1
|
Ren M, Zhao B, Li C, Fei Y, Wang X, Fan L, Hu T, Zhang X. Defect-engineered indium-organic framework displays the higher CO 2 adsorption and more excellent catalytic performance on the cycloaddition of CO 2 with epoxides under mild conditions. Mol Divers 2025; 29:2017-2031. [PMID: 39141206 DOI: 10.1007/s11030-024-10956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
In order to achieve the high adsorption and catalytic performance of CO2, the direct self-assembly of robust defect-engineered MOFs is a scarcely reported and challenging proposition. Herein, a highly robust nanoporous indium(III)-organic framework of {[In2(CPPDA)(H2O)3](NO3)·2DMF·3H2O}n (NUC-107) consisting of two kinds of inorganic units of chain-shaped [In(COO)2(H2O)]n and watery binuclear [In2(COO)4(H2O)8] was generated by regulating the growth environment. It is worth mentioning that [In2(COO)4(H2O)8] is very rare in terms of its richer associated water molecules, implying that defect-enriched metal ions in the activated host framework can serve as strong Lewis acid. Compared to reported skeleton of [In4(CPPDA)2(μ3-OH)2(DMF)(H2O)2]n (NUC-66) with tetranuclear clusters of [In4(μ3-OH)2(COO)10(DMF)(H2O)2] as nodes, the void volume of NUC-107 (50.7%) is slightly lower than the one of NUC-66 (52.8%). However, each In3+ ion in NUC-107 has an average of 1.5 coordinated small molecules (H2O), which far exceeds the average of 0.75 in NUC-66 (H2O and DMF). After thermal activation, NUC-107a characterizes the merits of unsaturated In3+ sites, free pyridine moieties, solvent-free nanochannels (10.2 × 15.7 Å2). Adsorption tests prove that the host framework of NUC-107a has a higher CO2 adsorption (113.2 cm3/g at 273 K and 64.8 cm3/g at 298 K) than NUC-66 (91.2 cm3/g at 273 K and 53.0 cm3/g at 298 K). Catalytic experiments confirmed that activated NUC-107a with the aid of n-Bu4NBr was capable of efficiently catalyzing the cycloaddition of CO2 with epoxides into corresponding cyclic carbonates under the mild conditions. Under the similar conditions of 0.10 mol% MOFs, 0.5 mol% n-Bu4NBr, 0.5 MP CO2, 60 °C and 3 h, compared with NUC-66a, the conversion of SO to SC catalyzed by NUC-107a increased by 21%. Hence, this work offers a valuable perspective that the in situ creation of robust defect-engineered MOFs can be realized by regulating the growth environment.
Collapse
Affiliation(s)
- Meiyu Ren
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Bo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chong Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yang Fei
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Xiaotong Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China.
| |
Collapse
|
2
|
Wang ZF, Fei Y, Qin A, Zhang S, Zhang X. Robust Fluorine-Decorated {Yb 4}-Organic Framework for C 2H 6 Capture and Efficient Catalytic Performance on CO 2-Epoxide Cycloaddition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29788-29798. [PMID: 40340319 DOI: 10.1021/acsami.5c07205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Fluorine-functionalized MOFs have excellent unusual properties such as gas adsorption and separation and catalysis, but the functionalization of existing ligands and the self-assembly of functionalized MOFs remain a challenge. Herein, we report a robust fluorine-functionalized nanochannel-based ytterbium(III)-organic framework of {(Me2NH2)[Yb4(CFPDA)2(μ2-HCO2)(μ3-OH)2(H2O)2]·4DMF·5H2O}n (NUC-122, H5CFPDA = 4,4'-(4-(4-carboxy-2-fluorophenyl)pyridine-2,6-diyl)diisophthalic acid) with [Yb4(μ3-OH)2(μ2-HCO2)(H2O)2] clusters as secondary building units (SBUs). Compared to reported anionic skeleton of [Yb4(BDCP)2(μ2-HCO2)(μ3-OH)2(H2O)2]n (NUC-38Yb), the void volume of NUC-122 (54.1%) is slightly lower than that of NUC-38Yb (56.7%), which is caused by functionalized fluorine atoms on the ligand of H5BDCP. Because of the introduction of fluorine groups, activated NUC-122a displays a higher adsorption capacity for CO2 along with the value of 117.5 cm3/g (273 K) and 63.1 cm3/g (298 K). Further, activated NUC-122a has a high ethane (C2H6) separation performance over the mixture of C2H6/C2H4 with the selectivity of 1.6, enabling the purity of recycled C2H4 to reach 99.99%. Moreover, the CO2-epoxide cycloaddition could be efficiently catalyzed by NUC-122a under comparatively mild conditions. Under optimal catalytic conditions of 0.13 mol % MOFs, 1.69 mol % n-Bu4NBr, 0.7 MPa CO2, 70 °C, and 3 h, the conversion yield of SO to SC catalyzed by NUC-122a is 26% higher than that catalyzed by NUC-38Yb. The excellent separation and catalytic performance should be attributed to the combined diverse functional groups such as Lewis acidic sites of Yb3+, Lewis basic sites of -F and Npyridine atoms, and electrophilic H-bond donors (HBD) of μ3-OH and μ2-HCO2 moieties. Hence, this work not only reports a fluorine-functionalized multifunctional material but also provides an in-depth insight into the synthetic strategy of functionalized metal-organic host frameworks.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yang Fei
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Aimiao Qin
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Shuhua Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
3
|
Chu K, Weng B, Lu Z, Ding Y, Zhang W, Tan R, Zheng YM, Han N. Exploration of Multidimensional Structural Optimization and Regulation Mechanisms: Catalysts and Reaction Environments in Electrochemical Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416053. [PMID: 39887545 PMCID: PMC11923998 DOI: 10.1002/advs.202416053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Ammonia (NH3) is esteemed for its attributes as a carbon-neutral fuel and hydrogen storage material, due to its high energy density, abundant hydrogen content, and notably higher liquefaction temperature in comparison to hydrogen gas. The primary method for the synthetic generation of NH3 is the Haber-Bosch process, involving rigorous conditions and resulting in significant global energy consumption and carbon dioxide emissions. To tackle energy and environmental challenges, the exploration of innovative green and sustainable technologies for NH3 synthesis is imperative. Rapid advances in electrochemical technology have created fresh prospects for researchers in the realm of environmentally friendly NH3 synthesis. Nevertheless, the intricate intermediate products and sluggish kinetics in the reactions impede the progress of green electrochemical NH3 synthesis (EAS) technologies. To improve the activity and selectivity of the EAS, which encompasses the electrocatalytic reduction of nitrogen gas, nitrate, and nitric oxide, numerous electrocatalysts and design strategies have been meticulously investigated. Here, this review primarily delves into recent progress and obstacles in EAS pathways, examining methods to boost the yield rate and current efficiency of NH3 synthesis via multidimensional structural optimization, while also exploring the challenges and outlook for EAS.
Collapse
Affiliation(s)
- Kaibin Chu
- School of Materials Science and Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Bo Weng
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Zhaorui Lu
- School of Materials Science and Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Yang Ding
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Wei Zhang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Rui Tan
- Department of Chemical Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Yu-Ming Zheng
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Ning Han
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| |
Collapse
|
4
|
Lee M, Noh H, Kim Y. Diamidocarbene-derived palladium and nickel-sulfur clusters. Chem Commun (Camb) 2024; 60:13867-13870. [PMID: 39463347 DOI: 10.1039/d4cc04582c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Novel palladium and nickel-sulfur clusters were synthesized using a diamidocarbene-derived carbon disulfide ligand. Structural characterization revealed a tetranuclear metal-sulfur cluster geometry with each metal center exhibiting square-planar coordination. The ligand was redox-active, accommodating oxidation states ranging from 0 to -2.
Collapse
Affiliation(s)
- Minji Lee
- Department of Chemistry, Pusan National University, Busan, Republic of Korea.
- Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Hyunju Noh
- Department of Chemistry, Pusan National University, Busan, Republic of Korea.
- Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Youngsuk Kim
- Department of Chemistry, Pusan National University, Busan, Republic of Korea.
- Institute for Future Earth, Pusan National University, Busan, Republic of Korea
- Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Zhang G, Wu T, Yu W, Li J, Wang Y, Wang J, Liu S, Chang B, Liu X, Zhou W. Laser regulated mixed-phase TiO 2 for electrochemical overall nitrogen fixation. J Colloid Interface Sci 2024; 674:168-177. [PMID: 38925062 DOI: 10.1016/j.jcis.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Traditional oxide electrocatalytic materials encounter significant challenges associated with sluggish reaction kinetics and formidable energy barriers for NH intermediates formation in electrocatalytic nitrogen fixation. The implementation of phase control emerges as an effective strategy to address these challenges. Herein, leveraging the energy localization of laser, this work achieved precise phase control of TiO2. In the optimized material system, the rutile phase TiO2 facilitates nitrogen adsorption, while the anatase phase TiO2 provides proton sources and active oxygen species. The synergistic effect of the two phases effectively enhances the electrocatalytic activity for nitrogen reduction and oxidation, with an ammonia yield reaching ∼22.3 μg h-1 cm-2 and a nitrate yield reaching ∼60.9 μg h-1 cm-2. Furthermore, a coupled dual-electrode system with mixed-phase titanium dioxide as both the anode and cathode successfully achieved a breakthrough in electrochemical overall nitrogen fixation. This laser precision control strategy for manipulating phase sites lays the groundwork for designing efficient catalysts for energy conversion and even energy storage nanomaterials.
Collapse
Affiliation(s)
- Guixiang Zhang
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Tong Wu
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wanqiang Yu
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jiawei Li
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yujie Wang
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Junjian Wang
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shunyao Liu
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Bin Chang
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiaoyan Liu
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
6
|
Tang T, Bai X, Wang Z, Guan J. Structural engineering of atomic catalysts for electrocatalysis. Chem Sci 2024; 15:5082-5112. [PMID: 38577377 PMCID: PMC10988631 DOI: 10.1039/d4sc00569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
As a burgeoning category of heterogeneous catalysts, atomic catalysts have been extensively researched in the field of electrocatalysis. To satisfy different electrocatalytic reactions, single-atom catalysts (SACs), diatomic catalysts (DACs) and triatomic catalysts (TACs) have been successfully designed and synthesized, in which microenvironment structure regulation is the core to achieve high-efficiency catalytic activity and selectivity. In this review, the effect of the geometric and electronic structure of metal active centers on catalytic performance is systematically introduced, including substrates, central metal atoms, and the coordination environment. Then theoretical understanding of atomic catalysts for electrocatalysis is innovatively discussed, including synergistic effects, defect coupled spin state change and crystal field distortion spin state change. In addition, we propose the challenges to optimize atomic catalysts for electrocatalysis applications, including controlled synthesis, increasing the density of active sites, enhancing intrinsic activity, and improving the stability. Moreover, the structure-function relationships of atomic catalysts in the CO2 reduction reaction, nitrogen reduction reaction, oxygen reduction reaction, hydrogen evolution reaction, and oxygen evolution reaction are highlighted. To facilitate the development of high-performance atomic catalysts, several technical challenges and research orientations are put forward.
Collapse
Affiliation(s)
- Tianmi Tang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
7
|
Khodadi S, Karbassi A, Tavakoli O, Baghdadi M, Zare Z. Simultaneous dairy wastewater treatment and bioelectricity production in a new microbial fuel cell using photosynthetic Synechococcus. Int Microbiol 2023; 26:741-756. [PMID: 36680697 DOI: 10.1007/s10123-023-00328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Photosynthetic microbial fuel cell (PMFC) is a novel technology, which employs organic pollutants and organisms to produce electrons and biomass and capture CO2 by bio-reactions. In this study, a new PMFC was developed based on Synechococcus sp. as a biocathode, and dairy wastewater was used in the anode chamber. Different experiments including batch feed mode, semi-continuous feed mode, Synechococcus feedstock to the anode chamber, Synechococcus-Chlorella mixed system, the feedstock of treated wastewater to the cathode chamber, and use of extra nutrients in the anodic chamber were performed to investigate the behavior of the PMFC system. The results indicated that the PMFC with a semi-continuous feed mode is more effective than a batch mode for electricity generation and pollutant removal. Herein, maximum power density, chemical oxygen demand removal, and Coulombic efficiency were 6.95 mW/m2 (450 Ω internal resistance), 62.94, and 43.16%, respectively, through mixing Synechococcus sp. and Chlorella algae in the batch-fed mode. The maximum nitrate and orthophosphate removal rates were 98.83 and 68.5%, respectively, wherein treated wastewater in the anode was added to the cathode. No significant difference in Synechococcus growth rate was found between the cathodic chamber of PMFC and the control cultivation cell. The heating value of the biocathode biomass at maximum Synechococcus growth rate (adding glucose into the anode chamber) was 0.2235 MJ/Kg, indicating the cell's high ability for carbon dioxide recovery. This study investigated not only simultaneous bioelectricity production and dairy wastewater in a new PMFC using Synechococcus sp. but also studied several operational parameters and presented useful information about their effect on PMFC performance.
Collapse
Affiliation(s)
- Sahar Khodadi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Abdolreza Karbassi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Omid Tavakoli
- Faculty of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Zeinab Zare
- Faculty of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Kumar Ray A, Paul A. Inept N 2 Activation of Tri-Nuclear Nickel Complex with Labile Sulfur Ligands Facilitates Selective N 2 H 4 Formation in Electrocatalytic Conversion of N 2. Chemistry 2023; 29:e202301435. [PMID: 37267469 DOI: 10.1002/chem.202301435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Conversion of N2 to the energy vector N2 H4 under benign conditions is highly desirable. However, such N2 fixation processes are extremely rare. It has been recently reported that N2 to N2 H4 conversion can be achieved electrochemically by using a trinuclear [Ni3 (S2 C3 H6 )4 ]2- complex (named as [Ni3 S8 ]2- ). There are hardly any precedents of Nitrogen Reduction Reaction (NRR) by molecular catalysts having Ni and the highly unusual selectivity for N2 H4 over NH3 makes this electrochemical reduction unique. A systematic theoretical study employing calibrated Density Functional Theory to unearth the mechanisms of NRR (4e- /4H+ ) and Hydrogen Evolution Reaction (2e- /2H+ ) was conducted for the aforementioned trinuclear Ni complex. Our findings unravel a curious case of ligand lability working in tandem with metal centers in facilitating this unprecedented electrocatalytic activity. Furthermore, it is shown that the poor N-N bond activation property of Ni is responsible for this unusual selectivity. Additionally, the Hydrogen Evolution Reaction (HER) mechanistic pathways have also been delineated in this report. The mechanistic intricacies thus unearthed in this study may assist in developing more efficient electrocatalysts for N2 H4 production through NRR.
Collapse
Affiliation(s)
- Anuj Kumar Ray
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
9
|
Peters JC. Advancing electrocatalytic nitrogen fixation: insights from molecular systems. Faraday Discuss 2023; 243:450-472. [PMID: 37021388 PMCID: PMC10524484 DOI: 10.1039/d3fd00017f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Nitrogen fixation has a rich history within the inorganic chemistry community. In recent years attention has (re)focused on developing electrocatalytic systems capable of mediating the nitrogen reduction reaction (N2RR). Well-defined molecular catalyst systems have much to offer in this context. This personal perspective summarizes recent progress from our laboratory at Caltech, pulling together lessons learned from a number of studies we have conducted, placing them within the broader context of thermodynamic efficiency and selectivity for the N2RR. In particular, proton-coupled electron transfer (PCET) provides an attractive strategy to achieve enhanced efficiency for the multi-electron/proton reduction of N2 to produce NH3 (or NH4+), and electrocatalytic PCET (ePCET) via an ePCET mediator affords a promising means of mitigating HER such that the N2RR can be achieved in a catalytic fashion.
Collapse
Affiliation(s)
- Jonas C Peters
- California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Abstract
The modern synthetic chemistry heavily relies on the use of stoichiometric organometallic reagents to react with various electrophiles. The dependence on stoichiometric quantities of metals and often organic halides as precursors, in turn both produces copious amounts of metal halide wastes as well as leads to concerns on future metal sustainability. Inspired by the classical Wolff-Kishner reduction, our lab has recently developed a general strategy of HOME-Chemistry , directly using naturally abundant alcohols/aldehydes and ketones as feedstocks with the releasing of innocuous water and nitrogen gas. These reactions include 1,2-carbonyl/imine addition, conjugate addition, carboxylation, olefination, cross-coupling arylation/allylation, alkylation, hydroalkylation and C-heteroatom formations. This article provides a brief summary on this chemistry.
Collapse
Affiliation(s)
- Chao-Jun Li
- Department of Chemistry, and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QuebecH3A0B8, Canada
| |
Collapse
|
11
|
Garrido-Barros P, Chalkley MJ, Peters JC. Light Alters the NH 3 vs N 2 H 4 Product Profile in Iron-catalyzed Nitrogen Reduction via Dual Reactivity from an Iron Hydrazido (Fe=NNH 2 ) Intermediate. Angew Chem Int Ed Engl 2023; 62:e202216693. [PMID: 36592374 PMCID: PMC9998131 DOI: 10.1002/anie.202216693] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/03/2023]
Abstract
Whereas synthetically catalyzed nitrogen reduction (N2 R) to produce ammonia is widely studied, catalysis to instead produce hydrazine (N2 H4 ) has received less attention despite its considerable mechanistic interest. Herein, we disclose that irradiation of a tris(phosphine)borane (P3 B ) Fe catalyst, P3 B Fe+ , significantly alters its product profile to increase N2 H4 versus NH3 ; P3 B Fe+ is otherwise known to be highly selective for NH3 . We posit a key terminal hydrazido intermediate, P3 B Fe=NNH2 , as selectivity-determining. Whereas its singlet ground state undergoes protonation to liberate NH3 , a low-lying triplet excited state leads to reactivity at Nα and formation of N2 H4 . Associated electrochemical and spectroscopic studies establish that N2 H4 lies along a unique product pathway; NH3 is not produced from N2 H4 . Our findings are distinct from the canonical mechanism for hydrazine formation, which proceeds via a diazene (HN=NH) intermediate and showcase light as a tool to tailor selectivity.
Collapse
Affiliation(s)
- Pablo Garrido-Barros
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), 1200 E California Blvd, Pasadena, CA-91125, USA
| | - Matthew J Chalkley
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), 1200 E California Blvd, Pasadena, CA-91125, USA
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), 1200 E California Blvd, Pasadena, CA-91125, USA
| |
Collapse
|
12
|
Ma X, Li M, Lei M. Trinuclear Transition Metal Complexes in Catalytic Reactions. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
13
|
Merakeb L, Bennaamane S, De Freitas J, Clot E, Mézailles N, Robert M. Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex. Angew Chem Int Ed Engl 2022; 61:e202209899. [PMID: 35941077 PMCID: PMC9804441 DOI: 10.1002/anie.202209899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 01/05/2023]
Abstract
Nitrogen reduction under mild conditions (room T and atmospheric P), using a non-fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosphino complex [(PPP)MoI3 ], at room temperature and a moderately negative potential. A MoIV nitride species was generated, which is confirmed by electrochemistry and NMR studies. The reaction goes through two successive one electron reductions of the starting Mo species, coordination of a N2 molecule, and further splitting to a MoIV nitride complex. Preliminary DFT studies support the formation of a bridging MoI N2 MoI dinitrogen dimer evolving to the Mo nitride via a low energy transition state. This example joins a short list of molecular complexes for N2 electrochemical reductive cleavage. It opens a door to electrochemical proton-coupled electron transfer (PCET) conversion studies of N2 to NH3 .
Collapse
Affiliation(s)
- Lydia Merakeb
- Laboratoire d'Electrochimie Moléculaire—UMR 7591Université Paris Cité15, rue Jean Antoine de Baïf75013ParisFrance
| | - Soukaina Bennaamane
- Laboratoire Hétérochimie Fondamentale et Appliquée—UMR 5069Université Toulouse III—Paul Sabatier118, route de Narbonne, Bât 2R131062ToulouseFrance
| | - Jérémy De Freitas
- Laboratoire d'Electrochimie Moléculaire—UMR 7591Université Paris Cité15, rue Jean Antoine de Baïf75013ParisFrance
| | - Eric Clot
- ICGMUniv MontpellierCNRSENSCM34000MontpellierFrance
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée—UMR 5069Université Toulouse III—Paul Sabatier118, route de Narbonne, Bât 2R131062ToulouseFrance
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire—UMR 7591Université Paris Cité15, rue Jean Antoine de Baïf75013ParisFrance
- Institut Universitaire de France (IUF)75005ParisFrance
| |
Collapse
|
14
|
Sethulakshmi N, Nellaiappan S, Kechanda Prasanna P, Das T, Irusta S, Chakraborty S, Sharma S. Nanocoral Architecture for Enhanced Hydrazine Assisted Water Oxidation: Insight from Experiment and Theory. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
McNeece AJ, Jaroš A, Batista ER, Yang P, Scott BL, Davis BL. Hydrazine Energy Storage: Displacing N 2 H 4 from the Metal Coordination Sphere. CHEMSUSCHEM 2022; 15:e202200840. [PMID: 35864078 PMCID: PMC9804637 DOI: 10.1002/cssc.202200840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen carriers, such as hydrazine (N2 H4 ), may facilitate long duration energy storage, a vital component for resilient grids by enabling more renewable energy generation. Lanthanide coordination chemistry with N2 H4 as well as efforts to displace N2 H4 from the metal coordination sphere to develop an efficient catalytic production cycle were detailed. Modeling the equilibrium of different ligand coordination, it was predicted that strong sigma donor molecules would be required to displace N2 H4 . Monitoring competition experiments with nuclear magnetic resonance confirmed that trimethyl phosphine oxide, dimethylformamide, and dimethyl sulfoxide displaced N2 H4 in large or small lanthanide complexes.
Collapse
Affiliation(s)
- Andrew J. McNeece
- MS K763, MPA-11 Materials Synthesis and Integrated DevicesLos Alamos National LaboratoryLos AlamosNew Mexico87545USA
| | - Adam Jaroš
- MS B258, T-CNLS Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosNew Mexico87545USA
| | - Enrique R. Batista
- MS B258, T-CNLS Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosNew Mexico87545USA
| | - Ping Yang
- MS B221, T-1 Physics and Chemistry of MaterialsLos Alamos National LaboratoryLos AlamosNew Mexico87545USA
| | - Brian L. Scott
- MS K763, MPA-11 Materials Synthesis and Integrated DevicesLos Alamos National LaboratoryLos AlamosNew Mexico87545USA
| | - Benjamin L. Davis
- MS K763, MPA-11 Materials Synthesis and Integrated DevicesLos Alamos National LaboratoryLos AlamosNew Mexico87545USA
| |
Collapse
|
16
|
Zhang T, Lai Y, Lin W. Design of a ratiometric near-infrared fluorescent probe with double excitation for hydrazine detection in vitro and in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155462. [PMID: 35504388 DOI: 10.1016/j.scitotenv.2022.155462] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Hydrazine has a wide range of industrial applications, but it is also a toxic and explosive chemical substance, which brings potential risks to human health and environmental safety. Therefore, rapid and sensitive monitoring of hydrazine is of great importance in environmental sciences and biological systems. In this work, a new near-infrared (NIR) ratiometric fluorescent probe (Ac-HY) was designed to detect hydrazine under double excitation and emission mode. Ac-HY exhibited large stokes shift (130 nm), high selectivity and sensitivity to hydrazine detection. The applications of Ac-HY probe for detecting hydrazine in vapor and imaging hydrazine in lipid droplets and zebrafish. Therefore, Ac-HY can be used to monitor the distribution of exogenous hydrazine in vitro and in vivo.
Collapse
Affiliation(s)
- Tengteng Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Youbo Lai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
17
|
Merakeb L, Bennaamane S, De Freitas J, Clot E, Mézailles N, Robert M. Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Eric Clot
- Université Montpellier 1: Universite de Montpellier Chemistry FRANCE
| | | | - Marc Robert
- Universite Paris Cité - Laboraoire Electrochimie Moleculaire - UMR CNRS 7591 Chemistry Department 15 rue Jean de Baif 75013 Paris FRANCE
| |
Collapse
|
18
|
Sultana M, Bhattacharjee I, Bhunya S, Paul A. Uncovering the Synchronous Role of Bis‐borane with Nucleophilic Solvent as Frustrated Lewis pair in Metal‐free Catalytic Dehydrogenation of Ammonia‐borane. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Munia Sultana
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Ishita Bhattacharjee
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Sourav Bhunya
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Ankan Paul
- Indian Association for the Cultivation of Science Raman Centre for Atomic, Molecular and Optical Sciences 2A and 2B, Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
19
|
Bhattacharjee I, Sultana M, Bhunya S, Paul A. The curious saga of dehydrogenation/hydrogenation for chemical hydrogen storage: a mechanistic perspective. Chem Commun (Camb) 2022; 58:1672-1684. [PMID: 35024699 DOI: 10.1039/d1cc06238g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen storage is an indispensable component of hydrogen-based fuel economy. Chemical hydrogen storage relies on the development of lightweight compounds which can deliver high weight percentage of H2 at moderate temperatures through dehydrogenation and can be recovered from the dehydrogenated mass by hydrogenation for reuse. In this feature article we primarily discuss the mechanistic underpinnings of the catalytic dehydrogenation of ammonia-borane, a potential candidate for hydrogen storage and the challenges associated with its regeneration from the dehydrogenated mass. Moreover, we highlight the mechanistic intricacies, viability, sustainability and unresolved issues of allied chemical hydrogen storage avenues such as the CH3OH-CO2 cycle.
Collapse
Affiliation(s)
| | - Munia Sultana
- Indian Association for the Cultivation of Science, Kolkata, India.
| | - Sourav Bhunya
- Indian Association for the Cultivation of Science, Kolkata, India.
| | - Ankan Paul
- Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
20
|
Sun L, Reddu V, Wang X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem Soc Rev 2022; 51:8923-8956. [DOI: 10.1039/d2cs00233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents recent developments in the synthesis, modulation and characterization of multi-atom cluster catalysts for electrochemical energy applications.
Collapse
Affiliation(s)
- Libo Sun
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| | - Vikas Reddu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
21
|
Gorantla SMVT, Mondal KC. EDA-NOCV Calculation for Efficient N 2 Binding to the Reduced Ni 3S 8 Complex: Estimation of Ni-N 2 Intrinsic Interaction Energies. ACS OMEGA 2021; 6:33389-33397. [PMID: 34926888 PMCID: PMC8674922 DOI: 10.1021/acsomega.1c03715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The binding of the dinitrogen molecule to the metal center is the first and crucial step toward dinitrogen activation. Favorable interaction energies are desired by chemists and biochemists to study model complexes in the laboratory. An electrochemically reduced form of a previously isolated sulfur-bridged Ni3S8 complex is inferred to bind N2 at multiple Ni centers, and this bonded N2 undergoes reductive protonation to produce hydrazine (N2H4) as the product in the presence of a proton donor. Density functional theory (DFT) calculations and quantum theory of atoms in molecules (QTAIM) analysis have been carried out to shed light on the nature of N2 binding to an anionic trinuclear Ni3S8 complex. Additionally, energy decomposition analysis with the combination of natural orbital for chemical valence (EDA-NOCV) analysis has been performed to estimate the pairwise interaction energies between the Ni center and the N2 molecule under experimental conditions.
Collapse
|
22
|
Rooney CL, Wu Y, Tao Z, Wang H. Electrochemical Reductive N-Methylation with CO 2 Enabled by a Molecular Catalyst. J Am Chem Soc 2021; 143:19983-19991. [PMID: 34784216 DOI: 10.1021/jacs.1c10863] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of benign methylation reactions utilizing CO2 as a one-carbon building block would enable a more sustainable chemical industry. Electrochemical CO2 reduction has been extensively studied, but its application for reductive methylation reactions remains out of the scope of current electrocatalysis. Here, we report the first electrochemical reductive N-methylation reaction with CO2 and demonstrate its compatibility with amines, hydroxylamines, and hydrazine. Catalyzed by cobalt phthalocyanine molecules supported on carbon nanotubes, the N-methylation reaction proceeds in aqueous media via the chemical condensation of an electrophilic carbon intermediate, proposed to be adsorbed or near-electrode formaldehyde formed from the four-electron reduction of CO2, with nucleophilic nitrogenous reactants and subsequent reduction. By comparing various amines, we discover that the nucleophilicity of the amine reactant is a descriptor for the C-N coupling efficacy. We extend the scope of the reaction to be compatible with cheap and abundant nitro-compounds by developing a cascade reduction process in which CO2 and nitro-compounds are reduced concurrently to yield N-methylamines with high monomethylation selectivity via the overall transfer of 12 electrons and 12 protons.
Collapse
Affiliation(s)
- Conor L Rooney
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Yueshen Wu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Zixu Tao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
23
|
Humblot A, Grimaud L, Allavena A, Amaniampong PN, De Oliveira Vigier K, Chave T, Streiff S, Jérôme F. Conversion of Ammonia to Hydrazine Induced by High-Frequency Ultrasound. Angew Chem Int Ed Engl 2021; 60:25230-25234. [PMID: 34448339 DOI: 10.1002/anie.202109516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/07/2022]
Abstract
Hydrazine is a chemical of utmost importance in our society, either for organic synthesis or energy use. The direct conversion of NH3 to hydrazine is highly appealing, but it remains a very difficult task because the degradation of hydrazine is thermodynamically more feasible than the cleavage of the N-H bond of NH3 . As a result, any catalyst capable of activating NH3 will thus unavoidably decompose N2 H4 . Here we show that cavitation bubbles, created by ultrasonic irradiation of aqueous NH3 at a high frequency, act as microreactors to activate and convert NH3 to NH species, without assistance of any catalyst, yielding hydrazine at the bubble-liquid interface. The compartmentation of in-situ-produced hydrazine in the bulk solution, which is maintained close to 30 °C, advantageously prevents its thermal degradation, a recurrent problem faced by previous technologies. This work also points towards a path to scavenge . OH radicals by adjusting the NH3 concentration.
Collapse
Affiliation(s)
- Anaelle Humblot
- Institut de Chimie des Milieux et Matériaux de Poitiers, University of Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Laurie Grimaud
- Institut de Chimie des Milieux et Matériaux de Poitiers, University of Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Audrey Allavena
- Institut de Chimie des Milieux et Matériaux de Poitiers, University of Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Prince N Amaniampong
- Institut de Chimie des Milieux et Matériaux de Poitiers, University of Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Karine De Oliveira Vigier
- Institut de Chimie des Milieux et Matériaux de Poitiers, University of Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Tony Chave
- Univ Montpellier, CNRS, UMR 5257, ICSM, CEA, UM, ENSCM, Marcoule, France
| | - Stéphane Streiff
- Eco-Efficient Products and Process Laboratory, SOLVAY/CNRS, 3966 Jin Du Rd., Xin Zhuang Industrial Zone, Shanghai, 201108, China
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers, University of Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| |
Collapse
|
24
|
Zhang M, Zhu J, Liu B, Hou Y, Zhang C, Wang J, Niu J. Ultrafine Co 6W 6C as an efficient anode catalyst for direct hydrazine fuel cells. Chem Commun (Camb) 2021; 57:10415-10418. [PMID: 34546227 DOI: 10.1039/d1cc03446d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrafine ternary carbide Co6W6C@C nanoparticles (NPs) were successfully synthesized and these NPs exhibited high catalytic activities for the hydrazine oxidation reaction (HzOR) under alkaline conditions. In a practical O2-hydrazine fuel cell test, its peak power density reached 203 mW cm-2, a value superior to that of the state-of-the-art commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Mengrui Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jianping Zhu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Bin Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Yongkang Hou
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Chao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| |
Collapse
|
25
|
Humblot A, Grimaud L, Allavena A, Amaniampong PN, De Oliveira Vigier K, Chave T, Streiff S, Jérôme F. Conversion of Ammonia to Hydrazine Induced by High‐Frequency Ultrasound. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anaelle Humblot
- Institut de Chimie des Milieux et Matériaux de Poitiers University of Poitiers CNRS 1 rue Marcel Doré 86073 Poitiers France
| | - Laurie Grimaud
- Institut de Chimie des Milieux et Matériaux de Poitiers University of Poitiers CNRS 1 rue Marcel Doré 86073 Poitiers France
| | - Audrey Allavena
- Institut de Chimie des Milieux et Matériaux de Poitiers University of Poitiers CNRS 1 rue Marcel Doré 86073 Poitiers France
| | - Prince N. Amaniampong
- Institut de Chimie des Milieux et Matériaux de Poitiers University of Poitiers CNRS 1 rue Marcel Doré 86073 Poitiers France
| | - Karine De Oliveira Vigier
- Institut de Chimie des Milieux et Matériaux de Poitiers University of Poitiers CNRS 1 rue Marcel Doré 86073 Poitiers France
| | - Tony Chave
- Univ Montpellier CNRS UMR 5257 ICSM CEA UM ENSCM Marcoule France
| | - Stéphane Streiff
- Eco-Efficient Products and Process Laboratory SOLVAY/CNRS 3966 Jin Du Rd., Xin Zhuang Industrial Zone Shanghai 201108 China
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers University of Poitiers CNRS 1 rue Marcel Doré 86073 Poitiers France
| |
Collapse
|
26
|
Cheng MC, Cheng CH, Chen PJ, Lin TS, Lee GH, Liu YC, Chiang MH, Peng SM. Helical Homometallic Trinickel String Complexes with Mixed Hard Nitrogen and Sulfur Donors: Structural and Magnetic Studies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ming-Chuan Cheng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC, 106
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC, 115
| | - Chien-Hung Cheng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC, 106
| | - Po-Jung Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC, 106
| | - Tien-Sung Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC, 106
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC, 106
| | - Yu-Chiao Liu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC, 115
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC, 115
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC, 106
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC, 115
| |
Collapse
|
27
|
Das A, Ganguly T, Majumdar A. Thiolate Coordination vs C-S Bond Cleavage of Thiolates in Dinickel(II) Complexes. Inorg Chem 2021; 60:944-958. [PMID: 33405907 DOI: 10.1021/acs.inorgchem.0c03068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A detailed study for the synthesis of dinickel(II)-thiolate and dinickel(II)-hydrosulfide complexes and the complete characterization of the relevant intermediates involved in the C-S bond cleavage of thiolates are presented. Hydrated Ni(II) salts mediate the hydrolytic C-S bond cleavage of thiolates (NaSR/RSH; R = Me, Et, nBu, tBu), albeit inefficiently, to yield a mixture of a dinickel(II)-hydrosulfide complex, [Ni2(BPMP)(μ-SH)(DMF)2]2+ (1), and the corresponding dinickel(II)-thiolate complexes, such as [Ni2(BPMP)(μ-SEt)(ClO4)]1+ (2) (HBPMP is 2,6-bis[[bis(2-pyridylmethyl)amino]methyl]-4-methylphenol). A systematic study for the reactivity of thiolates with Ni(II) was therefore pursued which finally yielded 1 as a pure product which has been characterized in comparison with the dinickel(II)-dichloride complex, [Ni2(BPMP)(Cl)2(MeOH)2]1+ (3). While the reaction of thiolates with anhydrous Ni(OTf)2 in dry conditions could only yield [Ni2(BPMP)(OTf)2]1+ (5) instead of the expected dinickel(II)-thiolate compound, the C-S bond cleavage could be suppressed by the use of a chelating thiol, such as PhCOSH, to yield [Ni2(BPMP)(SCOPh)2]1+ (6). Finally, with the suitable choice of a monodentate thiol, a dinickel(II)-monothiolate complex, [Ni2(BPMP)(SPh)(DMF)(MeOH)(H2O)]2+ (7), was isolated as a pure product within 1 h of reaction, which after a longer time of reaction yielded 1 and PhOH. Complex 7 may thus be regarded as the intermediate that precedes the C-S bond cleavage and is generated by the reaction of a thiolate with an initially formed dinickel(II)-solvento complex, [Ni2(BPMP)(MeOH)2(H2O)2]3+(4). Selected dinickel(II) complexes were explored further for the scope of substitution reactions, and the results include the isolation of a dinickel(II)-bis(thiolate) complex, [Ni2(BPMP)(μ-SPh)2]1+ (8).
Collapse
Affiliation(s)
- Ayan Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Tuhin Ganguly
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|