Hinaut
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Xuelin Yao
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Alicia Götz
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Samir H. Al-Hilfi
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xiao-Ye Wang
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yunbin Hu
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zijie Qiu
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yiming Song
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Klaus Müllen
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Thilo Glatzel
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Akimitsu Narita
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ernst Meyer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| |
Collapse
|
17
|
Niu W, Ma J, Feng X. Precise Structural Regulation and Band-Gap Engineering of Curved Graphene Nanoribbons. Acc Chem Res 2022; 55:3322-3333. [PMID: 36378659 DOI: 10.1021/acs.accounts.2c00550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Graphene nanoribbons (GNRs)─quasi-one-dimensional graphene cutouts─have drawn growing attention as promising candidates for next-generation electronic and spintronic materials. Theoretical and experimental studies have demonstrated that the electronic and magnetic properties of GNRs critically depend on their widths and edge topologies. Thus, the preparation of structurally defined GNRs is highly desirable not only for their fundamental physicochemical studies but also for their future technological development in carbon-based nanoelectronics. In the past decade, significant efforts have been made to construct a wide variety of GNRs with well-defined widths and edge structures via bottom-up synthesis. In addition to extensively studied planar GNRs consisting of armchair, zigzag, or gulf edges, curved GNRs (cGNRs) bearing cove ([4]helicene unit) or fjord ([5]helicene unit) regions along the ribbon edges have received increasing interest after we presented the first attempt to synthesize the fully cove-edged GNRs in 2015. Profiting from their novel edge topologies, cGNRs usually exhibit an unprecedented narrow band gap and high carrier transport mobility in comparison to the planar GNRs with similar widths. Moreover, cGNRs with particular out-of-plane-distorted structures are expected to provide further opportunities in nonlinear optics and asymmetric catalysis. However, the synthesis of cGNRs bearing cove or fjord edges remains underdeveloped due to the absence of efficient synthetic strategies/methods and suitable molecular precursor design.In this Account, we present the recent advances in the bottom-up synthesis and characterization of structurally defined cGNRs containing cove or fjord edges, mainly from our research group. First, the synthetic strategies toward cGNRs bearing cove edges are described, including the design of molecular monomers and polymer precursors as well as the corresponding polymerization methods, such as Ullmann coupling, Yamamoto coupling, A2B2-type Diels-Alder polymerization, followed by Scholl-type cyclodehydrogenation. The synthesis of typical model compounds is also described to support the understanding of the related cGNRs. In addition, the synthesis of cGNRs containing fjord edges from other research groups via the regioselective Scholl reaction, Hopf cyclization or regioselective photochemical cyclodehydrochlorination approach is presented. Second, we discuss the optoelectronic properties of the as-synthesized cGNRs and reveal the design principle to obtain cGNRs with high charge carrier mobilities. Finally, the challenges and prospects in the design and synthesis of cGNRs are offered. We anticipate that this Account will further stimulate the development of cGNRs through a collaborative effort between different disciplines.
Collapse
Affiliation(s)
- Wenhui Niu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| |
Collapse
|
18
|
Li Y, Liu M, Wu J, Li J, Yu X, Zhang Q. Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications. FRONTIERS OF OPTOELECTRONICS 2022; 15:38. [PMID: 36637691 PMCID: PMC9756274 DOI: 10.1007/s12200-022-00032-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/09/2022] [Indexed: 05/15/2023]
Abstract
Covalent organic frameworks (COFs) are one class of porous materials with permanent porosity and regular channels, and have a covalent bond structure. Due to their interesting characteristics, COFs have exhibited diverse potential applications in many fields. However, some applications require the frameworks to possess high structural stability, excellent crystallinity, and suitable pore size. COFs based on β-ketoenamine and imines are prepared through the irreversible enol-to-keto tautomerization. These materials have high crystallinity and exhibit high stability in boiling water, with strong resistance to acids and bases, resulting in various possible applications. In this review, we first summarize the preparation methods for COFs based on β-ketoenamine, in the form of powders, films and foams. Then, the effects of different synthetic methods on the crystallinity and pore structure of COFs based on β-ketoenamine are analyzed and compared. The relationship between structures and different applications including fluorescence sensors, energy storage, photocatalysis, electrocatalysis, batteries and proton conduction are carefully summarized. Finally, the potential applications, large-scale industrial preparation and challenges in the future are presented.
Collapse
Affiliation(s)
- Yaqin Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Maosong Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Jinjun Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Junbo Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Xianglin Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hongkong, Hong Kong SAR, 999077, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hongkong, Hong Kong SAR, 999077, China.
| |
Collapse
|
19
|
Gu Y, Qiu Z, Müllen K. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J Am Chem Soc 2022; 144:11499-11524. [PMID: 35671225 PMCID: PMC9264366 DOI: 10.1021/jacs.2c02491] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As cut-outs from a graphene sheet, nanographenes (NGs) and graphene nanoribbons (GNRs) are ideal cases with which to connect the world of molecules with that of bulk carbon materials. While various top-down approaches have been developed to produce such nanostructures in high yields, in the present perspective, precision structural control is emphasized for the length, width, and edge structures of NGs and GNRs achieved by modern solution and on-surface syntheses. Their structural possibilities have been further extended from "flatland" to the three-dimensional world, where chirality and handedness are the jewels in the crown. In addition to properties exhibited at the molecular level, self-assembly and thin-film structures cannot be neglected, which emphasizes the importance of processing techniques. With the rich toolkit of chemistry in hand, NGs and GNRs can be endowed with versatile properties and functions ranging from stimulated emission to spintronics and from bioimaging to energy storage, thus demonstrating their multitalents in present and future materials science.
Collapse
Affiliation(s)
- Yanwei Gu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zijie Qiu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
for Physical Chemistry , Johannes Gutenberg
University Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| |
Collapse
|
20
|
Liu Z, Fu S, Liu X, Narita A, Samorì P, Bonn M, Wang HI. Small Size, Big Impact: Recent Progress in Bottom-Up Synthesized Nanographenes for Optoelectronic and Energy Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106055. [PMID: 35218329 PMCID: PMC9259728 DOI: 10.1002/advs.202106055] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Indexed: 05/20/2023]
Abstract
Bottom-up synthesized graphene nanostructures, including 0D graphene quantum dots and 1D graphene nanoribbons, have recently emerged as promising candidates for efficient, green optoelectronic, and energy storage applications. The versatility in their molecular structures offers a large and novel library of nanographenes with excellent and adjustable optical, electronic, and catalytic properties. In this minireview, recent progress on the fundamental understanding of the properties of different graphene nanostructures, and their state-of-the-art applications in optoelectronics and energy storage are summarized. The properties of pristine nanographenes, including high emissivity and intriguing blinking effect in graphene quantum dots, superior charge transport properties in graphene nanoribbons, and edge-specific electrochemistry in various graphene nanostructures, are highlighted. Furthermore, it is shown that emerging nanographene-2D material-based van der Waals heterostructures provide an exciting opportunity for efficient green optoelectronics with tunable characteristics. Finally, challenges and opportunities of the field are highlighted by offering guidelines for future combined efforts in the synthesis, assembly, spectroscopic, and electrical studies as well as (nano)fabrication to boost the progress toward advanced device applications.
Collapse
Affiliation(s)
- Zhaoyang Liu
- University of StrasbourgCNRSISIS UMR 70068 allée Gaspard MongeStrasbourg67000France
| | - Shuai Fu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐sonKunigamiOkinawa904‐0495Japan
| | - Paolo Samorì
- University of StrasbourgCNRSISIS UMR 70068 allée Gaspard MongeStrasbourg67000France
| | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
21
|
Yang L, Ma J, Zheng W, Osella S, Droste J, Komber H, Liu K, Böckmann S, Beljonne D, Hansen MR, Bonn M, Wang HI, Liu J, Feng X. Solution Synthesis and Characterization of a Long and Curved Graphene Nanoribbon with Hybrid Cove-Armchair-Gulf Edge Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200708. [PMID: 35322602 PMCID: PMC9259722 DOI: 10.1002/advs.202200708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Curved graphene nanoribbons (GNRs) with hybrid edge structures have recently attracted increasing attention due to their unique band structures and electronic properties as a result of their nonplanar conformation. This work reports the solution synthesis of a long and curved multi-edged GNR (cMGNR) with unprecedented cove-armchair-gulf edge structures. The synthesis involves an efficient A2 B2 -type Diels-Alder polymerization between a diethynyl-substituted prefused bichrysene monomer (3b) and a dicyclopenta[e,l]pyrene-5,11-dione derivative (6) followed by FeCl3 -mediated Scholl oxidative cyclodehydrogenation of the obtained polyarylenes (P1). Model compounds 1a and 1b are first synthesized to examine the suitability and efficiency of the corresponding polymers for the Scholl reaction. The successful formation of cMGNR from polymer P1 bearing prefused bichrysene units is confirmed by FTIR, Raman, and solid-state NMR analyses. The cove-edge structure of the cMGNR imparts the ribbon with a unique nonplanar conformation as revealed by density functional theory (DFT) simulation, which effectively enhances its dispersibility in solution. The cMGNR has a narrow optical bandgap of 1.61 eV, as estimated from the UV-vis absorption spectrum, which is among the family of low-bandgap solution-synthesized GNRs. Moreover, the cMGNR exhibits a carrier mobility of ≈2 cm2 V-1 s-1 inferred from contact-free terahertz spectroscopy.
Collapse
Affiliation(s)
- Lin Yang
- Centre for Advancing Electronics Dresden (cfaed)Department of Chemistry and Food ChemistryTechnische Universität DresdenDresden01062Germany
| | - Ji Ma
- Centre for Advancing Electronics Dresden (cfaed)Department of Chemistry and Food ChemistryTechnische Universität DresdenDresden01062Germany
| | - Wenhao Zheng
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation LabCentre of New TechnologiesUniversity of WarsawBanacha 2CWarsaw02–097Poland
| | - Jörn Droste
- Institute of Physical ChemistryWestfal̈ische Wilhelms‐Universitaẗ (WWU) MünsterCorrensstraße 28/30MünsterD‐48149Germany
| | - Hartmut Komber
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6Dresden01069Germany
| | - Kun Liu
- Centre for Advancing Electronics Dresden (cfaed)Department of Chemistry and Food ChemistryTechnische Universität DresdenDresden01062Germany
| | - Steffen Böckmann
- Institute of Physical ChemistryWestfal̈ische Wilhelms‐Universitaẗ (WWU) MünsterCorrensstraße 28/30MünsterD‐48149Germany
| | - David Beljonne
- Laboratory for Chemistry of Novel MaterialsUniversité de MonsMonsB‐7000Belgium
| | - Michael Ryan Hansen
- Institute of Physical ChemistryWestfal̈ische Wilhelms‐Universitaẗ (WWU) MünsterCorrensstraße 28/30MünsterD‐48149Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe University of Hong KongPokfulam RoadHong Kong999077China
| | - Xinliang Feng
- Centre for Advancing Electronics Dresden (cfaed)Department of Chemistry and Food ChemistryTechnische Universität DresdenDresden01062Germany
- Max Planck Institute of Microstructure PhysicsWeinberg 2Halle06120Germany
| |
Collapse
|
22
|
Fei Y, Liu J. Synthesis of Defective Nanographenes Containing Joined Pentagons and Heptagons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201000. [PMID: 35470978 PMCID: PMC9259726 DOI: 10.1002/advs.202201000] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Defective nanographenes containing joined pentagons and heptagons exhibit striking physicochemical properties from both experimental and theoretical perspectives compared with their pure hexagonal counterparts. Thus, the synthesis and characterization of these unique polyarenes with well-defined defective topologies have attracted increasing attention. Despite extensive research on nonalternant molecules since the last century, most studies focused on the corresponding mutagenic and carcinogenic activities. Recently, researchers have realized that the defective domain induces geometric bending and causes electronic perturbation, thus leading to significant alteration of the photophysical properties. This review discusses the synthesis and characterization of small nonalternant polycyclic hydrocarbons in the early stage and recent developments in embedding pentagon-heptagon (5-7) pairs into large carbon skeletons through in-solution chemistry.
Collapse
Affiliation(s)
- Yiyang Fei
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe University of Hong KongHong Kong999077P. R. China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe University of Hong KongHong Kong999077P. R. China
| |
Collapse
|
23
|
Wang Y, Huang Y, Huang T, Zhang J, Luo T, Ni Y, Li B, Xie S, Zeng Z. Perylene‐Based Linear Nonalternant Nanoribbons with Bright Emission and Ambipolar Redox Behavior. Angew Chem Int Ed Engl 2022; 61:e202200855. [DOI: 10.1002/anie.202200855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Yulin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Tingting Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering Anhui Jianzhu University Hefei 230039 P. R. China
| | - Teng Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Yong Ni
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Bo Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
- School of Materials Science and Engineering Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| |
Collapse
|
24
|
Wang Y, Huang Y, Huang T, Zhang J, Luo T, Ni Y, Li B, Xie S, Zeng Z. Perylene‐Based Linear Nonalternant Nanoribbons with Bright Emission and Ambipolar Redox Behavior. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanpei Wang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Yulin Huang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Tingting Huang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Jun Zhang
- Anhui Jianzhu University School of Materials and Chemical Engineering CHINA
| | - Teng Luo
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Yong Ni
- National University of Singapore Department of Chemistry SINGAPORE
| | - Bo Li
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Sheng Xie
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Zebing Zeng
- Hunan University College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, P. R. China 410082 Changsha CHINA
| |
Collapse
|
25
|
Bahrami M, Vasilopoulos P. Inhomogeneous linear responses and transport in armchair graphene nanoribbons in the presence of elastic scattering. NANOTECHNOLOGY 2022; 33:195201. [PMID: 35090140 DOI: 10.1088/1361-6528/ac4fe2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Within linear-response theory we derive a response function that thoroughly accounts for the influence of elastic scattering and is valid beyond the long-wavelength limit. We use the theory to evaluate the polarization function and the conductivity in metallic armchair graphene nanoribbons in the Lindhard approximation for intra-band and inter-band transitions and for a relaxation timeτthat is not constant. We obtain a logarithmic behaviour in the scattering-independent polarization function not only for intra-band transitions, as is usually the case for one-dimensional systems, but also for inter-band transitions. Modifying the screening wave vector and the impurity density in the long-wavelength limit strongly influences the relaxation time. In contrast, for large wave vectors, this modification leads to a conservative value ofτ. We show that the imaginary part of the impurity-dependent conductivity varies with the wave vector while its scattering-independent part exists only for a single value of the wave vector.
Collapse
Affiliation(s)
- Mousa Bahrami
- Bita Quantum AI Inc., 2021 Av. Atwater, Montréal, Québec, H3H 2P2, Canada
| | - Panagiotis Vasilopoulos
- Department of Physics, Concordia University, 7141 Sherbrooke Ouest, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
26
|
Zhang S, Pang J, Li Y, Ibarlucea B, Liu Y, Wang T, Liu X, Peng S, Gemming T, Cheng Q, Liu H, Yang J, Cuniberti G, Zhou W, Rümmeli MH. An effective formaldehyde gas sensor based on oxygen-rich three-dimensional graphene. NANOTECHNOLOGY 2022; 33:185702. [PMID: 35078155 DOI: 10.1088/1361-6528/ac4eb4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) graphene with a high specific surface area and excellent electrical conductivity holds extraordinary potential for molecular gas sensing. Gas molecules adsorbed onto graphene serve as electron donors, leading to an increase in conductivity. However, several challenges remain for 3D graphene-based gas sensors, such as slow response and long recovery time. Therefore, research interest remains in the promotion of the sensitivity of molecular gas detection. In this study, we fabricate oxygen plasma-treated 3D graphene for the high-performance gas sensing of formaldehyde. We synthesize large-area, high-quality, 3D graphene over Ni foam by chemical vapor deposition and obtain freestanding 3D graphene foam after Ni etching. We compare three types of strategies-non-treatment, oxygen plasma, and etching in HNO3solution-for the posttreatment of 3D graphene. Eventually, the strategy for oxygen plasma-treated 3D graphene exceeds expectations, which may highlight the general gas sensing based on chemiresistors.
Collapse
Affiliation(s)
- Shu Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden D-01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden D-01069, Germany
| | - Yu Liu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, People's Republic of China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, No.3501 Daxue Road, Jinan 250353, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, People's Republic of China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
| | - Thomas Gemming
- Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, PO Box 270116, Dresden, D-01171 Germany
| | - Qilin Cheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, People's Republic of China
| | - Jiali Yang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden D-01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden D-01069, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden D-01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden D-01062, Germany
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Mark H Rümmeli
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, People's Republic of China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
- Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, PO Box 270116, Dresden, D-01171 Germany
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland
- Institute of Environmental Technology (CEET), VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| |
Collapse
|
27
|
Dubey RK, Melle-Franco M, Mateo-Alonso A. Inducing Single-Handed Helicity in a Twisted Molecular Nanoribbon. J Am Chem Soc 2022; 144:2765-2774. [PMID: 35099195 PMCID: PMC8855342 DOI: 10.1021/jacs.1c12385] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular conformation has an important role in chemistry and materials science. Molecular nanoribbons can adopt chiral twisted helical conformations. However, the synthesis of single-handed helically twisted molecular nanoribbons still represents a considerable challenge. Herein, we describe an asymmetric approach to induce single-handed helicity with an excellent degree of conformational discrimination. The chiral induction is the result of the chiral strain generated by fusing two oversized chiral rings and of the propagation of that strain along the nanoribbon's backbone.
Collapse
Affiliation(s)
- Rajeev K Dubey
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manuel Melle-Franco
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
28
|
Duan C, Zhang J, Xiang J, Yang X, Gao X. Design, Synthesis and Properties of Azulene-Based BN-[4]Helicenes※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21110508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Wang X, Ma J, Zheng W, Osella S, Arisnabarreta N, Droste J, Serra G, Ivasenko O, Lucotti A, Beljonne D, Bonn M, Liu X, Hansen MR, Tommasini M, De Feyter S, Liu J, Wang HI, Feng X. Cove-Edged Graphene Nanoribbons with Incorporation of Periodic Zigzag-Edge Segments. J Am Chem Soc 2021; 144:228-235. [PMID: 34962807 DOI: 10.1021/jacs.1c09000] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Structurally precision graphene nanoribbons (GNRs) are promising candidates for next-generation nanoelectronics due to their intriguing and tunable electronic structures. GNRs with hybrid edge structures often confer them unique geometries associated with exotic physicochemical properties. Herein, a novel type of cove-edged GNRs with periodic short zigzag-edge segments is demonstrated. The bandgap of this GNR family can be tuned using an interplay between the length of the zigzag segments and the distance of two adjacent cove units along the opposite edges, which can be converted from semiconducting to nearly metallic. A family member with periodic cove-zigzag edges based on N = 6 zigzag-edged GNR, namely 6-CZGNR-(2,1), is successfully synthesized in solution through the Scholl reaction of a unique snakelike polymer precursor (10) that is achieved by the Yamamoto coupling of a structurally flexible S-shaped phenanthrene-based monomer (1). The efficiency of cyclodehydrogenation of polymer 10 toward 6-CZGNR-(2,1) is validated by FT-IR, Raman, and UV-vis spectroscopies, as well as by the study of two representative model compounds (2 and 3). Remarkably, the resultant 6-CZGNR-(2,1) exhibits an extended and broad absorption in the near-infrared region with a record narrow optical bandgap of 0.99 eV among the reported solution-synthesized GNRs. Moreover, 6-CZGNR-(2,1) exhibits a high macroscopic carrier mobility of ∼20 cm2 V-1 s-1 determined by terahertz spectroscopy, primarily due to the intrinsically small effective mass (m*e = m*h = 0.17 m0), rendering this GNR a promising candidate for nanoelectronics.
Collapse
Affiliation(s)
- Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, 610065 Chengdu, P.R. China.,Centre for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ji Ma
- Centre for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Nicolás Arisnabarreta
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Jörn Droste
- Institute of Physical Chemistry, Westfal̈ische Wilhelms-Universitaẗ Münster, Corrensstraße 28/30, D-48149 Münster, Germany
| | - Gianluca Serra
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Oleksandr Ivasenko
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Andrea Lucotti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc, 20, B-7000 Mons, Belgium
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, 610065 Chengdu, P.R. China
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Westfal̈ische Wilhelms-Universitaẗ Münster, Corrensstraße 28/30, D-48149 Münster, Germany
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xinliang Feng
- Centre for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| |
Collapse
|
30
|
Bo W, Zou Y, Wang J. Novel electrical properties and applications in kaleidoscopic graphene nanoribbons. RSC Adv 2021; 11:33675-33691. [PMID: 35497508 PMCID: PMC9042372 DOI: 10.1039/d1ra05902e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/30/2021] [Indexed: 01/25/2023] Open
Abstract
As one of the representatives of nano-graphene materials, graphene nanoribbons (GNRs) have more novel electrical properties, highly adjustable electronic properties, and optoelectronic properties than graphene due to their diverse geometric structures and atomic precision configurations. The electrical properties and band gaps of GNRs depend on their width, length, boundary configuration and other elemental doping, etc. With the improvement of the preparation technology and level of GNRs with atomic precision, increasing number of GNRs with different configurations are being prepared. They all show novel electrical properties and high tunability, which provides a broad prospect for the application of GNRs in the field of microelectronics. Here, we summarize the latest GNR-based achievements in recent years and summarize the latest electrical properties and potential applications of GNRs.
Collapse
Affiliation(s)
- Wenjing Bo
- College of Science, Liaoning Petrochemical University Fushun 113001 China
| | - Yi Zou
- College of Science, Liaoning Petrochemical University Fushun 113001 China
| | - Jingang Wang
- College of Science, Liaoning Petrochemical University Fushun 113001 China
| |
Collapse
|
31
|
Yao X, Zheng W, Osella S, Qiu Z, Fu S, Schollmeyer D, Müller B, Beljonne D, Bonn M, Wang HI, Müllen K, Narita A. Synthesis of Nonplanar Graphene Nanoribbon with Fjord Edges. J Am Chem Soc 2021; 143:5654-5658. [PMID: 33825484 PMCID: PMC8154539 DOI: 10.1021/jacs.1c01882] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
As a new family of
semiconductors, graphene nanoribbons (GNRs),
nanometer-wide strips of graphene, have appeared as promising candidates
for next-generation nanoelectronics. Out-of-plane deformation of π-frames
in GNRs brings further opportunities for optical and electronic property
tuning. Here we demonstrate a novel fjord-edged GNR (FGNR) with a nonplanar geometry obtained by regioselective cyclodehydrogenation.
Triphenanthro-fused teropyrene 1 and pentaphenanthro-fused
quateropyrene 2 were synthesized as model compounds,
and single-crystal X-ray analysis revealed their helically twisted
conformations arising from the [5]helicene substructures. The structures
and photophysical properties of FGNR were investigated
by mass spectrometry and UV–vis, FT-IR, terahertz, and Raman
spectroscopic analyses combined with theoretical calculations.
Collapse
Affiliation(s)
- Xuelin Yao
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Zijie Qiu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuai Fu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Beate Müller
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, B-7000 Mons, Belgium
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute for Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|