1
|
Zhou Y, Yin F, Hu SJ, Zhou LP, Yang J, Sun QF. Supramolecular Eu(III) 4L 4 Tetrahedra-Based Films for Luminescence Sensing of Volatile Amines with Sub-ppt-Level Detection Limit. Inorg Chem 2025; 64:6927-6934. [PMID: 40146921 DOI: 10.1021/acs.inorgchem.4c05480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Metal-organic cages are a class of discrete supramolecular architectures endowed with a well-defined cavity and diverse functionalities, offering a broad range of applications that, however, are predominantly confined to liquid phases. In this study, we present the self-assembly of supramolecular Eu(III)4L4 tetrahedra, constructed from triarylborane-cored tritopic tridentate ligands, which were fabricated into spin-coated films with bright emission, smooth surfaces, and uniform thickness. These films demonstrated ultralow detection limits for a series of volatile amines, reaching the sub-ppt level. This work serves as a compelling example of the preparation and application of metal-organic-cage-based films, paving the way for broader application scenarios.
Collapse
Affiliation(s)
- Yang Zhou
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| | - Fan Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| | - Jian Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qing-Fu Sun
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Wu D, Li Z, Zhang Q, Jiang H, Wang C, Wang L, Wei G, Pang X, Fu M, Zhang G, Hou G, Yu S. In Situ Reaction Forms Uniform Mixed Heterometallic Ln III2Mn II4 (Ln = Dy III and Gd III) Clusters: Assembly Mechanism and Insights into Performance. Inorg Chem 2025; 64:6083-6091. [PMID: 40106724 DOI: 10.1021/acs.inorgchem.4c05336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The unclear assembly mechanism seriously hinders the preparation and application of 3d-4f heterometallic clusters. Two new heterometallic nanoclusters [Dy2Mn4(HL)4(OAc)6]·5EtOH·H2O (1) and [Gd2Mn4(HL)4(OAc)6]·4EtOH·4H2O (2) were obtained from the in situ condensation reaction of 3-amino-1,2-propanediol with 2-hydroxy-1-naphthaldehyde. The intermediate species in the cluster 1 synthesis process were tracked by time-dependent high-resolution electrospray ionization mass spectrometry (HRESI-MS), further revealing the possible formation mechanism (Dy → DyL2 →DyMn2L2 → DyMn3L2 → DyMn4L3 → Dy2Mn4L4). Magnetic studies indicated that the antiferromagnet LnIII-MnII (Ln = DyIII and GdIII) interaction was operative in both titled clusters. Furthermore, the performance of the clusters was regulated by adjusting the type of rare earth ions (DyIII and GdIII). The research results showed that cluster 2 containing GdIII exhibited an excellent longitudinal relaxation rate (r1) with 1.95 mM-1 s-1 under 0.5 T and a relatively suitable r2/r1 value (3.88), which indicated that it can be used as a new and efficient T1 MR contrast agent. Cluster 1 containing DyIII displayed antipathogenic activities against clinical MRSA strain with an MIC of 32 μg/mL. This work not only provided a reference for revealing the assembly mechanism of 3d-4f heterometallic clusters but also confirmed its potential application in the biomedical field.
Collapse
Affiliation(s)
- Dongze Wu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Ziying Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Qinhua Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Hongfei Jiang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Chunli Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Lei Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Guangcheng Wei
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Xuliang Pang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Ming Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Guangtao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Shui Yu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| |
Collapse
|
3
|
Li J, Kou M, Zhou S, Dong F, Huang X, Tang X, Tang Y, Liu W. Regulation of lanthanide supramolecular nanoreactors via a bimetallic cluster cutting strategy to boost aza-Darzens reactions. Nat Commun 2025; 16:2169. [PMID: 40038263 DOI: 10.1038/s41467-024-54950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/25/2024] [Indexed: 03/06/2025] Open
Abstract
Supramolecular nanoreactor as artificial mimetic enzyme is attracting a growing interest due to fine-tuned cavity and host-guest molecular recognition. Here, we design three 3d-4f metallo-supramolecular nanocages with different cavity sizes and active sites (Zn2Er4L14, Zn4Er6L26, and Zn2Er8L38) based on a "bimetallic cluster cutting" strategy. Three nanocages exhibit a differential catalysis for the three-component aza-Darzens reaction without another additive, and only Zn2Er8L38 with the largest cavity and the most lanthanides centers has excellent catalytic conversion for monosubstituted and disubstituted N-aryl aziridine products. The host-guest relationship investigations confirm that Zn2Er8L38 significantly outperforms Zn2Er4L14 with the smaller cavity and Zn4Er6L26 with the fewer Lewis acidic sites in multi-component reaction is mainly attributed to the synergy of inherent confinement effect and multiple Lewis acidic sites in nanocage. The "bimetallic cluster cutting" strategy for the construction of 3d-4f nanocages with large windows may represent a potential approach to develop supramolecular nanoreactor with high catalytic efficiency.
Collapse
Affiliation(s)
- Jingzhe Li
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Manchang Kou
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Shengbin Zhou
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Fan Dong
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiaoyu Huang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiaoliang Tang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China.
| | - Yu Tang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| | - Weisheng Liu
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China.
| |
Collapse
|
4
|
Zhang X, Yu H, Guan S, Lu Y, Zhang Y, Huang Y, Wang Y, Liu C, Cao Z, Qin Y, Pan M, Shen J, Su C. A Highly Charged Positive Cage Causes Simultaneous Enhancement of Type-II and O 2-Independent-Type-I Photodynamic Therapy via One-/Two-Photon Stimulation and Tumor Immunotherapy via PANoptosis and Ferroptosis. SMALL SCIENCE 2024; 4:2400220. [PMID: 40213464 PMCID: PMC11935160 DOI: 10.1002/smsc.202400220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Indexed: 01/22/2025] Open
Abstract
To solve the oxygen dependence problem of photodynamic therapy (PDT), it is critical to explore photosensitizers that do not rely on O2 molecule to generate reactive oxygen species (ROS). Herein, a stable cationic metal-organic cage [Pd6(RuLoz 3)8](BF4)28 (MOC-88) that possesses high +28 charges is designed. The cage-confined positive microenvironment enables efficient generation of hydroxyl radicals and improved yield of the singlet oxygen under one-/two-photon excitation, showing excellent performance to concurrently enhance Type-II and O2-independent-Type-I PDT. Moreover, the effective ROS production and robust lipid peroxidation trigger a series of signaling pathways (inflammasome, cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes, and NF-κB) to evoke PANoptosis and ferroptosis in tumor cells, enabling MOC-88 to simultaneously cause the loss of cell membrane integrity, release a series of inflammatory cytokines and damage-associated molecular patterns, stimulate the maturation and antigen presentation ability of dendritic cells, and ultimately activate T-cell-dependent adaptive immunity in vivo to inhibit tumor growth.
Collapse
Affiliation(s)
- Xiao‐Dong Zhang
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Hui‐Juan Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of ZoologyGuangdong Academy of SciencesGuangzhou510275China
| | - Shao‐Qi Guan
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yu‐Lin Lu
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yu Zhang
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yin‐Hui Huang
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Ya‐Ping Wang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510030China
| | - Chen‐Hui Liu
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Zhong‐Min Cao
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yu‐Han Qin
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Mei Pan
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510030China
| | - Cheng‐Yong Su
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| |
Collapse
|
5
|
Qin WW, Li YL, Zhu ZH, Wang HL, Cheng L, Zou HH. One-Pot In Situ Construction of a Highly Stable Acylhydrazone-Derived Dy 9 Cluster with Photodynamic Sterilization Property. Inorg Chem 2024; 63:16740-16749. [PMID: 39177239 DOI: 10.1021/acs.inorgchem.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The extremely low stability of lanthanide clusters with precise structures and nanometer dimensions in aqueous solutions limits their application in the field of photodynamic sterilization. In this study, an hourglass-shaped nine-nucleated Dy9 cluster (1) with excellent light-driven reactive oxygen species (ROS) generation ability and photodynamic sterilization property was constructed using acylhydrazone multidentate chelating ligands obtained via an in situ reaction. The eight chelating ligands were distributed outside cluster 1, tightly wrapping the cluster core, thus preventing solvent molecules from attacking the cluster nucleus and ensuring the stability of cluster 1 in solution, which was demonstrated via X-ray diffraction and high-resolution electrospray ionization mass spectrometry (HRESI-MS). Time-dependent HRESI-MS monitoring of the self-assembly process of cluster 1 allowed two possible self-assembly mechanisms. The heavy atom effect of multiple Dy(III) ions in the Dy9 cluster enhanced the ISC pathway through spin-orbit coupling, promoting energy transfer from the excited singlet state (S1) to the triplet state (T1), which was stabilized, inducing the generation of more ROS. Cluster 1 showed a remarkable sterilization effect due to the generation of abundant ROS under light irradiation conditions. To our knowledge, this is a rare instance of lanthanide clusters with photodynamic sterilization, providing new horizons for the construction of fast and efficient sterilizers.
Collapse
Affiliation(s)
- Wen-Wen Qin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Lei Cheng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
6
|
Vallamkonda B, Sethi S, Satti P, Das DK, Yadav S, Vashistha VK. Enantiomeric Analysis of Chiral Drugs Using Mass Spectrometric Methods: A Comprehensive Review. Chirality 2024; 36:e23705. [PMID: 39105272 DOI: 10.1002/chir.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Chirality plays a crucial role in the drug development process, influencing fundamental chemical and biochemical processes and significantly affecting our daily lives. This review provides a comprehensive examination of mass spectrometric (MS) methods for the enantiomeric analysis of chiral drugs. It thoroughly investigates MS-hyphenated techniques, emphasizing their critical role in achieving enantioselective analysis. Furthermore, it delves into the intricate chiral recognition mechanisms inherent in MS, elucidating the fundamental principles that govern successful chiral separations. By critically assessing the obstacles and potential benefits associated with each MS-based method, this review offers valuable insights for researchers navigating the complexities of chiral analysis. Both qualitative and quantitative approaches are explored, presenting a comparative analysis of their strengths and limitations. This review is aimed at significantly enhancing the understanding of chiral MS methods, serving as a crucial resource for researchers and practitioners engaged in enantioselective studies.
Collapse
Affiliation(s)
- Bhaskar Vallamkonda
- Department of Pharmaceutical Science, VIGNAN'S Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, India
| | - Sonika Sethi
- Department of Chemistry, GD Goenka University, Gurugram, Haryana, India
| | - PhanikumarReddy Satti
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | | | - Suman Yadav
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi, India
| | | |
Collapse
|
7
|
Ling QH, Fu Y, Lou ZC, Yue B, Guo C, Hu X, Lu W, Hu L, Wang W, Zhang M, Yang HB, Xu L. Naphthalene Diimide-Based Metallacage as an Artificial Ion Channel for Chloride Ion Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308181. [PMID: 38459671 DOI: 10.1002/advs.202308181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/06/2024] [Indexed: 03/10/2024]
Abstract
Developing synthetic molecular devices for controlling ion transmembrane transport is a promising research field in supramolecular chemistry. These artificial ion channels provide models to study ion channel diseases and have huge potential for therapeutic applications. Compared with self-assembled ion channels constructed by intermolecular weak interactions between smaller molecules or cyclic compounds, metallacage-based ion channels have well-defined structures and can exist as single components in the phospholipid bilayer. A naphthalene diimide-based artificial chloride ion channel is constructed through efficient subcomponent self-assembly and its selective ion transport activity in large unilamellar vesicles and the planar lipid bilayer membrane by fluorescence and ion-current measurements is investigated. Molecular dynamics simulations and density functional theory calculations show that the metallacage spans the entire phospholipid bilayer as an unimolecular ion transport channel. This channel transports chloride ions across the cell membrane, which disturbs the ion balance of cancer cells and inhibits the growth of cancer cells at low concentrations.
Collapse
Affiliation(s)
- Qing-Hui Ling
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuanyuan Fu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Zhen-Chen Lou
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Bangkun Yue
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong, 518055, China
| | - Xinyu Hu
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei Wang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Min Zhang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
8
|
Dey S, Aggarwal M, Chakraborty D, Mukherjee PS. Uncovering tetrazoles as building blocks for constructing discrete and polymeric assemblies. Chem Commun (Camb) 2024; 60:5573-5585. [PMID: 38738480 DOI: 10.1039/d4cc01616e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Metal-organic self-assembly with flexible moieties is a budding field of research due to the possibility of the formation of unique architectures. Tetrazole, characterised by four nitrogen atoms in a five-member ring, exhibits immense potential as a component. Tetrazole offers four coordination sites for binding to the metal centre with nine distinct binding modes, leading to various assemblies. This review highlights different polymeric and discrete tetrazole-based assemblies and their functions. The meticulous manipulation of stoichiometry, ligands, and metal ions required for constructing discrete assemblies has also been discussed. The different applications of these architectures in separation, catalysis and detection have also been accentuated. The latter section of the review consolidates tetrazole-based cage composites, highlighting their applications in cell imaging and photocatalytic applications.
Collapse
Affiliation(s)
- Soumya Dey
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Medha Aggarwal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
9
|
Caffrey DF, Gorai T, Rawson B, Martínez‐Calvo M, Kitchen JA, Murray NS, Kotova O, Comby S, Peacock RD, Stachelek P, Pal R, Gunnlaugsson T. Ligand Chirality Transfer from Solution State to the Crystalline Self-Assemblies in Circularly Polarized Luminescence (CPL) Active Lanthanide Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307448. [PMID: 38447160 PMCID: PMC11095229 DOI: 10.1002/advs.202307448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Indexed: 03/08/2024]
Abstract
The synthesis of a family of chiral and enantiomerically pure pyridyl-diamide (pda) ligands that upon complexation with europium [Eu(CF3SO3)3] result in chiral complexes with metal centered luminescence is reported; the sets of enantiomers giving rise to both circular dichroism (CD) and circularly polarized luminescence (CPL) signatures. The solid-state structures of these chiral metallosupramolecular systems are determined using X-ray diffraction showing that the ligand chirality is transferred from solution to the solid state. This optically favorable helical packing arrangement is confirmed by recording the CPL spectra from the crystalline assembly by using steady state and enantioselective differential chiral contrast (EDCC) CPL Laser Scanning Confocal Microscopy (CPL-LSCM) where the two enantiomers can be clearly distinguished.
Collapse
Affiliation(s)
- David F. Caffrey
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
| | - Tumpa Gorai
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
- Present address:
Department of Polymers and Functional MaterialsCSIR‐Indian Institute of Chemical TechnologyHyderabad500007India
| | - Bláithín Rawson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
| | - Miguel Martínez‐Calvo
- Departamento de Química Inorgánica, Facultade de QuímicaCampus VidaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Jonathan A. Kitchen
- Chemistry, Institute of Natural and Mathematical SciencesMassey UniversityAuckland0632New Zealand
| | - Niamh S. Murray
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
| | - Oxana Kotova
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
- AMBER (Advanced Materials and Bioengineering Research) CentreTrinity College DublinThe University of DublinDublin2Ireland
| | - Steve Comby
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
| | | | | | - Robert Pal
- Department of ChemistryDurham UniversityDurhamDH1 3LEUK
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
- AMBER (Advanced Materials and Bioengineering Research) CentreTrinity College DublinThe University of DublinDublin2Ireland
| |
Collapse
|
10
|
Zhai Z, Bai Q, Guan YM, Zhao H, Wu T, Pang J, Xu H, Xie TZ, Zhang Z, Wang P. Metal-ion-determined geometrical configurations of metallo-cages with different emission properties. Dalton Trans 2024; 53:7555-7560. [PMID: 38602370 DOI: 10.1039/d4dt00178h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The formation of metallo-cages is affected by a variety of factors such as the ligands, metals, and anions, among which the impact of metals with different binding capacities is particularly important, but has rarely been studied in three-dimensional metallo-cages. Herein, we report the design of truxene-centered terpyridine ligands and the self-assembly of a series of tetrameric metallo-cages. The utilization of metal ions with strong (Zn2+, Fe2+) or weak (Cd2+) binding strength afforded 3D metallo-cages with low symmetry or highly symmetric metallo-tetrahedra, respectively, possessing totally different geometrical configurations. In addition, their photophysical properties and host-guest chemical properties were investigated.
Collapse
Affiliation(s)
- Zirui Zhai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jingxian Pang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Haoxuan Xu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Wu Y, Zhao S, Xu Y, Tang C, Feng Y, Zhang M, Yang H, Ma Y, Li Y, Wang W. A Hexanuclear Gadolinium(III)-Based Nanoprobe for Magnetic Resonance Imaging of Tumor Apoptosis. ACS APPLIED NANO MATERIALS 2024; 7:9020-9030. [PMID: 38694722 PMCID: PMC11059065 DOI: 10.1021/acsanm.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024]
Abstract
Magnetic resonance imaging (MRI) is instrumental in the noninvasive evaluation of tumor tissues in patients subjected to chemotherapy, thereby yielding essential diagnostic data crucial for the prognosis of tumors and the formulation of therapeutic strategies. Currently, commercially available MRI contrast agents (CAs) predominantly consist of mononuclear gadolinium(III) complexes. Because there is only one Gd(III) atom per molecule, these CAs often require administration in high doses to achieve the desired contrast quality, which inevitably leads to some adverse events. Herein, we develop a six-nuclei, apoptosis-targeting T1 CA, Gd6-ZnDPA nanoprobe, which consists of a hexanuclear gadolinium nanocluster (Gd6) with an apoptosis-targeting group (ZnDPA). The amplification of Gd(III) by the hexanuclear structure generates its high longitudinal relaxivity (44.67 mM-1 s-1, 1T) and low r1/r2 ratio (0.68, 1T). Based on the Solomon-Bloembergen-Morgan (SBM) theory, this notable improvement is primarily ascribed to a long correlation tumbling time (τR). More importantly, the Gd6-ZnDPA nanoprobe shows excellent tumor apoptosis properties with an enhanced MR signal ratio (∼74%) and a long MRI imaging acquisition time window (∼48 h) in 4T1 tumor-bearing mice. This study introduces an experimental gadolinium-based CA for the potential imaging of tumor apoptosis in the context of MRI.
Collapse
Affiliation(s)
- Yufan Wu
- Department
of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao
Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Shuo Zhao
- Joint
International Research Laboratory of Resource Chemistry of Ministry
of Education, Shanghai Key Laboratory of Rare Earth Functional Materials,
and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Ye Xu
- Key
Laboratory of Advanced Functional Materials, School of Chemistry &
Materials Engineering, Changshu Institute
of Technology, Changshu 215500, P. R. China
| | - Chaojie Tang
- Department
of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao
Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Yujie Feng
- Joint
International Research Laboratory of Resource Chemistry of Ministry
of Education, Shanghai Key Laboratory of Rare Earth Functional Materials,
and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Mianmian Zhang
- Department
of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao
Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Hong Yang
- Joint
International Research Laboratory of Resource Chemistry of Ministry
of Education, Shanghai Key Laboratory of Rare Earth Functional Materials,
and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yunsheng Ma
- Key
Laboratory of Advanced Functional Materials, School of Chemistry &
Materials Engineering, Changshu Institute
of Technology, Changshu 215500, P. R. China
| | - Yuehua Li
- Department
of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao
Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Wu Wang
- Department
of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao
Tong University School of Medicine, Shanghai 200233, P. R. China
- Department
of Radiology, Longhua Hospital, Shanghai
University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| |
Collapse
|
12
|
Dong X, Qu H, Sue ACH, Wang XC, Cao XY. Molecular Face-Rotating Polyhedra: Chiral Cages Inspired by Mathematics. Acc Chem Res 2024; 57:1111-1122. [PMID: 38372967 DOI: 10.1021/acs.accounts.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
ConspectusMolecular polyhedral cages, notable for their enclosed inner cavities, can possess varying degrees of symmetry, spanning from regular Platonic polyhedra to lower symmetry forms that may display chirality. Crafting chiral molecular cages typically involves using building blocks containing stereogenic elements or arranging achiral components in a manner that lacks mirror and inversion symmetries. Achieving precise control over their chirality poses both significance and challenges.In this Account, we present an overview of our research endeavors in the realm of chiral molecular polyhedral cages, drawing inspiration from Buckminster Fuller's "Face-Rotating Polyhedra (FRP)". Mathematically, FRP introduce a unique form of chirality distinguished by a rotating pattern around the center of each face, setting it apart from regular polyhedra.Molecular FRP can be constructed using two types of facial building blocks. The first includes rigid, planar molecules such as truxene and triazatruxene, which exhibit either clockwise or counterclockwise rotations in two dimensions. The second category involves propeller-like molecules, e.g., tetraphenylethylene, 1,2,3,4,5-penta(4-phenylaldehyde)pyrrole, and tridurylborane, displaying dynamic stereochemistry.The synthesis of FRP may potentially yield a diverse array of stereoisomers. Achieving high stereoselectivity becomes feasible through the selection of building blocks with specific substitution patterns and rigidity. Prominent noncovalent repulsive forces within the resulting cages often play a pivotal role in the dynamic covalent assembly process, ultimately leading to the formation of thermodynamically stable FRP products.The capacity to generate a multitude of stereoisomers, combined with the integration of chiral vertices, has facilitated investigations into phenomena such as chiral self-sorting and the "sergeant and soldiers" chiral amplification effect in FRP. Even the inclusion of one chiral vertex significantly impacts the stereochemical configuration of the entire cage. While many facial building blocks establish a stable rotational pattern in FRP, other units, such as tridurylborane, can dynamically transition between P and M configurations within the cage structures. The kinetic characteristics of such stereolabile FRP can be elucidated through physicochemical investigations.Our research extends beyond the FRP concept to encompass mathematical analysis of these structures. Graph theory, particularly the coloring problem, sheds light on the intricate facial patterns exhibited by various FRP stereoisomers and serves as an efficient tool to facilitate the discovery of novel FRP structures. This approach offers a fresh paradigm for designing and analyzing chiral molecular polyhedral cages, showcasing in our work the synergy between mathematics and molecular design.
Collapse
Affiliation(s)
- Xue Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Science and Technologies of Energy Materials of Fujian Province (IKKEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Science and Technologies of Energy Materials of Fujian Province (IKKEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Andrew C-H Sue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Science and Technologies of Energy Materials of Fujian Province (IKKEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin-Chang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Science and Technologies of Energy Materials of Fujian Province (IKKEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Science and Technologies of Energy Materials of Fujian Province (IKKEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Yin F, Yang J, Zhou LP, Meng X, Tian CB, Sun QF. 54 K Spin Transition Temperature Shift in a Fe 6L 4 Octahedral Cage Induced by Optimal Fitted Multiple Guests. J Am Chem Soc 2024; 146:7811-7821. [PMID: 38452058 DOI: 10.1021/jacs.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Spin-crossover (SCO) coordination cages are at the forefront of research for their potential in crafting next-generation molecular devices. However, due to the scarcity of SCO hosts and their own limited cavities, the interplay between the SCO host and the multiple guests binding has remained elusive. In this contribution, we present a family of pseudo-octahedral coordination cages (M6L4, M = ZnII, CoII, FeII, and NiII) assembled from a tritopic tridentate ligand L with metal ions. The utilization of FeII ion leads to the successful creation of the Fe6L4-type SCO cage. Host-guest studies of these M6L4 cages reveal their capacity to encapsulate four adamantine-based guests. Notably, the spin transition temperature T1/2 of Fe6L4 is dependent on the multiple guests encapsulated. The inclusion of adamantine yields an unprecedented T1/2 shift of 54 K, a record shift in guest-mediated SCO coordination cages to date. This drastic shift is ascribed to the synergistic effect of multiple guests coupled with their optimal fit within the host. Through a straightforward thermodynamic cycle, the binding affinities of the high-spin (HS) and low-spin (LS) states are separated from their apparent binding constant. This result indicates that the LS state has a stronger binding affinity for the multiple guests than the HS state. Exploring the SCO thermodynamics of host-guest complexes allows us to examine the optimal fit of multiple guests to the host cavity. This study reveals that the T1/2 of the SCO host can be manipulated by the encapsulation of multiple guests, and the SCO cage is an ideal candidate for determining the multiple guest fit.
Collapse
Affiliation(s)
- Fan Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Xie JN, Li YL, Wang HL, Xiao ZX, Zhu ZH, Liang FP, Zou HH. Different anion (NO 3- and OAc -)-controlled construction of dysprosium clusters with different shapes. Dalton Trans 2024; 53:5665-5675. [PMID: 38445301 DOI: 10.1039/d3dt03314g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The complex hydrolysis process and strong uncertainty of self-assembly rules have led to the precise synthesis of lanthanide clusters still being in the "blind-box" stage and simplifying the self-assembly process and developing reliable regulation strategies have attracted widespread attention. Herein, different anions are used to induce the construction of a series of dysprosium clusters with different shapes and connections. When the selected anion is NO3-, it blocks the coordination of metal sites around the cluster through the terminal group coordination mode, thereby controlling the growth of the cluster. When NO3- was changed to OAc-, OAc- adopted a bridging mode to induce modular units to build dysprosium clusters through an annular growth mechanism. Specifically, we selected 2-amino-6-methoxybenzoic acid, 2-hydroxybenzaldehyde, and Dy(NO3)3·6H2O to react under solvothermal conditions to obtain a pentanuclear dysprosium cluster (1). The five Dy(III) ions in 1 are distributed in upper and lower planes and are formed by the tight connection of nitrogen and oxygen atoms, and μ3-OH- bridges on the ligand. Next, octa-nuclear dysprosium cluster (2) were obtained by only regulating ligand substituents. The eight Dy(III) ions in 2 are tightly connected through ligand oxygen atoms, μ2-OH-, and μ3-OH- bridges, forming an elliptical {Dy/O} cluster core. Furthermore, only by changing NO3- to OAc-, a wheel-shaped tetradeca-nuclear dysprosium cluster (3) was obtained. Cluster 3 is composed of OAc- bridged multiple template Dy3L3 units and pulling of these template units connected by an annular growth mechanism forms a wheel-shaped cluster. The angle of the coordination site on NO3- is ∠ONO = 115°, which leads to the further extension of the metal sites on the periphery of clusters 1 and 2 through the terminal group coordination mode, thereby regulating the structural connection of the clusters. However, the angle of the coordination site on OAc- is ∠OCO = 128°, and a slightly increased angle leads to the formation of a ring-shaped cluster 3 by connecting the template units through bridging. This is a rare example of the controllable construction of lanthanide clusters with different shapes induced by the regulation of different anions, which provides a new method for the precise construction of lanthanide clusters with special shapes.
Collapse
Affiliation(s)
- Jia-Nan Xie
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zi-Xin Xiao
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
15
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
16
|
Shobi VM, Dhanaseelan FR. Voxel representation of brain images inpainting via Regional Pixel Semantic Network and pyramidal attention AE - Quantile differential mechanism model. Comput Biol Med 2024; 170:107767. [PMID: 38215616 DOI: 10.1016/j.compbiomed.2023.107767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/14/2024]
Abstract
Medical image inpainting holds significant importance in enhancing the quality of medical images by restoring missing areas, thereby rendering them suitable for diagnostic purposes. While several techniques have been previously proposed for medical image inpainting, they are not suitable for distorted images containing metallic implants due to their limited consideration of known shaped masking. To overcome this limitation, a novel Vectorized Box Interpolation with Arbitrary Auto-Rand Augment Masking technique has been proposed which involves scaling and vectorizing images to expand their details and generating asymmetrically shaped masking in an automatic random format. One of the challenging tasks in this regard is the precise detection of lost regions, which is addressed through the introduction of the Regional Pixel Semantic Network. This technique employs the locally shared features (LSF) based region sensing with FCN (fully convolutional network) segmentation, which performs automatic segmentation based on neighboring pixel local dependency and regional features to determine the location of masked regions. During the reconstruction of missing parts, a significant challenge posed is the inability to recognize proximity in encoding owing to the generation of shadow-like regions on the feature map. To address this issue, a novel Multilayered DRC Regularized Pyramidal Attention AE Model has been proposed which employs dilated convolution with coherent pyramidal attention for feature extraction and improves image resolution using a Laplacian convolutional layer. Moreover, the realness of the generated image is determined using the Quantile Differential Mechanism model, where in the Quantile Differential Partial Convolutional Discriminator utilizes the hyperbolic tangent activation function in the partial convolutional layer to calculate recognition accuracy. As a result, the proposed method achieves high percentages for accuracy (98 %), precision (97 %), sensitivity (96 %), recall (95 %), and F-measure (96 %) thereby outperforming existing methods. Overall, this proposed method effectively handles distorted images with metallic implants, accurately detects lost regions, and improves the reconstructed image quality.
Collapse
Affiliation(s)
- V Merin Shobi
- Department of M.C.A, C.S.I. Institute of Technology, Thovalai, TamilNadu, India.
| | - F Ramesh Dhanaseelan
- Department of Computer Applications, St. Xavier's Catholic College of Engineering, Chunkankadai, Nagercoil, TamilNadu, India.
| |
Collapse
|
17
|
Wang YP, Zhang Y, Duan XH, Mao JJ, Pan M, Shen J, Su CY. Recent progress in metal-organic cages for biomedical application: Highlighted research during 2018–2023. Coord Chem Rev 2024; 501:215570. [DOI: 10.1016/j.ccr.2023.215570] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
|
18
|
Wang J, Jiang Z, Yin JF, Zhao H, Dong Q, Li K, Zhong W, Liu D, Yuan J, Yin P, Li Y, Lin Y, Chen M, Wang P. Strain-Induced Heteromorphosis Multi-Cavity Cages: Tension-Driven Self-Expansion Strategy for Controllable Enhancement of Complexity in Supramolecular Assembly. Angew Chem Int Ed Engl 2024; 63:e202317674. [PMID: 38055187 DOI: 10.1002/anie.202317674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Coordinative supramolecular cages with adjustable cavities have found extensive applications in various fields, but the cavity modification strategies for multi-functional structures are still challenging. Here, we present a tension-driven self-expansion strategy for construction of multi-cavity cages with high structural complexity. Under the regulation of strain-induced capping ligands, unprecedented heteromorphosis triple-cavity cages S2 /S4 were obtained based on a metallo-organic ligand (MOL) scaffold. The heteromorphosis cages exhibited significant higher cavity diversity than the homomorphous double-cavity cages S1 /S3 ; all of the cages were thoroughly characterized through various analytical techniques including (1D and 2D) NMR, ESI-MS, TWIM-MS, AFM, and SAXS analyses. Furthermore, the encapsulation of porphyrin in the cavities of these multi-cavity cages were investigated. This research opens up new possibilities for the architecture of heteromorphosis supramolecular cages via precisely controlled "scaffold-capping" assembly with preorganized ligands, which could have potential applications in the development of multifunctional structures with higher complexity.
Collapse
Affiliation(s)
- Jun Wang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhilong Jiang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - He Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Qiangqiang Dong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Kaixiu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wanying Zhong
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Die Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yifan Lin
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mingzhao Chen
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
19
|
Wang B, Zheng W, Chen J, Wang Y, Duan X, Ma S, Kong Z, Xia T. A Tb 3+ ion encapsulated anionic indium-organic framework as logical probe for distinguishing quenching Fe 3+ and Cu 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123388. [PMID: 37714105 DOI: 10.1016/j.saa.2023.123388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
We successfully synthesized a stable anionic microporous metal-organic framework (MOF) HDU-1 ([Me2NH2]2In2[(TATAB)4(DMF)4](DMF)4(H2O)4) and constructed a fluorescent probe Tb@HDU-1 by an exchange strategy. Because of its suspension distinct fluorescent response of Tb(III) characteristic transition and ligand emission, the Tb@HDU-1 can be used as fluorescent probe for sensing towards Fe3+ and Cu2+ ions. It is surprising that Tb@HDU-1 is used as a ratiometric fluorescent probe for Cu2+ ions while only single peak detection for Fe3+ ions, which describes a particular rare example of a sensor based on Ln-MOFs to distinguish quenching Fe3+ and Cu2+ ions. Hence we designed a molecular logic gate device for making the distinction of Fe3+ and Cu2+ ions more clearly and appropriately. In addition, the different quenching effect between Fe3+ and Cu2+ ions may be ascribed to the differences of competitive absorption and interaction between frameworks and metal ions.
Collapse
Affiliation(s)
- Bin Wang
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wei Zheng
- Zhejiang Institute of Medical Device Testing, Hangzhou 310018, China
| | - Jiashang Chen
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yaru Wang
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xing Duan
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Shiyu Ma
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhe Kong
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Tifeng Xia
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China.
| |
Collapse
|
20
|
Li Z, Huan W, Wang Y, Yang YW. Multimodal Therapeutic Platforms Based on Self-Assembled Metallacycles/Metallacages for Cancer Radiochemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306245. [PMID: 37658495 DOI: 10.1002/smll.202306245] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Discrete organometallic complexes with defined structures are proceeding rapidly in combating malignant tumors due to their multipronged treatment modalities. Many innovative superiorities, such as high antitumor activity, extremely low systemic toxicity, active targeting ability, and enhanced cellular uptake, make them more competent for clinical applications than individual precursors. In particular, coordination-induced regulation of luminescence and photophysical properties of organic light-emitting ligands has demonstrated significant potential in the timely evaluation of therapeutic efficacy by bioimaging and enabled synergistic photodynamic therapy (PDT) or photothermal therapy (PTT). This review highlights instructive examples of multimodal radiochemotherapy platforms for cancer ablation based on self-assembled metallacycles/metallacages, which would be classified by functions in a progressive manner. Finally, the essential demands and some plausible prospects in this field for cancer therapy are also presented.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
21
|
Bell DJ, Zhang T, Geue N, Rogers CJ, Barran PE, Bowen AM, Natrajan LS, Riddell IA. Hexanuclear Ln 6 L 6 Complex Formation by Using an Unsymmetric Ligand. Chemistry 2023; 29:e202302497. [PMID: 37733973 PMCID: PMC10946940 DOI: 10.1002/chem.202302497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Multinuclear, self-assembled lanthanide complexes present clear opportunities as sensors and imaging agents. Despite the widely acknowledged potential of this class of supramolecule, synthetic and characterization challenges continue to limit systematic studies into their self-assembly restricting the number and variety of lanthanide architectures reported relative to their transition metal counterparts. Here we present the first study evaluating the effect of ligand backbone symmetry on multinuclear lanthanide complex self-assembly. Replacement of a symmetric ethylene linker with an unsymmetric amide at the center of a homoditopic ligand governs formation of an unusual Ln6 L6 complex with coordinatively unsaturated metal centers. The choice of triflate as a counterion, and the effect of ionic radii are shown to be critical for formation of the Ln6 L6 complex. The atypical Ln6 L6 architecture is characterized using a combination of mass spectrometry, luminescence, DOSY NMR and EPR spectroscopy measurements. Luminescence experiments support clear differences between comparable Eu6 L6 and Eu2 L3 complexes, with relatively short luminescent lifetimes and low quantum yields observed for the Eu6 L6 structure indicative of non-radiative decay processes. Synthesis of the Gd6 L6 analogue allows three distinct Gd⋯Gd distance measurements to be extracted using homo-RIDME EPR experiments.
Collapse
Affiliation(s)
- Daniel J. Bell
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Tongtong Zhang
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Michael Barber Centre for Collaborative Mass SpectrometryDepartment of ChemistryThe University of Manchester131 Princess StreetManchesterM17DNUK
| | - Niklas Geue
- Michael Barber Centre for Collaborative Mass SpectrometryDepartment of ChemistryThe University of Manchester131 Princess StreetManchesterM17DNUK
| | - Ciarán J. Rogers
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- National Research Facility for Electron Paramagnetic ResonancePhoton Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Perdita E. Barran
- Michael Barber Centre for Collaborative Mass SpectrometryDepartment of ChemistryThe University of Manchester131 Princess StreetManchesterM17DNUK
| | - Alice M. Bowen
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- National Research Facility for Electron Paramagnetic ResonancePhoton Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Louise S. Natrajan
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Imogen A. Riddell
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
22
|
Shi J, Xu W, Yu H, Wang X, Jin F, Zhang Q, Zhang H, Peng Q, Abdurahman A, Wang M. A Highly Luminescent Metallo-Supramolecular Radical Cage. J Am Chem Soc 2023; 145:24081-24088. [PMID: 37796113 DOI: 10.1021/jacs.3c07477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Luminescent metal-radicals have recently received increasing attention due to their unique properties and promising applications in materials science. However, the luminescence of metal-radicals tends to be quenched after formation of metallo-complexes. It is challenging to construct metal-radicals with highly luminescent properties. Herein, we report a highly luminescent metallo-supramolecular radical cage (LMRC) constructed by the assembly of a tritopic terpyridinyl ligand RL with tris(2,4,6-trichlorophenyl)methyl (TTM) radical and Zn2+. Electrospray ionization-mass spectrometry (ESI-MS), traveling-wave ion mobility-mass spectrometry (TWIM-MS), X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and superconducting quantum interference device (SQUID) confirm the formation of a prism-like supramolecular radical cage. LMRC exhibits a remarkable photoluminescence quantum yield (PLQY) of 65%, which is 5 times that of RL; meanwhile, LMRC also shows high photostability. Notably, significant magnetoluminescence can be observed for the high-concentration LMRC (15 wt % doped in PMMA film); however, the magnetoluminescence of 0.1 wt % doped LMRC film vanishes, revealing negligible spin-spin interactions between two radical centers in LMRC.
Collapse
Affiliation(s)
- Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Wei Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xing Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Feng Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingming Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Alim Abdurahman
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Changchun, Jilin 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
23
|
Duan XF, Zhou LP, Li HR, Hu SJ, Zheng W, Xu X, Zhang R, Chen X, Guo XQ, Sun QF. Excited-Multimer Mediated Supramolecular Upconversion on Multicomponent Lanthanide-Organic Assemblies. J Am Chem Soc 2023; 145:23121-23130. [PMID: 37844009 DOI: 10.1021/jacs.3c06775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Upconversion (UC) is a fascinating anti-Stokes-like optical process with promising applications in diverse fields. However, known UC mechanisms are mainly based on direct energy transfer between metal ions, which constrains the designability and tunability of the structures and properties. Here, we synthesize two types of Ln8L12-type (Ln for lanthanide ion; L for organic ligand L1 or L2R/S) lanthanide-organic complexes with assembly induced excited-multimer states. The Yb8(L2R/S)12 assembly exhibits upconverted multimer green fluorescence under 980 nm excitation through a cooperative sensitization process. Furthermore, upconverted red emission from Eu3+ on the heterometallic (Yb/Eu)8L12 assemblies is also realized via excited-multimer mediated energy relay. Our findings demonstrate a new strategy for designing UC materials, which is crucial for exploiting photofunctions of multicomponent lanthanide-organic complexes.
Collapse
Affiliation(s)
- Xiao-Fang Duan
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Hao-Ran Li
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Wei Zheng
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xin Xu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
24
|
Hasegawa Y, Konishi Y, Enokido M, Shoji S, Wang M, Fushimi K, Kitagawa Y. Sandglass-Typed Single Chameleon Luminophore for Water Mapping Measurements: Intramolecular Energy Migrations in the Hydrophilic Tb(III)/Sm(III) Cluster. Inorg Chem 2023; 62:16794-16800. [PMID: 37733612 DOI: 10.1021/acs.inorgchem.3c02219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Novel hydrophilic and color-changeable single chameleon luminophores composed of Tb(III)/Sm(III) nona-nuclear clusters [TbxSm9-x(Sal-PEG-n)16(μ-OH)10]+(NO3)- (x = 1, 2, 3, and 9; Sal-PEG-n: salicylate polyethylene glycolmethylester, n = 2 and 4) are reported for water mapping measurements. Their characteristic sandglass structures and aggregates were analyzed using X-ray single crystal analysis and dynamic light scattering (DLS) measurements. The green- and yellow-luminescence of [Tb3Sm6(Sal-PEG-4)16(μ-OH)]+(NO3)- in water were observed at 20 and 50 °C, respectively. The ratio-metric luminescence analysis using green Tb(III) and orange Sm(III) emission bands is a promising candidate for exact temperature distribution measurements in fluid dynamics. The effective temperature-sensing property based on the competitive intramolecular energy transfer processes between Tb(III)-to-ligand and Tb(III)-to-Sm(III) in a non-a-nuclear cluster is explained using temperature-dependent kinetic analyses in the excited state.
Collapse
Affiliation(s)
- Yasuchika Hasegawa
- Faculty of Engineering, Graduate School of Chemical Sciences and Engineering, and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 060-8628, Japan
- Department of Engineering, Nara Women's University, Kitauoya Nishimachi, Nara 630-8506, Japan
| | - Yuki Konishi
- Faculty of Engineering, Graduate School of Chemical Sciences and Engineering, and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 060-8628, Japan
- Department of Engineering, Nara Women's University, Kitauoya Nishimachi, Nara 630-8506, Japan
| | - Masaki Enokido
- Faculty of Engineering, Graduate School of Chemical Sciences and Engineering, and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 060-8628, Japan
- Department of Engineering, Nara Women's University, Kitauoya Nishimachi, Nara 630-8506, Japan
| | - Sunao Shoji
- Faculty of Engineering, Graduate School of Chemical Sciences and Engineering, and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 060-8628, Japan
- Department of Engineering, Nara Women's University, Kitauoya Nishimachi, Nara 630-8506, Japan
| | - Mengfei Wang
- Faculty of Engineering, Graduate School of Chemical Sciences and Engineering, and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 060-8628, Japan
- Department of Engineering, Nara Women's University, Kitauoya Nishimachi, Nara 630-8506, Japan
| | - Koji Fushimi
- Faculty of Engineering, Graduate School of Chemical Sciences and Engineering, and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 060-8628, Japan
- Department of Engineering, Nara Women's University, Kitauoya Nishimachi, Nara 630-8506, Japan
| | - Yuichi Kitagawa
- Faculty of Engineering, Graduate School of Chemical Sciences and Engineering, and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 060-8628, Japan
- Department of Engineering, Nara Women's University, Kitauoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
25
|
Zhou LP, Feng XS, Hu SJ, Sun QF. Controlled Self-Assembly, Isomerism, and Guest Uptake/Release of Charge-Reversible Lanthanide-Organic Octahedral Cages. J Am Chem Soc 2023; 145:17845-17855. [PMID: 37545096 DOI: 10.1021/jacs.3c04921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Charge plays a crucial role in the function of molecular and supramolecular systems, but coordination hosts capable of orthogonal charge regulation remain elusive so far. In this study, we report the condition-dependent self-assembly of charge-reversible lanthanide-organic tetra-capped octahedral cages, i.e., [Ln6(H3L)4]6+ and [Ln6L4]6-, from a series of lanthanide ions (Ln3+; Ln = Lu, Yb, Eu) and a tritopic tetradentate acylhydrazone ligand (H6L) featuring multiple deprotonation states and propeller conformations. While direct self-assembly under basic conditions produced a mixture of various ΔxΛ6-x-[Ln6L4]6- (x = 0-6) stereoisomers, racemic Δ6- and Λ6-[Ln6L4]6- could be exclusively obtained from the first self-assembly of Δ6- and Λ6-[Ln6(H3L)4]6+ under neutral conditions followed by post-assembly deprotonation. Rich isomerism on the tetra-capped octahedral cages arising from the coupling between the metal-centered Δ/Λ chirality and the ligand conformations has been discussed based on X-ray single-crystal structures of the C3-symmetric Δ3Λ3-Ln6L4 and T-symmetric Δ6/Λ6-Ln6L4 complexes. Host-guest studies confirmed that positively charged rac-Δ6/Λ6-[Ln6(H3L)4]6+ could bind anionic sulfonates, and negatively charged rac-Δ6/Λ6-[Ln6L4]6- exhibited strong encapsulation ability toward ammonium guests, where acid/base-triggered guest uptake/release could be realized taking advantage of the charge reversibility of the cage. Moreover, photophysical studies revealed visible-light-sensitized and guest-encapsulation-enhanced NIR emissions on the rac-Δ6/Λ6-Yb6L4 cage. This work not only enriches the library of functional lanthanide-organic cages but also provides a promising candidate with charge reversibility for the development of smart supramolecular materials.
Collapse
Affiliation(s)
- Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xiao-Shan Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
26
|
Yang Z, Lin H, Lin Y, Wang J, Bu Y, Lin H, Gao J. Constructing sequence-controlled heterolayered dendritic lanthanide chelates via a one-pot strategy using orthogonal chemistry. Chem Commun (Camb) 2023; 59:6195-6198. [PMID: 37128904 DOI: 10.1039/d2cc06393j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The construction of sequence-controlled heterometallic lanthanide complexes is challenging despite their intriguing physical/chemical properties and enormous potential applications. Here we report a one-pot strategy that exploits orthogonal chemical reactions for modular assembly, which allows for rapid preparation of sequence-controlled heterolayered lanthanide-complex dendritic structures.
Collapse
Affiliation(s)
- Zhaoxuan Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Haojin Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yaying Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jinzhi Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yifan Bu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
27
|
Wang HL, Liu D, Jia JH, Liu JL, Ruan ZY, Deng W, Yang S, Wu SG, Tong ML. High-stability spherical lanthanide nanoclusters for magnetic resonance imaging. Natl Sci Rev 2023; 10:nwad036. [PMID: 37200676 PMCID: PMC10187785 DOI: 10.1093/nsr/nwad036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2023] Open
Abstract
High-nuclear lanthanide clusters have shown great potential for the administration of high-dose mononuclear gadolinium chelates in magnetic resonance imaging (MRI). The development of high-nuclear lanthanide clusters with excellent solubility and high stability in water or solution has been challenging and is very important for expanding the performance of MRI. We used N-methylbenzimidazole-2-methanol (HL) and LnCl3·6H2O to synthesize two spherical lanthanide clusters, Ln32 (Ln = Ho, Ho32; and Ln = Gd, Gd32), which are highly stable in solution. The 24 ligands L- are all distributed on the periphery of Ln32 and tightly wrap the cluster core, ensuring that the cluster is stable. Notably, Ho32 can remain highly stable when bombarded with different ion source energies in HRESI-MS or immersed in an aqueous solution of different pH values for 24 h. The possible formation mechanism of Ho32 was proposed to be Ho(III), (L)- and H2O → Ho3(L)3/Ho3(L)4 → Ho4(L)4/Ho4(L)5 → Ho6(L)6/Ho6(L)7 → Ho16(L)19 → Ho28(L)15 → Ho32(L)24/Ho32(L)21/Ho32(L)23. To the best of our knowledge, this is the first study of the assembly mechanism of spherical high-nuclear lanthanide clusters. Spherical cluster Gd32, a form of highly aggregated Gd(III), exhibits a high longitudinal relaxation rate (1 T, r1 = 265.87 mM-1·s-1). More notably, compared with the clinically used commercial material Gd-DTPA, Gd32 has a clearer and higher-contrast T1-weighted MRI effect in mice bearing 4T1 tumors. This is the first time that high-nuclear lanthanide clusters with high water stability have been utilized for MRI. High-nuclear Gd clusters containing highly aggregated Gd(III) at the molecular level have higher imaging contrast than traditional Gd chelates; thus, using large doses of traditional gadolinium contrast agents can be avoided.
Collapse
Affiliation(s)
- Hai-Ling Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Donglin Liu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Hua Jia
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Shiping Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
28
|
Lin XS, Liao WH, Zhou LP, Sun QF. Embedding Lanthanide Organic Polyhedra into Mesoporous Silica Nanoparticles for the Photocatalytic Degradation of Organic Dyes. Chem Asian J 2023; 18:e202201249. [PMID: 36650336 DOI: 10.1002/asia.202201249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Organic pollutants cause severe environmental problems because of their damage to human health and ecological systems. Photocatalytic degradation of persistent organic pollutants is of great importance to address these hazards. Herein, we report a lanthanide organic polyhedra-based hybrid material Gd8 L12 ⊂MSN with the capability of photocatalytic dye degradation. Gd8 L12 ⊂MSN was prepared by embedding the Gd8 L12 complex into mesoporous silica nanoparticles (MSNs) using a "ship-in-a-bottle" strategy. Photocurrent response tests revealed that this hybrid material is a potential semiconductor and could generate a rapid and steady photocurrent upon irradiation. Further dye degradation experiments indicated that it could photocatalyze the degradation of familiar organic dyes. Thereinto, compared with the critical Gd8 L12 complex, the hybrid material exhibited an acceleration of 2.4 times and realized reusability. This not only offers a potential advanced photocatalyst for degrading persistent organic pollutants, but also provides a strategy for the application of supramolecular materials in environmental science.
Collapse
Affiliation(s)
- Xiao-Shan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China.,College of Chemistry and Material Science, Fujian Normal University, 350007, Fuzhou, P. R. China
| | - Wen-Hua Liao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China.,College of Chemistry and Material Science, Fujian Normal University, 350007, Fuzhou, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| |
Collapse
|
29
|
Zhang YF, Zhang YW, Li X, Sun LY, Han YF. Synthesis of triarylborane-centered N-heterocyclic carbene cages with tunable photophysical properties. Chem Commun (Camb) 2023; 59:2291-2294. [PMID: 36744641 DOI: 10.1039/d2cc06584c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Triarylborane-based discrete metal-carbene supramolecular cages [M3(1)2](PF6)3 (M = Ag, Au) were synthesized and characterized. The new hexacarbene assemblies show a significant solvatochromic effect in solvents of different polarity. Furthermore, the reversible fluoride binding property of [Au3(1)2](PF6)3 was investigated by UV-vis absorption and fluorescence titrations. This work holds promise for future developments in the area of highly emissive and stimulus-responsive NHC-metal assemblies.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Ya-Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Li-Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| |
Collapse
|
30
|
Zhang H, Li Y, Zhang YF, Qiao XJ, Sun LY, Li J, Wang YY, Han YF. Solvato-Controlled Assembly and Structural Transformation of Emissive Poly-NHC-Based Organometallic Cages and Their Applications in Amino Acid Sensing and Fluorescence Imaging. Chemistry 2023; 29:e202300209. [PMID: 36762405 DOI: 10.1002/chem.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Stimuli-induced structural transformation of supramolecular cages has drawn increasing attention because of their sensitive feature to external variations as model systems to simulate biological processes. However, combining structural transformation and useful functions has remained a difficult task. This study reports the solvato-controlled self-assembly of two unique topologies with different emission characteristics, a water-soluble Ag8 L4 cage (A) and an Ag4 L2 cage (B), produced from the same sulfonate-pendant tetraphenylethene (TPE) bridged tetrakis-(1,2,4-triazolium) ligand. Both cages show interesting solvent-responsive reversible structural transformation, and the change of fluorescence signals can efficiently track the process. Additionally, water-soluble cage A exhibits unique properties in thermochromism, thiol amino acid sensing, and subcellular imaging in aqueous media.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Fan Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiu-Juan Qiao
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
31
|
Tang X, Meng C, Rampal N, Li A, Chen X, Gong W, Jiang H, Fairen-Jimenez D, Cui Y, Liu Y. Homochiral Porous Metal-Organic Polyhedra with Multiple Kinds of Vertices. J Am Chem Soc 2023; 145:2561-2571. [PMID: 36649535 DOI: 10.1021/jacs.2c12424] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metal-organic polyhedra featuring non-Archimedean/Platonic architectures with multiple kinds of vertices have aroused great attention for their fascinating structures and properties but are yet challenging to achieve. Here, we report a combinatorial strategy to make such nonclassic polyhedral cages by combining kinetically labile metal ions with non-planar organic linkers instead of the usual only inert metal centers and planar ligands. This facilitates the synthesis of an enantiopure twisted tetra(3-pyridyl)-based TADDOL (TADDOL = tetraaryl-1,3-dioxolane-4,5-dimethanol) ligand (L) capable of binding Ni(II) ions to produce a regular convex cage, Ni6L8, with two mixed metal/organic vertices and three rarely reported concave cages Ni14L8, Ni18L12, and Ni24L16 with three or four mixed vertices. Each of the cages has an amphiphilic cavity decorated with chiral dihydroxyl functionalities and packs into a three-dimensional structure. The enantioselective adsorption and separation performances of the cages are strongly dependent on their pore structure features. Particularly, Ni14L8 and Ni18L12 with wide openings can be solid adsorbents for the adsorptive and solid-phase extractive separation of a variety of racemic spirodiols with up to 98% ee, whereas Ni6L8 and Ni24L16 with smaller pore apertures cannot adsorb the racemates. The combination of single-crystal X-ray diffraction analysis of the host-guest adduct and GCMC simulation indicates that the enantiospecific recognition capabilities originate from the well-organized chiral inner sphere as well as multiple interactions within the chiral microenvironment. This work therefore provides an attractive strategy for the rational design of polyhedral cages, showing geometrically fascinating structures with properties different from those of classic assemblies.
Collapse
Affiliation(s)
- Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunlong Meng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nakul Rampal
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Aurelia Li
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Xu Chen
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Photonic properties and applications of multi-functional organo-lanthanide complexes: Recent advances. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
33
|
Xian T, Meng Q, Gao F, Hu M, Wang X. Functionalization of luminescent lanthanide complexes for biomedical applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Li Z, Wang D, Zhou Z, Zhao G, Li Q, Bi Y, Zheng Z. Thiacalix[4]arene-Sandwiched Sandglass-like Ln 9 Clusters (Ln = Tb and Eu): Insights into the Selective Luminescence Quenching Properties by p-Nitrobenzene Derivatives. Inorg Chem 2022; 61:20814-20823. [PMID: 36516337 DOI: 10.1021/acs.inorgchem.2c03107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nonanuclear lanthanide clusters Ln9 (Ln = Tb and Eu) based on p-tert-butylthiacalix[4]arene (H4TC4A) have been synthesized by the solvothermal reaction and were structurally determined by single-crystal X-ray diffraction. The framework of Ln9 can be termed as a sandglass-like structure whose two Ln4-TC4A polynuclear secondary building units are bridged by one octa-coordinate {Ln(μ3-O)8} unit. Efficient TC4A-to-Ln energy transfer was observed for Tb9 but not for Eu9. The luminescence quantum yield (QY) of Tb9 in the solid state at room temperature was determined to be 17.6%, while its highest QY in a methanolic solution (2 × 10-5 mol/L) is 59.2% upon excitation at 318 nm. The luminescence of Tb9 was quenched selectively by derivatives of p-nitrobenzene, as demonstrated by the results of photoluminescence and UV-vis titration experiments and supported by density functional theory calculations. We believe that the interactions between the analyte molecules and the pocket of Tb9 are primarily responsible for the observed quenching. As such, this work represents one of the few examples of utilizing structurally interesting lanthanide cluster complexes as a sensory platform for the recognition of meaningful analytes and portends the further development of lanthanide-calixarene-complex-based functional materials.
Collapse
Affiliation(s)
- Ziping Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Dan Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Zuohu Zhou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Guiyan Zhao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Qiang Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Yanfeng Bi
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Zhiping Zheng
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518000, P. R. China
| |
Collapse
|
35
|
Design of lanthanide based metal–organic polyhedral cages for application in catalysis, sensing, separation and magnetism. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Guo F, Li DF, Gao F, Xu K, Zhang J, Yi XG, Li DP, Li YX. Highly Stable Europium(III) Tetrahedral (Eu 4L 4)(phen) 4 Cage: Structure, Luminescence Properties, and Cellular Imaging. Inorg Chem 2022; 61:17089-17100. [PMID: 36240513 DOI: 10.1021/acs.inorgchem.2c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Luminescent lanthanide cages have many potential applications in guest recognition, sensing, magnetic resonance imaging (MRI), and bioimaging. However, these polynuclear lanthanide assemblies' poor stability, dispersity, and luminescence properties have significantly constrained their practical applications. Furthermore, it is still a huge challenge to simultaneously synthesize and design lanthanide organic polyhedra with high stability and quantum yield. Herein, we demonstrate a simple and robust strategy to improve the rigidity, chemical stability, and luminescence of an Eu(III) tetrahedral cage by introducing the conjugated planar auxiliary phen ligand. The self-assembled tetrahedral cage, (Eu4L4)(phen)4 [L = (4,4',4″-tris(4,4,4-trifluoro-1,3-dioxobutyl)-triphenylamine), phen = 1,10-phenanthroline], exhibited characteristic luminescence of Eu3+ ions with high quantum yield (41%) and long lifetime (131 μs) in toluene (1.0 × 10-6 M). Moreover, the Eu(III) cage was stable in water and even in an aqueous solution with a pH range of 1-14. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cellular imaging revealed that the Pluronic F127-coated hybrid material, (Eu4L4)(phen)4@F127, exhibited low cytotoxicity, good biocompatibility, and cellular imaging ability, which may inspire more insights into the development of lanthanide organic polyhedra (LOPs) for potential biomedical applications.
Collapse
Affiliation(s)
- Feng Guo
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Duo-Fu Li
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Fang Gao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang330006, China
| | - Jun Zhang
- Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei230601, China
| | - Xiu-Guang Yi
- School of Chemistry and Chemical Engineering, Jinggangshan University, Jian343009, China
| | - Dong-Ping Li
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Yong-Xiu Li
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| |
Collapse
|
37
|
Ma F, Qiao X, Zuo W, Tao Y, Li A, Luo Z, Liu Y, Liu X, Wang X, Sun W, Jia C. Less is More: A Shortcut for Anionocages Design Based on (RPO
3
2−
)‐Monourea Coordination. Angew Chem Int Ed Engl 2022; 61:e202210478. [DOI: 10.1002/anie.202210478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Fen Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xinrui Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Zuo
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries School of Environmental and Chemical Engineering Xi'an Polytechnic University Xi'an 710600 China
| | - Yu Tao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Zhipeng Luo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yuqi Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xueru Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiaoqing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| |
Collapse
|
38
|
Atom engineering-regulated in situ transition of Cu(I)-Cu(II) for efficient overcoming cancer drug resistance. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
39
|
Ma F, Qiao X, Zuo W, Tao Y, Li A, Luo Z, Liu Y, Liu X, Wang X, Sun W, Jia C. Less is More: A Shortcut for Anionocages Design Based on (RPO32‐)‐Monourea Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fen Ma
- Northwest University College of Chemistry and Materials Science CHINA
| | - Xinrui Qiao
- Northwest University College of Chemistry and Materials Science CHINA
| | - Wei Zuo
- Xi'an Polytechnic University College of Emvironmental and Chemical Engineering CHINA
| | - Yu Tao
- Northwest University College of Chemistry and Materials Science CHINA
| | - Anyang Li
- Northwest University College of Chemistry and Materials Science CHINA
| | - Zhipeng Luo
- Northwest University College of Chemistry and Materials Science CHINA
| | - Yuqi Liu
- Northwest University College of Chemistry and Materials Science CHINA
| | - Xueru Liu
- Northwest University College of Chemistry and Materials Science CHINA
| | - Xiaoqing Wang
- Northwest University College of Chemistry and Materials Science CHINA
| | - Wei Sun
- Northwest University College of Chemistry and Materials Science CHINA
| | - Chuandong Jia
- Northwest University College of Chemistry and Materials Science No.1, Xuefu Ave. Chang'an District 710127 Xi'an CHINA
| |
Collapse
|
40
|
Jin L, Miao Y, Liu D, Song F. Fe/Mn‐Porphyrin Coordination Polymer Nanoparticles for Magnetic Resonance Imaging (MRI) Guided‐Combination Therapy between Photodynamic Therapy and Chemodynamic Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lin Jin
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 China
| | - Yuyang Miao
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 China
| | - Dapeng Liu
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 China
| | - Fengling Song
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
41
|
Self-assembly of a photoluminescent metal-organic cage and its spontaneous aggregation in dilute solutions enabling time-dependent emission enhancement. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1245-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Lu YL, Song JQ, Qin YH, Guo J, Huang YH, Zhang XD, Pan M, Su CY. A Redox-Active Supramolecular Fe 4L 6 Cage Based on Organic Vertices with Acid-Base-Dependent Charge Tunability for Dehydrogenation Catalysis. J Am Chem Soc 2022; 144:8778-8788. [PMID: 35507479 DOI: 10.1021/jacs.2c02692] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supramolecular cage chemistry is of lasting interest because, as artificial blueprints of natural enzymes, the self-assembled cage structures not only provide substrate-hosting biomimetic environments but also can integrate active sites in the confined nanospaces for function synergism. Herein, we demonstrate a vertex-directed organic-clip chelation assembly strategy to construct a metal-organic cage Fe4L68+ (MOC-63) incorporating 12 imidazole proton donor-acceptor motifs and four redox-active Fe centers in an octahedral coordination nanospace. Different from regular supramolecular cages assembled with coordination metal vertices, MOC-63 comprises six ditopic organic-clip ligands as vertices and four tris-chelating Fe(N∩N)3 moieties as faces, thus improving its acid, base, and redox robustness by virtue of cage-stabilized dynamics in solution. Improved dehydrogenation catalysis of 1,2,3,4-tetrahydroquinoline derivatives is accomplished by MOC-63 owing to a supramolecular cage effect that synergizes multiple Fe centers and radical species to expedite intermediate conversion of the multistep reactions in a cage-confined nanospace. The acid-base buffering imidazole motifs play a vital role in modulating the total charge state to resist pH variation and tune the solubility among varied solvents, thereby enhancing reaction acceleration in acidic conditions and rendering a facile recycling catalytic process.
Collapse
Affiliation(s)
- Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Qi Song
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Han Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jing Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin-Hui Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
43
|
Jiang C, Hu SJ, Zhou LP, Yang J, Sun QF. Lanthanide-organic pincer hosts with allosteric-controlled metal ion binding specificity. Chem Commun (Camb) 2022; 58:5494-5497. [PMID: 35416812 DOI: 10.1039/d2cc01379g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of lanthanide-organic pincer hosts were synthesized, which showed allosteric-controlled metal ion binding selectivities due to the lanthanide-induced subtle changes of the central vacant binding site.
Collapse
Affiliation(s)
- Chen Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Jian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
44
|
Jia P, Hu Y, Zeng Z, Wang Y, Song B, Jiang Y, Sun H, Wang M, Qiu W, Xu L. Construction of FRET-based metallacycles with efficient photosensitization efficiency and photocatalytic activity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Percástegui EG. Metal-organic cages against toxic chemicals and pollutants. Chem Commun (Camb) 2022; 58:5055-5071. [PMID: 35383805 DOI: 10.1039/d2cc00604a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continuous release of toxic chemicals and pollutants into the atmosphere and natural waters threatens, directly and indirectly, human health, the sustainability of the planet, and the future of society. Materials capable of capturing or chemically inactivating hazardous substances, which are harmful to humans and the environment, are critical in the modern age. Metal-organic cages (MOCs) show great promise as materials against harmful agents both in solution and in solid state. This Highlight features examples of MOCs that selectively encapsulate, adsorb, or remove from a medium noxious gases, toxic organophosphorus compounds, water pollutant oxoanions, and some emerging organic contaminants. Remarkably, the toxicity of interacting contaminants may be lowered by MOCs as well. Specific cases pertaining to the use of these cages for the chemical degradation of some harmful substances are presented. This Highlight thus aims to provide an overview of the possibilities of MOCs in this area and new methodological insights into their operation for enhancing their activity and the engineering of further remediation applications.
Collapse
Affiliation(s)
- Edmundo G Percástegui
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, Mexico. .,Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco km 14.5, 50200 Toluca, Estado de México, Mexico
| |
Collapse
|
46
|
Liang Y, Mei L, Jin Q, Geng J, Wang J, Liu K, Hu K, Yu J, Shi W. Hierarchical assembly of uranyl metallacycles involving macrocyclic hosts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Zhao M, Tang Z, Zhang J, Fu G, Xu W, Wu Q, Pu L. Preparation and MRI performance of a composite contrast agent based on palygorskite pores and channels binding effect to prolong the residence time of water molecules on gadolinium ions. RSC Adv 2022; 12:7328-7334. [PMID: 35424669 PMCID: PMC8982286 DOI: 10.1039/d1ra08967f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/26/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, gadolinium tannate was simply and conveniently coated on the surface of palygorskite by in situ reaction of a coordination polymer formed between tannic acid and Gd3+. The palygorskite-tannate gadolinium-polyvinyl alcohol integrated composite (PAL@Gd@PVA) is successfully prepared after the introduction of polyvinyl alcohol onto the palygorskite-tannate gadolinium. The structure is characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy analysis. The results show that TA-Gd and PVA are successfully loaded on the surface of palygorskite, and the rod crystal structure of palygorskite in the composite remains intact. Palygorskite fibres constitute the framework of the composite and play a key role in supporting and crosslinking the composite. The prepared compounds showed negligible cytotoxicity and low haemolysis rate, showing good biocompatibility. In vitro MRI results showed that the longitudinal and transverse relaxation rates of the composite are 59.56 and 340.81 mm-1 s-1, respectively.
Collapse
Affiliation(s)
- Minzhi Zhao
- College of Science, Gansu Agricultural University Lanzhou 730000 China
| | - Zhonghua Tang
- Lanzhou Petrochemical Research Centre PetroChina Lanzhou 730060 Gansu China
| | - Jia Zhang
- College of Science, Gansu Agricultural University Lanzhou 730000 China
| | - Guorui Fu
- College of Science, Gansu Agricultural University Lanzhou 730000 China
| | - Weibing Xu
- College of Science, Gansu Agricultural University Lanzhou 730000 China
| | - Qingfeng Wu
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou 730000 China
| | - Lumei Pu
- College of Science, Gansu Agricultural University Lanzhou 730000 China
| |
Collapse
|
48
|
Hu SJ, Guo XQ, Zhou LP, Yan DN, Cheng PM, Cai LX, Li XZ, Sun QF. Guest-Driven Self-Assembly and Chiral Induction of Photofunctional Lanthanide Tetrahedral Cages. J Am Chem Soc 2022; 144:4244-4253. [PMID: 35195993 DOI: 10.1021/jacs.2c00760] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chiral luminescent lanthanide-organic cages have many potential applications in enantioselective recognition, sensing, and asymmetric catalysis. However, due to the paucity of structures and their limited cavities, host-guest chemistry with lanthanide-organic cages has remained elusive so far. Herein, we report a guest-driven self-assembly and chiral induction approach for the construction of otherwise inaccessible Ln4L4-type (Ln = lanthanide ions, i.e., EuIII, TbIII; L = ligand) tetrahedral hosts. Single crystal analyses on a series of host-guest complexes reveal remarkable guest-adaptive cavity breathing on the tetrahedral cages, reflecting the advantage of the variation tolerance on coordination geometry of the f-elements. Meanwhile, noncovalent confinement of pyrene within the lanthanide cage not only leads to diminishment of its excimer emission but also facilitates guest to host energy transfer, opening up a new sensitization window for the lanthanide luminescence on the cage. Moreover, stereoselective self-assembly of either Λ4- or Δ4- type Eu4L4 cages has been realized via chiral induction with R/S-BINOL or R/S-SPOL templates, as confirmed by NMR, circular dichroism (CD), and circularly polarized luminescence (CPL) with high dissymmetry factors (glum) up to ±0.125.
Collapse
Affiliation(s)
- Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Dan-Ni Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xiao-Zhen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
49
|
Zhou S, Zhang Z, Bai D, Li J, Cui X, Xu ZJ, Tang Y, Tang X, Liu W. A Discrete 3d-4f Metallacage as an Efficient Catalytic Nanoreactor for a Three-Component Aza-Darzens Reaction. Inorg Chem 2022; 61:4009-4017. [PMID: 35188386 DOI: 10.1021/acs.inorgchem.1c03729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exploration and development of coordination nanocages can provide an approach to control chemical reactions beyond the bounds of the flask, which has aroused great interest due to their significant applications in the field of molecular recognition, supramolecular catalysis, and molecular self-assembly. Herein, we take the advantage of a semirigid and nonsymmetric bridging ligand (H5L) with rich metal-chelating sites to construct an unusual and discrete 3d-4f metallacage, [Zn2Er4(H2L)4(NO3)Cl2(H2O)]·NO3·xCH3OH·yH2O (Zn2Er4). The 3d-4f Zn2Er4 cage possesses a quadruple-stranded structure, and all of the ligands wrap around an open spherical cavity within the core. The self-assembly of the unique cage not only ensures the structural stability of the Zn2Er4 cage as a nanoreactor in solution but also makes the bimetallic lanthanide cluster units active sites that are exposed in the medium-sized cavity. It is important to note that the Zn2Er4 cage as a homogeneous catalyst has been successfully applied to catalyze three-component aza-Darzens reactions of formaldehyde, anilines, and α-diazo esters without another additive under mild conditions, displaying better catalytic activity, higher specificity, short reaction time, and low catalyst loadings. A possible mechanism for this three-component aza-Darzens reaction catalyzed by the Zn2Er4 cage has been proposed. These experimental results have demonstrated the great potential of the discrete 3d-4f metallacage as a host nanoreactor for the development of supramolecular or molecular catalysis.
Collapse
Affiliation(s)
- Shengbin Zhou
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhichao Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dongjie Bai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jingzhe Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiang Cui
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, People's Republic of China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yu Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaoliang Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
50
|
Yu X, Guo C, Lu S, Chen Z, Wang H, Li X. Terpyridine-Based 3D Discrete Metallosupramolecular Architectures. Macromol Rapid Commun 2022; 43:e2200004. [PMID: 35167147 DOI: 10.1002/marc.202200004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Terpyridine (tpy)-based 3D discrete metallosupramolecular architectures, which are often inspired by polyhedral geometry and the biological structures found in nature, have drawn significant attention from the community of metallosupramolecular chemistry. Because of the linear tpy-M(II)-tpy connectivity, the creation of sophisticated 3D metallosupramolecules based on tpy remains a formidable synthetic challenge. Nevertheless, with recent advancement in ligand design and self-assembly, diverse 3D metallosupramolecular polyhedrons, such as Platonic solids, Archimedean solids, prims as well as Johnson solids, have been constructed and their potential applications have been explored. This review summarizes the progress on tpy-based discrete 3D metallosupramolecules, aiming to shed more light on the design and construction of novel discrete architectures with molecular-level precision through coordination-driven self-assembly.
Collapse
Affiliation(s)
- Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| |
Collapse
|