1
|
Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg JJ, Besteiro LV, Christopher P, Correa-Duarte M, de Nijs B, Demetriadou A, Frontiera RR, Fukushima T, Halas NJ, Jain PK, Kim ZH, Kurouski D, Lange H, Li JF, Liz-Marzán LM, Lucas IT, Meixner AJ, Murakoshi K, Nordlander P, Peveler WJ, Quesada-Cabrera R, Ringe E, Schatz GC, Schlücker S, Schultz ZD, Tan EX, Tian ZQ, Wang L, Weckhuysen BM, Xie W, Ling XY, Zhang J, Zhao Z, Zhou RY, Cortés E. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS NANO 2024; 18:29337-29379. [PMID: 39401392 PMCID: PMC11526435 DOI: 10.1021/acsnano.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Collapse
Affiliation(s)
- Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| | - Javier Aizpurua
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián-Donostia, Basque Country Spain
- Department
of Electricity and Electronics, University
of the Basque Country, 20018 San Sebastián-Donostia, Basque Country Spain
| | - Ivano Alessandri
- INSTM,
UdR Brescia, Via Branze
38, Brescia 25123, Italy
- Department
of Information Engineering (DII), University
of Brescia, Via Branze
38, Brescia 25123, Italy
- INO−CNR, Via Branze 38, Brescia 25123, Italy
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24−25, D-14476 Potsdam, Germany
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | | | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Miguel Correa-Duarte
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Biomedical
Research Networking Center for Mental Health (CIBERSAM), Southern Galicia Institute of Health Research (IISGS), Vigo 36310, Spain
| | - Bart de Nijs
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tomohiro Fukushima
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- JST-PRESTO, Tokyo, 332-0012, Japan
| | - Naomi J. Halas
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Prashant K. Jain
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Materials
Research Laboratory, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zee Hwan Kim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Holger Lange
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
- The Hamburg
Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Jian-Feng Li
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Luis M. Liz-Marzán
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- CIC biomaGUNE,
Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Ivan T. Lucas
- Nantes
Université, CNRS, IMN, F-44322 Nantes, France
| | - Alfred J. Meixner
- Institute
of Physical and Theoretical Chemistry, University
of Tubingen, 72076 Tubingen, Germany
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Peter Nordlander
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - William J. Peveler
- School of
Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ U.K.
| | - Raul Quesada-Cabrera
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Department
of Chemistry, Institute of Environmental Studies and Natural Resources
(i-UNAT), Universidad de Las Palmas de Gran
Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sebastian Schlücker
- Physical
Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany
| | - Zachary D. Schultz
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Emily Xi Tan
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Zhong-Qun Tian
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Lingzhi Wang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Bert M. Weckhuysen
- Debye Institute
for Nanomaterials Science and Institute for Sustainable and Circular
Chemistry, Department of Chemistry, Utrecht
University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wei Xie
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Xing Yi Ling
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School
of
Chemical and Material Engineering, Jiangnan
University, Wuxi, 214122, People’s Republic
of China
- Lee Kong
Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Institute
for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jinlong Zhang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Zhigang Zhao
- Key
Lab
of Nanodevices and Applications, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science
and Technology Institute, University of
Science and Technology of China (USTC), Suzhou 215123, China
| | - Ru-Yu Zhou
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| |
Collapse
|
2
|
Guo C, Benzie P, Hu S, de Nijs B, Miele E, Elliott E, Arul R, Benjamin H, Dziechciarczyk G, Rao RR, Ryan MP, Baumberg JJ. Extensive photochemical restructuring of molecule-metal surfaces under room light. Nat Commun 2024; 15:1928. [PMID: 38431651 PMCID: PMC10908804 DOI: 10.1038/s41467-024-46125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The molecule-metal interface is of paramount importance for many devices and processes, and directly involved in photocatalysis, molecular electronics, nanophotonics, and molecular (bio-)sensing. Here the photostability of this interface is shown to be sensitive even to room light levels for specific molecules and metals. Optical spectroscopy is used to track photoinduced migration of gold atoms when functionalised with different thiolated molecules that form uniform monolayers on Au. Nucleation and growth of characteristic surface metal nanostructures is observed from the light-driven adatoms. By watching the spectral shifts of optical modes from nanoparticles used to precoat these surfaces, we identify processes involved in the photo-migration mechanism and the chemical groups that facilitate it. This photosensitivity of the molecule-metal interface highlights the significance of optically induced surface reconstruction. In some catalytic contexts this can enhance activity, especially utilising atomically dispersed gold. Conversely, in electronic device applications such reconstructions introduce problematic aging effects.
Collapse
Affiliation(s)
- Chenyang Guo
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England, UK
| | - Philip Benzie
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England, UK
- Cambridge Display Technology Ltd, Cardinal Way, Godmanchester, PE29 2XG, UK
| | - Shu Hu
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England, UK
| | - Bart de Nijs
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England, UK
| | - Ermanno Miele
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England, UK
| | - Eoin Elliott
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England, UK
| | - Rakesh Arul
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England, UK
| | - Helen Benjamin
- Cambridge Display Technology Ltd, Cardinal Way, Godmanchester, PE29 2XG, UK
| | | | - Reshma R Rao
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Mary P Ryan
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Jeremy J Baumberg
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England, UK.
| |
Collapse
|
3
|
Chen YT, Liu Q, Schneider F, Brecht M, Meixner AJ, Zhang D. Photoluminescence emission and Raman enhancement in TERS: an experimental and analytic revisiting. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1039-1047. [PMID: 39634012 PMCID: PMC11502108 DOI: 10.1515/nanoph-2023-0882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/19/2024] [Indexed: 12/07/2024]
Abstract
An analytic model is used to calculate the Raman and fluorescence enhancement of a molecule in between two closely spaced gold nanospheres. Instead of using the conventional approach that only the dipolar plasmonic mode is considered, we calculate the electric field enhancement in the nanometre sized gap, by taking account of the higher order modes in one gold sphere, which couples to the dipolar mode of the other sphere. The experimental confirmation is performed by gap-dependent tip-enhanced Raman spectroscopy (TERS) measurements. The photoluminescence and Raman enhancement are both observed with different growing trends as the gap width decreases. Red-shift of the background spectra is observed and implies the increasing coupling between the nanospheres. This analytic model is shown to be able to interpret the enhancement mechanisms underlying gap-dependent TERS experimental results.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076Tübingen, Germany
| | - Quan Liu
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076Tübingen, Germany
| | - Felix Schneider
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076Tübingen, Germany
| | - Marc Brecht
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076Tübingen, Germany
- Process Analysis and Technology (PA&T), Reutlingen University, 72762Reutlingen, Germany
| | - Alfred J. Meixner
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076Tübingen, Germany
| | - Dai Zhang
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076Tübingen, Germany
| |
Collapse
|
4
|
Lee J, Kim E, Cho J, Seok H, Woo G, Yu D, Jung G, Hwangbo H, Na J, Im I, Kim T. Remote-Controllable Interfacial Electron Tunneling at Heterogeneous Molecular Junctions via Tip-Induced Optoelectrical Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305512. [PMID: 38057140 PMCID: PMC10837351 DOI: 10.1002/advs.202305512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Molecular electronics enables functional electronic behavior via single molecules or molecular self-assembled monolayers, providing versatile opportunities for hybrid molecular-scale electronic devices. Although various molecular junction structures are constructed to investigate charge transfer dynamics, significant challenges remain in terms of interfacial charging effects and far-field background signals, which dominantly block the optoelectrical observation of interfacial charge transfer dynamics. Here, tip-induced optoelectrical engineering is presented that synergistically correlates photo-induced force microscopy and Kelvin probe force microscopy to remotely control and probe the interfacial charge transfer dynamics with sub-10 nm spatial resolution. Based on this approach, the optoelectrical origin of metal-molecule interfaces is clearly revealed by the nanoscale heterogeneity of the tip-sample interaction and optoelectrical reactivity, which theoretically aligned with density functional theory calculations. For a practical device-scale demonstration of tip-induced optoelectrical engineering, interfacial tunneling is remotely controlled at a 4-inch wafer-scale metal-insulator-metal capacitor, facilitating a 5.211-fold current amplification with the tip-induced electrical field. In conclusion, tip-induced optoelectrical engineering provides a novel strategy to comprehensively understand interfacial charge transfer dynamics and a non-destructive tunneling control platform that enables real-time and real-space investigation of ultrathin hybrid molecular systems.
Collapse
Affiliation(s)
- Jinhyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Eungchul Kim
- AVP process development team, Samsung Electronics, Cheonan-si, Chungcheongnam-do, 31086, South Korea
| | - Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gunhoo Woo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dayoung Yu
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gooeun Jung
- Park Systems Corp, R&D Center, Suwon, 16229, Republic of Korea
| | - Hyeon Hwangbo
- Park Systems Corp, R&D Center, Suwon, 16229, Republic of Korea
| | - Jinyoung Na
- Park Systems Corp, R&D Center, Suwon, 16229, Republic of Korea
| | - Inseob Im
- Park Systems Corp, R&D Center, Suwon, 16229, Republic of Korea
| | - Taesung Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
5
|
Fiederling K, Abasifard M, Richter M, Deckert V, Kupfer S, Gräfe S. A Full Quantum Mechanical Approach Assessing the Chemical and Electromagnetic Effect in TERS. ACS NANO 2023. [PMID: 37429582 PMCID: PMC10373516 DOI: 10.1021/acsnano.2c11855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a valuable method for surface analysis with nanometer to angstrom-scale resolution; however, the accurate simulation of particular TERS signals remains a computational challenge. We approach this challenge by combining the two main contributors to plasmon-enhanced Raman spectroscopy and to the high resolution in TERS, in particular, the electromagnetic and the chemical effect, into one quantum mechanical simulation. The electromagnetic effect describes the sample's interaction with the strong, highly localized, and inhomogeneous electric fields associated with the plasmonic tip and is typically the thematic focus for most mechanistic studies. On the other hand, the chemical effect covers the different responses to the extremely close-range and highly position-sensitive chemical interaction between the apex tip atom(s) and the sample, and, as we could show in previous works, plays an often underestimated role. Starting from a (time-dependent) density functional theory description of the chemical model system, comprised of a tin(II) phthalocyanine sample molecule and a single silver atom as the tip, we introduce the electromagnetic effect through a series of static point charges that recreate the electric field in the vicinity of the plasmonic Ag nanoparticle. By scanning the tip over the molecule along a 3D grid, we can investigate the system's Raman response on each position for nonresonant and resonant illumination. Simulating both effects on their own already hints at the achievable signal enhancement and resolution, but the combination of both creates even stronger evidence that TERS is capable of resolving submolecular features.
Collapse
Affiliation(s)
- Kevin Fiederling
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Mostafa Abasifard
- Institute of Applied Physics and Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str. 15, 07745 Jena, Germany
| | - Martin Richter
- DS Deutschland GmbH, Am Kabellager 11-13, 51063 Cologne, Germany
| | - Volker Deckert
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07743 Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Institute of Applied Physics and Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str. 15, 07745 Jena, Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Str. 7, 07745 Jena, Germany
| |
Collapse
|
6
|
Kato R, Moriyama T, Umakoshi T, Yano TA, Verma P. Ultrastable tip-enhanced hyperspectral optical nanoimaging for defect analysis of large-sized WS 2 layers. SCIENCE ADVANCES 2022; 8:eabo4021. [PMID: 35857514 PMCID: PMC9286508 DOI: 10.1126/sciadv.abo4021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
Optical nanoimaging techniques, such as tip-enhanced Raman spectroscopy (TERS), are nowadays indispensable for chemical and optical characterization in the entire field of nanotechnology and have been extensively used for various applications, such as visualization of nanoscale defects in two-dimensional (2D) materials. However, it is still challenging to investigate micrometer-sized sample with nanoscale spatial resolution because of severe limitation of measurement time due to drift of the experimental system. Here, we achieved long-duration TERS imaging of a micrometer-sized WS2 sample for 6 hours in a reproducible manner. Our ultrastable TERS system enabled to reveal the defect density on the surface of tungsten disulfide layers in large area equivalent to the device scale. It also helped us to detect rare defect-related optical signals from the sample. The present study paves ways to evaluate nanoscale defects of 2D materials in large area and to unveil remarkable optical and chemical properties of large-sized nanostructured materials.
Collapse
Affiliation(s)
- Ryo Kato
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima 770-8506, Japan
| | - Toki Moriyama
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takayuki Umakoshi
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Taka-aki Yano
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima 770-8506, Japan
| | - Prabhat Verma
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Cirera B, Litman Y, Lin C, Akkoush A, Hammud A, Wolf M, Rossi M, Kumagai T. Charge Transfer-Mediated Dramatic Enhancement of Raman Scattering upon Molecular Point Contact Formation. NANO LETTERS 2022; 22:2170-2176. [PMID: 35188400 PMCID: PMC8949761 DOI: 10.1021/acs.nanolett.1c02626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Charge-transfer enhancement of Raman scattering plays a crucial role in current-carrying molecular junctions. However, the microscopic mechanism of light scattering in such nonequilibrium systems is still imperfectly understood. Here, using low-temperature tip-enhanced Raman spectroscopy (TERS), we investigate how Raman scattering evolves as a function of the gap distance in the single C60-molecule junction consisting of an Ag tip and various metal surfaces. Precise gap-distance control allows the examination of two distinct transport regimes, namely tunneling regime and molecular point contact (MPC). Simultaneous measurement of TERS and the electric current in scanning tunneling microscopy shows that the MPC formation results in dramatic Raman enhancement that enables one to observe the vibrations undetectable in the tunneling regime. This enhancement is found to commonly occur not only for coinage but also transition metal substrates. We suggest that the characteristic enhancement upon the MPC formation is rationalized by charge-transfer excitation.
Collapse
Affiliation(s)
- Borja Cirera
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yair Litman
- MPI
for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Chenfang Lin
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Alaa Akkoush
- MPI
for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Adnan Hammud
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martin Wolf
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Mariana Rossi
- MPI
for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Takashi Kumagai
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Center
for Mesoscopic Sciences, Institute for Molecular
Science, Okazaki 444-8585, Japan
| |
Collapse
|
8
|
Liu Z, Hu T, Adam Balila MO, Zhang J, Zhang Y, Hu W. Investigation of SERS and Electron Transport Properties of Oligomer Phenylacetyne-3 Trapped in Gold Junctions. NANOMATERIALS 2022; 12:nano12030571. [PMID: 35159916 PMCID: PMC8839768 DOI: 10.3390/nano12030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/04/2022]
Abstract
Molecular junctions hold great potential for future microelectronics and attract people’s attention. Here, we used density functional theory calculations (DFT) to investigate the surface-enhanced Raman spectroscopy (SERS) and electron transport properties of fully π-conjugated oligomers (phenylacetylene)-3 (OPE-3) trapped in gold junctions. The effects of charge injection, an applied electric field, and molecular deformation are considered. We found that a new Raman peak located at around 1400 cm−1 appears after the injection of a charge, which agrees well with the experiment. The external electric field and configurational deformation hardly affect the Raman spectra, indicating that the electronic rather than the geometrical structure determines the Raman response. Nonequilibrium Green’s function (NEGF) calculations show that both the rotation of the benzene groups and an increased electrode distance largely reduced the conductivity of the studied molecular junctions. The present investigations provide valuable information on the effect of charging, electric field, and deformation on the SERS and conductivity of molecular junctions, helping the development of molecular devices.
Collapse
Affiliation(s)
- Ziyu Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (T.H.); (M.O.A.B.)
| | - Tingting Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (T.H.); (M.O.A.B.)
- Technology College of Chemical Engineering, Qingdao University of Science, Qingdao 266061, China
| | - Muwafag Osman Adam Balila
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (T.H.); (M.O.A.B.)
| | - Jihui Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Yujin Zhang
- School of Electronic and Information Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (Y.Z.); (W.H.)
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (T.H.); (M.O.A.B.)
- Correspondence: (Y.Z.); (W.H.)
| |
Collapse
|
9
|
Blackburn TJ, Tyler SM, Pemberton JE. Optical Spectroscopy of Surfaces, Interfaces, and Thin Films. Anal Chem 2022; 94:515-558. [DOI: 10.1021/acs.analchem.1c05323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas J. Blackburn
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Sarah M. Tyler
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jeanne E. Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
10
|
Chen D, Li Y, Wang L, Wang Y, Ning P, Shum P, He X, Fu T. A bio-sensing surface with high biocompatibility for enhancing Raman scattering signals as enabled by a Mo–Ag film. Analyst 2022; 147:1385-1393. [DOI: 10.1039/d2an00008c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sensitive SERS sensing of molecules and bacteria was acquired through a Mo–Ag film with high cytocompatibility and hydrophilicity.
Collapse
Affiliation(s)
- Dongzhen Chen
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yang Li
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Lijun Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yingjie Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pan Ning
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Powan Shum
- Asahi Group Co. Ltd, Kwun Tong, Hong Kong, China
| | - Xinhai He
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Tao Fu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Zhang N, Jiang R. Interfacial Engineering of Metal/Metal Oxide Heterojunctions toward Oxygen Reduction and Evolution Reactions. Chempluschem 2021; 86:1586-1601. [PMID: 34874104 DOI: 10.1002/cplu.202100466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Indexed: 11/09/2022]
Abstract
Oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) are two very important electrochemical processes for renewable energy conversion and storage devices. Electrocatalysts are needed to accelerate their sluggish kinetics to improve energy conversion efficiencies. Hence, extensive efforts have been devoted to the development of OER and ORR electrocatalysts with high activity and stability as well as low cost. Among these developed electrocatalysts, metal/metal oxide heterostructures attract a great deal of research interest because their catalytic performances can be tuned by interface engineering. In this Review, the latest achievements in interface engineering of metal/metal oxides heterostructures toward ORR and OER are described. The effects of the metal/metal oxide interface on catalysis are first discussed. Then, the approaches for interface engineering are illustrated. The developments of interface engineering in OER and ORR catalysis as well as bifunctional electrocatalysis are further introduced. Lastly, a perspective for future development of interface engineering in metal/metal oxide for OER and ORR is discussed.
Collapse
Affiliation(s)
- Nan Zhang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|