1
|
Wu Y, Liu X, Zhang C, Zhang X, Lin X. Bulk Stereoselective Cationic Polymerization of Vinyl Ethers by the Coordination of ZrCl 4 with Tunable Spirocyclic Phosphoric Acids. Angew Chem Int Ed Engl 2025; 64:e202422085. [PMID: 39632277 DOI: 10.1002/anie.202422085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
Control over stereochemistry in poly(vinyl ether)s leads to a notable change in their physical properties, yet remains a grand challenge. Here, we demonstrate the bulk stereoselective cationic polymerization of vinyl ethers using ZrCl4 coordinated with a spirocyclic phosphoric acid (SPA). The widely variable substituents in SPAs exert a profound impact on the stereochemical and activity outcome of the polymerization: the % m of poly(vinyl ether)s linearly increases with the Hammett substituent constant (σ) of SPAs; the catalytic activity increases with the σ; the large steric hindrance groups lead to decreased polymerization activity. Mechanism studies suggest that the coordination of ZrCl4 with three equivalents of SPAs generates the chiral complex. The complex can abstract chlorine from the initiator/chain end to form the chiral ion pair allowing the selective facial addition of incoming monomers. The catalyst system features characteristics of no solvent, low loads, high tacticity control, high monomer scope, and recyclability.
Collapse
Affiliation(s)
- Yinong Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xiong Liu
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengjian Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinghong Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
2
|
Chen L, Wang Z, Fang E, Fan Z, Song S. Cationic polymerization of vinyl ethers using trifluoromethyl sulfonate/solvent/ligand to access well-controlled poly(vinyl ether)s. Chem Sci 2025; 16:1250-1264. [PMID: 39677930 PMCID: PMC11638848 DOI: 10.1039/d4sc06181k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Indexed: 12/17/2024] Open
Abstract
Cationic polymerization of vinyl ethers to access poly(vinyl ether) polymeric materials has been challenging due to stringent polymerization conditions and inevitable chain transfer. Herein we introduce a protocol using trifluoromethyl sulfonates to catalyze the polymerization of a series of vinyl ethers. These trifluoromethyl sulfonates are fully commercially available and can be stored under ambient conditions. Solvents and ligands have profound influences on the polymerization process, and poly(vinyl ether)s with different molecular weights, molecular weight distributions, and tacticities were obtained. A few combinations of trifluoromethyl sulfonate/solvents/O^O type ligands were explored. They showed high activities and afforded poly(vinyl ether)s with well-controlled tacticity, of which the isotacticity can be up to 81% m. Poly(vinyl ether)s with high tacticities exhibit crystallization behaviors with melting points. We also probed the cationic reversible addition-fragmentation chain transfer (RAFT) polymerization of ethyl vinyl ether employing a RAFT chain transfer agent. Low molecular weight distributions (Đs) around 1.1 can be realized. Since trifluoromethyl sulfonates can be fed at a remarkably low catalyst loading and other chemicals are cheap and easily available, the poly(vinyl ether) polymeric materials are promisingly prepared on a large scale.
Collapse
Affiliation(s)
- Liangyu Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Zhihao Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - En Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Zhiqiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Shaofei Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
3
|
Liao Y, Yan X, Zhu H, Zhou S, Liao S. Synthesis of Clickable Isotactic Poly(vinyl ether)s through Organocatalytic Stereoselective Cationic Copolymerization. Chemistry 2025; 31:e202403170. [PMID: 39523864 DOI: 10.1002/chem.202403170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
By virtue of the high reliability of click chemistry, polymers with clickable groups provide a useful platform for the rapid synthesis of polymer materials with diverse functionalities and architectures. However, the polymerization of clickable vinyl monomers with a concurrent regulation on tacticity remains underdeveloped. Herein, we report the successful development of a stereoselective cationic copolymerization of C-C triple bond-containing vinyl ethers with simple alkyl vinyl ethers by employing confined Brønsted acid as catalyst, which allows for the synthesis of alkyne-functionalized vinyl ether copolymers with high isotacticity (up to 90 % m), controlled molecular weight, and variable content of C-C triple bonds. Further transformation of the pendant clickable alkyne groups via thiol-yne click reactions and copper(I)-catalyzed alkyne-azide cycloaddition reaction enables a modular access to isotactic polymers with various functional groups.
Collapse
Affiliation(s)
- Yun Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xi Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hui Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shuai Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Wei Z, He W, Liu Z, Lin Y, Wang M, Li L, Wu C, Yang S, Liu G, Yang R. Orthogonal Radical and Cationic Single-Unit Monomer Insertions for Engineering Polymer Architectures. Angew Chem Int Ed Engl 2024; 63:e202402265. [PMID: 38760991 DOI: 10.1002/anie.202402265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The single-unit monomer insertion (SUMI), derived from living/controlled polymerization, can be directly functionalized at the end or within the chain of polymers prepared by living/controlled polymerization, offering potential applications in the preparation of polymers with complex architectures. Many scenarios demand the simultaneous incorporation of monomers suitable for different polymerization methods into complex polymers. Therefore, it becomes imperative to utilize SUMI technologies with diverse mechanisms, especially those that are compatible with each other. Here, we reported the orthogonal SUMI technique, seamlessly combining radical and cationic SUMI approaches. Through the careful optimization of monomer and chain transfer agent pairs and adjustments to reaction conditions, we can efficiently execute both radical and cationic SUMI processes in one pot without mutual interference. The utilization of orthogonal SUMI pairs facilitates the integration of radical and cationic reversible addition-fragmentation chain transfer (RAFT) polymerization in various configurations. This flexibility enables the synthesis of diblock, triblock, and star polymers that incorporate both cationically and radically polymerizable monomers. Moreover, we have successfully implemented a mixing mechanism of free radicals and cations in RAFT step-growth polymerization, resulting in the creation of a side-chain sequence-controlled polymer brushes.
Collapse
Affiliation(s)
- Ze Wei
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wei He
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhihua Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yating Lin
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Maolin Wang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Liang Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Chunxiao Wu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Sheng Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
5
|
Singha S, Pan S, Tallury SS, Nguyen G, Tripathy R, De P. Recent Developments on Cationic Polymerization of Vinyl Ethers. ACS POLYMERS AU 2024; 4:189-207. [PMID: 38882029 PMCID: PMC11177306 DOI: 10.1021/acspolymersau.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 06/18/2024]
Abstract
In recent times, the evolution of cationic polymerization has taken a multidirectional approach, with the development of cationic reversible addition-fragmentation chain transfer (RAFT) polymerization. In contrast to the conventional cationic polymerization methods, which were typically carried out under inert atmospheres and low temperatures, various novel polymerization techniques have been developed where the reactions are carried out in open air, operate at room temperature, are cost-effective, and are environmentally friendly. Besides, several external stimuli, such as heat, light, chemicals, electrical potential, etc. have been employed to activate and control the polymerization process. It also enables the combination of cationic polymerization with other polymerization methods in a single reaction vessel, eliminating the necessity for isolation and purification during intermediate steps. In addition, significant advancements have been made through various modifications in catalyst systems, resulting in polymers with an exceptionally high level of stereoregularity. This review article comprehensively analyses the recent developments in cationic polymerization, encompassing their applications and offering insights into future perspectives.
Collapse
Affiliation(s)
- Sourav Singha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Swagata Pan
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Syamal S Tallury
- ExxonMobil Chemical Company, 5200 Bayway Drive, Baytown, Texas 77520-2101, United States
| | - Giang Nguyen
- ExxonMobil Chemical Company, 5200 Bayway Drive, Baytown, Texas 77520-2101, United States
| | - Ranjan Tripathy
- ExxonMobil Chemical Company, 5200 Bayway Drive, Baytown, Texas 77520-2101, United States
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| |
Collapse
|
6
|
Yang Z, Liao Y, Zhang Z, Chen J, Zhang X, Liao S. Asymmetric Ion-Pairing Photoredox Catalysis for Stereoselective Cationic Polymerization under Light Control. J Am Chem Soc 2024; 146:6449-6455. [PMID: 38316013 DOI: 10.1021/jacs.3c12694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
By virtue of noninvasive regulations by light, photocontrolled polymerizations have attracted considerable attention for the precision synthesis of macromolecules. However, a cationic polymerization with simultaneous photocontrol and tacticity-regulation remains elusive so far. Herein, we introduce an asymmetric ion-pairing photoredox catalysis strategy that allows for the development of a stereoselective cationic polymerization with concurrent light regulation for the first time. By employing an ion pair catalyst (PC+/*A-) consisting of a photoredox active cation (PC+) and a sterically confined chiral anion (*A-) to deliver the stereochemical control, the cationic polymerization of vinyl ethers can be achieved with photocontrol and high isotactic selectivity (up to 91% m) at a remarkable low catalyst loading (50 ppm).
Collapse
Affiliation(s)
- Zan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yun Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhengyi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianxu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Cao L, Chen H, Fu H, Xian J, Cao H, Pan X, Wu J. Bidentate selenium-based chalcogen bond catalyzed cationic polymerization of p-methoxystyrene. Chem Commun (Camb) 2024; 60:1321-1324. [PMID: 38197262 DOI: 10.1039/d3cc05516g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The application of selenium-based non-covalent bond catalysis in living cationic polymerization has rarely been reported. In this work, the cationic polymerization of p-methoxystyrene (pMOS) was performed using a bidentate selenium bond catalyst - a new water-tolerant Lewis acid catalyst. A polymer with controllable molecular weight and narrow molecular weight distribution can be obtained at room temperature, with a maximum molecular weight of 23.3 kDa. This selenium bond compound can also catalyze the controllable cationic polymerization of p-methoxy styrene under environmental conditions. By changing the monomer feeding ratio, a secondary feeding experiment and DFT analysis, it is shown that the selenium bond catalyst can induce polymer chain growth by reversibly activating dormant covalent bonds (C-OH).
Collapse
Affiliation(s)
- Luya Cao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, People's Republic of China
| | - Hao Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| | - Hongjun Fu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| | - Ji Xian
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| | - Hongzhang Cao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, People's Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| |
Collapse
|
8
|
Sorensen CC, Bhat V, Bello AY, Leibfarth FA. Mechanistic Insights into the Stereoselective Cationic Polymerization of N-Vinylcarbazole. ACS Catal 2023; 13:12163-12172. [PMID: 38469177 PMCID: PMC10927002 DOI: 10.1021/acscatal.3c02165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The synthesis of stereoregular polymers through ionic mechanisms using asymmetric ion-pairing (AIP) catalysis is emerging as an effective strategy to achieve differentiated material properties from readily available building blocks. Stereoselective cationic polymerization in particular is primed for advancement using AIP by leveraging the breadth of Brønsted and Lewis acid small-molecule catalysis literature; however, mechanistic studies that address polymer-specific phenomena are scarce and, as a result, the lack of mechanistic understanding has limited catalyst design. In a recent study, we demonstrated the only example of a stereoselective and helix-sense-selective cationic vinyl polymerization of N-vinylcarbazole using chiral scandium-bis(oxazoline) Lewis acids. To better understand the mechanism of this highly stereoselective polymerization and elicit design principles for future advances, we present a combined experimental and computational study into the relevant factors that determine tacticity and helicity control. Key mechanistic experiments suggest two competing elementary steps-chain-end conformation equilibration and propagation-whose relative rates can be influenced by monomer concentration, isotope effects, and catalyst design to tune tacticity. In contrast, helicity is influenced by complex relationships between the stereoselectivity of the first monomer propagation and a time-dependent initiator-catalyst mixing time. The more complete understanding of stereoselective cationic polymerization through AIP developed herein provides insights into polymer-specific mechanisms for stereocontrol, which we believe will motivate continued catalyst discovery and development for stereoselective vinyl polymerization.
Collapse
Affiliation(s)
- Cole C Sorensen
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Vittal Bhat
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Anthony Y Bello
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Richards CJ, Stephen Ojo O. Double asymmetric synthesis: faster reactions are more selective and a model to estimate relative rate. Org Biomol Chem 2023; 21:7115-7128. [PMID: 37599596 DOI: 10.1039/d3ob01048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The catalysed reaction of an enantiopure substrate with formation of a new chirality element may result in higher diastereoselectivity with one enantiomer of a catalyst (matched pair) than with the other (mismatched pair). The hypothesis that the matched reaction is faster was investigated using literature examples of kinetic resolution procedures that result in the formation of a new stereogenic centre. With one exception from fifteen examples, the selectivity factor (s = kfast/kslow) = kmatched/kmismatched. A model to estimate the relative rate of a fast-matched reaction vs. the corresponding slow-mismatched reaction is proposed. This model also provides insight into the basis of the selectivity displayed in the kinetic resolution procedures studied.
Collapse
Affiliation(s)
| | - O Stephen Ojo
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
10
|
Sorensen CC, Kozuszek CT, Borden MA, Leibfarth FA. Asymmetric Ion-Pairing in Stereoselective Vinyl Polymerization. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Cole C. Sorensen
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Caleb T. Kozuszek
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Meredith A. Borden
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Frank A. Leibfarth
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Watanabe H, Kanazawa A, Okumoto S, Aoshima S. Role of the Counteranion in the Stereospecific Living Cationic Polymerization of N-Vinylcarbazole and Vinyl Ethers: Mechanistic Investigation and Synthesis of Stereo-Designed Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hironobu Watanabe
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
12
|
Hakobyan K, Xu J, Müllner M. The challenges of controlling polymer synthesis at the molecular and macromolecular level. Polym Chem 2022. [DOI: 10.1039/d1py01581h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective, we outline advances and challenges in controlling the structure of polymers at various size regimes in the context of structural features such as molecular weight distribution, end groups, architecture, composition and sequence.
Collapse
Affiliation(s)
- Karen Hakobyan
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Zhang X, Yang Z, Jiang Y, Liao S. Organocatalytic, Stereoselective, Cationic Reversible Addition-Fragmentation Chain-Transfer Polymerization of Vinyl Ethers. J Am Chem Soc 2021; 144:679-684. [PMID: 34967605 DOI: 10.1021/jacs.1c11501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tacticity is a crucial factor affecting the properties of synthetic polymer materials. Here, we introduce a type of chiral organic Brønsted acid catalyst, 1,1'-bi-2-naphthol-derived N,N'-bis(triflyl)phosphoramidimidates (PADIs), for the cationic polymerization of vinyl ethers, which enables the development of the first organocatalytic, highly stereoselective, cationic reversible addition-fragmentation chain-transfer (RAFT) polymerization of vinyl ethers with a trithiocarbonate chain-transfer agent. This metal-free RAFT process could afford isotactic poly(vinyl ethers) with high stereoselectivity, controllable molecular mass, and narrow dispersity at low catalyst loadings (as low as 200 ppm). Moreover, the trithiocarbonate chain-end allows for chain extension to synthesize diblock copolymers comprising an isotactic poly(vinyl ether) block, by a mechanistic switching from stereoselective cationic RAFT polymerization to visible-light-regulated cationic and radical RAFT polymerization.
Collapse
Affiliation(s)
- Xun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zan Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Yang Z, Zhang X, Jiang Y, Ma Q, Liao S. Organocatalytic stereoselective cationic polymerization of vinyl ethers by employing a confined brønsted acid as the catalyst. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1143-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Knutson PC, Teator AJ, Varner TP, Kozuszek CT, Jacky PE, Leibfarth FA. Brønsted Acid Catalyzed Stereoselective Polymerization of Vinyl Ethers. J Am Chem Soc 2021; 143:16388-16393. [PMID: 34597508 DOI: 10.1021/jacs.1c08282] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Isotactic poly(vinyl ether)s (PVEs) have recently been identified as a new class of semicrystalline thermoplastics with a valuable combination of mechanical and interfacial properties. Currently, methods to synthesize isotactic PVEs are limited to strong Lewis acids that require a high catalyst loading and limit the accessible scope of monomer substrates for polymerization. Here, we demonstrate the first Brønsted acid catalyzed stereoselective polymerization of vinyl ethers. A single-component imidodiphosphorimidate catalyst exhibits a sufficiently low pKa to initiate vinyl ether polymerization and acts as a chiral conjugate base to direct the stereochemistry of monomer addition to the oxocarbenium ion reactive chain end. This Brønsted acid catalyzed stereoselective polymerization enabled an expanded substrate scope compared to previous methods, the use of chain transfer agents to lower catalyst loading, and the capability to recycle the catalyst for multiple polymerizations.
Collapse
Affiliation(s)
- Phil C Knutson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron J Teator
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Travis P Varner
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Caleb T Kozuszek
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paige E Jacky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Li J, Lin Z, He D, Wu W, Jiang H. Palladium‐Catalyzed
Sequential Cyclization/Functionalization of Oxime Ethers with Unactivated Vinyl Ethers for Tunable Assembly of Structurally Diverse Isoxazoles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou Guangdong 510640 China
| | - Zidong Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 China
| | - Dan He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
17
|
Chen Y, Zhang L, Jin Y, Lin X, Chen M. Recent Advances in Living Cationic Polymerization with Emerging Initiation/Controlling Systems. Macromol Rapid Commun 2021; 42:e2100148. [PMID: 33969566 DOI: 10.1002/marc.202100148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Indexed: 12/27/2022]
Abstract
While the conventional living cationic polymerization (LCP) provided opportunities to synthesizing well-defined polymers with predetermined molecular weights, desirable chemical structures and narrow dispersity, it is still important to continuously innovate new synthetic methods to meet the increasing requirements in advanced material engineering. Consequently, a variety of novel initiation/controlling systems have be demonstrated recently, which have enabled LCP with spatiotemporal control, broadened scopes of monomers and terminals, more user-friendly operations and reaction conditions, as well as improved thermomechanical properties for obtained polymers. In this work, recent advances in LCP is summarized with emerging initiation/controlling systems, including chemical-initiated/controlled cationic reversible addition-fragmentation chain transfer (RAFT) polymerization, photoinitiated/controlled LCP, electrochemical-controlled LCP, thionyl/selenium halide-initiated LCP, organic acid-assisted LCP, and stereoselective LCP. It is hoped that this summary will provide useful knowledge to people in related fields and stimulate new ideas to promote the development and application of LCP in both academia and industry.
Collapse
Affiliation(s)
- Yinan Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lu Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xinrong Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
18
|
Crich D. En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. J Am Chem Soc 2021; 143:17-34. [PMID: 33350830 PMCID: PMC7856254 DOI: 10.1021/jacs.0c11106] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrate chemistry is an essential component of the glycosciences and is fundamental to their progress. This Perspective takes the position that carbohydrate chemistry, or glycochemistry, has reached three crossroads on the path to the transformation of the glycosciences, and illustrates them with examples from the author's and other laboratories. The first of these potential inflexion points concerns the mechanism of the glycosylation reaction and the role of protecting groups. It is argued that the experimental evidence supports bimolecular SN2-like mechanisms for typical glycosylation reactions over unimolecular ones involving stereoselective attack on naked glycosyl oxocarbenium ions. Similarly, it is argued that the experimental evidence does not support long-range stereodirecting participation of remote esters through bridged bicyclic dioxacarbenium ions in organic solution in the presence of typical counterions. Rational design and improvement of glycosylation reactions must take into account the roles of the counterion and of concentration. A second crossroads is that between mainstream organic chemistry and glycan synthesis. The case is made that the only real difference between glycan and organic synthesis is the formation of C-O rather than C-C bonds, with diastereocontrol, strategy, tactics, and elegance being of critical importance in both areas: mainstream organic chemists should feel comfortable taking this fork in the road, just as carbohydrate chemists should traveling in the opposite direction. A third crossroads is that between carbohydrate chemistry and medicinal chemistry, where there are equally many opportunities for traffic in either direction. The glycosciences have advanced enormously in the past decade or so, but creativity, input, and ingenuity of scientists from all fields is needed to address the many sophisticated challenges that remain, not the least of which is the development of a broader and more general array of stereospecific glycosylation reactions.
Collapse
Affiliation(s)
- David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
19
|
Teator AJ, Varner TP, Knutson PC, Sorensen CC, Leibfarth FA. 100th Anniversary of Macromolecular Science Viewpoint: The Past, Present, and Future of Stereocontrolled Vinyl Polymerization. ACS Macro Lett 2020; 9:1638-1654. [PMID: 35617075 DOI: 10.1021/acsmacrolett.0c00664] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The thermomechanical properties exhibited by synthetic macromolecules can be directly linked to their tacticity, or the relative stereochemistry of repeat units. The development of stereoselective coordination-insertion polymerization, for example, led to the discovery of isotactic polypropylene, now one of the most widely produced commodity plastics in the world. Widespread interest in controlling polymer tacticity has led to a variety of stereoselective polymerization methodologies; however, this area of polymer science has lagged behind when compared to the ability to control molecular weight, dispersity, and composition. Despite decades of advancements, many stereoregular vinyl polymers remain unknown, particularly those comprised of polar functionality or derived from renewable resources. This Viewpoint provides an overview of recent developments in stereocontrolled polymerization, with an emphasis on propagation mechanism, and highlights successes, limitations, and future challenges for continued innovation.
Collapse
Affiliation(s)
- Aaron J. Teator
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Travis P. Varner
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Phil C. Knutson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cole C. Sorensen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frank A. Leibfarth
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|